ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
90# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
91#endif 101#endif
92 102
93#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
95#endif 115#endif
96 116
97#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
99#endif 119#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 139
140#ifdef EV_H
141# include EV_H
142#else
120#include "ev.h" 143# include "ev.h"
144#endif
121 145
122#if __GNUC__ >= 3 146#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 148# define inline inline
125#else 149#else
137typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
139 163
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
142/*****************************************************************************/ 170/*****************************************************************************/
143 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
144typedef struct 220typedef struct
145{ 221{
146 struct ev_watcher_list *head; 222 WL head;
147 unsigned char events; 223 unsigned char events;
148 unsigned char reify; 224 unsigned char reify;
149} ANFD; 225} ANFD;
150 226
151typedef struct 227typedef struct
154 int events; 230 int events;
155} ANPENDING; 231} ANPENDING;
156 232
157#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
158 234
159struct ev_loop 235 struct ev_loop
160{ 236 {
237 ev_tstamp ev_rt_now;
161# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
162# include "ev_vars.h" 239 #include "ev_vars.h"
163};
164# undef VAR 240 #undef VAR
241 };
165# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
166 246
167#else 247#else
168 248
249 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 251 #include "ev_vars.h"
171# undef VAR 252 #undef VAR
253
254 static int default_loop;
172 255
173#endif 256#endif
174 257
175/*****************************************************************************/ 258/*****************************************************************************/
176 259
177inline ev_tstamp 260ev_tstamp
178ev_time (void) 261ev_time (void)
179{ 262{
180#if EV_USE_REALTIME 263#if EV_USE_REALTIME
181 struct timespec ts; 264 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 284#endif
202 285
203 return ev_time (); 286 return ev_time ();
204} 287}
205 288
289#if EV_MULTIPLICITY
206ev_tstamp 290ev_tstamp
207ev_now (EV_P) 291ev_now (EV_P)
208{ 292{
209 return rt_now; 293 return ev_rt_now;
210} 294}
295#endif
211 296
212#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
213 298
214#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
216 { \ 301 { \
217 int newcnt = cur; \ 302 int newcnt = cur; \
218 do \ 303 do \
219 { \ 304 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 306 } \
222 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
223 \ 308 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 311 cur = newcnt; \
227 } 312 }
313
314#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 }
321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326
327#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 329
229/*****************************************************************************/ 330/*****************************************************************************/
230 331
231static void 332static void
232anfds_init (ANFD *base, int count) 333anfds_init (ANFD *base, int count)
239 340
240 ++base; 341 ++base;
241 } 342 }
242} 343}
243 344
244static void 345void
245event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
246{ 347{
348 W w_ = (W)w;
349
247 if (w->pending) 350 if (w_->pending)
248 { 351 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 353 return;
251 } 354 }
252 355
253 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 360}
258 361
259static void 362static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 364{
262 int i; 365 int i;
263 366
264 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
266} 369}
267 370
268static void 371inline void
269fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
270{ 373{
271 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 375 struct ev_io *w;
273 376
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 378 {
276 int ev = w->events & events; 379 int ev = w->events & revents;
277 380
278 if (ev) 381 if (ev)
279 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
280 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
281} 390}
282 391
283/*****************************************************************************/ 392/*****************************************************************************/
284 393
285static void 394static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 408 events |= w->events;
300 409
301 anfd->reify = 0; 410 anfd->reify = 0;
302 411
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 412 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 413 anfd->events = events;
307 }
308 } 414 }
309 415
310 fdchangecnt = 0; 416 fdchangecnt = 0;
311} 417}
312 418
313static void 419static void
314fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
315{ 421{
316 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
317 return; 423 return;
318 424
319 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
320 426
321 ++fdchangecnt; 427 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
324} 430}
325 431
326static void 432static void
327fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
329 struct ev_io *w; 435 struct ev_io *w;
330 436
331 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
332 { 438 {
333 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
336} 452}
337 453
338/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
339static void 455static void
340fd_ebadf (EV_P) 456fd_ebadf (EV_P)
341{ 457{
342 int fd; 458 int fd;
343 459
344 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 461 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
348} 464}
349 465
350/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 467static void
352fd_enomem (EV_P) 468fd_enomem (EV_P)
353{ 469{
354 int fd = anfdmax; 470 int fd;
355 471
356 while (fd--) 472 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 473 if (anfds [fd].events)
358 { 474 {
359 close (fd);
360 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
361 return; 476 return;
362 } 477 }
363} 478}
364 479
365/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 481static void
367fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
368{ 483{
369 int fd; 484 int fd;
370 485
385 WT w = heap [k]; 500 WT w = heap [k];
386 501
387 while (k && heap [k >> 1]->at > w->at) 502 while (k && heap [k >> 1]->at > w->at)
388 { 503 {
389 heap [k] = heap [k >> 1]; 504 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 505 ((W)heap [k])->active = k + 1;
391 k >>= 1; 506 k >>= 1;
392 } 507 }
393 508
394 heap [k] = w; 509 heap [k] = w;
395 heap [k]->active = k + 1; 510 ((W)heap [k])->active = k + 1;
396 511
397} 512}
398 513
399static void 514static void
400downheap (WT *heap, int N, int k) 515downheap (WT *heap, int N, int k)
410 525
411 if (w->at <= heap [j]->at) 526 if (w->at <= heap [j]->at)
412 break; 527 break;
413 528
414 heap [k] = heap [j]; 529 heap [k] = heap [j];
415 heap [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
416 k = j; 531 k = j;
417 } 532 }
418 533
419 heap [k] = w; 534 heap [k] = w;
420 heap [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
536}
537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
421} 548}
422 549
423/*****************************************************************************/ 550/*****************************************************************************/
424 551
425typedef struct 552typedef struct
426{ 553{
427 struct ev_watcher_list *head; 554 WL head;
428 sig_atomic_t volatile gotsig; 555 sig_atomic_t volatile gotsig;
429} ANSIG; 556} ANSIG;
430 557
431static ANSIG *signals; 558static ANSIG *signals;
432static int signalmax; 559static int signalmax;
448} 575}
449 576
450static void 577static void
451sighandler (int signum) 578sighandler (int signum)
452{ 579{
580#if WIN32
581 signal (signum, sighandler);
582#endif
583
453 signals [signum - 1].gotsig = 1; 584 signals [signum - 1].gotsig = 1;
454 585
455 if (!gotsig) 586 if (!gotsig)
456 { 587 {
457 int old_errno = errno; 588 int old_errno = errno;
458 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
459 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
460 errno = old_errno; 595 errno = old_errno;
461 } 596 }
462} 597}
463 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
464static void 619static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 621{
467 struct ev_watcher_list *w;
468 int signum; 622 int signum;
469 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
470 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
471 gotsig = 0; 629 gotsig = 0;
472 630
473 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
475 { 633 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 634}
482 635
483static void 636static void
484siginit (EV_P) 637siginit (EV_P)
485{ 638{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 651}
499 652
500/*****************************************************************************/ 653/*****************************************************************************/
501 654
655static struct ev_child *childs [PID_HASHSIZE];
656
502#ifndef WIN32 657#ifndef WIN32
503 658
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 659static struct ev_signal childev;
506 660
507#ifndef WCONTINUED 661#ifndef WCONTINUED
508# define WCONTINUED 0 662# define WCONTINUED 0
509#endif 663#endif
514 struct ev_child *w; 668 struct ev_child *w;
515 669
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
518 { 672 {
519 w->priority = sw->priority; /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 674 w->rpid = pid;
521 w->rstatus = status; 675 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 677 }
524} 678}
525 679
526static void 680static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 683 int pid, status;
530 684
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 686 {
533 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 689
536 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 692 }
539} 693}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 751 have_monotonic = 1;
598 } 752 }
599#endif 753#endif
600 754
601 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 756 mn_now = get_clock ();
603 now_floor = mn_now; 757 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
605 759
606 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 763 else
610 methods = EVMETHOD_ANY; 764 methods = EVMETHOD_ANY;
611 765
612 method = 0; 766 method = 0;
767#if EV_USE_WIN32
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
769#endif
613#if EV_USE_KQUEUE 770#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 772#endif
616#if EV_USE_EPOLL 773#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 778#endif
622#if EV_USE_SELECT 779#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
625 } 785 }
626} 786}
627 787
628void 788void
629loop_destroy (EV_P) 789loop_destroy (EV_P)
630{ 790{
791 int i;
792
793#if EV_USE_WIN32
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
795#endif
631#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 798#endif
634#if EV_USE_EPOLL 799#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 804#endif
640#if EV_USE_SELECT 805#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 806 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 807#endif
643 808
809 for (i = NUMPRI; i--; )
810 array_free (pending, [i]);
811
812 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange);
814 array_free_microshit (timer);
815#if EV_PERIODICS
816 array_free_microshit (periodic);
817#endif
818 array_free_microshit (idle);
819 array_free_microshit (prepare);
820 array_free_microshit (check);
821
644 method = 0; 822 method = 0;
645 /*TODO*/
646} 823}
647 824
648void 825static void
649loop_fork (EV_P) 826loop_fork (EV_P)
650{ 827{
651 /*TODO*/
652#if EV_USE_EPOLL 828#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 830#endif
655#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
658} 851}
659 852
660#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
661struct ev_loop * 854struct ev_loop *
662ev_loop_new (int methods) 855ev_loop_new (int methods)
663{ 856{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
665 860
666 loop_init (EV_A_ methods); 861 loop_init (EV_A_ methods);
667 862
668 if (ev_method (EV_A)) 863 if (ev_method (EV_A))
669 return loop; 864 return loop;
673 868
674void 869void
675ev_loop_destroy (EV_P) 870ev_loop_destroy (EV_P)
676{ 871{
677 loop_destroy (EV_A); 872 loop_destroy (EV_A);
678 free (loop); 873 ev_free (loop);
679} 874}
680 875
681void 876void
682ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
683{ 878{
684 loop_fork (EV_A); 879 postfork = 1;
685} 880}
686 881
687#endif 882#endif
688 883
689#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 885struct ev_loop *
694#else 886#else
695static int default_loop;
696
697int 887int
698#endif 888#endif
699ev_default_loop (int methods) 889ev_default_loop (int methods)
700{ 890{
701 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
712 902
713 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
714 904
715 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
716 { 906 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 907 siginit (EV_A);
720 908
721#ifndef WIN32 909#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
737{ 925{
738#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
740#endif 928#endif
741 929
930#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
744 934
745 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
747 937
748 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
756{ 946{
757#if EV_MULTIPLICITY 947#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 948 struct ev_loop *loop = default_loop;
759#endif 949#endif
760 950
761 loop_fork (EV_A); 951 if (method)
762 952 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 953}
771 954
772/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
773 968
774static void 969static void
775call_pending (EV_P) 970call_pending (EV_P)
776{ 971{
777 int pri; 972 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 978
784 if (p->w) 979 if (p->w)
785 { 980 {
786 p->w->pending = 0; 981 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
788 } 983 }
789 } 984 }
790} 985}
791 986
792static void 987static void
793timers_reify (EV_P) 988timers_reify (EV_P)
794{ 989{
795 while (timercnt && timers [0]->at <= mn_now) 990 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 991 {
797 struct ev_timer *w = timers [0]; 992 struct ev_timer *w = timers [0];
993
994 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 995
799 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
800 if (w->repeat) 997 if (w->repeat)
801 { 998 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
803 w->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
804 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
805 } 1006 }
806 else 1007 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1009
809 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1011 }
811} 1012}
812 1013
1014#if EV_PERIODICS
813static void 1015static void
814periodics_reify (EV_P) 1016periodics_reify (EV_P)
815{ 1017{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
817 { 1019 {
818 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
819 1021
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1023
820 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
821 if (w->interval) 1025 if (w->reschedule_cb)
822 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
826 } 1037 }
827 else 1038 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1040
830 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1042 }
832} 1043}
833 1044
834static void 1045static void
835periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
841 { 1052 {
842 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
843 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1057 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
857} 1064}
1065#endif
858 1066
859inline int 1067inline int
860time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
861{ 1069{
862 mn_now = get_clock (); 1070 mn_now = get_clock ();
863 1071
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 { 1073 {
866 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
867 return 0; 1075 return 0;
868 } 1076 }
869 else 1077 else
870 { 1078 {
871 now_floor = mn_now; 1079 now_floor = mn_now;
872 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
873 return 1; 1081 return 1;
874 } 1082 }
875} 1083}
876 1084
877static void 1085static void
886 { 1094 {
887 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
888 1096
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 { 1098 {
891 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
892 1100
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1102 return; /* all is well */
895 1103
896 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1105 mn_now = get_clock ();
898 now_floor = mn_now; 1106 now_floor = mn_now;
899 } 1107 }
900 1108
1109# if EV_PERIODICS
901 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
902 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 } 1114 }
905 } 1115 }
906 else 1116 else
907#endif 1117#endif
908 { 1118 {
909 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
910 1120
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 { 1122 {
1123#if EV_PERIODICS
913 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
914 1126
915 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
918 } 1130 }
919 1131
920 mn_now = rt_now; 1132 mn_now = ev_rt_now;
921 } 1133 }
922} 1134}
923 1135
924void 1136void
925ev_ref (EV_P) 1137ev_ref (EV_P)
948 { 1160 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1162 call_pending (EV_A);
951 } 1163 }
952 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
953 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1170 fd_reify (EV_A);
955 1171
956 /* calculate blocking time */ 1172 /* calculate blocking time */
957 1173
958 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
963 else 1179 else
964#endif 1180#endif
965 { 1181 {
966 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
967 mn_now = rt_now; 1183 mn_now = ev_rt_now;
968 } 1184 }
969 1185
970 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.; 1187 block = 0.;
972 else 1188 else
973 { 1189 {
974 block = MAX_BLOCKTIME; 1190 block = MAX_BLOCKTIME;
975 1191
976 if (timercnt) 1192 if (timercnt)
977 { 1193 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1195 if (block > to) block = to;
980 } 1196 }
981 1197
1198#if EV_PERIODICS
982 if (periodiccnt) 1199 if (periodiccnt)
983 { 1200 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
985 if (block > to) block = to; 1202 if (block > to) block = to;
986 } 1203 }
1204#endif
987 1205
988 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
989 } 1207 }
990 1208
991 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
992 1210
993 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1212 time_update (EV_A);
995 1213
996 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
998 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
999 1219
1000 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1223
1004 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1225 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1081 return; 1301 return;
1082 1302
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1304
1085 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1308
1089 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1090} 1310}
1091 1311
1094{ 1314{
1095 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1097 return; 1317 return;
1098 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1101 1323
1102 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1103} 1325}
1106ev_timer_start (EV_P_ struct ev_timer *w) 1328ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1329{
1108 if (ev_is_active (w)) 1330 if (ev_is_active (w))
1109 return; 1331 return;
1110 1332
1111 w->at += mn_now; 1333 ((WT)w)->at += mn_now;
1112 1334
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1336
1115 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1117 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1343}
1120 1344
1121void 1345void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1346ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1347{
1124 ev_clear_pending (EV_A_ (W)w); 1348 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
1126 return; 1350 return;
1127 1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1128 if (w->active < timercnt--) 1354 if (((W)w)->active < timercnt--)
1129 { 1355 {
1130 timers [w->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1358 }
1133 1359
1134 w->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1135 1361
1136 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1137} 1363}
1138 1364
1139void 1365void
1140ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1141{ 1367{
1142 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1143 { 1369 {
1144 if (w->repeat) 1370 if (w->repeat)
1145 {
1146 w->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1148 }
1149 else 1372 else
1150 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1151 } 1374 }
1152 else if (w->repeat) 1375 else if (w->repeat)
1153 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1154} 1377}
1155 1378
1379#if EV_PERIODICS
1156void 1380void
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1382{
1159 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1160 return; 1384 return;
1161 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1167 1394
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1170 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1399
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1401}
1173 1402
1174void 1403void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1404ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1405{
1177 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1407 if (!ev_is_active (w))
1179 return; 1408 return;
1180 1409
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1411
1181 if (w->active < periodiccnt--) 1412 if (((W)w)->active < periodiccnt--)
1182 { 1413 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1414 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1416 }
1186 1417
1187 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1188} 1419}
1189 1420
1190void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1432{
1193 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1194 return; 1434 return;
1195 1435
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1198 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1199} 1439}
1200 1440
1201void 1441void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1443{
1204 ev_clear_pending (EV_A_ (W)w); 1444 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1445 if (ev_is_active (w))
1206 return; 1446 return;
1207 1447
1208 idles [w->active - 1] = idles [--idlecnt]; 1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1210} 1450}
1211 1451
1212void 1452void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{ 1454{
1215 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1216 return; 1456 return;
1217 1457
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1220 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1221} 1461}
1222 1462
1223void 1463void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{ 1465{
1226 ev_clear_pending (EV_A_ (W)w); 1466 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1467 if (ev_is_active (w))
1228 return; 1468 return;
1229 1469
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1471 ev_stop (EV_A_ (W)w);
1232} 1472}
1233 1473
1234void 1474void
1235ev_check_start (EV_P_ struct ev_check *w) 1475ev_check_start (EV_P_ struct ev_check *w)
1236{ 1476{
1237 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1238 return; 1478 return;
1239 1479
1240 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1242 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1243} 1483}
1244 1484
1245void 1485void
1246ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1247{ 1487{
1248 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1250 return; 1490 return;
1251 1491
1252 checks [w->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1254} 1494}
1255 1495
1256#ifndef SA_RESTART 1496#ifndef SA_RESTART
1257# define SA_RESTART 0 1497# define SA_RESTART 0
1267 return; 1507 return;
1268 1508
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1510
1271 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1514
1275 if (!w->next) 1515 if (!((WL)w)->next)
1276 { 1516 {
1517#if WIN32
1518 signal (w->signum, sighandler);
1519#else
1277 struct sigaction sa; 1520 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1521 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1522 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1524 sigaction (w->signum, &sa, 0);
1525#endif
1282 } 1526 }
1283} 1527}
1284 1528
1285void 1529void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1530ev_signal_stop (EV_P_ struct ev_signal *w)
1311 1555
1312void 1556void
1313ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1314{ 1558{
1315 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1317 return; 1561 return;
1318 1562
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1321} 1565}
1336 void (*cb)(int revents, void *arg) = once->cb; 1580 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1581 void *arg = once->arg;
1338 1582
1339 ev_io_stop (EV_A_ &once->io); 1583 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1584 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1585 ev_free (once);
1342 1586
1343 cb (revents, arg); 1587 cb (revents, arg);
1344} 1588}
1345 1589
1346static void 1590static void
1356} 1600}
1357 1601
1358void 1602void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1604{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1606
1363 if (!once) 1607 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1609 else
1366 { 1610 {
1367 once->cb = cb; 1611 once->cb = cb;
1368 once->arg = arg; 1612 once->arg = arg;
1369 1613
1370 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 1615 if (fd >= 0)
1372 { 1616 {
1373 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1375 } 1619 }
1376 1620
1377 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 1622 if (timeout >= 0.)
1379 { 1623 {
1380 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1382 } 1626 }
1383 } 1627 }
1384} 1628}
1385 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines