ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
150#if WIN32 166#ifdef WIN32
151/* note: the comment below could not be substantiated, but what would I care */ 167# include "ev_win32.c"
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif 168#endif
155 169
156/*****************************************************************************/ 170/*****************************************************************************/
157 171
158static void (*syserr_cb)(void); 172static void (*syserr_cb)(const char *msg);
159 173
160void ev_set_syserr_cb (void (*cb)(void)) 174void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 175{
162 syserr_cb = cb; 176 syserr_cb = cb;
163} 177}
164 178
165static void 179static void
166syserr (void) 180syserr (const char *msg)
167{ 181{
182 if (!msg)
183 msg = "(libev) system error";
184
168 if (syserr_cb) 185 if (syserr_cb)
169 syserr_cb (); 186 syserr_cb (msg);
170 else 187 else
171 { 188 {
172 perror ("libev"); 189 perror (msg);
173 abort (); 190 abort ();
174 } 191 }
175} 192}
176 193
177static void *(*alloc)(void *ptr, long size); 194static void *(*alloc)(void *ptr, long size);
213 int events; 230 int events;
214} ANPENDING; 231} ANPENDING;
215 232
216#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
217 234
218struct ev_loop 235 struct ev_loop
219{ 236 {
237 ev_tstamp ev_rt_now;
238 #define ev_rt_now ((loop)->ev_rt_now)
220# define VAR(name,decl) decl; 239 #define VAR(name,decl) decl;
221# include "ev_vars.h" 240 #include "ev_vars.h"
222};
223# undef VAR 241 #undef VAR
242 };
224# include "ev_wrap.h" 243 #include "ev_wrap.h"
244
245 struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop;
225 247
226#else 248#else
227 249
250 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 251 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 252 #include "ev_vars.h"
230# undef VAR 253 #undef VAR
254
255 static int default_loop;
231 256
232#endif 257#endif
233 258
234/*****************************************************************************/ 259/*****************************************************************************/
235 260
236inline ev_tstamp 261ev_tstamp
237ev_time (void) 262ev_time (void)
238{ 263{
239#if EV_USE_REALTIME 264#if EV_USE_REALTIME
240 struct timespec ts; 265 struct timespec ts;
241 clock_gettime (CLOCK_REALTIME, &ts); 266 clock_gettime (CLOCK_REALTIME, &ts);
260#endif 285#endif
261 286
262 return ev_time (); 287 return ev_time ();
263} 288}
264 289
290#if EV_MULTIPLICITY
265ev_tstamp 291ev_tstamp
266ev_now (EV_P) 292ev_now (EV_P)
267{ 293{
268 return rt_now; 294 return ev_rt_now;
269} 295}
296#endif
270 297
271#define array_roundsize(base,n) ((n) | 4 & ~3) 298#define array_roundsize(type,n) ((n) | 4 & ~3)
272 299
273#define array_needsize(base,cur,cnt,init) \ 300#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 301 if (expect_false ((cnt) > cur)) \
275 { \ 302 { \
276 int newcnt = cur; \ 303 int newcnt = cur; \
277 do \ 304 do \
278 { \ 305 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 306 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 307 } \
281 while ((cnt) > newcnt); \ 308 while ((cnt) > newcnt); \
282 \ 309 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 311 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 312 cur = newcnt; \
286 } 313 }
287 314
288#define array_slim(stem) \ 315#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 317 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 318 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 321 }
322
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
295 327
296#define array_free(stem, idx) \ 328#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 330
299/*****************************************************************************/ 331/*****************************************************************************/
309 341
310 ++base; 342 ++base;
311 } 343 }
312} 344}
313 345
314static void 346void
315event (EV_P_ W w, int events) 347ev_feed_event (EV_P_ void *w, int revents)
316{ 348{
349 W w_ = (W)w;
350
317 if (w->pending) 351 if (w_->pending)
318 { 352 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 354 return;
321 } 355 }
322 356
323 w->pending = ++pendingcnt [ABSPRI (w)]; 357 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 361}
328 362
329static void 363static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 364queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 365{
332 int i; 366 int i;
333 367
334 for (i = 0; i < eventcnt; ++i) 368 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 369 ev_feed_event (EV_A_ events [i], type);
336} 370}
337 371
338static void 372inline void
339fd_event (EV_P_ int fd, int events) 373fd_event (EV_P_ int fd, int revents)
340{ 374{
341 ANFD *anfd = anfds + fd; 375 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 376 struct ev_io *w;
343 377
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 379 {
346 int ev = w->events & events; 380 int ev = w->events & revents;
347 381
348 if (ev) 382 if (ev)
349 event (EV_A_ (W)w, ev); 383 ev_feed_event (EV_A_ (W)w, ev);
350 } 384 }
385}
386
387void
388ev_feed_fd_event (EV_P_ int fd, int revents)
389{
390 fd_event (EV_A_ fd, revents);
351} 391}
352 392
353/*****************************************************************************/ 393/*****************************************************************************/
354 394
355static void 395static void
378} 418}
379 419
380static void 420static void
381fd_change (EV_P_ int fd) 421fd_change (EV_P_ int fd)
382{ 422{
383 if (anfds [fd].reify || fdchangecnt < 0) 423 if (anfds [fd].reify)
384 return; 424 return;
385 425
386 anfds [fd].reify = 1; 426 anfds [fd].reify = 1;
387 427
388 ++fdchangecnt; 428 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 430 fdchanges [fdchangecnt - 1] = fd;
391} 431}
392 432
393static void 433static void
394fd_kill (EV_P_ int fd) 434fd_kill (EV_P_ int fd)
396 struct ev_io *w; 436 struct ev_io *w;
397 437
398 while ((w = (struct ev_io *)anfds [fd].head)) 438 while ((w = (struct ev_io *)anfds [fd].head))
399 { 439 {
400 ev_io_stop (EV_A_ w); 440 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 442 }
443}
444
445static int
446fd_valid (int fd)
447{
448#ifdef WIN32
449 return !!win32_get_osfhandle (fd);
450#else
451 return fcntl (fd, F_GETFD) != -1;
452#endif
403} 453}
404 454
405/* called on EBADF to verify fds */ 455/* called on EBADF to verify fds */
406static void 456static void
407fd_ebadf (EV_P) 457fd_ebadf (EV_P)
408{ 458{
409 int fd; 459 int fd;
410 460
411 for (fd = 0; fd < anfdmax; ++fd) 461 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 462 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 463 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
415} 465}
416 466
417/* called on ENOMEM in select/poll to kill some fds and retry */ 467/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 468static void
426 fd_kill (EV_A_ fd); 476 fd_kill (EV_A_ fd);
427 return; 477 return;
428 } 478 }
429} 479}
430 480
431/* susually called after fork if method needs to re-arm all fds from scratch */ 481/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 482static void
433fd_rearm_all (EV_P) 483fd_rearm_all (EV_P)
434{ 484{
435 int fd; 485 int fd;
436 486
484 534
485 heap [k] = w; 535 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 536 ((W)heap [k])->active = k + 1;
487} 537}
488 538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
489/*****************************************************************************/ 546/*****************************************************************************/
490 547
491typedef struct 548typedef struct
492{ 549{
493 WL head; 550 WL head;
524 581
525 if (!gotsig) 582 if (!gotsig)
526 { 583 {
527 int old_errno = errno; 584 int old_errno = errno;
528 gotsig = 1; 585 gotsig = 1;
586#ifdef WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
588#else
529 write (sigpipe [1], &signum, 1); 589 write (sigpipe [1], &signum, 1);
590#endif
530 errno = old_errno; 591 errno = old_errno;
531 } 592 }
532} 593}
533 594
595void
596ev_feed_signal_event (EV_P_ int signum)
597{
598 WL w;
599
600#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
602#endif
603
604 --signum;
605
606 if (signum < 0 || signum >= signalmax)
607 return;
608
609 signals [signum].gotsig = 0;
610
611 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613}
614
534static void 615static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 616sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 617{
537 WL w;
538 int signum; 618 int signum;
539 619
620#ifdef WIN32
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
622#else
540 read (sigpipe [0], &revents, 1); 623 read (sigpipe [0], &revents, 1);
624#endif
541 gotsig = 0; 625 gotsig = 0;
542 626
543 for (signum = signalmax; signum--; ) 627 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 628 if (signals [signum].gotsig)
545 { 629 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551} 630}
552 631
553static void 632static void
554siginit (EV_P) 633siginit (EV_P)
555{ 634{
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 646 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 647}
569 648
570/*****************************************************************************/ 649/*****************************************************************************/
571 650
651static struct ev_child *childs [PID_HASHSIZE];
652
572#ifndef WIN32 653#ifndef WIN32
573 654
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 655static struct ev_signal childev;
576 656
577#ifndef WCONTINUED 657#ifndef WCONTINUED
578# define WCONTINUED 0 658# define WCONTINUED 0
579#endif 659#endif
587 if (w->pid == pid || !w->pid) 667 if (w->pid == pid || !w->pid)
588 { 668 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 670 w->rpid = pid;
591 w->rstatus = status; 671 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 673 }
594} 674}
595 675
596static void 676static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 677childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 679 int pid, status;
600 680
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 682 {
603 /* make sure we are called again until all childs have been reaped */ 683 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 685
606 child_reap (EV_A_ sw, pid, pid, status); 686 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 688 }
609} 689}
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 747 have_monotonic = 1;
668 } 748 }
669#endif 749#endif
670 750
671 rt_now = ev_time (); 751 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 752 mn_now = get_clock ();
673 now_floor = mn_now; 753 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 754 rtmn_diff = ev_rt_now - mn_now;
675 755
676 if (methods == EVMETHOD_AUTO) 756 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 757 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 758 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 759 else
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 774#endif
695#if EV_USE_SELECT 775#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
698 } 781 }
699} 782}
700 783
701void 784void
702loop_destroy (EV_P) 785loop_destroy (EV_P)
720#endif 803#endif
721 804
722 for (i = NUMPRI; i--; ) 805 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 806 array_free (pending, [i]);
724 807
808 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 809 array_free_microshit (fdchange);
726 array_free (timer, ); 810 array_free_microshit (timer);
811#if EV_PERIODICS
727 array_free (periodic, ); 812 array_free_microshit (periodic);
813#endif
728 array_free (idle, ); 814 array_free_microshit (idle);
729 array_free (prepare, ); 815 array_free_microshit (prepare);
730 array_free (check, ); 816 array_free_microshit (check);
731 817
732 method = 0; 818 method = 0;
733 /*TODO*/
734} 819}
735 820
736void 821static void
737loop_fork (EV_P) 822loop_fork (EV_P)
738{ 823{
739 /*TODO*/
740#if EV_USE_EPOLL 824#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 826#endif
743#if EV_USE_KQUEUE 827#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
746} 847}
747 848
748#if EV_MULTIPLICITY 849#if EV_MULTIPLICITY
749struct ev_loop * 850struct ev_loop *
750ev_loop_new (int methods) 851ev_loop_new (int methods)
769} 870}
770 871
771void 872void
772ev_loop_fork (EV_P) 873ev_loop_fork (EV_P)
773{ 874{
774 loop_fork (EV_A); 875 postfork = 1;
775} 876}
776 877
777#endif 878#endif
778 879
779#if EV_MULTIPLICITY 880#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 881struct ev_loop *
784#else 882#else
785static int default_loop;
786
787int 883int
788#endif 884#endif
789ev_default_loop (int methods) 885ev_default_loop (int methods)
790{ 886{
791 if (sigpipe [0] == sigpipe [1]) 887 if (sigpipe [0] == sigpipe [1])
802 898
803 loop_init (EV_A_ methods); 899 loop_init (EV_A_ methods);
804 900
805 if (ev_method (EV_A)) 901 if (ev_method (EV_A))
806 { 902 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 903 siginit (EV_A);
810 904
811#ifndef WIN32 905#ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 906 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 907 ev_set_priority (&childev, EV_MAXPRI);
827{ 921{
828#if EV_MULTIPLICITY 922#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 923 struct ev_loop *loop = default_loop;
830#endif 924#endif
831 925
926#ifndef WIN32
832 ev_ref (EV_A); /* child watcher */ 927 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 928 ev_signal_stop (EV_A_ &childev);
929#endif
834 930
835 ev_ref (EV_A); /* signal watcher */ 931 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 932 ev_io_stop (EV_A_ &sigev);
837 933
838 close (sigpipe [0]); sigpipe [0] = 0; 934 close (sigpipe [0]); sigpipe [0] = 0;
846{ 942{
847#if EV_MULTIPLICITY 943#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 944 struct ev_loop *loop = default_loop;
849#endif 945#endif
850 946
851 loop_fork (EV_A); 947 if (method)
852 948 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 949}
861 950
862/*****************************************************************************/ 951/*****************************************************************************/
952
953static int
954any_pending (EV_P)
955{
956 int pri;
957
958 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri])
960 return 1;
961
962 return 0;
963}
863 964
864static void 965static void
865call_pending (EV_P) 966call_pending (EV_P)
866{ 967{
867 int pri; 968 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 973 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 974
874 if (p->w) 975 if (p->w)
875 { 976 {
876 p->w->pending = 0; 977 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 978 EV_CB_INVOKE (p->w, p->events);
878 } 979 }
879 } 980 }
880} 981}
881 982
882static void 983static void
890 991
891 /* first reschedule or stop timer */ 992 /* first reschedule or stop timer */
892 if (w->repeat) 993 if (w->repeat)
893 { 994 {
894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996
895 ((WT)w)->at = mn_now + w->repeat; 997 ((WT)w)->at += w->repeat;
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
896 downheap ((WT *)timers, timercnt, 0); 1001 downheap ((WT *)timers, timercnt, 0);
897 } 1002 }
898 else 1003 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 1005
901 event (EV_A_ (W)w, EV_TIMEOUT); 1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 1007 }
903} 1008}
904 1009
1010#if EV_PERIODICS
905static void 1011static void
906periodics_reify (EV_P) 1012periodics_reify (EV_P)
907{ 1013{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1015 {
910 struct ev_periodic *w = periodics [0]; 1016 struct ev_periodic *w = periodics [0];
911 1017
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1018 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1019
914 /* first reschedule or stop timer */ 1020 /* first reschedule or stop timer */
915 if (w->interval) 1021 if (w->reschedule_cb)
916 { 1022 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1024
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 }
1028 else if (w->interval)
1029 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1032 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1033 }
921 else 1034 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1036
924 event (EV_A_ (W)w, EV_PERIODIC); 1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1038 }
926} 1039}
927 1040
928static void 1041static void
929periodics_reschedule (EV_P) 1042periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1046 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1047 for (i = 0; i < periodiccnt; ++i)
935 { 1048 {
936 struct ev_periodic *w = periodics [i]; 1049 struct ev_periodic *w = periodics [i];
937 1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1053 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
951} 1060}
1061#endif
952 1062
953inline int 1063inline int
954time_update_monotonic (EV_P) 1064time_update_monotonic (EV_P)
955{ 1065{
956 mn_now = get_clock (); 1066 mn_now = get_clock ();
957 1067
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1069 {
960 rt_now = rtmn_diff + mn_now; 1070 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1071 return 0;
962 } 1072 }
963 else 1073 else
964 { 1074 {
965 now_floor = mn_now; 1075 now_floor = mn_now;
966 rt_now = ev_time (); 1076 ev_rt_now = ev_time ();
967 return 1; 1077 return 1;
968 } 1078 }
969} 1079}
970 1080
971static void 1081static void
980 { 1090 {
981 ev_tstamp odiff = rtmn_diff; 1091 ev_tstamp odiff = rtmn_diff;
982 1092
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1094 {
985 rtmn_diff = rt_now - mn_now; 1095 rtmn_diff = ev_rt_now - mn_now;
986 1096
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1098 return; /* all is well */
989 1099
990 rt_now = ev_time (); 1100 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1101 mn_now = get_clock ();
992 now_floor = mn_now; 1102 now_floor = mn_now;
993 } 1103 }
994 1104
1105# if EV_PERIODICS
995 periodics_reschedule (EV_A); 1106 periodics_reschedule (EV_A);
1107# endif
996 /* no timer adjustment, as the monotonic clock doesn't jump */ 1108 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
998 } 1110 }
999 } 1111 }
1000 else 1112 else
1001#endif 1113#endif
1002 { 1114 {
1003 rt_now = ev_time (); 1115 ev_rt_now = ev_time ();
1004 1116
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1118 {
1119#if EV_PERIODICS
1007 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121#endif
1008 1122
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1123 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1124 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1126 }
1013 1127
1014 mn_now = rt_now; 1128 mn_now = ev_rt_now;
1015 } 1129 }
1016} 1130}
1017 1131
1018void 1132void
1019ev_ref (EV_P) 1133ev_ref (EV_P)
1042 { 1156 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1158 call_pending (EV_A);
1045 } 1159 }
1046 1160
1161 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork))
1163 loop_fork (EV_A);
1164
1047 /* update fd-related kernel structures */ 1165 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1166 fd_reify (EV_A);
1049 1167
1050 /* calculate blocking time */ 1168 /* calculate blocking time */
1051 1169
1052 /* we only need this for !monotonic clockor timers, but as we basically 1170 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1171 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1172#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1173 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1174 time_update_monotonic (EV_A);
1057 else 1175 else
1058#endif 1176#endif
1059 { 1177 {
1060 rt_now = ev_time (); 1178 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1179 mn_now = ev_rt_now;
1062 } 1180 }
1063 1181
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1182 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1183 block = 0.;
1066 else 1184 else
1071 { 1189 {
1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1073 if (block > to) block = to; 1191 if (block > to) block = to;
1074 } 1192 }
1075 1193
1194#if EV_PERIODICS
1076 if (periodiccnt) 1195 if (periodiccnt)
1077 { 1196 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1198 if (block > to) block = to;
1080 } 1199 }
1200#endif
1081 1201
1082 if (block < 0.) block = 0.; 1202 if (block < 0.) block = 0.;
1083 } 1203 }
1084 1204
1085 method_poll (EV_A_ block); 1205 method_poll (EV_A_ block);
1086 1206
1087 /* update rt_now, do magic */ 1207 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1208 time_update (EV_A);
1089 1209
1090 /* queue pending timers and reschedule them */ 1210 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1211 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS
1092 periodics_reify (EV_A); /* absolute timers called first */ 1213 periodics_reify (EV_A); /* absolute timers called first */
1214#endif
1093 1215
1094 /* queue idle watchers unless io or timers are pending */ 1216 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1217 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1219
1098 /* queue check watchers, to be executed first */ 1220 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1221 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1297 return;
1176 1298
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1299 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1300
1179 ev_start (EV_A_ (W)w, 1); 1301 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1303 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1304
1183 fd_change (EV_A_ fd); 1305 fd_change (EV_A_ fd);
1184} 1306}
1185 1307
1188{ 1310{
1189 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1190 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1191 return; 1313 return;
1192 1314
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316
1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1194 ev_stop (EV_A_ (W)w); 1318 ev_stop (EV_A_ (W)w);
1195 1319
1196 fd_change (EV_A_ w->fd); 1320 fd_change (EV_A_ w->fd);
1197} 1321}
1205 ((WT)w)->at += mn_now; 1329 ((WT)w)->at += mn_now;
1206 1330
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1332
1209 ev_start (EV_A_ (W)w, ++timercnt); 1333 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1335 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1336 upheap ((WT *)timers, timercnt - 1);
1213 1337
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1339}
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225 1349
1226 if (((W)w)->active < timercnt--) 1350 if (((W)w)->active < timercnt--)
1227 { 1351 {
1228 timers [((W)w)->active - 1] = timers [timercnt]; 1352 timers [((W)w)->active - 1] = timers [timercnt];
1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1230 } 1354 }
1231 1355
1232 ((WT)w)->at = w->repeat; 1356 ((WT)w)->at -= mn_now;
1233 1357
1234 ev_stop (EV_A_ (W)w); 1358 ev_stop (EV_A_ (W)w);
1235} 1359}
1236 1360
1237void 1361void
1240 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1241 { 1365 {
1242 if (w->repeat) 1366 if (w->repeat)
1243 { 1367 {
1244 ((WT)w)->at = mn_now + w->repeat; 1368 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1246 } 1370 }
1247 else 1371 else
1248 ev_timer_stop (EV_A_ w); 1372 ev_timer_stop (EV_A_ w);
1249 } 1373 }
1250 else if (w->repeat) 1374 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1375 ev_timer_start (EV_A_ w);
1252} 1376}
1253 1377
1378#if EV_PERIODICS
1254void 1379void
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1380ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1381{
1257 if (ev_is_active (w)) 1382 if (ev_is_active (w))
1258 return; 1383 return;
1259 1384
1385 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval)
1388 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1390 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1392 }
1265 1393
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1394 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1396 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1397 upheap ((WT *)periodics, periodiccnt - 1);
1270 1398
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1400}
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282 1410
1283 if (((W)w)->active < periodiccnt--) 1411 if (((W)w)->active < periodiccnt--)
1284 { 1412 {
1285 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1413 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1287 } 1415 }
1288 1416
1289 ev_stop (EV_A_ (W)w); 1417 ev_stop (EV_A_ (W)w);
1290} 1418}
1291 1419
1292void 1420void
1421ev_periodic_again (EV_P_ struct ev_periodic *w)
1422{
1423 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w);
1426}
1427#endif
1428
1429void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1430ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1431{
1295 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1296 return; 1433 return;
1297 1434
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1435 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1437 idles [idlecnt - 1] = w;
1301} 1438}
1302 1439
1303void 1440void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1441ev_idle_stop (EV_P_ struct ev_idle *w)
1316{ 1453{
1317 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1318 return; 1455 return;
1319 1456
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1457 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1459 prepares [preparecnt - 1] = w;
1323} 1460}
1324 1461
1325void 1462void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1338{ 1475{
1339 if (ev_is_active (w)) 1476 if (ev_is_active (w))
1340 return; 1477 return;
1341 1478
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1479 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1481 checks [checkcnt - 1] = w;
1345} 1482}
1346 1483
1347void 1484void
1348ev_check_stop (EV_P_ struct ev_check *w) 1485ev_check_stop (EV_P_ struct ev_check *w)
1349{ 1486{
1350 ev_clear_pending (EV_A_ (W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w)) 1488 if (!ev_is_active (w))
1352 return; 1489 return;
1353 1490
1354 checks [((W)w)->active - 1] = checks [--checkcnt]; 1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w); 1492 ev_stop (EV_A_ (W)w);
1356} 1493}
1369 return; 1506 return;
1370 1507
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1509
1373 ev_start (EV_A_ (W)w, 1); 1510 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1513
1377 if (!((WL)w)->next) 1514 if (!((WL)w)->next)
1378 { 1515 {
1379#if WIN32 1516#if WIN32
1417 1554
1418void 1555void
1419ev_child_stop (EV_P_ struct ev_child *w) 1556ev_child_stop (EV_P_ struct ev_child *w)
1420{ 1557{
1421 ev_clear_pending (EV_A_ (W)w); 1558 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w)) 1559 if (!ev_is_active (w))
1423 return; 1560 return;
1424 1561
1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1426 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
1427} 1564}
1462} 1599}
1463 1600
1464void 1601void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1603{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1605
1469 if (!once) 1606 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1608 else
1472 { 1609 {
1473 once->cb = cb; 1610 once->cb = cb;
1474 once->arg = arg; 1611 once->arg = arg;
1475 1612
1476 ev_watcher_init (&once->io, once_cb_io); 1613 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1614 if (fd >= 0)
1478 { 1615 {
1479 ev_io_set (&once->io, fd, events); 1616 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1617 ev_io_start (EV_A_ &once->io);
1481 } 1618 }
1482 1619
1483 ev_watcher_init (&once->to, once_cb_to); 1620 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1621 if (timeout >= 0.)
1485 { 1622 {
1486 ev_timer_set (&once->to, timeout, 0.); 1623 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1624 ev_timer_start (EV_A_ &once->to);
1488 } 1625 }
1489 } 1626 }
1490} 1627}
1491 1628
1629#ifdef __cplusplus
1630}
1631#endif
1632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines