ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
150#if WIN32 166#ifdef WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 168#endif
169
170/*****************************************************************************/
171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
155 217
156/*****************************************************************************/ 218/*****************************************************************************/
157 219
158typedef struct 220typedef struct
159{ 221{
168 int events; 230 int events;
169} ANPENDING; 231} ANPENDING;
170 232
171#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
172 234
173struct ev_loop 235 struct ev_loop
174{ 236 {
237 ev_tstamp ev_rt_now;
175# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
176# include "ev_vars.h" 239 #include "ev_vars.h"
177};
178# undef VAR 240 #undef VAR
241 };
179# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
180 246
181#else 247#else
182 248
249 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 251 #include "ev_vars.h"
185# undef VAR 252 #undef VAR
253
254 static int default_loop;
186 255
187#endif 256#endif
188 257
189/*****************************************************************************/ 258/*****************************************************************************/
190 259
191inline ev_tstamp 260ev_tstamp
192ev_time (void) 261ev_time (void)
193{ 262{
194#if EV_USE_REALTIME 263#if EV_USE_REALTIME
195 struct timespec ts; 264 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 284#endif
216 285
217 return ev_time (); 286 return ev_time ();
218} 287}
219 288
289#if EV_MULTIPLICITY
220ev_tstamp 290ev_tstamp
221ev_now (EV_P) 291ev_now (EV_P)
222{ 292{
223 return rt_now; 293 return ev_rt_now;
224} 294}
295#endif
225 296
226#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
227 298
228#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
230 { \ 301 { \
231 int newcnt = cur; \ 302 int newcnt = cur; \
232 do \ 303 do \
233 { \ 304 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 306 } \
236 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
237 \ 308 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 311 cur = newcnt; \
241 } 312 }
242 313
243#define array_slim(stem) \ 314#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 316 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 317 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 320 }
250 321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326
251#define array_free(stem, idx) \ 327#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 329
254/*****************************************************************************/ 330/*****************************************************************************/
255 331
256static void 332static void
257anfds_init (ANFD *base, int count) 333anfds_init (ANFD *base, int count)
264 340
265 ++base; 341 ++base;
266 } 342 }
267} 343}
268 344
269static void 345void
270event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
271{ 347{
348 W w_ = (W)w;
349
272 if (w->pending) 350 if (w_->pending)
273 { 351 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 353 return;
276 } 354 }
277 355
278 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 360}
283 361
284static void 362static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 364{
287 int i; 365 int i;
288 366
289 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
291} 369}
292 370
293static void 371inline void
294fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
295{ 373{
296 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 375 struct ev_io *w;
298 376
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 378 {
301 int ev = w->events & events; 379 int ev = w->events & revents;
302 380
303 if (ev) 381 if (ev)
304 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
305 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
306} 390}
307 391
308/*****************************************************************************/ 392/*****************************************************************************/
309 393
310static void 394static void
333} 417}
334 418
335static void 419static void
336fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
337{ 421{
338 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
339 return; 423 return;
340 424
341 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
342 426
343 ++fdchangecnt; 427 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
346} 430}
347 431
348static void 432static void
349fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
351 struct ev_io *w; 435 struct ev_io *w;
352 436
353 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
354 { 438 {
355 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
358} 452}
359 453
360/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
361static void 455static void
362fd_ebadf (EV_P) 456fd_ebadf (EV_P)
363{ 457{
364 int fd; 458 int fd;
365 459
366 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 461 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
370} 464}
371 465
372/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 467static void
381 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
382 return; 476 return;
383 } 477 }
384} 478}
385 479
386/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
387static void 481static void
388fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
389{ 483{
390 int fd; 484 int fd;
391 485
439 533
440 heap [k] = w; 534 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 535 ((W)heap [k])->active = k + 1;
442} 536}
443 537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548}
549
444/*****************************************************************************/ 550/*****************************************************************************/
445 551
446typedef struct 552typedef struct
447{ 553{
448 WL head; 554 WL head;
479 585
480 if (!gotsig) 586 if (!gotsig)
481 { 587 {
482 int old_errno = errno; 588 int old_errno = errno;
483 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
484 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
485 errno = old_errno; 595 errno = old_errno;
486 } 596 }
487} 597}
488 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
489static void 619static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
491{ 621{
492 WL w;
493 int signum; 622 int signum;
494 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
495 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
496 gotsig = 0; 629 gotsig = 0;
497 630
498 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
500 { 633 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 634}
507 635
508static void 636static void
509siginit (EV_P) 637siginit (EV_P)
510{ 638{
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 651}
524 652
525/*****************************************************************************/ 653/*****************************************************************************/
526 654
655static struct ev_child *childs [PID_HASHSIZE];
656
527#ifndef WIN32 657#ifndef WIN32
528 658
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 659static struct ev_signal childev;
531 660
532#ifndef WCONTINUED 661#ifndef WCONTINUED
533# define WCONTINUED 0 662# define WCONTINUED 0
534#endif 663#endif
542 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
543 { 672 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 674 w->rpid = pid;
546 w->rstatus = status; 675 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 677 }
549} 678}
550 679
551static void 680static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
554 int pid, status; 683 int pid, status;
555 684
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 686 {
558 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 689
561 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 } 692 }
564} 693}
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 751 have_monotonic = 1;
623 } 752 }
624#endif 753#endif
625 754
626 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 756 mn_now = get_clock ();
628 now_floor = mn_now; 757 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
630 759
631 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
634 else 763 else
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif 778#endif
650#if EV_USE_SELECT 779#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
653 } 785 }
654} 786}
655 787
656void 788void
657loop_destroy (EV_P) 789loop_destroy (EV_P)
675#endif 807#endif
676 808
677 for (i = NUMPRI; i--; ) 809 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 810 array_free (pending, [i]);
679 811
812 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 813 array_free_microshit (fdchange);
681 array_free (timer, ); 814 array_free_microshit (timer);
815#if EV_PERIODICS
682 array_free (periodic, ); 816 array_free_microshit (periodic);
817#endif
683 array_free (idle, ); 818 array_free_microshit (idle);
684 array_free (prepare, ); 819 array_free_microshit (prepare);
685 array_free (check, ); 820 array_free_microshit (check);
686 821
687 method = 0; 822 method = 0;
688 /*TODO*/
689} 823}
690 824
691void 825static void
692loop_fork (EV_P) 826loop_fork (EV_P)
693{ 827{
694 /*TODO*/
695#if EV_USE_EPOLL 828#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif 830#endif
698#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
701} 851}
702 852
703#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
704struct ev_loop * 854struct ev_loop *
705ev_loop_new (int methods) 855ev_loop_new (int methods)
706{ 856{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
708 860
709 loop_init (EV_A_ methods); 861 loop_init (EV_A_ methods);
710 862
711 if (ev_method (EV_A)) 863 if (ev_method (EV_A))
712 return loop; 864 return loop;
716 868
717void 869void
718ev_loop_destroy (EV_P) 870ev_loop_destroy (EV_P)
719{ 871{
720 loop_destroy (EV_A); 872 loop_destroy (EV_A);
721 free (loop); 873 ev_free (loop);
722} 874}
723 875
724void 876void
725ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
726{ 878{
727 loop_fork (EV_A); 879 postfork = 1;
728} 880}
729 881
730#endif 882#endif
731 883
732#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 885struct ev_loop *
737#else 886#else
738static int default_loop;
739
740int 887int
741#endif 888#endif
742ev_default_loop (int methods) 889ev_default_loop (int methods)
743{ 890{
744 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
755 902
756 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
757 904
758 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
759 { 906 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 907 siginit (EV_A);
763 908
764#ifndef WIN32 909#ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
780{ 925{
781#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
783#endif 928#endif
784 929
930#ifndef WIN32
785 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
787 934
788 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
790 937
791 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
799{ 946{
800#if EV_MULTIPLICITY 947#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 948 struct ev_loop *loop = default_loop;
802#endif 949#endif
803 950
804 loop_fork (EV_A); 951 if (method)
805 952 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 953}
814 954
815/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
816 968
817static void 969static void
818call_pending (EV_P) 970call_pending (EV_P)
819{ 971{
820 int pri; 972 int pri;
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 978
827 if (p->w) 979 if (p->w)
828 { 980 {
829 p->w->pending = 0; 981 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
831 } 983 }
832 } 984 }
833} 985}
834 986
835static void 987static void
843 995
844 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
845 if (w->repeat) 997 if (w->repeat)
846 { 998 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
848 ((WT)w)->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
849 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
850 } 1006 }
851 else 1007 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1009
854 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1011 }
856} 1012}
857 1013
1014#if EV_PERIODICS
858static void 1015static void
859periodics_reify (EV_P) 1016periodics_reify (EV_P)
860{ 1017{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1019 {
863 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
864 1021
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1023
867 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
868 if (w->interval) 1025 if (w->reschedule_cb)
869 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1037 }
874 else 1038 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1040
877 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1042 }
879} 1043}
880 1044
881static void 1045static void
882periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
886 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
888 { 1052 {
889 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
890 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1057 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
904} 1064}
1065#endif
905 1066
906inline int 1067inline int
907time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
908{ 1069{
909 mn_now = get_clock (); 1070 mn_now = get_clock ();
910 1071
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1073 {
913 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1075 return 0;
915 } 1076 }
916 else 1077 else
917 { 1078 {
918 now_floor = mn_now; 1079 now_floor = mn_now;
919 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
920 return 1; 1081 return 1;
921 } 1082 }
922} 1083}
923 1084
924static void 1085static void
933 { 1094 {
934 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
935 1096
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 { 1098 {
938 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
939 1100
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1102 return; /* all is well */
942 1103
943 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1105 mn_now = get_clock ();
945 now_floor = mn_now; 1106 now_floor = mn_now;
946 } 1107 }
947 1108
1109# if EV_PERIODICS
948 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
949 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
950 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
951 } 1114 }
952 } 1115 }
953 else 1116 else
954#endif 1117#endif
955 { 1118 {
956 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
957 1120
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1122 {
1123#if EV_PERIODICS
960 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
961 1126
962 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1130 }
966 1131
967 mn_now = rt_now; 1132 mn_now = ev_rt_now;
968 } 1133 }
969} 1134}
970 1135
971void 1136void
972ev_ref (EV_P) 1137ev_ref (EV_P)
995 { 1160 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1162 call_pending (EV_A);
998 } 1163 }
999 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
1000 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1170 fd_reify (EV_A);
1002 1171
1003 /* calculate blocking time */ 1172 /* calculate blocking time */
1004 1173
1005 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
1006 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
1010 else 1179 else
1011#endif 1180#endif
1012 { 1181 {
1013 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1183 mn_now = ev_rt_now;
1015 } 1184 }
1016 1185
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.; 1187 block = 0.;
1019 else 1188 else
1024 { 1193 {
1025 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1026 if (block > to) block = to; 1195 if (block > to) block = to;
1027 } 1196 }
1028 1197
1198#if EV_PERIODICS
1029 if (periodiccnt) 1199 if (periodiccnt)
1030 { 1200 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1032 if (block > to) block = to; 1202 if (block > to) block = to;
1033 } 1203 }
1204#endif
1034 1205
1035 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
1036 } 1207 }
1037 1208
1038 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
1039 1210
1040 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1212 time_update (EV_A);
1042 1213
1043 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
1045 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
1046 1219
1047 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1223
1051 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1225 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1128 return; 1301 return;
1129 1302
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1304
1132 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1308
1136 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1137} 1310}
1138 1311
1141{ 1314{
1142 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1144 return; 1317 return;
1145 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1148 1323
1149 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1150} 1325}
1158 ((WT)w)->at += mn_now; 1333 ((WT)w)->at += mn_now;
1159 1334
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1336
1162 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1164 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1166 1341
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1343}
1180 { 1355 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1358 }
1184 1359
1185 ((WT)w)->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1186 1361
1187 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1188} 1363}
1189 1364
1190void 1365void
1191ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1192{ 1367{
1193 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1194 { 1369 {
1195 if (w->repeat) 1370 if (w->repeat)
1196 {
1197 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1199 }
1200 else 1372 else
1201 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1202 } 1374 }
1203 else if (w->repeat) 1375 else if (w->repeat)
1204 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1205} 1377}
1206 1378
1379#if EV_PERIODICS
1207void 1380void
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1209{ 1382{
1210 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1211 return; 1384 return;
1212 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1218 1394
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1221 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1223 1399
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1401}
1241 1417
1242 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1243} 1419}
1244 1420
1245void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1247{ 1432{
1248 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1249 return; 1434 return;
1250 1435
1251 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1253 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1254} 1439}
1255 1440
1256void 1441void
1257ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1269{ 1454{
1270 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1271 return; 1456 return;
1272 1457
1273 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1275 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1276} 1461}
1277 1462
1278void 1463void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1291{ 1476{
1292 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1293 return; 1478 return;
1294 1479
1295 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1297 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1298} 1483}
1299 1484
1300void 1485void
1301ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1302{ 1487{
1303 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1304 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1305 return; 1490 return;
1306 1491
1307 checks [((W)w)->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1308 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1309} 1494}
1322 return; 1507 return;
1323 1508
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1510
1326 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1514
1330 if (!((WL)w)->next) 1515 if (!((WL)w)->next)
1331 { 1516 {
1332#if WIN32 1517#if WIN32
1370 1555
1371void 1556void
1372ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1373{ 1558{
1374 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1375 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1376 return; 1561 return;
1377 1562
1378 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1379 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1380} 1565}
1395 void (*cb)(int revents, void *arg) = once->cb; 1580 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1581 void *arg = once->arg;
1397 1582
1398 ev_io_stop (EV_A_ &once->io); 1583 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1584 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1585 ev_free (once);
1401 1586
1402 cb (revents, arg); 1587 cb (revents, arg);
1403} 1588}
1404 1589
1405static void 1590static void
1415} 1600}
1416 1601
1417void 1602void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1604{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1606
1422 if (!once) 1607 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1609 else
1425 { 1610 {
1426 once->cb = cb; 1611 once->cb = cb;
1427 once->arg = arg; 1612 once->arg = arg;
1428 1613
1429 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1615 if (fd >= 0)
1431 { 1616 {
1432 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1434 } 1619 }
1435 1620
1436 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1622 if (timeout >= 0.)
1438 { 1623 {
1439 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1441 } 1626 }
1442 } 1627 }
1443} 1628}
1444 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines