ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
140#ifdef EV_H
141# include EV_H
142#else
98#include "ev.h" 143# include "ev.h"
144#endif
99 145
100#if __GNUC__ >= 3 146#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 148# define inline inline
103#else 149#else
115typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
117 163
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
120/*****************************************************************************/ 170/*****************************************************************************/
121 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
122typedef struct 220typedef struct
123{ 221{
124 struct ev_watcher_list *head; 222 WL head;
125 unsigned char events; 223 unsigned char events;
126 unsigned char reify; 224 unsigned char reify;
127} ANFD; 225} ANFD;
128 226
129typedef struct 227typedef struct
132 int events; 230 int events;
133} ANPENDING; 231} ANPENDING;
134 232
135#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
136 234
137struct ev_loop 235 struct ev_loop
138{ 236 {
237 ev_tstamp ev_rt_now;
139# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
140# include "ev_vars.h" 239 #include "ev_vars.h"
141};
142# undef VAR 240 #undef VAR
241 };
143# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
144 246
145#else 247#else
146 248
249 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 251 #include "ev_vars.h"
149# undef VAR 252 #undef VAR
253
254 static int default_loop;
150 255
151#endif 256#endif
152 257
153/*****************************************************************************/ 258/*****************************************************************************/
154 259
155inline ev_tstamp 260ev_tstamp
156ev_time (void) 261ev_time (void)
157{ 262{
158#if EV_USE_REALTIME 263#if EV_USE_REALTIME
159 struct timespec ts; 264 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
179#endif 284#endif
180 285
181 return ev_time (); 286 return ev_time ();
182} 287}
183 288
289#if EV_MULTIPLICITY
184ev_tstamp 290ev_tstamp
185ev_now (EV_P) 291ev_now (EV_P)
186{ 292{
187 return rt_now; 293 return ev_rt_now;
188} 294}
295#endif
189 296
190#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
191 298
192#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
194 { \ 301 { \
195 int newcnt = cur; \ 302 int newcnt = cur; \
196 do \ 303 do \
197 { \ 304 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 306 } \
200 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
201 \ 308 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 311 cur = newcnt; \
205 } 312 }
313
314#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 }
321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326
327#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 329
207/*****************************************************************************/ 330/*****************************************************************************/
208 331
209static void 332static void
210anfds_init (ANFD *base, int count) 333anfds_init (ANFD *base, int count)
217 340
218 ++base; 341 ++base;
219 } 342 }
220} 343}
221 344
222static void 345void
223event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
224{ 347{
348 W w_ = (W)w;
349
225 if (w->pending) 350 if (w_->pending)
226 { 351 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 353 return;
229 } 354 }
230 355
231 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 360}
236 361
237static void 362static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 364{
240 int i; 365 int i;
241 366
242 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
244} 369}
245 370
246static void 371inline void
247fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
248{ 373{
249 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 375 struct ev_io *w;
251 376
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 378 {
254 int ev = w->events & events; 379 int ev = w->events & revents;
255 380
256 if (ev) 381 if (ev)
257 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
258 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
259} 390}
260 391
261/*****************************************************************************/ 392/*****************************************************************************/
262 393
263static void 394static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 408 events |= w->events;
278 409
279 anfd->reify = 0; 410 anfd->reify = 0;
280 411
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 412 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 413 anfd->events = events;
285 }
286 } 414 }
287 415
288 fdchangecnt = 0; 416 fdchangecnt = 0;
289} 417}
290 418
291static void 419static void
292fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
293{ 421{
294 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
295 return; 423 return;
296 424
297 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
298 426
299 ++fdchangecnt; 427 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
302} 430}
303 431
304static void 432static void
305fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
307 struct ev_io *w; 435 struct ev_io *w;
308 436
309 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
310 { 438 {
311 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
314} 452}
315 453
316/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
317static void 455static void
318fd_ebadf (EV_P) 456fd_ebadf (EV_P)
319{ 457{
320 int fd; 458 int fd;
321 459
322 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 461 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
326} 464}
327 465
328/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 467static void
330fd_enomem (EV_P) 468fd_enomem (EV_P)
331{ 469{
332 int fd = anfdmax; 470 int fd;
333 471
334 while (fd--) 472 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 473 if (anfds [fd].events)
336 { 474 {
337 close (fd);
338 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
339 return; 476 return;
340 } 477 }
341} 478}
342 479
343/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 481static void
345fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
346{ 483{
347 int fd; 484 int fd;
348 485
349 /* this should be highly optimised to not do anything but set a flag */ 486 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 487 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 488 if (anfds [fd].events)
352 { 489 {
353 anfds [fd].events = 0; 490 anfds [fd].events = 0;
354 fd_change (fd); 491 fd_change (EV_A_ fd);
355 } 492 }
356} 493}
357 494
358/*****************************************************************************/ 495/*****************************************************************************/
359 496
363 WT w = heap [k]; 500 WT w = heap [k];
364 501
365 while (k && heap [k >> 1]->at > w->at) 502 while (k && heap [k >> 1]->at > w->at)
366 { 503 {
367 heap [k] = heap [k >> 1]; 504 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 505 ((W)heap [k])->active = k + 1;
369 k >>= 1; 506 k >>= 1;
370 } 507 }
371 508
372 heap [k] = w; 509 heap [k] = w;
373 heap [k]->active = k + 1; 510 ((W)heap [k])->active = k + 1;
374 511
375} 512}
376 513
377static void 514static void
378downheap (WT *heap, int N, int k) 515downheap (WT *heap, int N, int k)
388 525
389 if (w->at <= heap [j]->at) 526 if (w->at <= heap [j]->at)
390 break; 527 break;
391 528
392 heap [k] = heap [j]; 529 heap [k] = heap [j];
393 heap [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
394 k = j; 531 k = j;
395 } 532 }
396 533
397 heap [k] = w; 534 heap [k] = w;
398 heap [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
536}
537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
399} 548}
400 549
401/*****************************************************************************/ 550/*****************************************************************************/
402 551
403typedef struct 552typedef struct
404{ 553{
405 struct ev_watcher_list *head; 554 WL head;
406 sig_atomic_t volatile gotsig; 555 sig_atomic_t volatile gotsig;
407} ANSIG; 556} ANSIG;
408 557
409static ANSIG *signals; 558static ANSIG *signals;
410static int signalmax; 559static int signalmax;
426} 575}
427 576
428static void 577static void
429sighandler (int signum) 578sighandler (int signum)
430{ 579{
580#if WIN32
581 signal (signum, sighandler);
582#endif
583
431 signals [signum - 1].gotsig = 1; 584 signals [signum - 1].gotsig = 1;
432 585
433 if (!gotsig) 586 if (!gotsig)
434 { 587 {
435 int old_errno = errno; 588 int old_errno = errno;
436 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
437 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
438 errno = old_errno; 595 errno = old_errno;
439 } 596 }
440} 597}
441 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
442static void 619static void
443sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
444{ 621{
445 struct ev_watcher_list *w;
446 int signum; 622 int signum;
447 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
448 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
449 gotsig = 0; 629 gotsig = 0;
450 630
451 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
453 { 633 ev_feed_signal_event (EV_A_ signum + 1);
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459} 634}
460 635
461static void 636static void
462siginit (EV_P) 637siginit (EV_P)
463{ 638{
475 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 651}
477 652
478/*****************************************************************************/ 653/*****************************************************************************/
479 654
655static struct ev_child *childs [PID_HASHSIZE];
656
480#ifndef WIN32 657#ifndef WIN32
481 658
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 659static struct ev_signal childev;
484 660
485#ifndef WCONTINUED 661#ifndef WCONTINUED
486# define WCONTINUED 0 662# define WCONTINUED 0
487#endif 663#endif
492 struct ev_child *w; 668 struct ev_child *w;
493 669
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
496 { 672 {
497 w->priority = sw->priority; /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
498 w->rpid = pid; 674 w->rpid = pid;
499 w->rstatus = status; 675 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
501 } 677 }
502} 678}
503 679
504static void 680static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
507 int pid, status; 683 int pid, status;
508 684
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 686 {
511 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
512 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 689
514 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 } 692 }
517} 693}
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1; 751 have_monotonic = 1;
576 } 752 }
577#endif 753#endif
578 754
579 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
580 mn_now = get_clock (); 756 mn_now = get_clock ();
581 now_floor = mn_now; 757 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
583 759
584 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
587 else 763 else
588 methods = EVMETHOD_ANY; 764 methods = EVMETHOD_ANY;
589 765
590 method = 0; 766 method = 0;
767#if EV_USE_WIN32
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
769#endif
591#if EV_USE_KQUEUE 770#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif 772#endif
594#if EV_USE_EPOLL 773#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif 778#endif
600#if EV_USE_SELECT 779#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
603 } 785 }
604} 786}
605 787
606void 788void
607loop_destroy (EV_P) 789loop_destroy (EV_P)
608{ 790{
791 int i;
792
793#if EV_USE_WIN32
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
795#endif
609#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif 798#endif
612#if EV_USE_EPOLL 799#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
617#endif 804#endif
618#if EV_USE_SELECT 805#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 806 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif 807#endif
621 808
809 for (i = NUMPRI; i--; )
810 array_free (pending, [i]);
811
812 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange);
814 array_free_microshit (timer);
815#if EV_PERIODICS
816 array_free_microshit (periodic);
817#endif
818 array_free_microshit (idle);
819 array_free_microshit (prepare);
820 array_free_microshit (check);
821
622 method = 0; 822 method = 0;
623 /*TODO*/
624} 823}
625 824
626void 825static void
627loop_fork (EV_P) 826loop_fork (EV_P)
628{ 827{
629 /*TODO*/
630#if EV_USE_EPOLL 828#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif 830#endif
633#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
636} 851}
637 852
638#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
639struct ev_loop * 854struct ev_loop *
640ev_loop_new (int methods) 855ev_loop_new (int methods)
641{ 856{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
643 860
644 loop_init (EV_A_ methods); 861 loop_init (EV_A_ methods);
645 862
646 if (ev_methods (EV_A)) 863 if (ev_method (EV_A))
647 return loop; 864 return loop;
648 865
649 return 0; 866 return 0;
650} 867}
651 868
652void 869void
653ev_loop_destroy (EV_P) 870ev_loop_destroy (EV_P)
654{ 871{
655 loop_destroy (EV_A); 872 loop_destroy (EV_A);
656 free (loop); 873 ev_free (loop);
657} 874}
658 875
659void 876void
660ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
661{ 878{
662 loop_fork (EV_A); 879 postfork = 1;
663} 880}
664 881
665#endif 882#endif
666 883
667#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop * 885struct ev_loop *
672#else 886#else
673static int default_loop;
674
675int 887int
676#endif 888#endif
677ev_default_loop (int methods) 889ev_default_loop (int methods)
678{ 890{
679 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
690 902
691 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
692 904
693 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
694 { 906 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A); 907 siginit (EV_A);
698 908
699#ifndef WIN32 909#ifndef WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
715{ 925{
716#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
718#endif 928#endif
719 929
930#ifndef WIN32
720 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
722 934
723 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
725 937
726 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
728 940
729 loop_destroy (EV_A); 941 loop_destroy (EV_A);
730} 942}
731 943
732void 944void
733ev_default_fork (EV_P) 945ev_default_fork (void)
734{ 946{
735 loop_fork (EV_A); 947#if EV_MULTIPLICITY
948 struct ev_loop *loop = default_loop;
949#endif
736 950
737 ev_io_stop (EV_A_ &sigev); 951 if (method)
738 close (sigpipe [0]); 952 postfork = 1;
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 953}
745 954
746/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
747 968
748static void 969static void
749call_pending (EV_P) 970call_pending (EV_P)
750{ 971{
751 int pri; 972 int pri;
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 978
758 if (p->w) 979 if (p->w)
759 { 980 {
760 p->w->pending = 0; 981 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
762 } 983 }
763 } 984 }
764} 985}
765 986
766static void 987static void
767timers_reify (EV_P) 988timers_reify (EV_P)
768{ 989{
769 while (timercnt && timers [0]->at <= mn_now) 990 while (timercnt && ((WT)timers [0])->at <= mn_now)
770 { 991 {
771 struct ev_timer *w = timers [0]; 992 struct ev_timer *w = timers [0];
993
994 assert (("inactive timer on timer heap detected", ev_is_active (w)));
772 995
773 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
774 if (w->repeat) 997 if (w->repeat)
775 { 998 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
777 w->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
778 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
779 } 1006 }
780 else 1007 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 1009
783 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 1011 }
785} 1012}
786 1013
1014#if EV_PERIODICS
787static void 1015static void
788periodics_reify (EV_P) 1016periodics_reify (EV_P)
789{ 1017{
790 while (periodiccnt && periodics [0]->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
791 { 1019 {
792 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
793 1021
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1023
794 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
795 if (w->interval) 1025 if (w->reschedule_cb)
796 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
800 } 1037 }
801 else 1038 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 1040
804 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 1042 }
806} 1043}
807 1044
808static void 1045static void
809periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
813 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
815 { 1052 {
816 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
817 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
818 if (w->interval) 1057 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
831} 1064}
1065#endif
832 1066
833inline int 1067inline int
834time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
835{ 1069{
836 mn_now = get_clock (); 1070 mn_now = get_clock ();
837 1071
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 { 1073 {
840 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
841 return 0; 1075 return 0;
842 } 1076 }
843 else 1077 else
844 { 1078 {
845 now_floor = mn_now; 1079 now_floor = mn_now;
846 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
847 return 1; 1081 return 1;
848 } 1082 }
849} 1083}
850 1084
851static void 1085static void
860 { 1094 {
861 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
862 1096
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 { 1098 {
865 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
866 1100
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
868 return; /* all is well */ 1102 return; /* all is well */
869 1103
870 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1105 mn_now = get_clock ();
872 now_floor = mn_now; 1106 now_floor = mn_now;
873 } 1107 }
874 1108
1109# if EV_PERIODICS
875 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 } 1114 }
879 } 1115 }
880 else 1116 else
881#endif 1117#endif
882 { 1118 {
883 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
884 1120
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 { 1122 {
1123#if EV_PERIODICS
887 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
888 1126
889 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
892 } 1130 }
893 1131
894 mn_now = rt_now; 1132 mn_now = ev_rt_now;
895 } 1133 }
896} 1134}
897 1135
898void 1136void
899ev_ref (EV_P) 1137ev_ref (EV_P)
922 { 1160 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1162 call_pending (EV_A);
925 } 1163 }
926 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
927 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1170 fd_reify (EV_A);
929 1171
930 /* calculate blocking time */ 1172 /* calculate blocking time */
931 1173
932 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
933 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
937 else 1179 else
938#endif 1180#endif
939 { 1181 {
940 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
941 mn_now = rt_now; 1183 mn_now = ev_rt_now;
942 } 1184 }
943 1185
944 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.; 1187 block = 0.;
946 else 1188 else
947 { 1189 {
948 block = MAX_BLOCKTIME; 1190 block = MAX_BLOCKTIME;
949 1191
950 if (timercnt) 1192 if (timercnt)
951 { 1193 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
953 if (block > to) block = to; 1195 if (block > to) block = to;
954 } 1196 }
955 1197
1198#if EV_PERIODICS
956 if (periodiccnt) 1199 if (periodiccnt)
957 { 1200 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
959 if (block > to) block = to; 1202 if (block > to) block = to;
960 } 1203 }
1204#endif
961 1205
962 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
963 } 1207 }
964 1208
965 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
966 1210
967 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
968 time_update (EV_A); 1212 time_update (EV_A);
969 1213
970 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
972 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
973 1219
974 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
975 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 1223
978 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
979 if (checkcnt) 1225 if (checkcnt)
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 return; 1301 return;
1056 1302
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1304
1059 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 1308
1063 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1064} 1310}
1065 1311
1068{ 1314{
1069 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1071 return; 1317 return;
1072 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1075 1323
1076 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1077} 1325}
1080ev_timer_start (EV_P_ struct ev_timer *w) 1328ev_timer_start (EV_P_ struct ev_timer *w)
1081{ 1329{
1082 if (ev_is_active (w)) 1330 if (ev_is_active (w))
1083 return; 1331 return;
1084 1332
1085 w->at += mn_now; 1333 ((WT)w)->at += mn_now;
1086 1334
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1336
1089 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1090 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1091 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1092 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1093} 1343}
1094 1344
1095void 1345void
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1346ev_timer_stop (EV_P_ struct ev_timer *w)
1097{ 1347{
1098 ev_clear_pending (EV_A_ (W)w); 1348 ev_clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
1100 return; 1350 return;
1101 1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1102 if (w->active < timercnt--) 1354 if (((W)w)->active < timercnt--)
1103 { 1355 {
1104 timers [w->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1106 } 1358 }
1107 1359
1108 w->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1109 1361
1110 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1111} 1363}
1112 1364
1113void 1365void
1114ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1115{ 1367{
1116 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1117 { 1369 {
1118 if (w->repeat) 1370 if (w->repeat)
1119 {
1120 w->at = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1122 }
1123 else 1372 else
1124 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1125 } 1374 }
1126 else if (w->repeat) 1375 else if (w->repeat)
1127 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1128} 1377}
1129 1378
1379#if EV_PERIODICS
1130void 1380void
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1132{ 1382{
1133 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1134 return; 1384 return;
1135 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1141 1394
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1144 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1399
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1146} 1401}
1147 1402
1148void 1403void
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 1404ev_periodic_stop (EV_P_ struct ev_periodic *w)
1150{ 1405{
1151 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 1407 if (!ev_is_active (w))
1153 return; 1408 return;
1154 1409
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1411
1155 if (w->active < periodiccnt--) 1412 if (((W)w)->active < periodiccnt--)
1156 { 1413 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 1414 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1159 } 1416 }
1160 1417
1161 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1162} 1419}
1163 1420
1164void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1165ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1166{ 1432{
1167 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1168 return; 1434 return;
1169 1435
1170 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1172 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1173} 1439}
1174 1440
1175void 1441void
1176ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1177{ 1443{
1178 ev_clear_pending (EV_A_ (W)w); 1444 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w)) 1445 if (ev_is_active (w))
1180 return; 1446 return;
1181 1447
1182 idles [w->active - 1] = idles [--idlecnt]; 1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1184} 1450}
1185 1451
1186void 1452void
1187ev_prepare_start (EV_P_ struct ev_prepare *w) 1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{ 1454{
1189 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1190 return; 1456 return;
1191 1457
1192 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1194 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1195} 1461}
1196 1462
1197void 1463void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{ 1465{
1200 ev_clear_pending (EV_A_ (W)w); 1466 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w)) 1467 if (ev_is_active (w))
1202 return; 1468 return;
1203 1469
1204 prepares [w->active - 1] = prepares [--preparecnt]; 1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w); 1471 ev_stop (EV_A_ (W)w);
1206} 1472}
1207 1473
1208void 1474void
1209ev_check_start (EV_P_ struct ev_check *w) 1475ev_check_start (EV_P_ struct ev_check *w)
1210{ 1476{
1211 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1212 return; 1478 return;
1213 1479
1214 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1216 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1217} 1483}
1218 1484
1219void 1485void
1220ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1221{ 1487{
1222 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1224 return; 1490 return;
1225 1491
1226 checks [w->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1228} 1494}
1229 1495
1230#ifndef SA_RESTART 1496#ifndef SA_RESTART
1231# define SA_RESTART 0 1497# define SA_RESTART 0
1241 return; 1507 return;
1242 1508
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 1510
1245 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 1514
1249 if (!w->next) 1515 if (!((WL)w)->next)
1250 { 1516 {
1517#if WIN32
1518 signal (w->signum, sighandler);
1519#else
1251 struct sigaction sa; 1520 struct sigaction sa;
1252 sa.sa_handler = sighandler; 1521 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask); 1522 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 1524 sigaction (w->signum, &sa, 0);
1525#endif
1256 } 1526 }
1257} 1527}
1258 1528
1259void 1529void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 1530ev_signal_stop (EV_P_ struct ev_signal *w)
1285 1555
1286void 1556void
1287ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1288{ 1558{
1289 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1291 return; 1561 return;
1292 1562
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1294 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1295} 1565}
1310 void (*cb)(int revents, void *arg) = once->cb; 1580 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 1581 void *arg = once->arg;
1312 1582
1313 ev_io_stop (EV_A_ &once->io); 1583 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 1584 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 1585 ev_free (once);
1316 1586
1317 cb (revents, arg); 1587 cb (revents, arg);
1318} 1588}
1319 1589
1320static void 1590static void
1330} 1600}
1331 1601
1332void 1602void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 1604{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 1606
1337 if (!once) 1607 if (!once)
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 1609 else
1340 { 1610 {
1341 once->cb = cb; 1611 once->cb = cb;
1342 once->arg = arg; 1612 once->arg = arg;
1343 1613
1344 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 1615 if (fd >= 0)
1346 { 1616 {
1347 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1348 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1349 } 1619 }
1350 1620
1351 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1352 if (timeout >= 0.) 1622 if (timeout >= 0.)
1353 { 1623 {
1354 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1355 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1356 } 1626 }
1357 } 1627 }
1358} 1628}
1359 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines