ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
45# endif 75# endif
46# endif 76# endif
47 77
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
50# endif 85# endif
51 86
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
53# define EV_USE_POLL 1 93# define EV_USE_SELECT 0
54# endif 94# endif
55 95
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 102# define EV_USE_POLL 0
58# endif 103# endif
59 104
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
62# endif 112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
63 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
64#endif 159#endif
65 160
66#include <math.h> 161#include <math.h>
67#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
68#include <fcntl.h> 164#include <fcntl.h>
69#include <stddef.h> 165#include <stddef.h>
70 166
71#include <stdio.h> 167#include <stdio.h>
72 168
73#include <assert.h> 169#include <assert.h>
74#include <errno.h> 170#include <errno.h>
75#include <sys/types.h> 171#include <sys/types.h>
76#include <time.h> 172#include <time.h>
173#include <limits.h>
77 174
78#include <signal.h> 175#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 176
140#ifdef EV_H 177#ifdef EV_H
141# include EV_H 178# include EV_H
142#else 179#else
143# include "ev.h" 180# include "ev.h"
144#endif 181#endif
145 182
183EV_CPP(extern "C" {)
184
185#ifndef _WIN32
186# include <sys/time.h>
187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
263#endif
264
265#ifndef EV_USE_SELECT
266# define EV_USE_SELECT EV_FEATURE_BACKENDS
267#endif
268
269#ifndef EV_USE_POLL
270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
275#endif
276
277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
281# define EV_USE_EPOLL 0
282# endif
283#endif
284
285#ifndef EV_USE_KQUEUE
286# define EV_USE_KQUEUE 0
287#endif
288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
365#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC
367# define EV_USE_MONOTONIC 0
368#endif
369
370#ifndef CLOCK_REALTIME
371# undef EV_USE_REALTIME
372# define EV_USE_REALTIME 0
373#endif
374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
146#if __GNUC__ >= 3 462#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 464# define noinline __attribute__ ((noinline))
149#else 465#else
150# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
151# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
152#endif 471#endif
153 472
154#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
156 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
159 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
160typedef struct ev_watcher *W; 494typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
163 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
165 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
166#ifdef WIN32 521#ifdef _WIN32
167# include "ev_win32.c" 522# include "ev_win32.c"
168#endif 523#endif
169 524
170/*****************************************************************************/ 525/*****************************************************************************/
171 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
172static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
173 578
579void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 581{
176 syserr_cb = cb; 582 syserr_cb = cb;
177} 583}
178 584
179static void 585static void noinline
180syserr (const char *msg) 586ev_syserr (const char *msg)
181{ 587{
182 if (!msg) 588 if (!msg)
183 msg = "(libev) system error"; 589 msg = "(libev) system error";
184 590
185 if (syserr_cb) 591 if (syserr_cb)
186 syserr_cb (msg); 592 syserr_cb (msg);
187 else 593 else
188 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
189 perror (msg); 603 perror (msg);
604#endif
190 abort (); 605 abort ();
191 } 606 }
192} 607}
193 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
194static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
195 629
630void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 632{
198 alloc = cb; 633 alloc = cb;
199} 634}
200 635
201static void * 636inline_speed void *
202ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
203{ 638{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
205 640
206 if (!ptr && size) 641 if (!ptr && size)
207 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
209 abort (); 648 abort ();
210 } 649 }
211 650
212 return ptr; 651 return ptr;
213} 652}
215#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
217 656
218/*****************************************************************************/ 657/*****************************************************************************/
219 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
220typedef struct 663typedef struct
221{ 664{
222 WL head; 665 WL head;
223 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
225} ANFD; 679} ANFD;
226 680
681/* stores the pending event set for a given watcher */
227typedef struct 682typedef struct
228{ 683{
229 W w; 684 W w;
230 int events; 685 int events; /* the pending event set for the given watcher */
231} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
232 715
233#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
234 717
235 struct ev_loop 718 struct ev_loop
236 { 719 {
240 #include "ev_vars.h" 723 #include "ev_vars.h"
241 #undef VAR 724 #undef VAR
242 }; 725 };
243 #include "ev_wrap.h" 726 #include "ev_wrap.h"
244 727
245 struct ev_loop default_loop_struct; 728 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 729 struct ev_loop *ev_default_loop_ptr;
247 730
248#else 731#else
249 732
250 ev_tstamp ev_rt_now; 733 ev_tstamp ev_rt_now;
251 #define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 735 #include "ev_vars.h"
253 #undef VAR 736 #undef VAR
254 737
255 static int default_loop; 738 static int ev_default_loop_ptr;
256 739
257#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
258 753
259/*****************************************************************************/ 754/*****************************************************************************/
260 755
756#ifndef EV_HAVE_EV_TIME
261ev_tstamp 757ev_tstamp
262ev_time (void) 758ev_time (void)
263{ 759{
264#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
265 struct timespec ts; 763 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 766 }
767#endif
768
269 struct timeval tv; 769 struct timeval tv;
270 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 772}
773#endif
274 774
275inline ev_tstamp 775inline_size ev_tstamp
276get_clock (void) 776get_clock (void)
277{ 777{
278#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
280 { 780 {
293{ 793{
294 return ev_rt_now; 794 return ev_rt_now;
295} 795}
296#endif 796#endif
297 797
298#define array_roundsize(type,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 858
300#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
302 { \ 861 { \
303 int newcnt = cur; \ 862 int ocur_ = (cur); \
304 do \ 863 (base) = (type *)array_realloc \
305 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 866 }
314 867
868#if 0
315#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 871 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 875 }
322 876#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 877
328#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 880
331/*****************************************************************************/ 881/*****************************************************************************/
332 882
333static void 883/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 886{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 887}
345 888
346void 889void noinline
347ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
348{ 891{
349 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
350 894
351 if (w_->pending) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
352 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 903 }
356
357 w_->pending = ++pendingcnt [ABSPRI (w_)];
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 904}
362 905
363static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 923{
366 int i; 924 int i;
367 925
368 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
370} 928}
371 929
930/*****************************************************************************/
931
372inline void 932inline_speed void
373fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
374{ 934{
375 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 936 ev_io *w;
377 937
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 939 {
380 int ev = w->events & revents; 940 int ev = w->events & revents;
381 941
382 if (ev) 942 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
384 } 944 }
385} 945}
386 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
387void 958void
388ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
389{ 960{
961 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
391} 963}
392 964
393/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
394 966/* with the kernel/libev internal state */
395static void 967inline_size void
396fd_reify (EV_P) 968fd_reify (EV_P)
397{ 969{
398 int i; 970 int i;
399 971
400 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
401 { 973 {
402 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 976 ev_io *w;
405 977
406 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
407 980
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 events |= w->events;
410
411 anfd->reify = 0; 981 anfd->reify = 0;
412 982
413 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
414 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
415 } 1006 }
416 1007
417 fdchangecnt = 0; 1008 fdchangecnt = 0;
418} 1009}
419 1010
420static void 1011/* something about the given fd changed */
1012inline_size void
421fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
422{ 1014{
423 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
427 1017
1018 if (expect_true (!reify))
1019 {
428 ++fdchangecnt; 1020 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
431} 1024}
432 1025
433static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
434fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
435{ 1029{
436 struct ev_io *w; 1030 ev_io *w;
437 1031
438 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
439 { 1033 {
440 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 1036 }
443} 1037}
444 1038
445static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
446fd_valid (int fd) 1041fd_valid (int fd)
447{ 1042{
448#ifdef WIN32 1043#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 1045#else
451 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
452#endif 1047#endif
453} 1048}
454 1049
455/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
456static void 1051static void noinline
457fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
458{ 1053{
459 int fd; 1054 int fd;
460 1055
461 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 1057 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
465} 1060}
466 1061
467/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 1063static void noinline
469fd_enomem (EV_P) 1064fd_enomem (EV_P)
470{ 1065{
471 int fd; 1066 int fd;
472 1067
473 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1069 if (anfds [fd].events)
475 { 1070 {
476 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
477 return; 1072 break;
478 } 1073 }
479} 1074}
480 1075
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1077static void noinline
483fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
484{ 1079{
485 int fd; 1080 int fd;
486 1081
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1083 if (anfds [fd].events)
490 { 1084 {
491 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1088 }
494} 1089}
495 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
496/*****************************************************************************/ 1105/*****************************************************************************/
497 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
498static void 1331static void
499upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
500{ 1333{
501 WT w = heap [k]; 1334 int i;
502 1335
503 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
504 { 1337 if (evfd >= 0)
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
509 1349
510 heap [k] = w; 1350 if (sig_pending)
511 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
512 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
513} 1372}
1373
1374/*****************************************************************************/
514 1375
515static void 1376static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 1377ev_sighandler (int signum)
575{ 1378{
576#if WIN32 1379#if EV_MULTIPLICITY
577 signal (signum, sighandler); 1380 EV_P = signals [signum - 1].loop;
578#endif 1381#endif
579 1382
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 1383#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1384 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 1385#endif
591 errno = old_errno;
592 }
593}
594 1386
595void 1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
596ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
597{ 1393{
598 WL w; 1394 WL w;
599 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
600#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
603 1404
604 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 1406 return;
1407#endif
608 1408
609 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
610 1410
611 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 1413}
614 1414
1415#if EV_USE_SIGNALFD
615static void 1416static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 1417sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 1418{
618 int signum; 1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 1420
620#ifdef WIN32 1421 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1422 {
622#else 1423 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 1424
627 for (signum = signalmax; signum--; ) 1425 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 1428
632static void 1429 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 1430 break;
634{ 1431 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 1432}
1433#endif
1434
1435#endif
648 1436
649/*****************************************************************************/ 1437/*****************************************************************************/
650 1438
651static struct ev_child *childs [PID_HASHSIZE]; 1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
652 1441
653#ifndef WIN32
654
655static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
656 1467
657#ifndef WCONTINUED 1468#ifndef WCONTINUED
658# define WCONTINUED 0 1469# define WCONTINUED 0
659#endif 1470#endif
660 1471
1472/* called on sigchld etc., calls waitpid */
661static void 1473static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
678{ 1475{
679 int pid, status; 1476 int pid, status;
680 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
683 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 1488
686 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 1492}
690 1493
691#endif 1494#endif
692 1495
693/*****************************************************************************/ 1496/*****************************************************************************/
694 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
695#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
697#endif 1506#endif
698#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
699# include "ev_epoll.c" 1508# include "ev_epoll.c"
716{ 1525{
717 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
718} 1527}
719 1528
720/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
721static int 1530int inline_size
722enable_secure (void) 1531enable_secure (void)
723{ 1532{
724#ifdef WIN32 1533#ifdef _WIN32
725 return 0; 1534 return 0;
726#else 1535#else
727 return getuid () != geteuid () 1536 return getuid () != geteuid ()
728 || getgid () != getegid (); 1537 || getgid () != getegid ();
729#endif 1538#endif
730} 1539}
731 1540
732int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
733ev_method (EV_P) 1603ev_depth (EV_P)
734{ 1604{
735 return method; 1605 return loop_depth;
736} 1606}
737 1607
738static void 1608void
739loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
740{ 1610{
741 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
742 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
743#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1764 if (ev_is_active (&pipe_w))
1765 {
1766 /*ev_ref (EV_A);*/
1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1768
1769#if EV_USE_EVENTFD
1770 if (evfd >= 0)
1771 close (evfd);
1772#endif
1773
1774 if (evpipe [0] >= 0)
1775 {
1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1778 }
1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
1785
1786#if EV_USE_INOTIFY
1787 if (fs_fd >= 0)
1788 close (fs_fd);
1789#endif
1790
1791 if (backend_fd >= 0)
1792 close (backend_fd);
1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
1797#if EV_USE_PORT
1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1799#endif
1800#if EV_USE_KQUEUE
1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1802#endif
1803#if EV_USE_EPOLL
1804 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1805#endif
1806#if EV_USE_POLL
1807 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1808#endif
1809#if EV_USE_SELECT
1810 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1811#endif
1812
1813 for (i = NUMPRI; i--; )
1814 {
1815 array_free (pending, [i]);
1816#if EV_IDLE_ENABLE
1817 array_free (idle, [i]);
1818#endif
1819 }
1820
1821 ev_free (anfds); anfds = 0; anfdmax = 0;
1822
1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
1825 array_free (fdchange, EMPTY);
1826 array_free (timer, EMPTY);
1827#if EV_PERIODIC_ENABLE
1828 array_free (periodic, EMPTY);
1829#endif
1830#if EV_FORK_ENABLE
1831 array_free (fork, EMPTY);
1832#endif
1833#if EV_CLEANUP_ENABLE
1834 array_free (cleanup, EMPTY);
1835#endif
1836 array_free (prepare, EMPTY);
1837 array_free (check, EMPTY);
1838#if EV_ASYNC_ENABLE
1839 array_free (async, EMPTY);
1840#endif
1841
1842 backend = 0;
1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1852}
1853
1854#if EV_USE_INOTIFY
1855inline_size void infy_fork (EV_P);
1856#endif
1857
1858inline_size void
1859loop_fork (EV_P)
1860{
1861#if EV_USE_PORT
1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1863#endif
1864#if EV_USE_KQUEUE
1865 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1866#endif
1867#if EV_USE_EPOLL
1868 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1869#endif
1870#if EV_USE_INOTIFY
1871 infy_fork (EV_A);
1872#endif
1873
1874 if (ev_is_active (&pipe_w))
1875 {
1876 /* this "locks" the handlers against writing to the pipe */
1877 /* while we modify the fd vars */
1878 sig_pending = 1;
1879#if EV_ASYNC_ENABLE
1880 async_pending = 1;
1881#endif
1882
1883 ev_ref (EV_A);
1884 ev_io_stop (EV_A_ &pipe_w);
1885
1886#if EV_USE_EVENTFD
1887 if (evfd >= 0)
1888 close (evfd);
1889#endif
1890
1891 if (evpipe [0] >= 0)
1892 {
1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1895 }
1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1898 evpipe_init (EV_A);
1899 /* now iterate over everything, in case we missed something */
1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1902 }
1903
1904 postfork = 0;
1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
744 { 1979 {
745 struct timespec ts; 1980 verify_watcher (EV_A_ (W)w);
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
747 have_monotonic = 1; 1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
748 } 1983 }
749#endif
750 1984
751 ev_rt_now = ev_time (); 1985 assert (timermax >= timercnt);
752 mn_now = get_clock (); 1986 verify_heap (EV_A_ timers, timercnt);
753 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now;
755 1987
756 if (methods == EVMETHOD_AUTO) 1988#if EV_PERIODIC_ENABLE
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1989 assert (periodicmax >= periodiccnt);
758 methods = atoi (getenv ("LIBEV_METHODS")); 1990 verify_heap (EV_A_ periodics, periodiccnt);
759 else
760 methods = EVMETHOD_ANY;
761
762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
766#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
768#endif
769#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
771#endif
772#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
774#endif
775#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
781 }
782}
783
784void
785loop_destroy (EV_P)
786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
794#endif
795#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
797#endif
798#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
800#endif
801#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
803#endif 1991#endif
804 1992
805 for (i = NUMPRI; i--; ) 1993 for (i = NUMPRI; i--; )
806 array_free (pending, [i]); 1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
807 2002
808 /* have to use the microsoft-never-gets-it-right macro */ 2003#if EV_FORK_ENABLE
809 array_free_microshit (fdchange); 2004 assert (forkmax >= forkcnt);
810 array_free_microshit (timer); 2005 array_verify (EV_A_ (W *)forks, forkcnt);
811#if EV_PERIODICS 2006#endif
812 array_free_microshit (periodic); 2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
813#endif 2033# endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
818 method = 0;
819}
820
821static void
822loop_fork (EV_P)
823{
824#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
826#endif 2034#endif
827#if EV_USE_KQUEUE
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
847} 2035}
848
849#if EV_MULTIPLICITY
850struct ev_loop *
851ev_loop_new (int methods)
852{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods);
858
859 if (ev_method (EV_A))
860 return loop;
861
862 return 0;
863}
864
865void
866ev_loop_destroy (EV_P)
867{
868 loop_destroy (EV_A);
869 ev_free (loop);
870}
871
872void
873ev_loop_fork (EV_P)
874{
875 postfork = 1;
876}
877
878#endif 2036#endif
879 2037
880#if EV_MULTIPLICITY 2038#if EV_MULTIPLICITY
881struct ev_loop * 2039struct ev_loop *
882#else 2040#else
883int 2041int
884#endif 2042#endif
885ev_default_loop (int methods) 2043ev_default_loop (unsigned int flags)
886{ 2044{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 2045 if (!ev_default_loop_ptr)
892 { 2046 {
893#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 2049#else
896 default_loop = 1; 2050 ev_default_loop_ptr = 1;
897#endif 2051#endif
898 2052
899 loop_init (EV_A_ methods); 2053 loop_init (EV_A_ flags);
900 2054
901 if (ev_method (EV_A)) 2055 if (ev_backend (EV_A))
902 { 2056 {
903 siginit (EV_A); 2057#if EV_CHILD_ENABLE
904
905#ifndef WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 2062#endif
911 } 2063 }
912 else 2064 else
913 default_loop = 0; 2065 ev_default_loop_ptr = 0;
914 } 2066 }
915 2067
916 return default_loop; 2068 return ev_default_loop_ptr;
917} 2069}
918 2070
919void 2071void
920ev_default_destroy (void) 2072ev_loop_fork (EV_P)
921{ 2073{
922#if EV_MULTIPLICITY 2074 postfork = 1; /* must be in line with ev_default_fork */
923 struct ev_loop *loop = default_loop;
924#endif
925
926#ifndef WIN32
927 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev);
929#endif
930
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A);
938}
939
940void
941ev_default_fork (void)
942{
943#if EV_MULTIPLICITY
944 struct ev_loop *loop = default_loop;
945#endif
946
947 if (method)
948 postfork = 1;
949} 2075}
950 2076
951/*****************************************************************************/ 2077/*****************************************************************************/
952 2078
953static int 2079void
954any_pending (EV_P) 2080ev_invoke (EV_P_ void *w, int revents)
2081{
2082 EV_CB_INVOKE ((W)w, revents);
2083}
2084
2085unsigned int
2086ev_pending_count (EV_P)
955{ 2087{
956 int pri; 2088 int pri;
2089 unsigned int count = 0;
957 2090
958 for (pri = NUMPRI; pri--; ) 2091 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 2092 count += pendingcnt [pri];
960 return 1;
961 2093
962 return 0; 2094 return count;
963} 2095}
964 2096
965static void 2097void noinline
966call_pending (EV_P) 2098ev_invoke_pending (EV_P)
967{ 2099{
968 int pri; 2100 int pri;
969 2101
970 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
971 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
972 { 2104 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974 2106
975 if (p->w) 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
976 { 2108 /* ^ this is no longer true, as pending_w could be here */
2109
977 p->w->pending = 0; 2110 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
979 } 2112 EV_FREQUENT_CHECK;
980 } 2113 }
981} 2114}
982 2115
983static void 2116#if EV_IDLE_ENABLE
2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
2120idle_reify (EV_P)
2121{
2122 if (expect_false (idleall))
2123 {
2124 int pri;
2125
2126 for (pri = NUMPRI; pri--; )
2127 {
2128 if (pendingcnt [pri])
2129 break;
2130
2131 if (idlecnt [pri])
2132 {
2133 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2134 break;
2135 }
2136 }
2137 }
2138}
2139#endif
2140
2141/* make timers pending */
2142inline_size void
984timers_reify (EV_P) 2143timers_reify (EV_P)
985{ 2144{
2145 EV_FREQUENT_CHECK;
2146
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 2148 {
988 struct ev_timer *w = timers [0]; 2149 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
2158 ev_at (w) += w->repeat;
2159 if (ev_at (w) < mn_now)
2160 ev_at (w) = mn_now;
2161
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 2163
997 ((WT)w)->at += w->repeat; 2164 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
1002 } 2172 }
1003 else 2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 2174
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2175 feed_reverse_done (EV_A_ EV_TIMER);
1007 } 2176 }
1008} 2177}
1009 2178
1010#if EV_PERIODICS 2179#if EV_PERIODIC_ENABLE
1011static void 2180/* make periodics pending */
2181inline_size void
1012periodics_reify (EV_P) 2182periodics_reify (EV_P)
1013{ 2183{
2184 EV_FREQUENT_CHECK;
2185
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 2187 {
1016 struct ev_periodic *w = periodics [0]; 2188 int feed_count = 0;
1017 2189
2190 do
2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 2195
1020 /* first reschedule or stop timer */ 2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200
2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202
2203 ANHE_at_cache (periodics [HEAP0]);
2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
2230 }
2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2232
2233 feed_reverse_done (EV_A_ EV_PERIODIC);
2234 }
2235}
2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
2239static void noinline
2240periodics_reschedule (EV_P)
2241{
2242 int i;
2243
2244 /* adjust periodics after time jump */
2245 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2246 {
2247 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2248
1021 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval)
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253
2254 ANHE_at_cache (periodics [i]);
2255 }
2256
2257 reheap (periodics, periodiccnt);
2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
2267 for (i = 0; i < timercnt; ++i)
2268 {
2269 ANHE *he = timers + i + HEAP0;
2270 ANHE_w (*he)->at += adjust;
2271 ANHE_at_cache (*he);
2272 }
2273}
2274
2275/* fetch new monotonic and realtime times from the kernel */
2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
2278time_update (EV_P_ ev_tstamp max_block)
2279{
2280#if EV_USE_MONOTONIC
2281 if (expect_true (have_monotonic))
2282 {
2283 int i;
2284 ev_tstamp odiff = rtmn_diff;
2285
2286 mn_now = get_clock ();
2287
2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2289 /* interpolate in the meantime */
2290 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 2291 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2292 ev_rt_now = rtmn_diff + mn_now;
1024 2293 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 2294 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 2295
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 2296 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 2297 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 2298
1081static void 2299 /* loop a few times, before making important decisions.
1082time_update (EV_P) 2300 * on the choice of "4": one iteration isn't enough,
1083{ 2301 * in case we get preempted during the calls to
1084 int i; 2302 * ev_time and get_clock. a second call is almost guaranteed
1085 2303 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 2304 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 2305 * in the unlikely event of having been preempted here.
1088 { 2306 */
1089 if (time_update_monotonic (EV_A)) 2307 for (i = 4; --i; )
1090 { 2308 {
1091 ev_tstamp odiff = rtmn_diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 2309 rtmn_diff = ev_rt_now - mn_now;
1096 2310
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2311 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 2312 return; /* all is well */
1099 2313
1100 ev_rt_now = ev_time (); 2314 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 2315 mn_now = get_clock ();
1102 now_floor = mn_now; 2316 now_floor = mn_now;
1103 } 2317 }
1104 2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 2321# if EV_PERIODIC_ENABLE
2322 periodics_reschedule (EV_A);
2323# endif
2324 }
2325 else
2326#endif
2327 {
2328 ev_rt_now = ev_time ();
2329
2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2331 {
2332 /* adjust timers. this is easy, as the offset is the same for all of them */
2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2334#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 2335 periodics_reschedule (EV_A);
1107# endif 2336#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 2337 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 2338
1128 mn_now = ev_rt_now; 2339 mn_now = ev_rt_now;
1129 } 2340 }
1130} 2341}
1131 2342
1132void 2343void
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
1148{ 2345{
1149 double block; 2346#if EV_FEATURE_API
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2347 ++loop_depth;
2348#endif
2349
2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
2352 loop_done = EVBREAK_CANCEL;
2353
2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 2355
1152 do 2356 do
1153 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
2362#ifndef _WIN32
2363 if (expect_false (curpid)) /* penalise the forking check even more */
2364 if (expect_false (getpid () != curpid))
2365 {
2366 curpid = getpid ();
2367 postfork = 1;
2368 }
2369#endif
2370
2371#if EV_FORK_ENABLE
2372 /* we might have forked, so queue fork handlers */
2373 if (expect_false (postfork))
2374 if (forkcnt)
2375 {
2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2377 EV_INVOKE_PENDING;
2378 }
2379#endif
2380
2381#if EV_PREPARE_ENABLE
1154 /* queue check watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
1156 { 2384 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1159 } 2387 }
2388#endif
2389
2390 if (expect_false (loop_done))
2391 break;
1160 2392
1161 /* we might have forked, so reify kernel state if necessary */ 2393 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 2394 if (expect_false (postfork))
1163 loop_fork (EV_A); 2395 loop_fork (EV_A);
1164 2396
1165 /* update fd-related kernel structures */ 2397 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 2398 fd_reify (EV_A);
1167 2399
1168 /* calculate blocking time */ 2400 /* calculate blocking time */
2401 {
2402 ev_tstamp waittime = 0.;
2403 ev_tstamp sleeptime = 0.;
1169 2404
1170 /* we only need this for !monotonic clock or timers, but as we basically 2405 /* remember old timestamp for io_blocktime calculation */
1171 always have timers, we just calculate it always */ 2406 ev_tstamp prev_mn_now = mn_now;
1172#if EV_USE_MONOTONIC 2407
1173 if (expect_true (have_monotonic)) 2408 /* update time to cancel out callback processing overhead */
1174 time_update_monotonic (EV_A); 2409 time_update (EV_A_ 1e100);
1175 else 2410
1176#endif 2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1177 { 2412 {
1178 ev_rt_now = ev_time ();
1179 mn_now = ev_rt_now;
1180 }
1181
1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1183 block = 0.;
1184 else
1185 {
1186 block = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
1187 2414
1188 if (timercnt) 2415 if (timercnt)
1189 { 2416 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1191 if (block > to) block = to; 2418 if (waittime > to) waittime = to;
1192 } 2419 }
1193 2420
1194#if EV_PERIODICS 2421#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 2422 if (periodiccnt)
1196 { 2423 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1198 if (block > to) block = to; 2425 if (waittime > to) waittime = to;
1199 } 2426 }
1200#endif 2427#endif
1201 2428
1202 if (block < 0.) block = 0.; 2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
2430 if (expect_false (waittime < timeout_blocktime))
2431 waittime = timeout_blocktime;
2432
2433 /* extra check because io_blocktime is commonly 0 */
2434 if (expect_false (io_blocktime))
2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
2443 ev_sleep (sleeptime);
2444 waittime -= sleeptime;
2445 }
2446 }
1203 } 2447 }
1204 2448
1205 method_poll (EV_A_ block); 2449#if EV_FEATURE_API
2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1206 2455
1207 /* update ev_rt_now, do magic */ 2456 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 2457 time_update (EV_A_ waittime + sleeptime);
2458 }
1209 2459
1210 /* queue pending timers and reschedule them */ 2460 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 2461 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 2462#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 2463 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 2464#endif
1215 2465
2466#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 2467 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 2468 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2469#endif
1219 2470
2471#if EV_CHECK_ENABLE
1220 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
1221 if (checkcnt) 2473 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
1223 2476
1224 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
1225 } 2478 }
1226 while (activecnt && !loop_done); 2479 while (expect_true (
2480 activecnt
2481 && !loop_done
2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2483 ));
1227 2484
1228 if (loop_done != 2) 2485 if (loop_done == EVBREAK_ONE)
1229 loop_done = 0; 2486 loop_done = EVBREAK_CANCEL;
1230}
1231 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
1232void 2493void
1233ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
1234{ 2495{
1235 loop_done = how; 2496 loop_done = how;
1236} 2497}
1237 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
1238/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
1239 2538
1240inline void 2539inline_size void
1241wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
1242{ 2541{
1243 elem->next = *head; 2542 elem->next = *head;
1244 *head = elem; 2543 *head = elem;
1245} 2544}
1246 2545
1247inline void 2546inline_size void
1248wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
1249{ 2548{
1250 while (*head) 2549 while (*head)
1251 { 2550 {
1252 if (*head == elem) 2551 if (expect_true (*head == elem))
1253 { 2552 {
1254 *head = elem->next; 2553 *head = elem->next;
1255 return; 2554 break;
1256 } 2555 }
1257 2556
1258 head = &(*head)->next; 2557 head = &(*head)->next;
1259 } 2558 }
1260} 2559}
1261 2560
2561/* internal, faster, version of ev_clear_pending */
1262inline void 2562inline_speed void
1263ev_clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
1264{ 2564{
1265 if (w->pending) 2565 if (w->pending)
1266 { 2566 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 2568 w->pending = 0;
1269 } 2569 }
1270} 2570}
1271 2571
2572int
2573ev_clear_pending (EV_P_ void *w)
2574{
2575 W w_ = (W)w;
2576 int pending = w_->pending;
2577
2578 if (expect_true (pending))
2579 {
2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
2582 w_->pending = 0;
2583 return p->events;
2584 }
2585 else
2586 return 0;
2587}
2588
1272inline void 2589inline_size void
2590pri_adjust (EV_P_ W w)
2591{
2592 int pri = ev_priority (w);
2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2595 ev_set_priority (w, pri);
2596}
2597
2598inline_speed void
1273ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
1274{ 2600{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2601 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 2602 w->active = active;
1279 ev_ref (EV_A); 2603 ev_ref (EV_A);
1280} 2604}
1281 2605
1282inline void 2606inline_size void
1283ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
1284{ 2608{
1285 ev_unref (EV_A); 2609 ev_unref (EV_A);
1286 w->active = 0; 2610 w->active = 0;
1287} 2611}
1288 2612
1289/*****************************************************************************/ 2613/*****************************************************************************/
1290 2614
1291void 2615void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 2616ev_io_start (EV_P_ ev_io *w)
1293{ 2617{
1294 int fd = w->fd; 2618 int fd = w->fd;
1295 2619
1296 if (ev_is_active (w)) 2620 if (expect_false (ev_is_active (w)))
1297 return; 2621 return;
1298 2622
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
1300 2627
1301 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
1304 2631
1305 fd_change (EV_A_ fd); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1306} 2633 w->events &= ~EV__IOFDSET;
1307 2634
1308void 2635 EV_FREQUENT_CHECK;
2636}
2637
2638void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
1310{ 2640{
1311 ev_clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2642 if (expect_false (!ev_is_active (w)))
1313 return; 2643 return;
1314 2644
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 2646
2647 EV_FREQUENT_CHECK;
2648
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
1319 2651
1320 fd_change (EV_A_ w->fd); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1321}
1322 2653
1323void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
1325{ 2659{
1326 if (ev_is_active (w)) 2660 if (expect_false (ev_is_active (w)))
1327 return; 2661 return;
1328 2662
1329 ((WT)w)->at += mn_now; 2663 ev_at (w) += mn_now;
1330 2664
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 2673 ANHE_at_cache (timers [ev_active (w)]);
2674 upheap (timers, ev_active (w));
1337 2675
2676 EV_FREQUENT_CHECK;
2677
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 2679}
1340 2680
1341void 2681void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
1343{ 2683{
1344 ev_clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 2685 if (expect_false (!ev_is_active (w)))
1346 return; 2686 return;
1347 2687
2688 EV_FREQUENT_CHECK;
2689
2690 {
2691 int active = ev_active (w);
2692
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 2694
1350 if (((W)w)->active < timercnt--) 2695 --timercnt;
2696
2697 if (expect_true (active < timercnt + HEAP0))
1351 { 2698 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 2699 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2700 adjustheap (timers, timercnt, active);
1354 } 2701 }
2702 }
1355 2703
1356 ((WT)w)->at -= mn_now; 2704 ev_at (w) -= mn_now;
1357 2705
1358 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
1359}
1360 2707
1361void 2708 EV_FREQUENT_CHECK;
2709}
2710
2711void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
1363{ 2713{
2714 EV_FREQUENT_CHECK;
2715
1364 if (ev_is_active (w)) 2716 if (ev_is_active (w))
1365 { 2717 {
1366 if (w->repeat) 2718 if (w->repeat)
1367 { 2719 {
1368 ((WT)w)->at = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2721 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2722 adjustheap (timers, timercnt, ev_active (w));
1370 } 2723 }
1371 else 2724 else
1372 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
1373 } 2726 }
1374 else if (w->repeat) 2727 else if (w->repeat)
2728 {
2729 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
1376} 2731 }
1377 2732
2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2740}
2741
1378#if EV_PERIODICS 2742#if EV_PERIODIC_ENABLE
1379void 2743void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
1381{ 2745{
1382 if (ev_is_active (w)) 2746 if (expect_false (ev_is_active (w)))
1383 return; 2747 return;
1384 2748
1385 if (w->reschedule_cb) 2749 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 2751 else if (w->interval)
1388 { 2752 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1392 } 2756 }
2757 else
2758 ev_at (w) = w->offset;
1393 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 2766 ANHE_at_cache (periodics [ev_active (w)]);
2767 upheap (periodics, ev_active (w));
1398 2768
2769 EV_FREQUENT_CHECK;
2770
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 2772}
1401 2773
1402void 2774void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
1404{ 2776{
1405 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 2778 if (expect_false (!ev_is_active (w)))
1407 return; 2779 return;
1408 2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 2787
1411 if (((W)w)->active < periodiccnt--) 2788 --periodiccnt;
2789
2790 if (expect_true (active < periodiccnt + HEAP0))
1412 { 2791 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2793 adjustheap (periodics, periodiccnt, active);
1415 } 2794 }
2795 }
1416 2796
1417 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
1418}
1419 2798
1420void 2799 EV_FREQUENT_CHECK;
2800}
2801
2802void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 2803ev_periodic_again (EV_P_ ev_periodic *w)
1422{ 2804{
1423 /* TODO: use adjustheap and recalculation */ 2805 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 2806 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 2807 ev_periodic_start (EV_A_ w);
1426} 2808}
1427#endif 2809#endif
1428 2810
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 2811#ifndef SA_RESTART
1496# define SA_RESTART 0 2812# define SA_RESTART 0
1497#endif 2813#endif
1498 2814
1499void 2815#if EV_SIGNAL_ENABLE
2816
2817void noinline
1500ev_signal_start (EV_P_ struct ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
1501{ 2819{
2820 if (expect_false (ev_is_active (w)))
2821 return;
2822
2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2824
1502#if EV_MULTIPLICITY 2825#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
2836 {
2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2838 if (sigfd < 0 && errno == EINVAL)
2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2840
2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
2844
2845 sigemptyset (&sigfd_set);
2846
2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
2863
2864 ev_start (EV_A_ (W)w, 1);
2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
2866
2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
1504#endif 2870# endif
1505 if (ev_is_active (w)) 2871 {
2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
2875 signal (w->signum, ev_sighandler);
2876# else
2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
2881 sa.sa_handler = ev_sighandler;
2882 sigfillset (&sa.sa_mask);
2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2889#endif
2890 }
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void noinline
2896ev_signal_stop (EV_P_ ev_signal *w)
2897{
2898 clear_pending (EV_A_ (W)w);
2899 if (expect_false (!ev_is_active (w)))
1506 return; 2900 return;
1507 2901
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2902 EV_FREQUENT_CHECK;
2903
2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
2905 ev_stop (EV_A_ (W)w);
2906
2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
2926 signal (w->signum, SIG_DFL);
2927 }
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
2935
2936void
2937ev_child_start (EV_P_ ev_child *w)
2938{
2939#if EV_MULTIPLICITY
2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2941#endif
2942 if (expect_false (ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
1509 2946
1510 ev_start (EV_A_ (W)w, 1); 2947 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 2949
1514 if (!((WL)w)->next) 2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_child_stop (EV_P_ ev_child *w)
2955{
2956 clear_pending (EV_A_ (W)w);
2957 if (expect_false (!ev_is_active (w)))
2958 return;
2959
2960 EV_FREQUENT_CHECK;
2961
2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2963 ev_stop (EV_A_ (W)w);
2964
2965 EV_FREQUENT_CHECK;
2966}
2967
2968#endif
2969
2970#if EV_STAT_ENABLE
2971
2972# ifdef _WIN32
2973# undef lstat
2974# define lstat(a,b) _stati64 (a,b)
2975# endif
2976
2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2979#define MIN_STAT_INTERVAL 0.1074891
2980
2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2982
2983#if EV_USE_INOTIFY
2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2987
2988static void noinline
2989infy_add (EV_P_ ev_stat *w)
2990{
2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2992
2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 3013 }
1516#if WIN32 3014 else
1517 signal (w->signum, sighandler); 3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3018
3019 /* if path is not there, monitor some parent directory for speedup hints */
3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3021 /* but an efficiency issue only */
3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3023 {
3024 char path [4096];
3025 strcpy (path, w->path);
3026
3027 do
3028 {
3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3031
3032 char *pend = strrchr (path, '/');
3033
3034 if (!pend || pend == path)
3035 break;
3036
3037 *pend = 0;
3038 w->wd = inotify_add_watch (fs_fd, path, mask);
3039 }
3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3041 }
3042 }
3043
3044 if (w->wd >= 0)
3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3051}
3052
3053static void noinline
3054infy_del (EV_P_ ev_stat *w)
3055{
3056 int slot;
3057 int wd = w->wd;
3058
3059 if (wd < 0)
3060 return;
3061
3062 w->wd = -2;
3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3064 wlist_del (&fs_hash [slot].head, (WL)w);
3065
3066 /* remove this watcher, if others are watching it, they will rearm */
3067 inotify_rm_watch (fs_fd, wd);
3068}
3069
3070static void noinline
3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3072{
3073 if (slot < 0)
3074 /* overflow, need to check for all hash slots */
3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3076 infy_wd (EV_A_ slot, wd, ev);
3077 else
3078 {
3079 WL w_;
3080
3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3082 {
3083 ev_stat *w = (ev_stat *)w_;
3084 w_ = w_->next; /* lets us remove this watcher and all before it */
3085
3086 if (w->wd == wd || wd == -1)
3087 {
3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3091 w->wd = -1;
3092 infy_add (EV_A_ w); /* re-add, no matter what */
3093 }
3094
3095 stat_timer_cb (EV_A_ &w->timer, 0);
3096 }
3097 }
3098 }
3099}
3100
3101static void
3102infy_cb (EV_P_ ev_io *w, int revents)
3103{
3104 char buf [EV_INOTIFY_BUFSIZE];
3105 int ofs;
3106 int len = read (fs_fd, buf, sizeof (buf));
3107
3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
3114}
3115
3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
3140infy_init (EV_P)
3141{
3142 if (fs_fd != -2)
3143 return;
3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
3149 fs_fd = infy_newfd ();
3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3155 ev_set_priority (&fs_w, EV_MAXPRI);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159}
3160
3161inline_size void
3162infy_fork (EV_P)
3163{
3164 int slot;
3165
3166 if (fs_fd < 0)
3167 return;
3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
3171 close (fs_fd);
3172 fs_fd = infy_newfd ();
3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3183 {
3184 WL w_ = fs_hash [slot].head;
3185 fs_hash [slot].head = 0;
3186
3187 while (w_)
3188 {
3189 ev_stat *w = (ev_stat *)w_;
3190 w_ = w_->next; /* lets us add this watcher */
3191
3192 w->wd = -1;
3193
3194 if (fs_fd >= 0)
3195 infy_add (EV_A_ w); /* re-add, no matter what */
3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
3203 }
3204 }
3205}
3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 3211#else
1519 struct sigaction sa; 3212# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 3213#endif
1525 }
1526}
1527 3214
1528void 3215void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 3216ev_stat_stat (EV_P_ ev_stat *w)
1530{ 3217{
1531 ev_clear_pending (EV_A_ (W)w); 3218 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 3219 w->attr.st_nlink = 0;
3220 else if (!w->attr.st_nlink)
3221 w->attr.st_nlink = 1;
3222}
3223
3224static void noinline
3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3226{
3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3228
3229 ev_statdata prev = w->attr;
3230 ev_stat_stat (EV_A_ w);
3231
3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3233 if (
3234 prev.st_dev != w->attr.st_dev
3235 || prev.st_ino != w->attr.st_ino
3236 || prev.st_mode != w->attr.st_mode
3237 || prev.st_nlink != w->attr.st_nlink
3238 || prev.st_uid != w->attr.st_uid
3239 || prev.st_gid != w->attr.st_gid
3240 || prev.st_rdev != w->attr.st_rdev
3241 || prev.st_size != w->attr.st_size
3242 || prev.st_atime != w->attr.st_atime
3243 || prev.st_mtime != w->attr.st_mtime
3244 || prev.st_ctime != w->attr.st_ctime
3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
3254 infy_del (EV_A_ w);
3255 infy_add (EV_A_ w);
3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
3258 #endif
3259
3260 ev_feed_event (EV_A_ w, EV_STAT);
3261 }
3262}
3263
3264void
3265ev_stat_start (EV_P_ ev_stat *w)
3266{
3267 if (expect_false (ev_is_active (w)))
1533 return; 3268 return;
1534 3269
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3270 ev_stat_stat (EV_A_ w);
3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3273 w->interval = MIN_STAT_INTERVAL;
3274
3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3276 ev_set_priority (&w->timer, ev_priority (w));
3277
3278#if EV_USE_INOTIFY
3279 infy_init (EV_A);
3280
3281 if (fs_fd >= 0)
3282 infy_add (EV_A_ w);
3283 else
3284#endif
3285 {
3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
3289
3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_stat_stop (EV_P_ ev_stat *w)
3297{
3298 clear_pending (EV_A_ (W)w);
3299 if (expect_false (!ev_is_active (w)))
3300 return;
3301
3302 EV_FREQUENT_CHECK;
3303
3304#if EV_USE_INOTIFY
3305 infy_del (EV_A_ w);
3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
3313
1536 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
1537 3315
1538 if (!signals [w->signum - 1].head) 3316 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 3317}
3318#endif
1541 3319
3320#if EV_IDLE_ENABLE
1542void 3321void
1543ev_child_start (EV_P_ struct ev_child *w) 3322ev_idle_start (EV_P_ ev_idle *w)
1544{ 3323{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 3324 if (expect_false (ev_is_active (w)))
1549 return; 3325 return;
1550 3326
3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ++idlecnt [ABSPRI (w)];
3333
3334 ++idleall;
3335 ev_start (EV_A_ (W)w, active);
3336
3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3338 idles [ABSPRI (w)][active - 1] = w;
3339 }
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void
3345ev_idle_stop (EV_P_ ev_idle *w)
3346{
3347 clear_pending (EV_A_ (W)w);
3348 if (expect_false (!ev_is_active (w)))
3349 return;
3350
3351 EV_FREQUENT_CHECK;
3352
3353 {
3354 int active = ev_active (w);
3355
3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3358
3359 ev_stop (EV_A_ (W)w);
3360 --idleall;
3361 }
3362
3363 EV_FREQUENT_CHECK;
3364}
3365#endif
3366
3367#if EV_PREPARE_ENABLE
3368void
3369ev_prepare_start (EV_P_ ev_prepare *w)
3370{
3371 if (expect_false (ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
3376 ev_start (EV_A_ (W)w, ++preparecnt);
3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3378 prepares [preparecnt - 1] = w;
3379
3380 EV_FREQUENT_CHECK;
3381}
3382
3383void
3384ev_prepare_stop (EV_P_ ev_prepare *w)
3385{
3386 clear_pending (EV_A_ (W)w);
3387 if (expect_false (!ev_is_active (w)))
3388 return;
3389
3390 EV_FREQUENT_CHECK;
3391
3392 {
3393 int active = ev_active (w);
3394
3395 prepares [active - 1] = prepares [--preparecnt];
3396 ev_active (prepares [active - 1]) = active;
3397 }
3398
3399 ev_stop (EV_A_ (W)w);
3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
3406void
3407ev_check_start (EV_P_ ev_check *w)
3408{
3409 if (expect_false (ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 ev_start (EV_A_ (W)w, ++checkcnt);
3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3416 checks [checkcnt - 1] = w;
3417
3418 EV_FREQUENT_CHECK;
3419}
3420
3421void
3422ev_check_stop (EV_P_ ev_check *w)
3423{
3424 clear_pending (EV_A_ (W)w);
3425 if (expect_false (!ev_is_active (w)))
3426 return;
3427
3428 EV_FREQUENT_CHECK;
3429
3430 {
3431 int active = ev_active (w);
3432
3433 checks [active - 1] = checks [--checkcnt];
3434 ev_active (checks [active - 1]) = active;
3435 }
3436
3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
3440}
3441#endif
3442
3443#if EV_EMBED_ENABLE
3444void noinline
3445ev_embed_sweep (EV_P_ ev_embed *w)
3446{
3447 ev_run (w->other, EVRUN_NOWAIT);
3448}
3449
3450static void
3451embed_io_cb (EV_P_ ev_io *io, int revents)
3452{
3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3454
3455 if (ev_cb (w))
3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3457 else
3458 ev_run (w->other, EVRUN_NOWAIT);
3459}
3460
3461static void
3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3465
3466 {
3467 EV_P = w->other;
3468
3469 while (fdchangecnt)
3470 {
3471 fd_reify (EV_A);
3472 ev_run (EV_A_ EVRUN_NOWAIT);
3473 }
3474 }
3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
3492}
3493
3494#if 0
3495static void
3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3497{
3498 ev_idle_stop (EV_A_ idle);
3499}
3500#endif
3501
3502void
3503ev_embed_start (EV_P_ ev_embed *w)
3504{
3505 if (expect_false (ev_is_active (w)))
3506 return;
3507
3508 {
3509 EV_P = w->other;
3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3512 }
3513
3514 EV_FREQUENT_CHECK;
3515
3516 ev_set_priority (&w->io, ev_priority (w));
3517 ev_io_start (EV_A_ &w->io);
3518
3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
3520 ev_set_priority (&w->prepare, EV_MINPRI);
3521 ev_prepare_start (EV_A_ &w->prepare);
3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3527
1551 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1553}
1554 3529
3530 EV_FREQUENT_CHECK;
3531}
3532
1555void 3533void
1556ev_child_stop (EV_P_ struct ev_child *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
1557{ 3535{
1558 ev_clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 3537 if (expect_false (!ev_is_active (w)))
1560 return; 3538 return;
1561 3539
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3540 EV_FREQUENT_CHECK;
3541
3542 ev_io_stop (EV_A_ &w->io);
3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
3545
1563 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
1564} 3549}
3550#endif
3551
3552#if EV_FORK_ENABLE
3553void
3554ev_fork_start (EV_P_ ev_fork *w)
3555{
3556 if (expect_false (ev_is_active (w)))
3557 return;
3558
3559 EV_FREQUENT_CHECK;
3560
3561 ev_start (EV_A_ (W)w, ++forkcnt);
3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
3566}
3567
3568void
3569ev_fork_stop (EV_P_ ev_fork *w)
3570{
3571 clear_pending (EV_A_ (W)w);
3572 if (expect_false (!ev_is_active (w)))
3573 return;
3574
3575 EV_FREQUENT_CHECK;
3576
3577 {
3578 int active = ev_active (w);
3579
3580 forks [active - 1] = forks [--forkcnt];
3581 ev_active (forks [active - 1]) = active;
3582 }
3583
3584 ev_stop (EV_A_ (W)w);
3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
3590#if EV_CLEANUP_ENABLE
3591void
3592ev_cleanup_start (EV_P_ ev_cleanup *w)
3593{
3594 if (expect_false (ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++asynccnt);
3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_async_stop (EV_P_ ev_async *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 asyncs [active - 1] = asyncs [--asynccnt];
3664 ev_active (asyncs [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671
3672void
3673ev_async_send (EV_P_ ev_async *w)
3674{
3675 w->sent = 1;
3676 evpipe_write (EV_A_ &async_pending);
3677}
3678#endif
1565 3679
1566/*****************************************************************************/ 3680/*****************************************************************************/
1567 3681
1568struct ev_once 3682struct ev_once
1569{ 3683{
1570 struct ev_io io; 3684 ev_io io;
1571 struct ev_timer to; 3685 ev_timer to;
1572 void (*cb)(int revents, void *arg); 3686 void (*cb)(int revents, void *arg);
1573 void *arg; 3687 void *arg;
1574}; 3688};
1575 3689
1576static void 3690static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 3692{
1579 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 3694 void *arg = once->arg;
1581 3695
1582 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 3698 ev_free (once);
1585 3699
1586 cb (revents, arg); 3700 cb (revents, arg);
1587} 3701}
1588 3702
1589static void 3703static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 3705{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 3709}
1594 3710
1595static void 3711static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 3713{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 3717}
1600 3718
1601void 3719void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1603{ 3721{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 3723
1606 if (!once) 3724 if (expect_false (!once))
3725 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1608 else 3727 return;
1609 { 3728 }
3729
1610 once->cb = cb; 3730 once->cb = cb;
1611 once->arg = arg; 3731 once->arg = arg;
1612 3732
1613 ev_init (&once->io, once_cb_io); 3733 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 3734 if (fd >= 0)
3735 {
3736 ev_io_set (&once->io, fd, events);
3737 ev_io_start (EV_A_ &once->io);
3738 }
3739
3740 ev_init (&once->to, once_cb_to);
3741 if (timeout >= 0.)
3742 {
3743 ev_timer_set (&once->to, timeout, 0.);
3744 ev_timer_start (EV_A_ &once->to);
3745 }
3746}
3747
3748/*****************************************************************************/
3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
1615 { 3760 {
1616 ev_io_set (&once->io, fd, events); 3761 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
1618 } 3781 }
1619 3782
1620 ev_init (&once->to, once_cb_to); 3783 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 3788 {
1623 ev_timer_set (&once->to, timeout, 0.); 3789 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 3791 }
1626 } 3792 else
1627} 3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1628 3796
1629#ifdef __cplusplus 3797#if EV_PERIODIC_ENABLE
1630} 3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
3802
3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
3809
3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
3816
3817#if EV_ASYNC_ENABLE
3818 if (types & EV_ASYNC)
3819 for (i = asynccnt; i--; )
3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
3821#endif
3822
3823#if EV_PREPARE_ENABLE
3824 if (types & EV_PREPARE)
3825 for (i = preparecnt; i--; )
3826# if EV_EMBED_ENABLE
3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
1631#endif 3828# endif
3829 cb (EV_A_ EV_PREPARE, prepares [i]);
3830#endif
1632 3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
3863
3864#if EV_MULTIPLICITY
3865 #include "ev_wrap.h"
3866#endif
3867
3868EV_CPP(})
3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines