ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
150#if WIN32 166#ifdef WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 168#endif
155 169
156/*****************************************************************************/ 170/*****************************************************************************/
157 171
158static void (*syserr_cb)(void); 172static void (*syserr_cb)(const char *msg);
159 173
160void ev_set_syserr_cb (void (*cb)(void)) 174void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 175{
162 syserr_cb = cb; 176 syserr_cb = cb;
163} 177}
164 178
165static void 179static void
166syserr (void) 180syserr (const char *msg)
167{ 181{
182 if (!msg)
183 msg = "(libev) system error";
184
168 if (syserr_cb) 185 if (syserr_cb)
169 syserr_cb (); 186 syserr_cb (msg);
170 else 187 else
171 { 188 {
172 perror ("libev"); 189 perror (msg);
173 abort (); 190 abort ();
174 } 191 }
175} 192}
176 193
177static void *(*alloc)(void *ptr, long size); 194static void *(*alloc)(void *ptr, long size);
213 int events; 230 int events;
214} ANPENDING; 231} ANPENDING;
215 232
216#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
217 234
218struct ev_loop 235 struct ev_loop
219{ 236 {
237 ev_tstamp ev_rt_now;
220# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
221# include "ev_vars.h" 239 #include "ev_vars.h"
222};
223# undef VAR 240 #undef VAR
241 };
224# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
225 246
226#else 247#else
227 248
249 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 251 #include "ev_vars.h"
230# undef VAR 252 #undef VAR
253
254 static int default_loop;
231 255
232#endif 256#endif
233 257
234/*****************************************************************************/ 258/*****************************************************************************/
235 259
236inline ev_tstamp 260ev_tstamp
237ev_time (void) 261ev_time (void)
238{ 262{
239#if EV_USE_REALTIME 263#if EV_USE_REALTIME
240 struct timespec ts; 264 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 284#endif
261 285
262 return ev_time (); 286 return ev_time ();
263} 287}
264 288
289#if EV_MULTIPLICITY
265ev_tstamp 290ev_tstamp
266ev_now (EV_P) 291ev_now (EV_P)
267{ 292{
268 return rt_now; 293 return ev_rt_now;
269} 294}
295#endif
270 296
271#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
272 298
273#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
275 { \ 301 { \
276 int newcnt = cur; \ 302 int newcnt = cur; \
277 do \ 303 do \
278 { \ 304 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 306 } \
281 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
282 \ 308 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 311 cur = newcnt; \
286 } 312 }
287 313
288#define array_slim(stem) \ 314#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 316 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 317 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 320 }
321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
295 326
296#define array_free(stem, idx) \ 327#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 329
299/*****************************************************************************/ 330/*****************************************************************************/
309 340
310 ++base; 341 ++base;
311 } 342 }
312} 343}
313 344
314static void 345void
315event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
316{ 347{
348 W w_ = (W)w;
349
317 if (w->pending) 350 if (w_->pending)
318 { 351 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 353 return;
321 } 354 }
322 355
323 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 360}
328 361
329static void 362static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 364{
332 int i; 365 int i;
333 366
334 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
336} 369}
337 370
338static void 371inline void
339fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
340{ 373{
341 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 375 struct ev_io *w;
343 376
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 378 {
346 int ev = w->events & events; 379 int ev = w->events & revents;
347 380
348 if (ev) 381 if (ev)
349 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
350 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
351} 390}
352 391
353/*****************************************************************************/ 392/*****************************************************************************/
354 393
355static void 394static void
378} 417}
379 418
380static void 419static void
381fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
382{ 421{
383 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
384 return; 423 return;
385 424
386 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
387 426
388 ++fdchangecnt; 427 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
391} 430}
392 431
393static void 432static void
394fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
396 struct ev_io *w; 435 struct ev_io *w;
397 436
398 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
399 { 438 {
400 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
403} 452}
404 453
405/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
406static void 455static void
407fd_ebadf (EV_P) 456fd_ebadf (EV_P)
408{ 457{
409 int fd; 458 int fd;
410 459
411 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 461 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
415} 464}
416 465
417/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 467static void
426 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
427 return; 476 return;
428 } 477 }
429} 478}
430 479
431/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 481static void
433fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
434{ 483{
435 int fd; 484 int fd;
436 485
484 533
485 heap [k] = w; 534 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 535 ((W)heap [k])->active = k + 1;
487} 536}
488 537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548}
549
489/*****************************************************************************/ 550/*****************************************************************************/
490 551
491typedef struct 552typedef struct
492{ 553{
493 WL head; 554 WL head;
524 585
525 if (!gotsig) 586 if (!gotsig)
526 { 587 {
527 int old_errno = errno; 588 int old_errno = errno;
528 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
529 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
530 errno = old_errno; 595 errno = old_errno;
531 } 596 }
532} 597}
533 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
534static void 619static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 621{
537 WL w;
538 int signum; 622 int signum;
539 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
540 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
541 gotsig = 0; 629 gotsig = 0;
542 630
543 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
545 { 633 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551} 634}
552 635
553static void 636static void
554siginit (EV_P) 637siginit (EV_P)
555{ 638{
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 651}
569 652
570/*****************************************************************************/ 653/*****************************************************************************/
571 654
655static struct ev_child *childs [PID_HASHSIZE];
656
572#ifndef WIN32 657#ifndef WIN32
573 658
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 659static struct ev_signal childev;
576 660
577#ifndef WCONTINUED 661#ifndef WCONTINUED
578# define WCONTINUED 0 662# define WCONTINUED 0
579#endif 663#endif
587 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
588 { 672 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 674 w->rpid = pid;
591 w->rstatus = status; 675 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 677 }
594} 678}
595 679
596static void 680static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 683 int pid, status;
600 684
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 686 {
603 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 689
606 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 692 }
609} 693}
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 751 have_monotonic = 1;
668 } 752 }
669#endif 753#endif
670 754
671 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 756 mn_now = get_clock ();
673 now_floor = mn_now; 757 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
675 759
676 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 763 else
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 778#endif
695#if EV_USE_SELECT 779#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
698 } 785 }
699} 786}
700 787
701void 788void
702loop_destroy (EV_P) 789loop_destroy (EV_P)
720#endif 807#endif
721 808
722 for (i = NUMPRI; i--; ) 809 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 810 array_free (pending, [i]);
724 811
812 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 813 array_free_microshit (fdchange);
726 array_free (timer, ); 814 array_free_microshit (timer);
815#if EV_PERIODICS
727 array_free (periodic, ); 816 array_free_microshit (periodic);
817#endif
728 array_free (idle, ); 818 array_free_microshit (idle);
729 array_free (prepare, ); 819 array_free_microshit (prepare);
730 array_free (check, ); 820 array_free_microshit (check);
731 821
732 method = 0; 822 method = 0;
733 /*TODO*/
734} 823}
735 824
736void 825static void
737loop_fork (EV_P) 826loop_fork (EV_P)
738{ 827{
739 /*TODO*/
740#if EV_USE_EPOLL 828#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 830#endif
743#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
746} 851}
747 852
748#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
749struct ev_loop * 854struct ev_loop *
750ev_loop_new (int methods) 855ev_loop_new (int methods)
769} 874}
770 875
771void 876void
772ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
773{ 878{
774 loop_fork (EV_A); 879 postfork = 1;
775} 880}
776 881
777#endif 882#endif
778 883
779#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 885struct ev_loop *
784#else 886#else
785static int default_loop;
786
787int 887int
788#endif 888#endif
789ev_default_loop (int methods) 889ev_default_loop (int methods)
790{ 890{
791 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
802 902
803 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
804 904
805 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
806 { 906 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 907 siginit (EV_A);
810 908
811#ifndef WIN32 909#ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
827{ 925{
828#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
830#endif 928#endif
831 929
930#ifndef WIN32
832 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
834 934
835 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
837 937
838 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
846{ 946{
847#if EV_MULTIPLICITY 947#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 948 struct ev_loop *loop = default_loop;
849#endif 949#endif
850 950
851 loop_fork (EV_A); 951 if (method)
852 952 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 953}
861 954
862/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
863 968
864static void 969static void
865call_pending (EV_P) 970call_pending (EV_P)
866{ 971{
867 int pri; 972 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 978
874 if (p->w) 979 if (p->w)
875 { 980 {
876 p->w->pending = 0; 981 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
878 } 983 }
879 } 984 }
880} 985}
881 986
882static void 987static void
890 995
891 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
892 if (w->repeat) 997 if (w->repeat)
893 { 998 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
895 ((WT)w)->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
896 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
897 } 1006 }
898 else 1007 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1009
901 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1011 }
903} 1012}
904 1013
1014#if EV_PERIODICS
905static void 1015static void
906periodics_reify (EV_P) 1016periodics_reify (EV_P)
907{ 1017{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1019 {
910 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
911 1021
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1023
914 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
915 if (w->interval) 1025 if (w->reschedule_cb)
916 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1037 }
921 else 1038 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1040
924 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1042 }
926} 1043}
927 1044
928static void 1045static void
929periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
935 { 1052 {
936 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
937 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1057 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
951} 1064}
1065#endif
952 1066
953inline int 1067inline int
954time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
955{ 1069{
956 mn_now = get_clock (); 1070 mn_now = get_clock ();
957 1071
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1073 {
960 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1075 return 0;
962 } 1076 }
963 else 1077 else
964 { 1078 {
965 now_floor = mn_now; 1079 now_floor = mn_now;
966 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
967 return 1; 1081 return 1;
968 } 1082 }
969} 1083}
970 1084
971static void 1085static void
980 { 1094 {
981 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
982 1096
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1098 {
985 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
986 1100
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1102 return; /* all is well */
989 1103
990 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1105 mn_now = get_clock ();
992 now_floor = mn_now; 1106 now_floor = mn_now;
993 } 1107 }
994 1108
1109# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1114 }
999 } 1115 }
1000 else 1116 else
1001#endif 1117#endif
1002 { 1118 {
1003 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
1004 1120
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1122 {
1123#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
1008 1126
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1130 }
1013 1131
1014 mn_now = rt_now; 1132 mn_now = ev_rt_now;
1015 } 1133 }
1016} 1134}
1017 1135
1018void 1136void
1019ev_ref (EV_P) 1137ev_ref (EV_P)
1042 { 1160 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1162 call_pending (EV_A);
1045 } 1163 }
1046 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
1047 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1170 fd_reify (EV_A);
1049 1171
1050 /* calculate blocking time */ 1172 /* calculate blocking time */
1051 1173
1052 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
1057 else 1179 else
1058#endif 1180#endif
1059 { 1181 {
1060 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1183 mn_now = ev_rt_now;
1062 } 1184 }
1063 1185
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1187 block = 0.;
1066 else 1188 else
1071 { 1193 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to; 1195 if (block > to) block = to;
1074 } 1196 }
1075 1197
1198#if EV_PERIODICS
1076 if (periodiccnt) 1199 if (periodiccnt)
1077 { 1200 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1202 if (block > to) block = to;
1080 } 1203 }
1204#endif
1081 1205
1082 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
1083 } 1207 }
1084 1208
1085 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
1086 1210
1087 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1212 time_update (EV_A);
1089 1213
1090 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
1093 1219
1094 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1223
1098 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1225 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1301 return;
1176 1302
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1304
1179 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1308
1183 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1184} 1310}
1185 1311
1188{ 1314{
1189 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1191 return; 1317 return;
1192 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1195 1323
1196 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1197} 1325}
1205 ((WT)w)->at += mn_now; 1333 ((WT)w)->at += mn_now;
1206 1334
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1336
1209 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1213 1341
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1343}
1227 { 1355 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1358 }
1231 1359
1232 ((WT)w)->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1233 1361
1234 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1235} 1363}
1236 1364
1237void 1365void
1238ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1239{ 1367{
1240 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1241 { 1369 {
1242 if (w->repeat) 1370 if (w->repeat)
1243 {
1244 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1246 }
1247 else 1372 else
1248 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1249 } 1374 }
1250 else if (w->repeat) 1375 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1252} 1377}
1253 1378
1379#if EV_PERIODICS
1254void 1380void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1382{
1257 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1258 return; 1384 return;
1259 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1265 1394
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1270 1399
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1401}
1288 1417
1289 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1290} 1419}
1291 1420
1292void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1432{
1295 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1296 return; 1434 return;
1297 1435
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1301} 1439}
1302 1440
1303void 1441void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1316{ 1454{
1317 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1318 return; 1456 return;
1319 1457
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1323} 1461}
1324 1462
1325void 1463void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1338{ 1476{
1339 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1340 return; 1478 return;
1341 1479
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1345} 1483}
1346 1484
1347void 1485void
1348ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1487{
1350 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1352 return; 1490 return;
1353 1491
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1356} 1494}
1369 return; 1507 return;
1370 1508
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1510
1373 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1514
1377 if (!((WL)w)->next) 1515 if (!((WL)w)->next)
1378 { 1516 {
1379#if WIN32 1517#if WIN32
1417 1555
1418void 1556void
1419ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1558{
1421 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1423 return; 1561 return;
1424 1562
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1427} 1565}
1462} 1600}
1463 1601
1464void 1602void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1604{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1606
1469 if (!once) 1607 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1609 else
1472 { 1610 {
1473 once->cb = cb; 1611 once->cb = cb;
1474 once->arg = arg; 1612 once->arg = arg;
1475 1613
1476 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1615 if (fd >= 0)
1478 { 1616 {
1479 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1481 } 1619 }
1482 1620
1483 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1622 if (timeout >= 0.)
1485 { 1623 {
1486 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1488 } 1626 }
1489 } 1627 }
1490} 1628}
1491 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines