ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC vs.
Revision 1.469 by root, Fri Sep 5 16:21:19 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
42# endif 71# endif
43# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
45# endif 81# endif
46# endif 82# endif
47 83
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
50# endif 91# endif
51 92
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
53# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
54# endif 100# endif
55 101
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
57# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
58# endif 109# endif
59 110
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
62# endif 118# endif
63 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
64#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
65 137
66#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
67#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
68#include <fcntl.h> 169#include <fcntl.h>
69#include <stddef.h> 170#include <stddef.h>
70 171
71#include <stdio.h> 172#include <stdio.h>
72 173
73#include <assert.h> 174#include <assert.h>
74#include <errno.h> 175#include <errno.h>
75#include <sys/types.h> 176#include <sys/types.h>
76#include <time.h> 177#include <time.h>
178#include <limits.h>
77 179
78#include <signal.h> 180#include <signal.h>
79
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139 181
140#ifdef EV_H 182#ifdef EV_H
141# include EV_H 183# include EV_H
142#else 184#else
143# include "ev.h" 185# include "ev.h"
144#endif 186#endif
145 187
146#if __GNUC__ >= 3 188#if EV_NO_THREADS
147# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
148# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
149#else 203#else
150# define expect(expr,value) (expr) 204# include <io.h>
151# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
152#endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
153 213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
260
261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
265# define EV_USE_MONOTONIC 0
266# endif
267#endif
268
269#ifndef EV_USE_REALTIME
270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
279#endif
280
281#ifndef EV_USE_SELECT
282# define EV_USE_SELECT EV_FEATURE_BACKENDS
283#endif
284
285#ifndef EV_USE_POLL
286# ifdef _WIN32
287# define EV_USE_POLL 0
288# else
289# define EV_USE_POLL EV_FEATURE_BACKENDS
290# endif
291#endif
292
293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
297# define EV_USE_EPOLL 0
298# endif
299#endif
300
301#ifndef EV_USE_KQUEUE
302# define EV_USE_KQUEUE 0
303#endif
304
305#ifndef EV_USE_PORT
306# define EV_USE_PORT 0
307#endif
308
309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
313# define EV_USE_INOTIFY 0
314# endif
315#endif
316
317#ifndef EV_PID_HASHSIZE
318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
328# else
329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391#ifndef CLOCK_MONOTONIC
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 0
394#endif
395
396#ifndef CLOCK_REALTIME
397# undef EV_USE_REALTIME
398# define EV_USE_REALTIME 0
399#endif
400
401#if !EV_STAT_ENABLE
402# undef EV_USE_INOTIFY
403# define EV_USE_INOTIFY 0
404#endif
405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
420# endif
421#endif
422
423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
459#endif
460
461/**/
462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
469/*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
537 #if __GNUC__
538 typedef signed long long int64_t;
539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
553#else
554 #include <inttypes.h>
555 #if UINTMAX_MAX > 0xffffffffU
556 #define ECB_PTRSIZE 8
557 #else
558 #define ECB_PTRSIZE 4
559 #endif
560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
568 #endif
569#endif
570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812#else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814#endif
815
816#define ecb_noinline ecb_attribute ((__noinline__))
817#define ecb_unused ecb_attribute ((__unused__))
818#define ecb_const ecb_attribute ((__const__))
819#define ecb_pure ecb_attribute ((__pure__))
820
821/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822#if ECB_C11
823 #define ecb_noreturn _Noreturn
824#else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826#endif
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832#else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836#endif
837
838/* put around conditional expressions if you are very sure that the */
839/* expression is mostly true or mostly false. note that these return */
840/* booleans, not the expression. */
154#define expect_false(expr) expect ((expr) != 0, 0) 841#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 842#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843/* for compatibility to the rest of the world */
844#define ecb_likely(expr) ecb_expect_true (expr)
845#define ecb_unlikely(expr) ecb_expect_false (expr)
156 846
847/* count trailing zero bits and count # of one bits */
848#if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856#else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865#if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871#else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877#endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925#endif
926
927ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934{
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937}
938
939ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941{
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948}
949
950ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952{
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960}
961
962/* popcount64 is only available on 64 bit cpus as gcc builtin */
963/* so for this version we are lazy */
964ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965ecb_function_ int
966ecb_popcount64 (uint64_t x)
967{
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969}
970
971ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989#if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993#else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014#endif
1015
1016#if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018#else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022#endif
1023
1024/* try to tell the compiler that some condition is definitely true */
1025#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028ecb_inline unsigned char
1029ecb_byteorder_helper (void)
1030{
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043#else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050#endif
1051}
1052
1053ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058#if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060#else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062#endif
1063
1064#if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075#else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078#endif
1079
1080#if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087#else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089#endif
1090
1091/*******************************************************************************/
1092/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094/* basically, everything uses "ieee pure-endian" floating point numbers */
1095/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096#if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113#else
1114 #define ECB_STDFP 0
1115#endif
1116
1117#ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291#endif
1292
1293#endif
1294
1295/* ECB.H END */
1296
1297#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298/* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305# error "memory fences not defined for your architecture, please report"
1306#endif
1307
1308#ifndef ECB_MEMORY_FENCE
1309# define ECB_MEMORY_FENCE do { } while (0)
1310# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312#endif
1313
1314#define expect_false(cond) ecb_expect_false (cond)
1315#define expect_true(cond) ecb_expect_true (cond)
1316#define noinline ecb_noinline
1317
1318#define inline_size ecb_inline
1319
1320#if EV_FEATURE_CODE
1321# define inline_speed ecb_inline
1322#else
1323# define inline_speed static noinline
1324#endif
1325
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1326#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328#if EV_MINPRI == EV_MAXPRI
1329# define ABSPRI(w) (((W)w), 0)
1330#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 1331# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332#endif
159 1333
1334#define EMPTY /* required for microsofts broken pseudo-c compiler */
1335#define EMPTY2(a,b) /* used to suppress some warnings */
1336
160typedef struct ev_watcher *W; 1337typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 1338typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 1339typedef ev_watcher_time *WT;
163 1340
1341#define ev_active(w) ((W)(w))->active
1342#define ev_at(w) ((WT)(w))->at
1343
1344#if EV_USE_REALTIME
1345/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346/* giving it a reasonably high chance of working on typical architectures */
1347static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348#endif
1349
1350#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1351static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352#endif
165 1353
1354#ifndef EV_FD_TO_WIN32_HANDLE
1355# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356#endif
1357#ifndef EV_WIN32_HANDLE_TO_FD
1358# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359#endif
1360#ifndef EV_WIN32_CLOSE_FD
1361# define EV_WIN32_CLOSE_FD(fd) close (fd)
1362#endif
1363
166#ifdef WIN32 1364#ifdef _WIN32
167# include "ev_win32.c" 1365# include "ev_win32.c"
168#endif 1366#endif
169 1367
170/*****************************************************************************/ 1368/*****************************************************************************/
171 1369
1370/* define a suitable floor function (only used by periodics atm) */
1371
1372#if EV_USE_FLOOR
1373# include <math.h>
1374# define ev_floor(v) floor (v)
1375#else
1376
1377#include <float.h>
1378
1379/* a floor() replacement function, should be independent of ev_tstamp type */
1380static ev_tstamp noinline
1381ev_floor (ev_tstamp v)
1382{
1383 /* the choice of shift factor is not terribly important */
1384#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386#else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388#endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412}
1413
1414#endif
1415
1416/*****************************************************************************/
1417
1418#ifdef __linux
1419# include <sys/utsname.h>
1420#endif
1421
1422static unsigned int noinline ecb_cold
1423ev_linux_version (void)
1424{
1425#ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453#else
1454 return 0;
1455#endif
1456}
1457
1458/*****************************************************************************/
1459
1460#if EV_AVOID_STDIO
1461static void noinline ecb_cold
1462ev_printerr (const char *msg)
1463{
1464 write (STDERR_FILENO, msg, strlen (msg));
1465}
1466#endif
1467
172static void (*syserr_cb)(const char *msg); 1468static void (*syserr_cb)(const char *msg) EV_THROW;
173 1469
1470void ecb_cold
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 1471ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
175{ 1472{
176 syserr_cb = cb; 1473 syserr_cb = cb;
177} 1474}
178 1475
179static void 1476static void noinline ecb_cold
180syserr (const char *msg) 1477ev_syserr (const char *msg)
181{ 1478{
182 if (!msg) 1479 if (!msg)
183 msg = "(libev) system error"; 1480 msg = "(libev) system error";
184 1481
185 if (syserr_cb) 1482 if (syserr_cb)
186 syserr_cb (msg); 1483 syserr_cb (msg);
187 else 1484 else
188 { 1485 {
1486#if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491#else
189 perror (msg); 1492 perror (msg);
1493#endif
190 abort (); 1494 abort ();
191 } 1495 }
192} 1496}
193 1497
1498static void *
1499ev_realloc_emul (void *ptr, long size) EV_THROW
1500{
1501 /* some systems, notably openbsd and darwin, fail to properly
1502 * implement realloc (x, 0) (as required by both ansi c-89 and
1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
1506 */
1507
1508 if (size)
1509 return realloc (ptr, size);
1510
1511 free (ptr);
1512 return 0;
1513}
1514
194static void *(*alloc)(void *ptr, long size); 1515static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
195 1516
1517void ecb_cold
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1518ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
197{ 1519{
198 alloc = cb; 1520 alloc = cb;
199} 1521}
200 1522
201static void * 1523inline_speed void *
202ev_realloc (void *ptr, long size) 1524ev_realloc (void *ptr, long size)
203{ 1525{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1526 ptr = alloc (ptr, size);
205 1527
206 if (!ptr && size) 1528 if (!ptr && size)
207 { 1529 {
1530#if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532#else
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534#endif
209 abort (); 1535 abort ();
210 } 1536 }
211 1537
212 return ptr; 1538 return ptr;
213} 1539}
215#define ev_malloc(size) ev_realloc (0, (size)) 1541#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 1542#define ev_free(ptr) ev_realloc ((ptr), 0)
217 1543
218/*****************************************************************************/ 1544/*****************************************************************************/
219 1545
1546/* set in reify when reification needed */
1547#define EV_ANFD_REIFY 1
1548
1549/* file descriptor info structure */
220typedef struct 1550typedef struct
221{ 1551{
222 WL head; 1552 WL head;
223 unsigned char events; 1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 1556 unsigned char unused;
1557#if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559#endif
1560#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1561 SOCKET handle;
1562#endif
1563#if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565#endif
225} ANFD; 1566} ANFD;
226 1567
1568/* stores the pending event set for a given watcher */
227typedef struct 1569typedef struct
228{ 1570{
229 W w; 1571 W w;
230 int events; 1572 int events; /* the pending event set for the given watcher */
231} ANPENDING; 1573} ANPENDING;
1574
1575#if EV_USE_INOTIFY
1576/* hash table entry per inotify-id */
1577typedef struct
1578{
1579 WL head;
1580} ANFS;
1581#endif
1582
1583/* Heap Entry */
1584#if EV_HEAP_CACHE_AT
1585 /* a heap element */
1586 typedef struct {
1587 ev_tstamp at;
1588 WT w;
1589 } ANHE;
1590
1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1594#else
1595 /* a heap element */
1596 typedef WT ANHE;
1597
1598 #define ANHE_w(he) (he)
1599 #define ANHE_at(he) (he)->at
1600 #define ANHE_at_cache(he)
1601#endif
232 1602
233#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
234 1604
235 struct ev_loop 1605 struct ev_loop
236 { 1606 {
240 #include "ev_vars.h" 1610 #include "ev_vars.h"
241 #undef VAR 1611 #undef VAR
242 }; 1612 };
243 #include "ev_wrap.h" 1613 #include "ev_wrap.h"
244 1614
245 struct ev_loop default_loop_struct; 1615 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
247 1617
248#else 1618#else
249 1619
250 ev_tstamp ev_rt_now; 1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
251 #define VAR(name,decl) static decl; 1621 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 1622 #include "ev_vars.h"
253 #undef VAR 1623 #undef VAR
254 1624
255 static int default_loop; 1625 static int ev_default_loop_ptr;
256 1626
257#endif 1627#endif
1628
1629#if EV_FEATURE_API
1630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632# define EV_INVOKE_PENDING invoke_cb (EV_A)
1633#else
1634# define EV_RELEASE_CB (void)0
1635# define EV_ACQUIRE_CB (void)0
1636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637#endif
1638
1639#define EVBREAK_RECURSE 0x80
258 1640
259/*****************************************************************************/ 1641/*****************************************************************************/
260 1642
1643#ifndef EV_HAVE_EV_TIME
261ev_tstamp 1644ev_tstamp
262ev_time (void) 1645ev_time (void) EV_THROW
263{ 1646{
264#if EV_USE_REALTIME 1647#if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
265 struct timespec ts; 1650 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 1651 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 1653 }
1654#endif
1655
269 struct timeval tv; 1656 struct timeval tv;
270 gettimeofday (&tv, 0); 1657 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 1658 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 1659}
1660#endif
274 1661
275inline ev_tstamp 1662inline_size ev_tstamp
276get_clock (void) 1663get_clock (void)
277{ 1664{
278#if EV_USE_MONOTONIC 1665#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 1666 if (expect_true (have_monotonic))
280 { 1667 {
287 return ev_time (); 1674 return ev_time ();
288} 1675}
289 1676
290#if EV_MULTIPLICITY 1677#if EV_MULTIPLICITY
291ev_tstamp 1678ev_tstamp
292ev_now (EV_P) 1679ev_now (EV_P) EV_THROW
293{ 1680{
294 return ev_rt_now; 1681 return ev_rt_now;
295} 1682}
296#endif 1683#endif
297 1684
298#define array_roundsize(type,n) ((n) | 4 & ~3) 1685void
1686ev_sleep (ev_tstamp delay) EV_THROW
1687{
1688 if (delay > 0.)
1689 {
1690#if EV_USE_NANOSLEEP
1691 struct timespec ts;
1692
1693 EV_TS_SET (ts, delay);
1694 nanosleep (&ts, 0);
1695#elif defined _WIN32
1696 Sleep ((unsigned long)(delay * 1e3));
1697#else
1698 struct timeval tv;
1699
1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1701 /* something not guaranteed by newer posix versions, but guaranteed */
1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
1704 select (0, 0, 0, 0, &tv);
1705#endif
1706 }
1707}
1708
1709/*****************************************************************************/
1710
1711#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1712
1713/* find a suitable new size for the given array, */
1714/* hopefully by rounding to a nice-to-malloc size */
1715inline_size int
1716array_nextsize (int elem, int cur, int cnt)
1717{
1718 int ncur = cur + 1;
1719
1720 do
1721 ncur <<= 1;
1722 while (cnt > ncur);
1723
1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1726 {
1727 ncur *= elem;
1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1729 ncur = ncur - sizeof (void *) * 4;
1730 ncur /= elem;
1731 }
1732
1733 return ncur;
1734}
1735
1736static void * noinline ecb_cold
1737array_realloc (int elem, void *base, int *cur, int cnt)
1738{
1739 *cur = array_nextsize (elem, *cur, cnt);
1740 return ev_realloc (base, elem * *cur);
1741}
1742
1743#define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 1745
300#define array_needsize(type,base,cur,cnt,init) \ 1746#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 1747 if (expect_false ((cnt) > (cur))) \
302 { \ 1748 { \
303 int newcnt = cur; \ 1749 int ecb_unused ocur_ = (cur); \
304 do \ 1750 (base) = (type *)array_realloc \
305 { \ 1751 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 1752 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 1753 }
314 1754
1755#if 0
315#define array_slim(type,stem) \ 1756#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1757 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 1758 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1759 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1760 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 1762 }
322 1763#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 1764
328#define array_free(stem, idx) \ 1765#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 1767
331/*****************************************************************************/ 1768/*****************************************************************************/
332 1769
333static void 1770/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 1771static void noinline
1772pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 1773{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 1774}
345 1775
346void 1776void noinline
347ev_feed_event (EV_P_ void *w, int revents) 1777ev_feed_event (EV_P_ void *w, int revents) EV_THROW
348{ 1778{
349 W w_ = (W)w; 1779 W w_ = (W)w;
1780 int pri = ABSPRI (w_);
350 1781
351 if (w_->pending) 1782 if (expect_false (w_->pending))
1783 pendings [pri][w_->pending - 1].events |= revents;
1784 else
352 { 1785 {
1786 w_->pending = ++pendingcnt [pri];
1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1788 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1789 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 1790 }
356 1791
357 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1792 pendingpri = NUMPRI - 1;
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 1793}
362 1794
363static void 1795inline_speed void
1796feed_reverse (EV_P_ W w)
1797{
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800}
1801
1802inline_size void
1803feed_reverse_done (EV_P_ int revents)
1804{
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808}
1809
1810inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 1811queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 1812{
366 int i; 1813 int i;
367 1814
368 for (i = 0; i < eventcnt; ++i) 1815 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 1816 ev_feed_event (EV_A_ events [i], type);
370} 1817}
371 1818
1819/*****************************************************************************/
1820
372inline void 1821inline_speed void
373fd_event (EV_P_ int fd, int revents) 1822fd_event_nocheck (EV_P_ int fd, int revents)
374{ 1823{
375 ANFD *anfd = anfds + fd; 1824 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 1825 ev_io *w;
377 1826
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 1828 {
380 int ev = w->events & revents; 1829 int ev = w->events & revents;
381 1830
382 if (ev) 1831 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 1832 ev_feed_event (EV_A_ (W)w, ev);
384 } 1833 }
385} 1834}
386 1835
1836/* do not submit kernel events for fds that have reify set */
1837/* because that means they changed while we were polling for new events */
1838inline_speed void
1839fd_event (EV_P_ int fd, int revents)
1840{
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845}
1846
387void 1847void
388ev_feed_fd_event (EV_P_ int fd, int revents) 1848ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
389{ 1849{
1850 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 1851 fd_event_nocheck (EV_A_ fd, revents);
391} 1852}
392 1853
393/*****************************************************************************/ 1854/* make sure the external fd watch events are in-sync */
394 1855/* with the kernel/libev internal state */
395static void 1856inline_size void
396fd_reify (EV_P) 1857fd_reify (EV_P)
397{ 1858{
398 int i; 1859 int i;
399 1860
1861#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
400 for (i = 0; i < fdchangecnt; ++i) 1862 for (i = 0; i < fdchangecnt; ++i)
401 { 1863 {
402 int fd = fdchanges [i]; 1864 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884#endif
1885
1886 for (i = 0; i < fdchangecnt; ++i)
1887 {
1888 int fd = fdchanges [i];
1889 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 1890 ev_io *w;
405 1891
406 int events = 0; 1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
407 1894
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 events |= w->events;
410
411 anfd->reify = 0; 1895 anfd->reify = 0;
412 1896
413 method_modify (EV_A_ fd, anfd->events, events); 1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1898 {
414 anfd->events = events; 1899 anfd->events = 0;
1900
1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1902 anfd->events |= (unsigned char)w->events;
1903
1904 if (o_events != anfd->events)
1905 o_reify = EV__IOFDSET; /* actually |= */
1906 }
1907
1908 if (o_reify & EV__IOFDSET)
1909 backend_modify (EV_A_ fd, o_events, anfd->events);
415 } 1910 }
416 1911
417 fdchangecnt = 0; 1912 fdchangecnt = 0;
418} 1913}
419 1914
420static void 1915/* something about the given fd changed */
1916inline_size void
421fd_change (EV_P_ int fd) 1917fd_change (EV_P_ int fd, int flags)
422{ 1918{
423 if (anfds [fd].reify) 1919 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 1920 anfds [fd].reify |= flags;
427 1921
1922 if (expect_true (!reify))
1923 {
428 ++fdchangecnt; 1924 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 1926 fdchanges [fdchangecnt - 1] = fd;
1927 }
431} 1928}
432 1929
433static void 1930/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931inline_speed void ecb_cold
434fd_kill (EV_P_ int fd) 1932fd_kill (EV_P_ int fd)
435{ 1933{
436 struct ev_io *w; 1934 ev_io *w;
437 1935
438 while ((w = (struct ev_io *)anfds [fd].head)) 1936 while ((w = (ev_io *)anfds [fd].head))
439 { 1937 {
440 ev_io_stop (EV_A_ w); 1938 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 1940 }
443} 1941}
444 1942
445static int 1943/* check whether the given fd is actually valid, for error recovery */
1944inline_size int ecb_cold
446fd_valid (int fd) 1945fd_valid (int fd)
447{ 1946{
448#ifdef WIN32 1947#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 1949#else
451 return fcntl (fd, F_GETFD) != -1; 1950 return fcntl (fd, F_GETFD) != -1;
452#endif 1951#endif
453} 1952}
454 1953
455/* called on EBADF to verify fds */ 1954/* called on EBADF to verify fds */
456static void 1955static void noinline ecb_cold
457fd_ebadf (EV_P) 1956fd_ebadf (EV_P)
458{ 1957{
459 int fd; 1958 int fd;
460 1959
461 for (fd = 0; fd < anfdmax; ++fd) 1960 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 1961 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 1962 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 1963 fd_kill (EV_A_ fd);
465} 1964}
466 1965
467/* called on ENOMEM in select/poll to kill some fds and retry */ 1966/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 1967static void noinline ecb_cold
469fd_enomem (EV_P) 1968fd_enomem (EV_P)
470{ 1969{
471 int fd; 1970 int fd;
472 1971
473 for (fd = anfdmax; fd--; ) 1972 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1973 if (anfds [fd].events)
475 { 1974 {
476 fd_kill (EV_A_ fd); 1975 fd_kill (EV_A_ fd);
477 return; 1976 break;
478 } 1977 }
479} 1978}
480 1979
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1980/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1981static void noinline
483fd_rearm_all (EV_P) 1982fd_rearm_all (EV_P)
484{ 1983{
485 int fd; 1984 int fd;
486 1985
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1986 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1987 if (anfds [fd].events)
490 { 1988 {
491 anfds [fd].events = 0; 1989 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1990 anfds [fd].emask = 0;
1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1992 }
494} 1993}
495 1994
1995/* used to prepare libev internal fd's */
1996/* this is not fork-safe */
1997inline_speed void
1998fd_intern (int fd)
1999{
2000#ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003#else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006#endif
2007}
2008
496/*****************************************************************************/ 2009/*****************************************************************************/
497 2010
2011/*
2012 * the heap functions want a real array index. array index 0 is guaranteed to not
2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2014 * the branching factor of the d-tree.
2015 */
2016
2017/*
2018 * at the moment we allow libev the luxury of two heaps,
2019 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2020 * which is more cache-efficient.
2021 * the difference is about 5% with 50000+ watchers.
2022 */
2023#if EV_USE_4HEAP
2024
2025#define DHEAP 4
2026#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2027#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2028#define UPHEAP_DONE(p,k) ((p) == (k))
2029
2030/* away from the root */
2031inline_speed void
2032downheap (ANHE *heap, int N, int k)
2033{
2034 ANHE he = heap [k];
2035 ANHE *E = heap + N + HEAP0;
2036
2037 for (;;)
2038 {
2039 ev_tstamp minat;
2040 ANHE *minpos;
2041 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2042
2043 /* find minimum child */
2044 if (expect_true (pos + DHEAP - 1 < E))
2045 {
2046 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 }
2051 else if (pos < E)
2052 {
2053 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2054 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2055 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2056 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2057 }
2058 else
2059 break;
2060
2061 if (ANHE_at (he) <= minat)
2062 break;
2063
2064 heap [k] = *minpos;
2065 ev_active (ANHE_w (*minpos)) = k;
2066
2067 k = minpos - heap;
2068 }
2069
2070 heap [k] = he;
2071 ev_active (ANHE_w (he)) = k;
2072}
2073
2074#else /* 4HEAP */
2075
2076#define HEAP0 1
2077#define HPARENT(k) ((k) >> 1)
2078#define UPHEAP_DONE(p,k) (!(p))
2079
2080/* away from the root */
2081inline_speed void
2082downheap (ANHE *heap, int N, int k)
2083{
2084 ANHE he = heap [k];
2085
2086 for (;;)
2087 {
2088 int c = k << 1;
2089
2090 if (c >= N + HEAP0)
2091 break;
2092
2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2094 ? 1 : 0;
2095
2096 if (ANHE_at (he) <= ANHE_at (heap [c]))
2097 break;
2098
2099 heap [k] = heap [c];
2100 ev_active (ANHE_w (heap [k])) = k;
2101
2102 k = c;
2103 }
2104
2105 heap [k] = he;
2106 ev_active (ANHE_w (he)) = k;
2107}
2108#endif
2109
2110/* towards the root */
2111inline_speed void
2112upheap (ANHE *heap, int k)
2113{
2114 ANHE he = heap [k];
2115
2116 for (;;)
2117 {
2118 int p = HPARENT (k);
2119
2120 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2121 break;
2122
2123 heap [k] = heap [p];
2124 ev_active (ANHE_w (heap [k])) = k;
2125 k = p;
2126 }
2127
2128 heap [k] = he;
2129 ev_active (ANHE_w (he)) = k;
2130}
2131
2132/* move an element suitably so it is in a correct place */
2133inline_size void
2134adjustheap (ANHE *heap, int N, int k)
2135{
2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2137 upheap (heap, k);
2138 else
2139 downheap (heap, N, k);
2140}
2141
2142/* rebuild the heap: this function is used only once and executed rarely */
2143inline_size void
2144reheap (ANHE *heap, int N)
2145{
2146 int i;
2147
2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2149 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2150 for (i = 0; i < N; ++i)
2151 upheap (heap, i + HEAP0);
2152}
2153
2154/*****************************************************************************/
2155
2156/* associate signal watchers to a signal signal */
2157typedef struct
2158{
2159 EV_ATOMIC_T pending;
2160#if EV_MULTIPLICITY
2161 EV_P;
2162#endif
2163 WL head;
2164} ANSIG;
2165
2166static ANSIG signals [EV_NSIG - 1];
2167
2168/*****************************************************************************/
2169
2170#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2171
2172static void noinline ecb_cold
2173evpipe_init (EV_P)
2174{
2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179# if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186# endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
2214 }
2215}
2216
2217inline_speed void
2218evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219{
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
2241#if EV_USE_EVENTFD
2242 if (evpipe [0] < 0)
2243 {
2244 uint64_t counter = 1;
2245 write (evpipe [1], &counter, sizeof (uint64_t));
2246 }
2247 else
2248#endif
2249 {
2250#ifdef _WIN32
2251 WSABUF buf;
2252 DWORD sent;
2253 buf.buf = &buf;
2254 buf.len = 1;
2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256#else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258#endif
2259 }
2260
2261 errno = old_errno;
2262 }
2263}
2264
2265/* called whenever the libev signal pipe */
2266/* got some events (signal, async) */
498static void 2267static void
499upheap (WT *heap, int k) 2268pipecb (EV_P_ ev_io *iow, int revents)
500{ 2269{
501 WT w = heap [k]; 2270 int i;
502 2271
503 while (k && heap [k >> 1]->at > w->at) 2272 if (revents & EV_READ)
504 {
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 2273 {
2274#if EV_USE_EVENTFD
2275 if (evpipe [0] < 0)
2276 {
2277 uint64_t counter;
2278 read (evpipe [1], &counter, sizeof (uint64_t));
2279 }
2280 else
2281#endif
2282 {
2283 char dummy[4];
2284#ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291#else
2292 read (evpipe [0], &dummy, sizeof (dummy));
2293#endif
2294 }
2295 }
509 2296
510 heap [k] = w; 2297 pipe_write_skipped = 0;
511 ((W)heap [k])->active = k + 1;
512 2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301#if EV_SIGNAL_ENABLE
2302 if (sig_pending)
2303 {
2304 sig_pending = 0;
2305
2306 ECB_MEMORY_FENCE;
2307
2308 for (i = EV_NSIG - 1; i--; )
2309 if (expect_false (signals [i].pending))
2310 ev_feed_signal_event (EV_A_ i + 1);
2311 }
2312#endif
2313
2314#if EV_ASYNC_ENABLE
2315 if (async_pending)
2316 {
2317 async_pending = 0;
2318
2319 ECB_MEMORY_FENCE;
2320
2321 for (i = asynccnt; i--; )
2322 if (asyncs [i]->sent)
2323 {
2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2327 }
2328 }
2329#endif
2330}
2331
2332/*****************************************************************************/
2333
2334void
2335ev_feed_signal (int signum) EV_THROW
2336{
2337#if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344#endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
513} 2348}
514 2349
515static void 2350static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 2351ev_sighandler (int signum)
575{ 2352{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 2353#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2354 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 2355#endif
591 errno = old_errno;
592 }
593}
594 2356
595void 2357 ev_feed_signal (signum);
2358}
2359
2360void noinline
596ev_feed_signal_event (EV_P_ int signum) 2361ev_feed_signal_event (EV_P_ int signum) EV_THROW
597{ 2362{
598 WL w; 2363 WL w;
599 2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
600#if EV_MULTIPLICITY 2370#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2371 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 2372 /* or, likely more useful, feeding a signal nobody is waiting for */
603 2373
604 --signum; 2374 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 2375 return;
2376#endif
608 2377
609 signals [signum].gotsig = 0; 2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
610 2380
611 for (w = signals [signum].head; w; w = w->next) 2381 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 2383}
614 2384
2385#if EV_USE_SIGNALFD
615static void 2386static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 2387sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 2388{
618 int signum; 2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 2390
620#ifdef WIN32 2391 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2392 {
622#else 2393 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 2394
627 for (signum = signalmax; signum--; ) 2395 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 2398
632static void 2399 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 2400 break;
634{ 2401 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 2402}
2403#endif
2404
2405#endif
648 2406
649/*****************************************************************************/ 2407/*****************************************************************************/
650 2408
651static struct ev_child *childs [PID_HASHSIZE]; 2409#if EV_CHILD_ENABLE
2410static WL childs [EV_PID_HASHSIZE];
652 2411
653#ifndef WIN32
654
655static struct ev_signal childev; 2412static ev_signal childev;
2413
2414#ifndef WIFCONTINUED
2415# define WIFCONTINUED(status) 0
2416#endif
2417
2418/* handle a single child status event */
2419inline_speed void
2420child_reap (EV_P_ int chain, int pid, int status)
2421{
2422 ev_child *w;
2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2424
2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2426 {
2427 if ((w->pid == pid || !w->pid)
2428 && (!traced || (w->flags & 1)))
2429 {
2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2431 w->rpid = pid;
2432 w->rstatus = status;
2433 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2434 }
2435 }
2436}
656 2437
657#ifndef WCONTINUED 2438#ifndef WCONTINUED
658# define WCONTINUED 0 2439# define WCONTINUED 0
659#endif 2440#endif
660 2441
2442/* called on sigchld etc., calls waitpid */
661static void 2443static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 2444childcb (EV_P_ ev_signal *sw, int revents)
678{ 2445{
679 int pid, status; 2446 int pid, status;
680 2447
2448 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2449 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 2450 if (!WCONTINUED
2451 || errno != EINVAL
2452 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2453 return;
2454
683 /* make sure we are called again until all childs have been reaped */ 2455 /* make sure we are called again until all children have been reaped */
2456 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 2458
686 child_reap (EV_A_ sw, pid, pid, status); 2459 child_reap (EV_A_ pid, pid, status);
2460 if ((EV_PID_HASHSIZE) > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 2462}
690 2463
691#endif 2464#endif
692 2465
693/*****************************************************************************/ 2466/*****************************************************************************/
694 2467
2468#if EV_USE_IOCP
2469# include "ev_iocp.c"
2470#endif
2471#if EV_USE_PORT
2472# include "ev_port.c"
2473#endif
695#if EV_USE_KQUEUE 2474#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 2475# include "ev_kqueue.c"
697#endif 2476#endif
698#if EV_USE_EPOLL 2477#if EV_USE_EPOLL
699# include "ev_epoll.c" 2478# include "ev_epoll.c"
703#endif 2482#endif
704#if EV_USE_SELECT 2483#if EV_USE_SELECT
705# include "ev_select.c" 2484# include "ev_select.c"
706#endif 2485#endif
707 2486
708int 2487int ecb_cold
709ev_version_major (void) 2488ev_version_major (void) EV_THROW
710{ 2489{
711 return EV_VERSION_MAJOR; 2490 return EV_VERSION_MAJOR;
712} 2491}
713 2492
714int 2493int ecb_cold
715ev_version_minor (void) 2494ev_version_minor (void) EV_THROW
716{ 2495{
717 return EV_VERSION_MINOR; 2496 return EV_VERSION_MINOR;
718} 2497}
719 2498
720/* return true if we are running with elevated privileges and should ignore env variables */ 2499/* return true if we are running with elevated privileges and should ignore env variables */
721static int 2500int inline_size ecb_cold
722enable_secure (void) 2501enable_secure (void)
723{ 2502{
724#ifdef WIN32 2503#ifdef _WIN32
725 return 0; 2504 return 0;
726#else 2505#else
727 return getuid () != geteuid () 2506 return getuid () != geteuid ()
728 || getgid () != getegid (); 2507 || getgid () != getegid ();
729#endif 2508#endif
730} 2509}
731 2510
732int 2511unsigned int ecb_cold
733ev_method (EV_P) 2512ev_supported_backends (void) EV_THROW
734{ 2513{
735 return method; 2514 unsigned int flags = 0;
736}
737 2515
738static void 2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
739loop_init (EV_P_ int methods) 2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2518 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2519 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2521
2522 return flags;
2523}
2524
2525unsigned int ecb_cold
2526ev_recommended_backends (void) EV_THROW
740{ 2527{
741 if (!method) 2528 unsigned int flags = ev_supported_backends ();
2529
2530#ifndef __NetBSD__
2531 /* kqueue is borked on everything but netbsd apparently */
2532 /* it usually doesn't work correctly on anything but sockets and pipes */
2533 flags &= ~EVBACKEND_KQUEUE;
2534#endif
2535#ifdef __APPLE__
2536 /* only select works correctly on that "unix-certified" platform */
2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539#endif
2540#ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2542#endif
2543
2544 return flags;
2545}
2546
2547unsigned int ecb_cold
2548ev_embeddable_backends (void) EV_THROW
2549{
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557}
2558
2559unsigned int
2560ev_backend (EV_P) EV_THROW
2561{
2562 return backend;
2563}
2564
2565#if EV_FEATURE_API
2566unsigned int
2567ev_iteration (EV_P) EV_THROW
2568{
2569 return loop_count;
2570}
2571
2572unsigned int
2573ev_depth (EV_P) EV_THROW
2574{
2575 return loop_depth;
2576}
2577
2578void
2579ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2580{
2581 io_blocktime = interval;
2582}
2583
2584void
2585ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2586{
2587 timeout_blocktime = interval;
2588}
2589
2590void
2591ev_set_userdata (EV_P_ void *data) EV_THROW
2592{
2593 userdata = data;
2594}
2595
2596void *
2597ev_userdata (EV_P) EV_THROW
2598{
2599 return userdata;
2600}
2601
2602void
2603ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604{
2605 invoke_cb = invoke_pending_cb;
2606}
2607
2608void
2609ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610{
2611 release_cb = release;
2612 acquire_cb = acquire;
2613}
2614#endif
2615
2616/* initialise a loop structure, must be zero-initialised */
2617static void noinline ecb_cold
2618loop_init (EV_P_ unsigned int flags) EV_THROW
2619{
2620 if (!backend)
742 { 2621 {
2622 origflags = flags;
2623
2624#if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632#endif
2633
743#if EV_USE_MONOTONIC 2634#if EV_USE_MONOTONIC
2635 if (!have_monotonic)
744 { 2636 {
745 struct timespec ts; 2637 struct timespec ts;
2638
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
747 have_monotonic = 1; 2640 have_monotonic = 1;
748 } 2641 }
749#endif 2642#endif
750 2643
2644 /* pid check not overridable via env */
2645#ifndef _WIN32
2646 if (flags & EVFLAG_FORKCHECK)
2647 curpid = getpid ();
2648#endif
2649
2650 if (!(flags & EVFLAG_NOENV)
2651 && !enable_secure ()
2652 && getenv ("LIBEV_FLAGS"))
2653 flags = atoi (getenv ("LIBEV_FLAGS"));
2654
751 ev_rt_now = ev_time (); 2655 ev_rt_now = ev_time ();
752 mn_now = get_clock (); 2656 mn_now = get_clock ();
753 now_floor = mn_now; 2657 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now; 2658 rtmn_diff = ev_rt_now - mn_now;
2659#if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661#endif
755 2662
756 if (methods == EVMETHOD_AUTO) 2663 io_blocktime = 0.;
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2664 timeout_blocktime = 0.;
758 methods = atoi (getenv ("LIBEV_METHODS")); 2665 backend = 0;
759 else 2666 backend_fd = -1;
760 methods = EVMETHOD_ANY; 2667 sig_pending = 0;
2668#if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670#endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675#if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677#endif
2678#if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680#endif
761 2681
762 method = 0; 2682 if (!(flags & EVBACKEND_MASK))
2683 flags |= ev_recommended_backends ();
2684
763#if EV_USE_WIN32 2685#if EV_USE_IOCP
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687#endif
2688#if EV_USE_PORT
2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
765#endif 2690#endif
766#if EV_USE_KQUEUE 2691#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
768#endif 2693#endif
769#if EV_USE_EPOLL 2694#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2695 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
771#endif 2696#endif
772#if EV_USE_POLL 2697#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2698 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
774#endif 2699#endif
775#if EV_USE_SELECT 2700#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
777#endif 2702#endif
778 2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
779 ev_init (&sigev, sigcb); 2707 ev_init (&pipe_w, pipecb);
780 ev_set_priority (&sigev, EV_MAXPRI); 2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709#endif
781 } 2710 }
782} 2711}
783 2712
784void 2713/* free up a loop structure */
2714void ecb_cold
785loop_destroy (EV_P) 2715ev_loop_destroy (EV_P)
786{ 2716{
787 int i; 2717 int i;
788 2718
2719#if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723#endif
2724
2725#if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732#endif
2733
2734#if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740#endif
2741
2742 if (ev_is_active (&pipe_w))
2743 {
2744 /*ev_ref (EV_A);*/
2745 /*ev_io_stop (EV_A_ &pipe_w);*/
2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
2751#if EV_USE_SIGNALFD
2752 if (ev_is_active (&sigfd_w))
2753 close (sigfd);
2754#endif
2755
2756#if EV_USE_INOTIFY
2757 if (fs_fd >= 0)
2758 close (fs_fd);
2759#endif
2760
2761 if (backend_fd >= 0)
2762 close (backend_fd);
2763
789#if EV_USE_WIN32 2764#if EV_USE_IOCP
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766#endif
2767#if EV_USE_PORT
2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
791#endif 2769#endif
792#if EV_USE_KQUEUE 2770#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
794#endif 2772#endif
795#if EV_USE_EPOLL 2773#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2774 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
797#endif 2775#endif
798#if EV_USE_POLL 2776#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2777 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
800#endif 2778#endif
801#if EV_USE_SELECT 2779#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2780 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
803#endif 2781#endif
804 2782
805 for (i = NUMPRI; i--; ) 2783 for (i = NUMPRI; i--; )
2784 {
806 array_free (pending, [i]); 2785 array_free (pending, [i]);
2786#if EV_IDLE_ENABLE
2787 array_free (idle, [i]);
2788#endif
2789 }
2790
2791 ev_free (anfds); anfds = 0; anfdmax = 0;
807 2792
808 /* have to use the microsoft-never-gets-it-right macro */ 2793 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange); 2794 array_free (rfeed, EMPTY);
810 array_free_microshit (timer); 2795 array_free (fdchange, EMPTY);
2796 array_free (timer, EMPTY);
811#if EV_PERIODICS 2797#if EV_PERIODIC_ENABLE
812 array_free_microshit (periodic); 2798 array_free (periodic, EMPTY);
813#endif 2799#endif
814 array_free_microshit (idle); 2800#if EV_FORK_ENABLE
815 array_free_microshit (prepare); 2801 array_free (fork, EMPTY);
816 array_free_microshit (check); 2802#endif
2803#if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805#endif
2806 array_free (prepare, EMPTY);
2807 array_free (check, EMPTY);
2808#if EV_ASYNC_ENABLE
2809 array_free (async, EMPTY);
2810#endif
817 2811
818 method = 0; 2812 backend = 0;
819}
820 2813
821static void 2814#if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816#endif
2817 ev_default_loop_ptr = 0;
2818#if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821#endif
2822}
2823
2824#if EV_USE_INOTIFY
2825inline_size void infy_fork (EV_P);
2826#endif
2827
2828inline_size void
822loop_fork (EV_P) 2829loop_fork (EV_P)
823{ 2830{
2831#if EV_USE_PORT
2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2833#endif
2834#if EV_USE_KQUEUE
2835 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2836#endif
824#if EV_USE_EPOLL 2837#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2838 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
826#endif 2839#endif
827#if EV_USE_KQUEUE 2840#if EV_USE_INOTIFY
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2841 infy_fork (EV_A);
829#endif 2842#endif
830 2843
2844#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
831 if (ev_is_active (&sigev)) 2845 if (ev_is_active (&pipe_w))
832 { 2846 {
833 /* default loop */ 2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
834 2848
835 ev_ref (EV_A); 2849 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev); 2850 ev_io_stop (EV_A_ &pipe_w);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839 2851
840 while (pipe (sigpipe)) 2852 if (evpipe [0] >= 0)
841 syserr ("(libev) error creating pipe"); 2853 EV_WIN32_CLOSE_FD (evpipe [0]);
842 2854
843 siginit (EV_A); 2855 evpipe_init (EV_A);
2856 /* iterate over everything, in case we missed something before */
2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
844 } 2858 }
2859#endif
845 2860
846 postfork = 0; 2861 postfork = 0;
847} 2862}
848 2863
849#if EV_MULTIPLICITY 2864#if EV_MULTIPLICITY
2865
850struct ev_loop * 2866struct ev_loop * ecb_cold
851ev_loop_new (int methods) 2867ev_loop_new (unsigned int flags) EV_THROW
852{ 2868{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854 2870
855 memset (loop, 0, sizeof (struct ev_loop)); 2871 memset (EV_A, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods); 2872 loop_init (EV_A_ flags);
858 2873
859 if (ev_method (EV_A)) 2874 if (ev_backend (EV_A))
860 return loop; 2875 return EV_A;
861 2876
2877 ev_free (EV_A);
862 return 0; 2878 return 0;
863} 2879}
864 2880
865void 2881#endif /* multiplicity */
866ev_loop_destroy (EV_P)
867{
868 loop_destroy (EV_A);
869 ev_free (loop);
870}
871 2882
872void 2883#if EV_VERIFY
873ev_loop_fork (EV_P) 2884static void noinline ecb_cold
2885verify_watcher (EV_P_ W w)
874{ 2886{
875 postfork = 1; 2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
876}
877 2888
2889 if (w->pending)
2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2891}
2892
2893static void noinline ecb_cold
2894verify_heap (EV_P_ ANHE *heap, int N)
2895{
2896 int i;
2897
2898 for (i = HEAP0; i < N + HEAP0; ++i)
2899 {
2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2903
2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2905 }
2906}
2907
2908static void noinline ecb_cold
2909array_verify (EV_P_ W *ws, int cnt)
2910{
2911 while (cnt--)
2912 {
2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2914 verify_watcher (EV_A_ ws [cnt]);
2915 }
2916}
2917#endif
2918
2919#if EV_FEATURE_API
2920void ecb_cold
2921ev_verify (EV_P) EV_THROW
2922{
2923#if EV_VERIFY
2924 int i;
2925 WL w, w2;
2926
2927 assert (activecnt >= -1);
2928
2929 assert (fdchangemax >= fdchangecnt);
2930 for (i = 0; i < fdchangecnt; ++i)
2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2932
2933 assert (anfdmax >= 0);
2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
2938 for (w = w2 = anfds [i].head; w; w = w->next)
2939 {
2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2950 }
2951 }
2952
2953 assert (timermax >= timercnt);
2954 verify_heap (EV_A_ timers, timercnt);
2955
2956#if EV_PERIODIC_ENABLE
2957 assert (periodicmax >= periodiccnt);
2958 verify_heap (EV_A_ periodics, periodiccnt);
2959#endif
2960
2961 for (i = NUMPRI; i--; )
2962 {
2963 assert (pendingmax [i] >= pendingcnt [i]);
2964#if EV_IDLE_ENABLE
2965 assert (idleall >= 0);
2966 assert (idlemax [i] >= idlecnt [i]);
2967 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2968#endif
2969 }
2970
2971#if EV_FORK_ENABLE
2972 assert (forkmax >= forkcnt);
2973 array_verify (EV_A_ (W *)forks, forkcnt);
2974#endif
2975
2976#if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979#endif
2980
2981#if EV_ASYNC_ENABLE
2982 assert (asyncmax >= asynccnt);
2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
2984#endif
2985
2986#if EV_PREPARE_ENABLE
2987 assert (preparemax >= preparecnt);
2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989#endif
2990
2991#if EV_CHECK_ENABLE
2992 assert (checkmax >= checkcnt);
2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994#endif
2995
2996# if 0
2997#if EV_CHILD_ENABLE
2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000#endif
3001# endif
3002#endif
3003}
878#endif 3004#endif
879 3005
880#if EV_MULTIPLICITY 3006#if EV_MULTIPLICITY
881struct ev_loop * 3007struct ev_loop * ecb_cold
882#else 3008#else
883int 3009int
884#endif 3010#endif
885ev_default_loop (int methods) 3011ev_default_loop (unsigned int flags) EV_THROW
886{ 3012{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 3013 if (!ev_default_loop_ptr)
892 { 3014 {
893#if EV_MULTIPLICITY 3015#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 3017#else
896 default_loop = 1; 3018 ev_default_loop_ptr = 1;
897#endif 3019#endif
898 3020
899 loop_init (EV_A_ methods); 3021 loop_init (EV_A_ flags);
900 3022
901 if (ev_method (EV_A)) 3023 if (ev_backend (EV_A))
902 { 3024 {
903 siginit (EV_A); 3025#if EV_CHILD_ENABLE
904
905#ifndef WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 3026 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 3027 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 3028 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 3030#endif
911 } 3031 }
912 else 3032 else
913 default_loop = 0; 3033 ev_default_loop_ptr = 0;
914 } 3034 }
915 3035
916 return default_loop; 3036 return ev_default_loop_ptr;
917} 3037}
918 3038
919void 3039void
920ev_default_destroy (void) 3040ev_loop_fork (EV_P) EV_THROW
921{ 3041{
922#if EV_MULTIPLICITY 3042 postfork = 1;
923 struct ev_loop *loop = default_loop;
924#endif
925
926#ifndef WIN32
927 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev);
929#endif
930
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A);
938} 3043}
3044
3045/*****************************************************************************/
939 3046
940void 3047void
941ev_default_fork (void) 3048ev_invoke (EV_P_ void *w, int revents)
942{ 3049{
943#if EV_MULTIPLICITY 3050 EV_CB_INVOKE ((W)w, revents);
944 struct ev_loop *loop = default_loop;
945#endif
946
947 if (method)
948 postfork = 1;
949} 3051}
950 3052
951/*****************************************************************************/ 3053unsigned int
952 3054ev_pending_count (EV_P) EV_THROW
953static int
954any_pending (EV_P)
955{ 3055{
956 int pri; 3056 int pri;
3057 unsigned int count = 0;
957 3058
958 for (pri = NUMPRI; pri--; ) 3059 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 3060 count += pendingcnt [pri];
960 return 1;
961 3061
962 return 0; 3062 return count;
963} 3063}
964 3064
965static void 3065void noinline
966call_pending (EV_P) 3066ev_invoke_pending (EV_P)
967{ 3067{
968 int pri; 3068 pendingpri = NUMPRI;
969 3069
970 for (pri = NUMPRI; pri--; ) 3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
971 while (pendingcnt [pri]) 3074 while (pendingcnt [pendingpri])
972 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974
975 if (p->w)
976 { 3075 {
3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3077
977 p->w->pending = 0; 3078 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 3079 EV_CB_INVOKE (p->w, p->events);
3080 EV_FREQUENT_CHECK;
3081 }
3082 }
3083}
3084
3085#if EV_IDLE_ENABLE
3086/* make idle watchers pending. this handles the "call-idle */
3087/* only when higher priorities are idle" logic */
3088inline_size void
3089idle_reify (EV_P)
3090{
3091 if (expect_false (idleall))
3092 {
3093 int pri;
3094
3095 for (pri = NUMPRI; pri--; )
3096 {
3097 if (pendingcnt [pri])
3098 break;
3099
3100 if (idlecnt [pri])
3101 {
3102 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3103 break;
979 } 3104 }
980 } 3105 }
3106 }
981} 3107}
3108#endif
982 3109
983static void 3110/* make timers pending */
3111inline_size void
984timers_reify (EV_P) 3112timers_reify (EV_P)
985{ 3113{
3114 EV_FREQUENT_CHECK;
3115
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 3117 {
988 struct ev_timer *w = timers [0]; 3118 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
3127 ev_at (w) += w->repeat;
3128 if (ev_at (w) < mn_now)
3129 ev_at (w) = mn_now;
3130
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 3132
997 ((WT)w)->at += w->repeat; 3133 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
1002 } 3141 }
1003 else 3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 3143
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 3144 feed_reverse_done (EV_A_ EV_TIMER);
3145 }
3146}
3147
3148#if EV_PERIODIC_ENABLE
3149
3150static void noinline
3151periodic_recalc (EV_P_ ev_periodic *w)
3152{
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
1007 } 3158 {
1008} 3159 ev_tstamp nat = at + w->interval;
1009 3160
1010#if EV_PERIODICS 3161 /* when resolution fails us, we use ev_rt_now */
1011static void 3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172}
3173
3174/* make periodics pending */
3175inline_size void
1012periodics_reify (EV_P) 3176periodics_reify (EV_P)
1013{ 3177{
3178 EV_FREQUENT_CHECK;
3179
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 3181 {
1016 struct ev_periodic *w = periodics [0]; 3182 do
3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1017 3185
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 3187
1020 /* first reschedule or stop timer */ 3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3192
3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3194
3195 ANHE_at_cache (periodics [HEAP0]);
3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
3209 }
3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3211
3212 feed_reverse_done (EV_A_ EV_PERIODIC);
3213 }
3214}
3215
3216/* simply recalculate all periodics */
3217/* TODO: maybe ensure that at least one event happens when jumping forward? */
3218static void noinline ecb_cold
3219periodics_reschedule (EV_P)
3220{
3221 int i;
3222
3223 /* adjust periodics after time jump */
3224 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3225 {
3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3227
1021 if (w->reschedule_cb) 3228 if (w->reschedule_cb)
3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3230 else if (w->interval)
3231 periodic_recalc (EV_A_ w);
3232
3233 ANHE_at_cache (periodics [i]);
3234 }
3235
3236 reheap (periodics, periodiccnt);
3237}
3238#endif
3239
3240/* adjust all timers by a given offset */
3241static void noinline ecb_cold
3242timers_reschedule (EV_P_ ev_tstamp adjust)
3243{
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252}
3253
3254/* fetch new monotonic and realtime times from the kernel */
3255/* also detect if there was a timejump, and act accordingly */
3256inline_speed void
3257time_update (EV_P_ ev_tstamp max_block)
3258{
3259#if EV_USE_MONOTONIC
3260 if (expect_true (have_monotonic))
3261 {
3262 int i;
3263 ev_tstamp odiff = rtmn_diff;
3264
3265 mn_now = get_clock ();
3266
3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3268 /* interpolate in the meantime */
3269 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 3270 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 3271 ev_rt_now = rtmn_diff + mn_now;
1024 3272 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 3273 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 3274
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 3275 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 3276 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 3277
1081static void 3278 /* loop a few times, before making important decisions.
1082time_update (EV_P) 3279 * on the choice of "4": one iteration isn't enough,
1083{ 3280 * in case we get preempted during the calls to
1084 int i; 3281 * ev_time and get_clock. a second call is almost guaranteed
1085 3282 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 3283 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 3284 * in the unlikely event of having been preempted here.
1088 { 3285 */
1089 if (time_update_monotonic (EV_A)) 3286 for (i = 4; --i; )
1090 { 3287 {
1091 ev_tstamp odiff = rtmn_diff; 3288 ev_tstamp diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 3289 rtmn_diff = ev_rt_now - mn_now;
1096 3290
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3291 diff = odiff - rtmn_diff;
3292
3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 3294 return; /* all is well */
1099 3295
1100 ev_rt_now = ev_time (); 3296 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 3297 mn_now = get_clock ();
1102 now_floor = mn_now; 3298 now_floor = mn_now;
1103 } 3299 }
1104 3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 3303# if EV_PERIODIC_ENABLE
3304 periodics_reschedule (EV_A);
3305# endif
3306 }
3307 else
3308#endif
3309 {
3310 ev_rt_now = ev_time ();
3311
3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3316#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 3317 periodics_reschedule (EV_A);
1107# endif 3318#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 3319 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 3320
1128 mn_now = ev_rt_now; 3321 mn_now = ev_rt_now;
1129 } 3322 }
1130} 3323}
1131 3324
1132void 3325int
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 3326ev_run (EV_P_ int flags)
1148{ 3327{
1149 double block; 3328#if EV_FEATURE_API
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3329 ++loop_depth;
3330#endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
3334 loop_done = EVBREAK_CANCEL;
3335
3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 3337
1152 do 3338 do
1153 { 3339 {
3340#if EV_VERIFY >= 2
3341 ev_verify (EV_A);
3342#endif
3343
3344#ifndef _WIN32
3345 if (expect_false (curpid)) /* penalise the forking check even more */
3346 if (expect_false (getpid () != curpid))
3347 {
3348 curpid = getpid ();
3349 postfork = 1;
3350 }
3351#endif
3352
3353#if EV_FORK_ENABLE
3354 /* we might have forked, so queue fork handlers */
3355 if (expect_false (postfork))
3356 if (forkcnt)
3357 {
3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3359 EV_INVOKE_PENDING;
3360 }
3361#endif
3362
3363#if EV_PREPARE_ENABLE
1154 /* queue check watchers (and execute them) */ 3364 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 3365 if (expect_false (preparecnt))
1156 { 3366 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 3368 EV_INVOKE_PENDING;
1159 } 3369 }
3370#endif
3371
3372 if (expect_false (loop_done))
3373 break;
1160 3374
1161 /* we might have forked, so reify kernel state if necessary */ 3375 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 3376 if (expect_false (postfork))
1163 loop_fork (EV_A); 3377 loop_fork (EV_A);
1164 3378
1165 /* update fd-related kernel structures */ 3379 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 3380 fd_reify (EV_A);
1167 3381
1168 /* calculate blocking time */ 3382 /* calculate blocking time */
3383 {
3384 ev_tstamp waittime = 0.;
3385 ev_tstamp sleeptime = 0.;
1169 3386
1170 /* we only need this for !monotonic clock or timers, but as we basically 3387 /* remember old timestamp for io_blocktime calculation */
1171 always have timers, we just calculate it always */ 3388 ev_tstamp prev_mn_now = mn_now;
1172#if EV_USE_MONOTONIC 3389
1173 if (expect_true (have_monotonic)) 3390 /* update time to cancel out callback processing overhead */
1174 time_update_monotonic (EV_A); 3391 time_update (EV_A_ 1e100);
1175 else 3392
1176#endif 3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1177 { 3399 {
1178 ev_rt_now = ev_time ();
1179 mn_now = ev_rt_now;
1180 }
1181
1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1183 block = 0.;
1184 else
1185 {
1186 block = MAX_BLOCKTIME; 3400 waittime = MAX_BLOCKTIME;
1187 3401
1188 if (timercnt) 3402 if (timercnt)
1189 { 3403 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1191 if (block > to) block = to; 3405 if (waittime > to) waittime = to;
1192 } 3406 }
1193 3407
1194#if EV_PERIODICS 3408#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 3409 if (periodiccnt)
1196 { 3410 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1198 if (block > to) block = to; 3412 if (waittime > to) waittime = to;
1199 } 3413 }
1200#endif 3414#endif
1201 3415
1202 if (block < 0.) block = 0.; 3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
3417 if (expect_false (waittime < timeout_blocktime))
3418 waittime = timeout_blocktime;
3419
3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
3424
3425 /* extra check because io_blocktime is commonly 0 */
3426 if (expect_false (io_blocktime))
3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
3435 ev_sleep (sleeptime);
3436 waittime -= sleeptime;
3437 }
3438 }
1203 } 3439 }
1204 3440
1205 method_poll (EV_A_ block); 3441#if EV_FEATURE_API
3442 ++loop_count;
3443#endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1206 3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
3457
1207 /* update ev_rt_now, do magic */ 3458 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 3459 time_update (EV_A_ waittime + sleeptime);
3460 }
1209 3461
1210 /* queue pending timers and reschedule them */ 3462 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 3463 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 3464#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 3465 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 3466#endif
1215 3467
3468#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 3469 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 3470 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3471#endif
1219 3472
3473#if EV_CHECK_ENABLE
1220 /* queue check watchers, to be executed first */ 3474 /* queue check watchers, to be executed first */
1221 if (checkcnt) 3475 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477#endif
1223 3478
1224 call_pending (EV_A); 3479 EV_INVOKE_PENDING;
1225 } 3480 }
1226 while (activecnt && !loop_done); 3481 while (expect_true (
3482 activecnt
3483 && !loop_done
3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3485 ));
1227 3486
1228 if (loop_done != 2) 3487 if (loop_done == EVBREAK_ONE)
1229 loop_done = 0; 3488 loop_done = EVBREAK_CANCEL;
3489
3490#if EV_FEATURE_API
3491 --loop_depth;
3492#endif
3493
3494 return activecnt;
1230} 3495}
1231 3496
1232void 3497void
1233ev_unloop (EV_P_ int how) 3498ev_break (EV_P_ int how) EV_THROW
1234{ 3499{
1235 loop_done = how; 3500 loop_done = how;
1236} 3501}
1237 3502
3503void
3504ev_ref (EV_P) EV_THROW
3505{
3506 ++activecnt;
3507}
3508
3509void
3510ev_unref (EV_P) EV_THROW
3511{
3512 --activecnt;
3513}
3514
3515void
3516ev_now_update (EV_P) EV_THROW
3517{
3518 time_update (EV_A_ 1e100);
3519}
3520
3521void
3522ev_suspend (EV_P) EV_THROW
3523{
3524 ev_now_update (EV_A);
3525}
3526
3527void
3528ev_resume (EV_P) EV_THROW
3529{
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534#if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537#endif
3538}
3539
1238/*****************************************************************************/ 3540/*****************************************************************************/
3541/* singly-linked list management, used when the expected list length is short */
1239 3542
1240inline void 3543inline_size void
1241wlist_add (WL *head, WL elem) 3544wlist_add (WL *head, WL elem)
1242{ 3545{
1243 elem->next = *head; 3546 elem->next = *head;
1244 *head = elem; 3547 *head = elem;
1245} 3548}
1246 3549
1247inline void 3550inline_size void
1248wlist_del (WL *head, WL elem) 3551wlist_del (WL *head, WL elem)
1249{ 3552{
1250 while (*head) 3553 while (*head)
1251 { 3554 {
1252 if (*head == elem) 3555 if (expect_true (*head == elem))
1253 { 3556 {
1254 *head = elem->next; 3557 *head = elem->next;
1255 return; 3558 break;
1256 } 3559 }
1257 3560
1258 head = &(*head)->next; 3561 head = &(*head)->next;
1259 } 3562 }
1260} 3563}
1261 3564
3565/* internal, faster, version of ev_clear_pending */
1262inline void 3566inline_speed void
1263ev_clear_pending (EV_P_ W w) 3567clear_pending (EV_P_ W w)
1264{ 3568{
1265 if (w->pending) 3569 if (w->pending)
1266 { 3570 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 3572 w->pending = 0;
1269 } 3573 }
1270} 3574}
1271 3575
3576int
3577ev_clear_pending (EV_P_ void *w) EV_THROW
3578{
3579 W w_ = (W)w;
3580 int pending = w_->pending;
3581
3582 if (expect_true (pending))
3583 {
3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
3586 w_->pending = 0;
3587 return p->events;
3588 }
3589 else
3590 return 0;
3591}
3592
1272inline void 3593inline_size void
3594pri_adjust (EV_P_ W w)
3595{
3596 int pri = ev_priority (w);
3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3599 ev_set_priority (w, pri);
3600}
3601
3602inline_speed void
1273ev_start (EV_P_ W w, int active) 3603ev_start (EV_P_ W w, int active)
1274{ 3604{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3605 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 3606 w->active = active;
1279 ev_ref (EV_A); 3607 ev_ref (EV_A);
1280} 3608}
1281 3609
1282inline void 3610inline_size void
1283ev_stop (EV_P_ W w) 3611ev_stop (EV_P_ W w)
1284{ 3612{
1285 ev_unref (EV_A); 3613 ev_unref (EV_A);
1286 w->active = 0; 3614 w->active = 0;
1287} 3615}
1288 3616
1289/*****************************************************************************/ 3617/*****************************************************************************/
1290 3618
1291void 3619void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 3620ev_io_start (EV_P_ ev_io *w) EV_THROW
1293{ 3621{
1294 int fd = w->fd; 3622 int fd = w->fd;
1295 3623
1296 if (ev_is_active (w)) 3624 if (expect_false (ev_is_active (w)))
1297 return; 3625 return;
1298 3626
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3629
3630 EV_FREQUENT_CHECK;
1300 3631
1301 ev_start (EV_A_ (W)w, 1); 3632 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3634 wlist_add (&anfds[fd].head, (WL)w);
1304 3635
1305 fd_change (EV_A_ fd); 3636 /* common bug, apparently */
1306} 3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1307 3638
1308void 3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3640 w->events &= ~EV__IOFDSET;
3641
3642 EV_FREQUENT_CHECK;
3643}
3644
3645void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 3646ev_io_stop (EV_P_ ev_io *w) EV_THROW
1310{ 3647{
1311 ev_clear_pending (EV_A_ (W)w); 3648 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 3649 if (expect_false (!ev_is_active (w)))
1313 return; 3650 return;
1314 3651
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 3653
3654 EV_FREQUENT_CHECK;
3655
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3656 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 3657 ev_stop (EV_A_ (W)w);
1319 3658
1320 fd_change (EV_A_ w->fd); 3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1321}
1322 3660
1323void 3661 EV_FREQUENT_CHECK;
3662}
3663
3664void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 3665ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1325{ 3666{
1326 if (ev_is_active (w)) 3667 if (expect_false (ev_is_active (w)))
1327 return; 3668 return;
1328 3669
1329 ((WT)w)->at += mn_now; 3670 ev_at (w) += mn_now;
1330 3671
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 3678 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 3679 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 3680 ANHE_at_cache (timers [ev_active (w)]);
3681 upheap (timers, ev_active (w));
1337 3682
3683 EV_FREQUENT_CHECK;
3684
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 3686}
1340 3687
1341void 3688void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 3689ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1343{ 3690{
1344 ev_clear_pending (EV_A_ (W)w); 3691 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 3692 if (expect_false (!ev_is_active (w)))
1346 return; 3693 return;
1347 3694
3695 EV_FREQUENT_CHECK;
3696
3697 {
3698 int active = ev_active (w);
3699
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 3701
1350 if (((W)w)->active < timercnt--) 3702 --timercnt;
3703
3704 if (expect_true (active < timercnt + HEAP0))
1351 { 3705 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 3706 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3707 adjustheap (timers, timercnt, active);
1354 } 3708 }
3709 }
1355 3710
1356 ((WT)w)->at -= mn_now; 3711 ev_at (w) -= mn_now;
1357 3712
1358 ev_stop (EV_A_ (W)w); 3713 ev_stop (EV_A_ (W)w);
1359}
1360 3714
1361void 3715 EV_FREQUENT_CHECK;
3716}
3717
3718void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 3719ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1363{ 3720{
3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
3724
1364 if (ev_is_active (w)) 3725 if (ev_is_active (w))
1365 { 3726 {
1366 if (w->repeat) 3727 if (w->repeat)
1367 { 3728 {
1368 ((WT)w)->at = mn_now + w->repeat; 3729 ev_at (w) = mn_now + w->repeat;
3730 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3731 adjustheap (timers, timercnt, ev_active (w));
1370 } 3732 }
1371 else 3733 else
1372 ev_timer_stop (EV_A_ w); 3734 ev_timer_stop (EV_A_ w);
1373 } 3735 }
1374 else if (w->repeat) 3736 else if (w->repeat)
3737 {
3738 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 3739 ev_timer_start (EV_A_ w);
1376} 3740 }
1377 3741
3742 EV_FREQUENT_CHECK;
3743}
3744
3745ev_tstamp
3746ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747{
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749}
3750
1378#if EV_PERIODICS 3751#if EV_PERIODIC_ENABLE
1379void 3752void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 3753ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1381{ 3754{
1382 if (ev_is_active (w)) 3755 if (expect_false (ev_is_active (w)))
1383 return; 3756 return;
1384 3757
1385 if (w->reschedule_cb) 3758 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 3760 else if (w->interval)
1388 { 3761 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 3763 periodic_recalc (EV_A_ w);
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 } 3764 }
3765 else
3766 ev_at (w) = w->offset;
1393 3767
3768 EV_FREQUENT_CHECK;
3769
3770 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 3771 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3772 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 3773 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 3774 ANHE_at_cache (periodics [ev_active (w)]);
3775 upheap (periodics, ev_active (w));
1398 3776
3777 EV_FREQUENT_CHECK;
3778
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 3780}
1401 3781
1402void 3782void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 3783ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1404{ 3784{
1405 ev_clear_pending (EV_A_ (W)w); 3785 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 3786 if (expect_false (!ev_is_active (w)))
1407 return; 3787 return;
1408 3788
3789 EV_FREQUENT_CHECK;
3790
3791 {
3792 int active = ev_active (w);
3793
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 3795
1411 if (((W)w)->active < periodiccnt--) 3796 --periodiccnt;
3797
3798 if (expect_true (active < periodiccnt + HEAP0))
1412 { 3799 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3800 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3801 adjustheap (periodics, periodiccnt, active);
1415 } 3802 }
3803 }
1416 3804
1417 ev_stop (EV_A_ (W)w); 3805 ev_stop (EV_A_ (W)w);
1418}
1419 3806
1420void 3807 EV_FREQUENT_CHECK;
3808}
3809
3810void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 3811ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1422{ 3812{
1423 /* TODO: use adjustheap and recalculation */ 3813 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 3814 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 3815 ev_periodic_start (EV_A_ w);
1426} 3816}
1427#endif 3817#endif
1428 3818
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 3819#ifndef SA_RESTART
1496# define SA_RESTART 0 3820# define SA_RESTART 0
1497#endif 3821#endif
1498 3822
3823#if EV_SIGNAL_ENABLE
3824
3825void noinline
3826ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3827{
3828 if (expect_false (ev_is_active (w)))
3829 return;
3830
3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3832
3833#if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3836
3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839#endif
3840
3841 EV_FREQUENT_CHECK;
3842
3843#if EV_USE_SIGNALFD
3844 if (sigfd == -2)
3845 {
3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3847 if (sigfd < 0 && errno == EINVAL)
3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3849
3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
3853
3854 sigemptyset (&sigfd_set);
3855
3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871#endif
3872
3873 ev_start (EV_A_ (W)w, 1);
3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
3875
3876 if (!((WL)w)->next)
3877# if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879# endif
3880 {
3881# ifdef _WIN32
3882 evpipe_init (EV_A);
3883
3884 signal (w->signum, ev_sighandler);
3885# else
3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
3890 sa.sa_handler = ev_sighandler;
3891 sigfillset (&sa.sa_mask);
3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
3901#endif
3902 }
3903
3904 EV_FREQUENT_CHECK;
3905}
3906
3907void noinline
3908ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3909{
3910 clear_pending (EV_A_ (W)w);
3911 if (expect_false (!ev_is_active (w)))
3912 return;
3913
3914 EV_FREQUENT_CHECK;
3915
3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
3917 ev_stop (EV_A_ (W)w);
3918
3919 if (!signals [w->signum - 1].head)
3920 {
3921#if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923#endif
3924#if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937#endif
3938 signal (w->signum, SIG_DFL);
3939 }
3940
3941 EV_FREQUENT_CHECK;
3942}
3943
3944#endif
3945
3946#if EV_CHILD_ENABLE
3947
1499void 3948void
1500ev_signal_start (EV_P_ struct ev_signal *w) 3949ev_child_start (EV_P_ ev_child *w) EV_THROW
1501{ 3950{
1502#if EV_MULTIPLICITY 3951#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1504#endif 3953#endif
1505 if (ev_is_active (w)) 3954 if (expect_false (ev_is_active (w)))
1506 return; 3955 return;
1507 3956
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3957 EV_FREQUENT_CHECK;
1509 3958
1510 ev_start (EV_A_ (W)w, 1); 3959 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 3961
1514 if (!((WL)w)->next) 3962 EV_FREQUENT_CHECK;
3963}
3964
3965void
3966ev_child_stop (EV_P_ ev_child *w) EV_THROW
3967{
3968 clear_pending (EV_A_ (W)w);
3969 if (expect_false (!ev_is_active (w)))
3970 return;
3971
3972 EV_FREQUENT_CHECK;
3973
3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3975 ev_stop (EV_A_ (W)w);
3976
3977 EV_FREQUENT_CHECK;
3978}
3979
3980#endif
3981
3982#if EV_STAT_ENABLE
3983
3984# ifdef _WIN32
3985# undef lstat
3986# define lstat(a,b) _stati64 (a,b)
3987# endif
3988
3989#define DEF_STAT_INTERVAL 5.0074891
3990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3991#define MIN_STAT_INTERVAL 0.1074891
3992
3993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3994
3995#if EV_USE_INOTIFY
3996
3997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3999
4000static void noinline
4001infy_add (EV_P_ ev_stat *w)
4002{
4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
4007
4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 4034 }
1516#if WIN32 4035 else
1517 signal (w->signum, sighandler); 4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4039
4040 /* if path is not there, monitor some parent directory for speedup hints */
4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4042 /* but an efficiency issue only */
4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4044 {
4045 char path [4096];
4046 strcpy (path, w->path);
4047
4048 do
4049 {
4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4052
4053 char *pend = strrchr (path, '/');
4054
4055 if (!pend || pend == path)
4056 break;
4057
4058 *pend = 0;
4059 w->wd = inotify_add_watch (fs_fd, path, mask);
4060 }
4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4062 }
4063 }
4064
4065 if (w->wd >= 0)
4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4072}
4073
4074static void noinline
4075infy_del (EV_P_ ev_stat *w)
4076{
4077 int slot;
4078 int wd = w->wd;
4079
4080 if (wd < 0)
4081 return;
4082
4083 w->wd = -2;
4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4085 wlist_del (&fs_hash [slot].head, (WL)w);
4086
4087 /* remove this watcher, if others are watching it, they will rearm */
4088 inotify_rm_watch (fs_fd, wd);
4089}
4090
4091static void noinline
4092infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4093{
4094 if (slot < 0)
4095 /* overflow, need to check for all hash slots */
4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4097 infy_wd (EV_A_ slot, wd, ev);
4098 else
4099 {
4100 WL w_;
4101
4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4103 {
4104 ev_stat *w = (ev_stat *)w_;
4105 w_ = w_->next; /* lets us remove this watcher and all before it */
4106
4107 if (w->wd == wd || wd == -1)
4108 {
4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4112 w->wd = -1;
4113 infy_add (EV_A_ w); /* re-add, no matter what */
4114 }
4115
4116 stat_timer_cb (EV_A_ &w->timer, 0);
4117 }
4118 }
4119 }
4120}
4121
4122static void
4123infy_cb (EV_P_ ev_io *w, int revents)
4124{
4125 char buf [EV_INOTIFY_BUFSIZE];
4126 int ofs;
4127 int len = read (fs_fd, buf, sizeof (buf));
4128
4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
4135}
4136
4137inline_size void ecb_cold
4138ev_check_2625 (EV_P)
4139{
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147}
4148
4149inline_size int
4150infy_newfd (void)
4151{
4152#if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156#endif
4157 return inotify_init ();
4158}
4159
4160inline_size void
4161infy_init (EV_P)
4162{
4163 if (fs_fd != -2)
4164 return;
4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
4170 fs_fd = infy_newfd ();
4171
4172 if (fs_fd >= 0)
4173 {
4174 fd_intern (fs_fd);
4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4176 ev_set_priority (&fs_w, EV_MAXPRI);
4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
4179 }
4180}
4181
4182inline_size void
4183infy_fork (EV_P)
4184{
4185 int slot;
4186
4187 if (fs_fd < 0)
4188 return;
4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
4192 close (fs_fd);
4193 fs_fd = infy_newfd ();
4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4204 {
4205 WL w_ = fs_hash [slot].head;
4206 fs_hash [slot].head = 0;
4207
4208 while (w_)
4209 {
4210 ev_stat *w = (ev_stat *)w_;
4211 w_ = w_->next; /* lets us add this watcher */
4212
4213 w->wd = -1;
4214
4215 if (fs_fd >= 0)
4216 infy_add (EV_A_ w); /* re-add, no matter what */
4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
4224 }
4225 }
4226}
4227
4228#endif
4229
4230#ifdef _WIN32
4231# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 4232#else
1519 struct sigaction sa; 4233# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 4234#endif
1525 }
1526}
1527 4235
1528void 4236void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 4237ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1530{ 4238{
1531 ev_clear_pending (EV_A_ (W)w); 4239 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 4240 w->attr.st_nlink = 0;
4241 else if (!w->attr.st_nlink)
4242 w->attr.st_nlink = 1;
4243}
4244
4245static void noinline
4246stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4247{
4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4249
4250 ev_statdata prev = w->attr;
4251 ev_stat_stat (EV_A_ w);
4252
4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4254 if (
4255 prev.st_dev != w->attr.st_dev
4256 || prev.st_ino != w->attr.st_ino
4257 || prev.st_mode != w->attr.st_mode
4258 || prev.st_nlink != w->attr.st_nlink
4259 || prev.st_uid != w->attr.st_uid
4260 || prev.st_gid != w->attr.st_gid
4261 || prev.st_rdev != w->attr.st_rdev
4262 || prev.st_size != w->attr.st_size
4263 || prev.st_atime != w->attr.st_atime
4264 || prev.st_mtime != w->attr.st_mtime
4265 || prev.st_ctime != w->attr.st_ctime
4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
4275 infy_del (EV_A_ w);
4276 infy_add (EV_A_ w);
4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
4279 #endif
4280
4281 ev_feed_event (EV_A_ w, EV_STAT);
4282 }
4283}
4284
4285void
4286ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4287{
4288 if (expect_false (ev_is_active (w)))
1533 return; 4289 return;
1534 4290
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4291 ev_stat_stat (EV_A_ w);
4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4294 w->interval = MIN_STAT_INTERVAL;
4295
4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4297 ev_set_priority (&w->timer, ev_priority (w));
4298
4299#if EV_USE_INOTIFY
4300 infy_init (EV_A);
4301
4302 if (fs_fd >= 0)
4303 infy_add (EV_A_ w);
4304 else
4305#endif
4306 {
4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
4310
4311 ev_start (EV_A_ (W)w, 1);
4312
4313 EV_FREQUENT_CHECK;
4314}
4315
4316void
4317ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4318{
4319 clear_pending (EV_A_ (W)w);
4320 if (expect_false (!ev_is_active (w)))
4321 return;
4322
4323 EV_FREQUENT_CHECK;
4324
4325#if EV_USE_INOTIFY
4326 infy_del (EV_A_ w);
4327#endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
4334
1536 ev_stop (EV_A_ (W)w); 4335 ev_stop (EV_A_ (W)w);
1537 4336
1538 if (!signals [w->signum - 1].head) 4337 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 4338}
4339#endif
1541 4340
4341#if EV_IDLE_ENABLE
1542void 4342void
1543ev_child_start (EV_P_ struct ev_child *w) 4343ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1544{ 4344{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 4345 if (expect_false (ev_is_active (w)))
1549 return; 4346 return;
1550 4347
4348 pri_adjust (EV_A_ (W)w);
4349
4350 EV_FREQUENT_CHECK;
4351
4352 {
4353 int active = ++idlecnt [ABSPRI (w)];
4354
4355 ++idleall;
4356 ev_start (EV_A_ (W)w, active);
4357
4358 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4359 idles [ABSPRI (w)][active - 1] = w;
4360 }
4361
4362 EV_FREQUENT_CHECK;
4363}
4364
4365void
4366ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4367{
4368 clear_pending (EV_A_ (W)w);
4369 if (expect_false (!ev_is_active (w)))
4370 return;
4371
4372 EV_FREQUENT_CHECK;
4373
4374 {
4375 int active = ev_active (w);
4376
4377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4379
4380 ev_stop (EV_A_ (W)w);
4381 --idleall;
4382 }
4383
4384 EV_FREQUENT_CHECK;
4385}
4386#endif
4387
4388#if EV_PREPARE_ENABLE
4389void
4390ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4391{
4392 if (expect_false (ev_is_active (w)))
4393 return;
4394
4395 EV_FREQUENT_CHECK;
4396
4397 ev_start (EV_A_ (W)w, ++preparecnt);
4398 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4399 prepares [preparecnt - 1] = w;
4400
4401 EV_FREQUENT_CHECK;
4402}
4403
4404void
4405ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4406{
4407 clear_pending (EV_A_ (W)w);
4408 if (expect_false (!ev_is_active (w)))
4409 return;
4410
4411 EV_FREQUENT_CHECK;
4412
4413 {
4414 int active = ev_active (w);
4415
4416 prepares [active - 1] = prepares [--preparecnt];
4417 ev_active (prepares [active - 1]) = active;
4418 }
4419
4420 ev_stop (EV_A_ (W)w);
4421
4422 EV_FREQUENT_CHECK;
4423}
4424#endif
4425
4426#if EV_CHECK_ENABLE
4427void
4428ev_check_start (EV_P_ ev_check *w) EV_THROW
4429{
4430 if (expect_false (ev_is_active (w)))
4431 return;
4432
4433 EV_FREQUENT_CHECK;
4434
4435 ev_start (EV_A_ (W)w, ++checkcnt);
4436 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4437 checks [checkcnt - 1] = w;
4438
4439 EV_FREQUENT_CHECK;
4440}
4441
4442void
4443ev_check_stop (EV_P_ ev_check *w) EV_THROW
4444{
4445 clear_pending (EV_A_ (W)w);
4446 if (expect_false (!ev_is_active (w)))
4447 return;
4448
4449 EV_FREQUENT_CHECK;
4450
4451 {
4452 int active = ev_active (w);
4453
4454 checks [active - 1] = checks [--checkcnt];
4455 ev_active (checks [active - 1]) = active;
4456 }
4457
4458 ev_stop (EV_A_ (W)w);
4459
4460 EV_FREQUENT_CHECK;
4461}
4462#endif
4463
4464#if EV_EMBED_ENABLE
4465void noinline
4466ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4467{
4468 ev_run (w->other, EVRUN_NOWAIT);
4469}
4470
4471static void
4472embed_io_cb (EV_P_ ev_io *io, int revents)
4473{
4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4475
4476 if (ev_cb (w))
4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4478 else
4479 ev_run (w->other, EVRUN_NOWAIT);
4480}
4481
4482static void
4483embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4484{
4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4486
4487 {
4488 EV_P = w->other;
4489
4490 while (fdchangecnt)
4491 {
4492 fd_reify (EV_A);
4493 ev_run (EV_A_ EVRUN_NOWAIT);
4494 }
4495 }
4496}
4497
4498static void
4499embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500{
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
4513}
4514
4515#if 0
4516static void
4517embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4518{
4519 ev_idle_stop (EV_A_ idle);
4520}
4521#endif
4522
4523void
4524ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4525{
4526 if (expect_false (ev_is_active (w)))
4527 return;
4528
4529 {
4530 EV_P = w->other;
4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4533 }
4534
4535 EV_FREQUENT_CHECK;
4536
4537 ev_set_priority (&w->io, ev_priority (w));
4538 ev_io_start (EV_A_ &w->io);
4539
4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
4541 ev_set_priority (&w->prepare, EV_MINPRI);
4542 ev_prepare_start (EV_A_ &w->prepare);
4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4548
1551 ev_start (EV_A_ (W)w, 1); 4549 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4550
4551 EV_FREQUENT_CHECK;
1553} 4552}
1554 4553
1555void 4554void
1556ev_child_stop (EV_P_ struct ev_child *w) 4555ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1557{ 4556{
1558 ev_clear_pending (EV_A_ (W)w); 4557 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 4558 if (expect_false (!ev_is_active (w)))
1560 return; 4559 return;
1561 4560
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4561 EV_FREQUENT_CHECK;
4562
4563 ev_io_stop (EV_A_ &w->io);
4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
4566
1563 ev_stop (EV_A_ (W)w); 4567 ev_stop (EV_A_ (W)w);
4568
4569 EV_FREQUENT_CHECK;
1564} 4570}
4571#endif
4572
4573#if EV_FORK_ENABLE
4574void
4575ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4576{
4577 if (expect_false (ev_is_active (w)))
4578 return;
4579
4580 EV_FREQUENT_CHECK;
4581
4582 ev_start (EV_A_ (W)w, ++forkcnt);
4583 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4584 forks [forkcnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
4587}
4588
4589void
4590ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4591{
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597
4598 {
4599 int active = ev_active (w);
4600
4601 forks [active - 1] = forks [--forkcnt];
4602 ev_active (forks [active - 1]) = active;
4603 }
4604
4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608}
4609#endif
4610
4611#if EV_CLEANUP_ENABLE
4612void
4613ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614{
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627}
4628
4629void
4630ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631{
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
4649}
4650#endif
4651
4652#if EV_ASYNC_ENABLE
4653void
4654ev_async_start (EV_P_ ev_async *w) EV_THROW
4655{
4656 if (expect_false (ev_is_active (w)))
4657 return;
4658
4659 w->sent = 0;
4660
4661 evpipe_init (EV_A);
4662
4663 EV_FREQUENT_CHECK;
4664
4665 ev_start (EV_A_ (W)w, ++asynccnt);
4666 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4667 asyncs [asynccnt - 1] = w;
4668
4669 EV_FREQUENT_CHECK;
4670}
4671
4672void
4673ev_async_stop (EV_P_ ev_async *w) EV_THROW
4674{
4675 clear_pending (EV_A_ (W)w);
4676 if (expect_false (!ev_is_active (w)))
4677 return;
4678
4679 EV_FREQUENT_CHECK;
4680
4681 {
4682 int active = ev_active (w);
4683
4684 asyncs [active - 1] = asyncs [--asynccnt];
4685 ev_active (asyncs [active - 1]) = active;
4686 }
4687
4688 ev_stop (EV_A_ (W)w);
4689
4690 EV_FREQUENT_CHECK;
4691}
4692
4693void
4694ev_async_send (EV_P_ ev_async *w) EV_THROW
4695{
4696 w->sent = 1;
4697 evpipe_write (EV_A_ &async_pending);
4698}
4699#endif
1565 4700
1566/*****************************************************************************/ 4701/*****************************************************************************/
1567 4702
1568struct ev_once 4703struct ev_once
1569{ 4704{
1570 struct ev_io io; 4705 ev_io io;
1571 struct ev_timer to; 4706 ev_timer to;
1572 void (*cb)(int revents, void *arg); 4707 void (*cb)(int revents, void *arg);
1573 void *arg; 4708 void *arg;
1574}; 4709};
1575 4710
1576static void 4711static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 4712once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 4713{
1579 void (*cb)(int revents, void *arg) = once->cb; 4714 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 4715 void *arg = once->arg;
1581 4716
1582 ev_io_stop (EV_A_ &once->io); 4717 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 4718 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 4719 ev_free (once);
1585 4720
1586 cb (revents, arg); 4721 cb (revents, arg);
1587} 4722}
1588 4723
1589static void 4724static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 4725once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 4726{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 4730}
1594 4731
1595static void 4732static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 4733once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 4734{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 4738}
1600 4739
1601void 4740void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4741ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1603{ 4742{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 4744
1606 if (!once) 4745 if (expect_false (!once))
4746 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1608 else 4748 return;
1609 { 4749 }
4750
1610 once->cb = cb; 4751 once->cb = cb;
1611 once->arg = arg; 4752 once->arg = arg;
1612 4753
1613 ev_init (&once->io, once_cb_io); 4754 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 4755 if (fd >= 0)
4756 {
4757 ev_io_set (&once->io, fd, events);
4758 ev_io_start (EV_A_ &once->io);
4759 }
4760
4761 ev_init (&once->to, once_cb_to);
4762 if (timeout >= 0.)
4763 {
4764 ev_timer_set (&once->to, timeout, 0.);
4765 ev_timer_start (EV_A_ &once->to);
4766 }
4767}
4768
4769/*****************************************************************************/
4770
4771#if EV_WALK_ENABLE
4772void ecb_cold
4773ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774{
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
1615 { 4781 {
1616 ev_io_set (&once->io, fd, events); 4782 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 4783
4784#if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791#endif
4792#if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796#endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
1618 } 4802 }
1619 4803
1620 ev_init (&once->to, once_cb_to); 4804 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806#if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 4809 {
1623 ev_timer_set (&once->to, timeout, 0.); 4810 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 4812 }
1626 } 4813 else
1627} 4814#endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1628 4817
1629#ifdef __cplusplus 4818#if EV_PERIODIC_ENABLE
1630} 4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822#endif
4823
4824#if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829#endif
4830
4831#if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836#endif
4837
4838#if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842#endif
4843
4844#if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847# if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
1631#endif 4849# endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851#endif
1632 4852
4853#if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857#endif
4858
4859#if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868#endif
4869
4870#if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879#endif
4880/* EV_STAT 0x00001000 /* stat data changed */
4881/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882}
4883#endif
4884
4885#if EV_MULTIPLICITY
4886 #include "ev_wrap.h"
4887#endif
4888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines