ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
90# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
91#endif 101#endif
92 102
93#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
95#endif 115#endif
96 116
97#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
99#endif 119#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 139
140#ifdef EV_H
141# include EV_H
142#else
120#include "ev.h" 143# include "ev.h"
144#endif
121 145
122#if __GNUC__ >= 3 146#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 148# define inline inline
125#else 149#else
137typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
139 163
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
142/*****************************************************************************/ 170/*****************************************************************************/
143 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
144typedef struct 220typedef struct
145{ 221{
146 struct ev_watcher_list *head; 222 WL head;
147 unsigned char events; 223 unsigned char events;
148 unsigned char reify; 224 unsigned char reify;
149} ANFD; 225} ANFD;
150 226
151typedef struct 227typedef struct
154 int events; 230 int events;
155} ANPENDING; 231} ANPENDING;
156 232
157#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
158 234
159struct ev_loop 235 struct ev_loop
160{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
162# include "ev_vars.h" 240 #include "ev_vars.h"
163};
164# undef VAR 241 #undef VAR
242 };
165# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
166 247
167#else 248#else
168 249
250 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 252 #include "ev_vars.h"
171# undef VAR 253 #undef VAR
254
255 static int default_loop;
172 256
173#endif 257#endif
174 258
175/*****************************************************************************/ 259/*****************************************************************************/
176 260
177inline ev_tstamp 261ev_tstamp
178ev_time (void) 262ev_time (void)
179{ 263{
180#if EV_USE_REALTIME 264#if EV_USE_REALTIME
181 struct timespec ts; 265 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 285#endif
202 286
203 return ev_time (); 287 return ev_time ();
204} 288}
205 289
290#if EV_MULTIPLICITY
206ev_tstamp 291ev_tstamp
207ev_now (EV_P) 292ev_now (EV_P)
208{ 293{
209 return rt_now; 294 return ev_rt_now;
210} 295}
296#endif
211 297
212#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
213 299
214#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
216 { \ 302 { \
217 int newcnt = cur; \ 303 int newcnt = cur; \
218 do \ 304 do \
219 { \ 305 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 307 } \
222 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
223 \ 309 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 312 cur = newcnt; \
227 } 313 }
314
315#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 }
322
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327
328#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 330
229/*****************************************************************************/ 331/*****************************************************************************/
230 332
231static void 333static void
232anfds_init (ANFD *base, int count) 334anfds_init (ANFD *base, int count)
239 341
240 ++base; 342 ++base;
241 } 343 }
242} 344}
243 345
244static void 346void
245event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
246{ 348{
349 W w_ = (W)w;
350
247 if (w->pending) 351 if (w_->pending)
248 { 352 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 354 return;
251 } 355 }
252 356
253 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 361}
258 362
259static void 363static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 365{
262 int i; 366 int i;
263 367
264 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
266} 370}
267 371
268static void 372inline void
269fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
270{ 374{
271 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 376 struct ev_io *w;
273 377
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 379 {
276 int ev = w->events & events; 380 int ev = w->events & revents;
277 381
278 if (ev) 382 if (ev)
279 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
280 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
281} 391}
282 392
283/*****************************************************************************/ 393/*****************************************************************************/
284 394
285static void 395static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 409 events |= w->events;
300 410
301 anfd->reify = 0; 411 anfd->reify = 0;
302 412
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 413 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 414 anfd->events = events;
307 }
308 } 415 }
309 416
310 fdchangecnt = 0; 417 fdchangecnt = 0;
311} 418}
312 419
313static void 420static void
314fd_change (EV_P_ int fd) 421fd_change (EV_P_ int fd)
315{ 422{
316 if (anfds [fd].reify || fdchangecnt < 0) 423 if (anfds [fd].reify)
317 return; 424 return;
318 425
319 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
320 427
321 ++fdchangecnt; 428 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
324} 431}
325 432
326static void 433static void
327fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
329 struct ev_io *w; 436 struct ev_io *w;
330 437
331 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
332 { 439 {
333 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 442 }
443}
444
445static int
446fd_valid (int fd)
447{
448#ifdef WIN32
449 return !!win32_get_osfhandle (fd);
450#else
451 return fcntl (fd, F_GETFD) != -1;
452#endif
336} 453}
337 454
338/* called on EBADF to verify fds */ 455/* called on EBADF to verify fds */
339static void 456static void
340fd_ebadf (EV_P) 457fd_ebadf (EV_P)
341{ 458{
342 int fd; 459 int fd;
343 460
344 for (fd = 0; fd < anfdmax; ++fd) 461 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 462 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 463 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
348} 465}
349 466
350/* called on ENOMEM in select/poll to kill some fds and retry */ 467/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 468static void
352fd_enomem (EV_P) 469fd_enomem (EV_P)
353{ 470{
354 int fd = anfdmax; 471 int fd;
355 472
356 while (fd--) 473 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 474 if (anfds [fd].events)
358 { 475 {
359 close (fd);
360 fd_kill (EV_A_ fd); 476 fd_kill (EV_A_ fd);
361 return; 477 return;
362 } 478 }
363} 479}
364 480
365/* susually called after fork if method needs to re-arm all fds from scratch */ 481/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 482static void
367fd_rearm_all (EV_P) 483fd_rearm_all (EV_P)
368{ 484{
369 int fd; 485 int fd;
370 486
385 WT w = heap [k]; 501 WT w = heap [k];
386 502
387 while (k && heap [k >> 1]->at > w->at) 503 while (k && heap [k >> 1]->at > w->at)
388 { 504 {
389 heap [k] = heap [k >> 1]; 505 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 506 ((W)heap [k])->active = k + 1;
391 k >>= 1; 507 k >>= 1;
392 } 508 }
393 509
394 heap [k] = w; 510 heap [k] = w;
395 heap [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
396 512
397} 513}
398 514
399static void 515static void
400downheap (WT *heap, int N, int k) 516downheap (WT *heap, int N, int k)
410 526
411 if (w->at <= heap [j]->at) 527 if (w->at <= heap [j]->at)
412 break; 528 break;
413 529
414 heap [k] = heap [j]; 530 heap [k] = heap [j];
415 heap [k]->active = k + 1; 531 ((W)heap [k])->active = k + 1;
416 k = j; 532 k = j;
417 } 533 }
418 534
419 heap [k] = w; 535 heap [k] = w;
420 heap [k]->active = k + 1; 536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
421} 544}
422 545
423/*****************************************************************************/ 546/*****************************************************************************/
424 547
425typedef struct 548typedef struct
426{ 549{
427 struct ev_watcher_list *head; 550 WL head;
428 sig_atomic_t volatile gotsig; 551 sig_atomic_t volatile gotsig;
429} ANSIG; 552} ANSIG;
430 553
431static ANSIG *signals; 554static ANSIG *signals;
432static int signalmax; 555static int signalmax;
448} 571}
449 572
450static void 573static void
451sighandler (int signum) 574sighandler (int signum)
452{ 575{
576#if WIN32
577 signal (signum, sighandler);
578#endif
579
453 signals [signum - 1].gotsig = 1; 580 signals [signum - 1].gotsig = 1;
454 581
455 if (!gotsig) 582 if (!gotsig)
456 { 583 {
457 int old_errno = errno; 584 int old_errno = errno;
458 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
459 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
460 errno = old_errno; 591 errno = old_errno;
461 } 592 }
462} 593}
463 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
464static void 615static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 617{
467 struct ev_watcher_list *w;
468 int signum; 618 int signum;
469 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
470 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
471 gotsig = 0; 625 gotsig = 0;
472 626
473 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
475 { 629 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 630}
482 631
483static void 632static void
484siginit (EV_P) 633siginit (EV_P)
485{ 634{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 646 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 647}
499 648
500/*****************************************************************************/ 649/*****************************************************************************/
501 650
651static struct ev_child *childs [PID_HASHSIZE];
652
502#ifndef WIN32 653#ifndef WIN32
503 654
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 655static struct ev_signal childev;
506 656
507#ifndef WCONTINUED 657#ifndef WCONTINUED
508# define WCONTINUED 0 658# define WCONTINUED 0
509#endif 659#endif
514 struct ev_child *w; 664 struct ev_child *w;
515 665
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
518 { 668 {
519 w->priority = sw->priority; /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 670 w->rpid = pid;
521 w->rstatus = status; 671 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 673 }
524} 674}
525 675
526static void 676static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 679 int pid, status;
530 680
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 682 {
533 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 685
536 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 688 }
539} 689}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 747 have_monotonic = 1;
598 } 748 }
599#endif 749#endif
600 750
601 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 752 mn_now = get_clock ();
603 now_floor = mn_now; 753 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
605 755
606 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 759 else
610 methods = EVMETHOD_ANY; 760 methods = EVMETHOD_ANY;
611 761
612 method = 0; 762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
613#if EV_USE_KQUEUE 766#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 768#endif
616#if EV_USE_EPOLL 769#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 774#endif
622#if EV_USE_SELECT 775#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
625 } 781 }
626} 782}
627 783
628void 784void
629loop_destroy (EV_P) 785loop_destroy (EV_P)
630{ 786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
631#if EV_USE_KQUEUE 792#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 794#endif
634#if EV_USE_EPOLL 795#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 800#endif
640#if EV_USE_SELECT 801#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 803#endif
643 804
805 for (i = NUMPRI; i--; )
806 array_free (pending, [i]);
807
808 /* have to use the microsoft-never-gets-it-right macro */
809 array_free_microshit (fdchange);
810 array_free_microshit (timer);
811#if EV_PERIODICS
812 array_free_microshit (periodic);
813#endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
644 method = 0; 818 method = 0;
645 /*TODO*/
646} 819}
647 820
648void 821static void
649loop_fork (EV_P) 822loop_fork (EV_P)
650{ 823{
651 /*TODO*/
652#if EV_USE_EPOLL 824#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 826#endif
655#if EV_USE_KQUEUE 827#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
658} 847}
659 848
660#if EV_MULTIPLICITY 849#if EV_MULTIPLICITY
661struct ev_loop * 850struct ev_loop *
662ev_loop_new (int methods) 851ev_loop_new (int methods)
663{ 852{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
665 856
666 loop_init (EV_A_ methods); 857 loop_init (EV_A_ methods);
667 858
668 if (ev_method (EV_A)) 859 if (ev_method (EV_A))
669 return loop; 860 return loop;
673 864
674void 865void
675ev_loop_destroy (EV_P) 866ev_loop_destroy (EV_P)
676{ 867{
677 loop_destroy (EV_A); 868 loop_destroy (EV_A);
678 free (loop); 869 ev_free (loop);
679} 870}
680 871
681void 872void
682ev_loop_fork (EV_P) 873ev_loop_fork (EV_P)
683{ 874{
684 loop_fork (EV_A); 875 postfork = 1;
685} 876}
686 877
687#endif 878#endif
688 879
689#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 881struct ev_loop *
694#else 882#else
695static int default_loop;
696
697int 883int
698#endif 884#endif
699ev_default_loop (int methods) 885ev_default_loop (int methods)
700{ 886{
701 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
712 898
713 loop_init (EV_A_ methods); 899 loop_init (EV_A_ methods);
714 900
715 if (ev_method (EV_A)) 901 if (ev_method (EV_A))
716 { 902 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 903 siginit (EV_A);
720 904
721#ifndef WIN32 905#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 906 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 907 ev_set_priority (&childev, EV_MAXPRI);
737{ 921{
738#if EV_MULTIPLICITY 922#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 923 struct ev_loop *loop = default_loop;
740#endif 924#endif
741 925
926#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 927 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 928 ev_signal_stop (EV_A_ &childev);
929#endif
744 930
745 ev_ref (EV_A); /* signal watcher */ 931 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 932 ev_io_stop (EV_A_ &sigev);
747 933
748 close (sigpipe [0]); sigpipe [0] = 0; 934 close (sigpipe [0]); sigpipe [0] = 0;
756{ 942{
757#if EV_MULTIPLICITY 943#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 944 struct ev_loop *loop = default_loop;
759#endif 945#endif
760 946
761 loop_fork (EV_A); 947 if (method)
762 948 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 949}
771 950
772/*****************************************************************************/ 951/*****************************************************************************/
952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
773 964
774static void 965static void
775call_pending (EV_P) 966call_pending (EV_P)
776{ 967{
777 int pri; 968 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 974
784 if (p->w) 975 if (p->w)
785 { 976 {
786 p->w->pending = 0; 977 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
788 } 979 }
789 } 980 }
790} 981}
791 982
792static void 983static void
793timers_reify (EV_P) 984timers_reify (EV_P)
794{ 985{
795 while (timercnt && timers [0]->at <= mn_now) 986 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 987 {
797 struct ev_timer *w = timers [0]; 988 struct ev_timer *w = timers [0];
798 989
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 991
801 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
802 if (w->repeat) 993 if (w->repeat)
803 { 994 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
805 w->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
806 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
807 } 1002 }
808 else 1003 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1005
811 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1007 }
813} 1008}
814 1009
1010#if EV_PERIODICS
815static void 1011static void
816periodics_reify (EV_P) 1012periodics_reify (EV_P)
817{ 1013{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1015 {
820 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
821 1017
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1019
824 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
825 if (w->interval) 1021 if (w->reschedule_cb)
826 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1033 }
831 else 1034 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1036
834 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1038 }
836} 1039}
837 1040
838static void 1041static void
839periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
845 { 1048 {
846 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
847 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1053 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
861} 1060}
1061#endif
862 1062
863inline int 1063inline int
864time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
865{ 1065{
866 mn_now = get_clock (); 1066 mn_now = get_clock ();
867 1067
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1069 {
870 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1071 return 0;
872 } 1072 }
873 else 1073 else
874 { 1074 {
875 now_floor = mn_now; 1075 now_floor = mn_now;
876 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
877 return 1; 1077 return 1;
878 } 1078 }
879} 1079}
880 1080
881static void 1081static void
890 { 1090 {
891 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
892 1092
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1094 {
895 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
896 1096
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1098 return; /* all is well */
899 1099
900 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1101 mn_now = get_clock ();
902 now_floor = mn_now; 1102 now_floor = mn_now;
903 } 1103 }
904 1104
1105# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1110 }
909 } 1111 }
910 else 1112 else
911#endif 1113#endif
912 { 1114 {
913 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
914 1116
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1118 {
1119#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
918 1122
919 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1126 }
923 1127
924 mn_now = rt_now; 1128 mn_now = ev_rt_now;
925 } 1129 }
926} 1130}
927 1131
928void 1132void
929ev_ref (EV_P) 1133ev_ref (EV_P)
952 { 1156 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1158 call_pending (EV_A);
955 } 1159 }
956 1160
1161 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork))
1163 loop_fork (EV_A);
1164
957 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1166 fd_reify (EV_A);
959 1167
960 /* calculate blocking time */ 1168 /* calculate blocking time */
961 1169
962 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
967 else 1175 else
968#endif 1176#endif
969 { 1177 {
970 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1179 mn_now = ev_rt_now;
972 } 1180 }
973 1181
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1183 block = 0.;
976 else 1184 else
977 { 1185 {
978 block = MAX_BLOCKTIME; 1186 block = MAX_BLOCKTIME;
979 1187
980 if (timercnt) 1188 if (timercnt)
981 { 1189 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1191 if (block > to) block = to;
984 } 1192 }
985 1193
1194#if EV_PERIODICS
986 if (periodiccnt) 1195 if (periodiccnt)
987 { 1196 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1198 if (block > to) block = to;
990 } 1199 }
1200#endif
991 1201
992 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
993 } 1203 }
994 1204
995 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
996 1206
997 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1208 time_update (EV_A);
999 1209
1000 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1003 1215
1004 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1219
1008 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1221 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1297 return;
1086 1298
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1300
1089 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1304
1093 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1094} 1306}
1095 1307
1098{ 1310{
1099 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1101 return; 1313 return;
1102 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1105 1319
1106 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1107} 1321}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1324ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1325{
1112 if (ev_is_active (w)) 1326 if (ev_is_active (w))
1113 return; 1327 return;
1114 1328
1115 w->at += mn_now; 1329 ((WT)w)->at += mn_now;
1116 1330
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1332
1119 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1337
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1339}
1124 1340
1125void 1341void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1342ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1343{
1128 ev_clear_pending (EV_A_ (W)w); 1344 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1345 if (!ev_is_active (w))
1130 return; 1346 return;
1131 1347
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1349
1132 if (w->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1133 { 1351 {
1134 timers [w->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1354 }
1137 1355
1138 w->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1139 1357
1140 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1141} 1359}
1142 1360
1143void 1361void
1145{ 1363{
1146 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1147 { 1365 {
1148 if (w->repeat) 1366 if (w->repeat)
1149 { 1367 {
1150 w->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1370 }
1153 else 1371 else
1154 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1155 } 1373 }
1156 else if (w->repeat) 1374 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1158} 1376}
1159 1377
1378#if EV_PERIODICS
1160void 1379void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1381{
1163 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1164 return; 1383 return;
1165 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1171 1393
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1398
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1400}
1177 1401
1178void 1402void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1403ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1404{
1181 ev_clear_pending (EV_A_ (W)w); 1405 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1406 if (!ev_is_active (w))
1183 return; 1407 return;
1184 1408
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1410
1185 if (w->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1186 { 1412 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1415 }
1190 1416
1191 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1192} 1418}
1193 1419
1194void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1431{
1197 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1198 return; 1433 return;
1199 1434
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1203} 1438}
1204 1439
1205void 1440void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1442{
1208 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1210 return; 1445 return;
1211 1446
1212 idles [w->active - 1] = idles [--idlecnt]; 1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1214} 1449}
1215 1450
1216void 1451void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1453{
1219 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1220 return; 1455 return;
1221 1456
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1224 prepares [preparecnt - 1] = w; 1459 prepares [preparecnt - 1] = w;
1225} 1460}
1226 1461
1227void 1462void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1464{
1230 ev_clear_pending (EV_A_ (W)w); 1465 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1466 if (ev_is_active (w))
1232 return; 1467 return;
1233 1468
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1470 ev_stop (EV_A_ (W)w);
1236} 1471}
1237 1472
1238void 1473void
1239ev_check_start (EV_P_ struct ev_check *w) 1474ev_check_start (EV_P_ struct ev_check *w)
1240{ 1475{
1241 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1242 return; 1477 return;
1243 1478
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1246 checks [checkcnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1247} 1482}
1248 1483
1249void 1484void
1250ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1486{
1252 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1254 return; 1489 return;
1255 1490
1256 checks [w->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1258} 1493}
1259 1494
1260#ifndef SA_RESTART 1495#ifndef SA_RESTART
1261# define SA_RESTART 0 1496# define SA_RESTART 0
1271 return; 1506 return;
1272 1507
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1509
1275 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1513
1279 if (!w->next) 1514 if (!((WL)w)->next)
1280 { 1515 {
1516#if WIN32
1517 signal (w->signum, sighandler);
1518#else
1281 struct sigaction sa; 1519 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1520 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1521 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1523 sigaction (w->signum, &sa, 0);
1524#endif
1286 } 1525 }
1287} 1526}
1288 1527
1289void 1528void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1529ev_signal_stop (EV_P_ struct ev_signal *w)
1315 1554
1316void 1555void
1317ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1557{
1319 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1321 return; 1560 return;
1322 1561
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1325} 1564}
1340 void (*cb)(int revents, void *arg) = once->cb; 1579 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1580 void *arg = once->arg;
1342 1581
1343 ev_io_stop (EV_A_ &once->io); 1582 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1583 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1584 ev_free (once);
1346 1585
1347 cb (revents, arg); 1586 cb (revents, arg);
1348} 1587}
1349 1588
1350static void 1589static void
1360} 1599}
1361 1600
1362void 1601void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1603{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1605
1367 if (!once) 1606 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1608 else
1370 { 1609 {
1371 once->cb = cb; 1610 once->cb = cb;
1372 once->arg = arg; 1611 once->arg = arg;
1373 1612
1374 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1614 if (fd >= 0)
1376 { 1615 {
1377 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1379 } 1618 }
1380 1619
1381 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1621 if (timeout >= 0.)
1383 { 1622 {
1384 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1386 } 1625 }
1387 } 1626 }
1388} 1627}
1389 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines