ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.241
Committed: Fri May 9 13:57:00 2008 UTC (16 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.240: +87 -57 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_GETTIME
53 # ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 # endif
56 # ifndef EV_USE_REALTIME
57 # define EV_USE_REALTIME 1
58 # endif
59 # else
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 0
62 # endif
63 # ifndef EV_USE_REALTIME
64 # define EV_USE_REALTIME 0
65 # endif
66 # endif
67
68 # ifndef EV_USE_NANOSLEEP
69 # if HAVE_NANOSLEEP
70 # define EV_USE_NANOSLEEP 1
71 # else
72 # define EV_USE_NANOSLEEP 0
73 # endif
74 # endif
75
76 # ifndef EV_USE_SELECT
77 # if HAVE_SELECT && HAVE_SYS_SELECT_H
78 # define EV_USE_SELECT 1
79 # else
80 # define EV_USE_SELECT 0
81 # endif
82 # endif
83
84 # ifndef EV_USE_POLL
85 # if HAVE_POLL && HAVE_POLL_H
86 # define EV_USE_POLL 1
87 # else
88 # define EV_USE_POLL 0
89 # endif
90 # endif
91
92 # ifndef EV_USE_EPOLL
93 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94 # define EV_USE_EPOLL 1
95 # else
96 # define EV_USE_EPOLL 0
97 # endif
98 # endif
99
100 # ifndef EV_USE_KQUEUE
101 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102 # define EV_USE_KQUEUE 1
103 # else
104 # define EV_USE_KQUEUE 0
105 # endif
106 # endif
107
108 # ifndef EV_USE_PORT
109 # if HAVE_PORT_H && HAVE_PORT_CREATE
110 # define EV_USE_PORT 1
111 # else
112 # define EV_USE_PORT 0
113 # endif
114 # endif
115
116 # ifndef EV_USE_INOTIFY
117 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118 # define EV_USE_INOTIFY 1
119 # else
120 # define EV_USE_INOTIFY 0
121 # endif
122 # endif
123
124 # ifndef EV_USE_EVENTFD
125 # if HAVE_EVENTFD
126 # define EV_USE_EVENTFD 1
127 # else
128 # define EV_USE_EVENTFD 0
129 # endif
130 # endif
131
132 #endif
133
134 #include <math.h>
135 #include <stdlib.h>
136 #include <fcntl.h>
137 #include <stddef.h>
138
139 #include <stdio.h>
140
141 #include <assert.h>
142 #include <errno.h>
143 #include <sys/types.h>
144 #include <time.h>
145
146 #include <signal.h>
147
148 #ifdef EV_H
149 # include EV_H
150 #else
151 # include "ev.h"
152 #endif
153
154 #ifndef _WIN32
155 # include <sys/time.h>
156 # include <sys/wait.h>
157 # include <unistd.h>
158 #else
159 # define WIN32_LEAN_AND_MEAN
160 # include <windows.h>
161 # ifndef EV_SELECT_IS_WINSOCKET
162 # define EV_SELECT_IS_WINSOCKET 1
163 # endif
164 #endif
165
166 /* this block tries to deduce configuration from header-defined symbols and defaults */
167
168 #ifndef EV_USE_MONOTONIC
169 # define EV_USE_MONOTONIC 0
170 #endif
171
172 #ifndef EV_USE_REALTIME
173 # define EV_USE_REALTIME 0
174 #endif
175
176 #ifndef EV_USE_NANOSLEEP
177 # define EV_USE_NANOSLEEP 0
178 #endif
179
180 #ifndef EV_USE_SELECT
181 # define EV_USE_SELECT 1
182 #endif
183
184 #ifndef EV_USE_POLL
185 # ifdef _WIN32
186 # define EV_USE_POLL 0
187 # else
188 # define EV_USE_POLL 1
189 # endif
190 #endif
191
192 #ifndef EV_USE_EPOLL
193 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194 # define EV_USE_EPOLL 1
195 # else
196 # define EV_USE_EPOLL 0
197 # endif
198 #endif
199
200 #ifndef EV_USE_KQUEUE
201 # define EV_USE_KQUEUE 0
202 #endif
203
204 #ifndef EV_USE_PORT
205 # define EV_USE_PORT 0
206 #endif
207
208 #ifndef EV_USE_INOTIFY
209 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210 # define EV_USE_INOTIFY 1
211 # else
212 # define EV_USE_INOTIFY 0
213 # endif
214 #endif
215
216 #ifndef EV_PID_HASHSIZE
217 # if EV_MINIMAL
218 # define EV_PID_HASHSIZE 1
219 # else
220 # define EV_PID_HASHSIZE 16
221 # endif
222 #endif
223
224 #ifndef EV_INOTIFY_HASHSIZE
225 # if EV_MINIMAL
226 # define EV_INOTIFY_HASHSIZE 1
227 # else
228 # define EV_INOTIFY_HASHSIZE 16
229 # endif
230 #endif
231
232 #ifndef EV_USE_EVENTFD
233 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234 # define EV_USE_EVENTFD 1
235 # else
236 # define EV_USE_EVENTFD 0
237 # endif
238 #endif
239
240 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242 #ifndef CLOCK_MONOTONIC
243 # undef EV_USE_MONOTONIC
244 # define EV_USE_MONOTONIC 0
245 #endif
246
247 #ifndef CLOCK_REALTIME
248 # undef EV_USE_REALTIME
249 # define EV_USE_REALTIME 0
250 #endif
251
252 #if !EV_STAT_ENABLE
253 # undef EV_USE_INOTIFY
254 # define EV_USE_INOTIFY 0
255 #endif
256
257 #if !EV_USE_NANOSLEEP
258 # ifndef _WIN32
259 # include <sys/select.h>
260 # endif
261 #endif
262
263 #if EV_USE_INOTIFY
264 # include <sys/inotify.h>
265 #endif
266
267 #if EV_SELECT_IS_WINSOCKET
268 # include <winsock.h>
269 #endif
270
271 #if EV_USE_EVENTFD
272 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273 # include <stdint.h>
274 # ifdef __cplusplus
275 extern "C" {
276 # endif
277 int eventfd (unsigned int initval, int flags);
278 # ifdef __cplusplus
279 }
280 # endif
281 #endif
282
283 /**/
284
285 /*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
299 #if __GNUC__ >= 4
300 # define expect(expr,value) __builtin_expect ((expr),(value))
301 # define noinline __attribute__ ((noinline))
302 #else
303 # define expect(expr,value) (expr)
304 # define noinline
305 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306 # define inline
307 # endif
308 #endif
309
310 #define expect_false(expr) expect ((expr) != 0, 0)
311 #define expect_true(expr) expect ((expr) != 0, 1)
312 #define inline_size static inline
313
314 #if EV_MINIMAL
315 # define inline_speed static noinline
316 #else
317 # define inline_speed static inline
318 #endif
319
320 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323 #define EMPTY /* required for microsofts broken pseudo-c compiler */
324 #define EMPTY2(a,b) /* used to suppress some warnings */
325
326 typedef ev_watcher *W;
327 typedef ev_watcher_list *WL;
328 typedef ev_watcher_time *WT;
329
330 #define ev_active(w) ((W)(w))->active
331 #define ev_at(w) ((WT)(w))->at
332
333 #if EV_USE_MONOTONIC
334 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
335 /* giving it a reasonably high chance of working on typical architetcures */
336 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337 #endif
338
339 #ifdef _WIN32
340 # include "ev_win32.c"
341 #endif
342
343 /*****************************************************************************/
344
345 static void (*syserr_cb)(const char *msg);
346
347 void
348 ev_set_syserr_cb (void (*cb)(const char *msg))
349 {
350 syserr_cb = cb;
351 }
352
353 static void noinline
354 syserr (const char *msg)
355 {
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366 }
367
368 static void *
369 ev_realloc_emul (void *ptr, long size)
370 {
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381 }
382
383 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385 void
386 ev_set_allocator (void *(*cb)(void *ptr, long size))
387 {
388 alloc = cb;
389 }
390
391 inline_speed void *
392 ev_realloc (void *ptr, long size)
393 {
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403 }
404
405 #define ev_malloc(size) ev_realloc (0, (size))
406 #define ev_free(ptr) ev_realloc ((ptr), 0)
407
408 /*****************************************************************************/
409
410 typedef struct
411 {
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415 #if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417 #endif
418 } ANFD;
419
420 typedef struct
421 {
422 W w;
423 int events;
424 } ANPENDING;
425
426 #if EV_USE_INOTIFY
427 /* hash table entry per inotify-id */
428 typedef struct
429 {
430 WL head;
431 } ANFS;
432 #endif
433
434 /* Heap Entry */
435 #if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444 #else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
450 #endif
451
452 #if EV_MULTIPLICITY
453
454 struct ev_loop
455 {
456 ev_tstamp ev_rt_now;
457 #define ev_rt_now ((loop)->ev_rt_now)
458 #define VAR(name,decl) decl;
459 #include "ev_vars.h"
460 #undef VAR
461 };
462 #include "ev_wrap.h"
463
464 static struct ev_loop default_loop_struct;
465 struct ev_loop *ev_default_loop_ptr;
466
467 #else
468
469 ev_tstamp ev_rt_now;
470 #define VAR(name,decl) static decl;
471 #include "ev_vars.h"
472 #undef VAR
473
474 static int ev_default_loop_ptr;
475
476 #endif
477
478 /*****************************************************************************/
479
480 ev_tstamp
481 ev_time (void)
482 {
483 #if EV_USE_REALTIME
484 struct timespec ts;
485 clock_gettime (CLOCK_REALTIME, &ts);
486 return ts.tv_sec + ts.tv_nsec * 1e-9;
487 #else
488 struct timeval tv;
489 gettimeofday (&tv, 0);
490 return tv.tv_sec + tv.tv_usec * 1e-6;
491 #endif
492 }
493
494 ev_tstamp inline_size
495 get_clock (void)
496 {
497 #if EV_USE_MONOTONIC
498 if (expect_true (have_monotonic))
499 {
500 struct timespec ts;
501 clock_gettime (CLOCK_MONOTONIC, &ts);
502 return ts.tv_sec + ts.tv_nsec * 1e-9;
503 }
504 #endif
505
506 return ev_time ();
507 }
508
509 #if EV_MULTIPLICITY
510 ev_tstamp
511 ev_now (EV_P)
512 {
513 return ev_rt_now;
514 }
515 #endif
516
517 void
518 ev_sleep (ev_tstamp delay)
519 {
520 if (delay > 0.)
521 {
522 #if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529 #elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531 #else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538 #endif
539 }
540 }
541
542 /*****************************************************************************/
543
544 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
546 int inline_size
547 array_nextsize (int elem, int cur, int cnt)
548 {
549 int ncur = cur + 1;
550
551 do
552 ncur <<= 1;
553 while (cnt > ncur);
554
555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
557 {
558 ncur *= elem;
559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
560 ncur = ncur - sizeof (void *) * 4;
561 ncur /= elem;
562 }
563
564 return ncur;
565 }
566
567 static noinline void *
568 array_realloc (int elem, void *base, int *cur, int cnt)
569 {
570 *cur = array_nextsize (elem, *cur, cnt);
571 return ev_realloc (base, elem * *cur);
572 }
573
574 #define array_needsize(type,base,cur,cnt,init) \
575 if (expect_false ((cnt) > (cur))) \
576 { \
577 int ocur_ = (cur); \
578 (base) = (type *)array_realloc \
579 (sizeof (type), (base), &(cur), (cnt)); \
580 init ((base) + (ocur_), (cur) - ocur_); \
581 }
582
583 #if 0
584 #define array_slim(type,stem) \
585 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
586 { \
587 stem ## max = array_roundsize (stem ## cnt >> 1); \
588 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
589 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
590 }
591 #endif
592
593 #define array_free(stem, idx) \
594 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
595
596 /*****************************************************************************/
597
598 void noinline
599 ev_feed_event (EV_P_ void *w, int revents)
600 {
601 W w_ = (W)w;
602 int pri = ABSPRI (w_);
603
604 if (expect_false (w_->pending))
605 pendings [pri][w_->pending - 1].events |= revents;
606 else
607 {
608 w_->pending = ++pendingcnt [pri];
609 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
610 pendings [pri][w_->pending - 1].w = w_;
611 pendings [pri][w_->pending - 1].events = revents;
612 }
613 }
614
615 void inline_speed
616 queue_events (EV_P_ W *events, int eventcnt, int type)
617 {
618 int i;
619
620 for (i = 0; i < eventcnt; ++i)
621 ev_feed_event (EV_A_ events [i], type);
622 }
623
624 /*****************************************************************************/
625
626 void inline_size
627 anfds_init (ANFD *base, int count)
628 {
629 while (count--)
630 {
631 base->head = 0;
632 base->events = EV_NONE;
633 base->reify = 0;
634
635 ++base;
636 }
637 }
638
639 void inline_speed
640 fd_event (EV_P_ int fd, int revents)
641 {
642 ANFD *anfd = anfds + fd;
643 ev_io *w;
644
645 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
646 {
647 int ev = w->events & revents;
648
649 if (ev)
650 ev_feed_event (EV_A_ (W)w, ev);
651 }
652 }
653
654 void
655 ev_feed_fd_event (EV_P_ int fd, int revents)
656 {
657 if (fd >= 0 && fd < anfdmax)
658 fd_event (EV_A_ fd, revents);
659 }
660
661 void inline_size
662 fd_reify (EV_P)
663 {
664 int i;
665
666 for (i = 0; i < fdchangecnt; ++i)
667 {
668 int fd = fdchanges [i];
669 ANFD *anfd = anfds + fd;
670 ev_io *w;
671
672 unsigned char events = 0;
673
674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
675 events |= (unsigned char)w->events;
676
677 #if EV_SELECT_IS_WINSOCKET
678 if (events)
679 {
680 unsigned long argp;
681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
684 anfd->handle = _get_osfhandle (fd);
685 #endif
686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
687 }
688 #endif
689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
694 anfd->reify = 0;
695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
700 }
701
702 fdchangecnt = 0;
703 }
704
705 void inline_size
706 fd_change (EV_P_ int fd, int flags)
707 {
708 unsigned char reify = anfds [fd].reify;
709 anfds [fd].reify |= flags;
710
711 if (expect_true (!reify))
712 {
713 ++fdchangecnt;
714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
715 fdchanges [fdchangecnt - 1] = fd;
716 }
717 }
718
719 void inline_speed
720 fd_kill (EV_P_ int fd)
721 {
722 ev_io *w;
723
724 while ((w = (ev_io *)anfds [fd].head))
725 {
726 ev_io_stop (EV_A_ w);
727 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
728 }
729 }
730
731 int inline_size
732 fd_valid (int fd)
733 {
734 #ifdef _WIN32
735 return _get_osfhandle (fd) != -1;
736 #else
737 return fcntl (fd, F_GETFD) != -1;
738 #endif
739 }
740
741 /* called on EBADF to verify fds */
742 static void noinline
743 fd_ebadf (EV_P)
744 {
745 int fd;
746
747 for (fd = 0; fd < anfdmax; ++fd)
748 if (anfds [fd].events)
749 if (!fd_valid (fd) == -1 && errno == EBADF)
750 fd_kill (EV_A_ fd);
751 }
752
753 /* called on ENOMEM in select/poll to kill some fds and retry */
754 static void noinline
755 fd_enomem (EV_P)
756 {
757 int fd;
758
759 for (fd = anfdmax; fd--; )
760 if (anfds [fd].events)
761 {
762 fd_kill (EV_A_ fd);
763 return;
764 }
765 }
766
767 /* usually called after fork if backend needs to re-arm all fds from scratch */
768 static void noinline
769 fd_rearm_all (EV_P)
770 {
771 int fd;
772
773 for (fd = 0; fd < anfdmax; ++fd)
774 if (anfds [fd].events)
775 {
776 anfds [fd].events = 0;
777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
778 }
779 }
780
781 /*****************************************************************************/
782
783 /*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789 /*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795 #define EV_USE_4HEAP !EV_MINIMAL
796 #if EV_USE_4HEAP
797
798 #define DHEAP 4
799 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801 /* towards the root */
802 void inline_speed
803 upheap (ANHE *heap, int k)
804 {
805 ANHE he = heap [k];
806
807 for (;;)
808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
814 heap [k] = heap [p];
815 ev_active (ANHE_w (heap [k])) = k;
816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821 }
822
823 /* away from the root */
824 void inline_speed
825 downheap (ANHE *heap, int N, int k)
826 {
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865 }
866
867 #else // 4HEAP
868
869 #define HEAP0 1
870
871 /* towards the root */
872 void inline_speed
873 upheap (ANHE *heap, int k)
874 {
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
890 heap [k] = w;
891 ev_active (ANHE_w (heap [k])) = k;
892 }
893
894 /* away from the root */
895 void inline_speed
896 downheap (ANHE *heap, int N, int k)
897 {
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N)
905 break;
906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921 }
922 #endif
923
924 void inline_size
925 adjustheap (ANHE *heap, int N, int k)
926 {
927 upheap (heap, k);
928 downheap (heap, N, k);
929 }
930
931 /*****************************************************************************/
932
933 typedef struct
934 {
935 WL head;
936 EV_ATOMIC_T gotsig;
937 } ANSIG;
938
939 static ANSIG *signals;
940 static int signalmax;
941
942 static EV_ATOMIC_T gotsig;
943
944 void inline_size
945 signals_init (ANSIG *base, int count)
946 {
947 while (count--)
948 {
949 base->head = 0;
950 base->gotsig = 0;
951
952 ++base;
953 }
954 }
955
956 /*****************************************************************************/
957
958 void inline_speed
959 fd_intern (int fd)
960 {
961 #ifdef _WIN32
962 int arg = 1;
963 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
964 #else
965 fcntl (fd, F_SETFD, FD_CLOEXEC);
966 fcntl (fd, F_SETFL, O_NONBLOCK);
967 #endif
968 }
969
970 static void noinline
971 evpipe_init (EV_P)
972 {
973 if (!ev_is_active (&pipeev))
974 {
975 #if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983 #endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
988 fd_intern (evpipe [0]);
989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
992
993 ev_io_start (EV_A_ &pipeev);
994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996 }
997
998 void inline_size
999 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000 {
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007 #if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014 #endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019 }
1020
1021 static void
1022 pipecb (EV_P_ ev_io *iow, int revents)
1023 {
1024 #if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031 #endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
1036
1037 if (gotsig && ev_is_default_loop (EV_A))
1038 {
1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047 #if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060 #endif
1061 }
1062
1063 /*****************************************************************************/
1064
1065 static void
1066 ev_sighandler (int signum)
1067 {
1068 #if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070 #endif
1071
1072 #if _WIN32
1073 signal (signum, ev_sighandler);
1074 #endif
1075
1076 signals [signum - 1].gotsig = 1;
1077 evpipe_write (EV_A_ &gotsig);
1078 }
1079
1080 void noinline
1081 ev_feed_signal_event (EV_P_ int signum)
1082 {
1083 WL w;
1084
1085 #if EV_MULTIPLICITY
1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087 #endif
1088
1089 --signum;
1090
1091 if (signum < 0 || signum >= signalmax)
1092 return;
1093
1094 signals [signum].gotsig = 0;
1095
1096 for (w = signals [signum].head; w; w = w->next)
1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1098 }
1099
1100 /*****************************************************************************/
1101
1102 static WL childs [EV_PID_HASHSIZE];
1103
1104 #ifndef _WIN32
1105
1106 static ev_signal childev;
1107
1108 #ifndef WIFCONTINUED
1109 # define WIFCONTINUED(status) 0
1110 #endif
1111
1112 void inline_speed
1113 child_reap (EV_P_ int chain, int pid, int status)
1114 {
1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1117
1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
1122 {
1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1124 w->rpid = pid;
1125 w->rstatus = status;
1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1127 }
1128 }
1129 }
1130
1131 #ifndef WCONTINUED
1132 # define WCONTINUED 0
1133 #endif
1134
1135 static void
1136 childcb (EV_P_ ev_signal *sw, int revents)
1137 {
1138 int pid, status;
1139
1140 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1141 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1142 if (!WCONTINUED
1143 || errno != EINVAL
1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1145 return;
1146
1147 /* make sure we are called again until all children have been reaped */
1148 /* we need to do it this way so that the callback gets called before we continue */
1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1150
1151 child_reap (EV_A_ pid, pid, status);
1152 if (EV_PID_HASHSIZE > 1)
1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1154 }
1155
1156 #endif
1157
1158 /*****************************************************************************/
1159
1160 #if EV_USE_PORT
1161 # include "ev_port.c"
1162 #endif
1163 #if EV_USE_KQUEUE
1164 # include "ev_kqueue.c"
1165 #endif
1166 #if EV_USE_EPOLL
1167 # include "ev_epoll.c"
1168 #endif
1169 #if EV_USE_POLL
1170 # include "ev_poll.c"
1171 #endif
1172 #if EV_USE_SELECT
1173 # include "ev_select.c"
1174 #endif
1175
1176 int
1177 ev_version_major (void)
1178 {
1179 return EV_VERSION_MAJOR;
1180 }
1181
1182 int
1183 ev_version_minor (void)
1184 {
1185 return EV_VERSION_MINOR;
1186 }
1187
1188 /* return true if we are running with elevated privileges and should ignore env variables */
1189 int inline_size
1190 enable_secure (void)
1191 {
1192 #ifdef _WIN32
1193 return 0;
1194 #else
1195 return getuid () != geteuid ()
1196 || getgid () != getegid ();
1197 #endif
1198 }
1199
1200 unsigned int
1201 ev_supported_backends (void)
1202 {
1203 unsigned int flags = 0;
1204
1205 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1206 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1207 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1208 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1209 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1210
1211 return flags;
1212 }
1213
1214 unsigned int
1215 ev_recommended_backends (void)
1216 {
1217 unsigned int flags = ev_supported_backends ();
1218
1219 #ifndef __NetBSD__
1220 /* kqueue is borked on everything but netbsd apparently */
1221 /* it usually doesn't work correctly on anything but sockets and pipes */
1222 flags &= ~EVBACKEND_KQUEUE;
1223 #endif
1224 #ifdef __APPLE__
1225 // flags &= ~EVBACKEND_KQUEUE; for documentation
1226 flags &= ~EVBACKEND_POLL;
1227 #endif
1228
1229 return flags;
1230 }
1231
1232 unsigned int
1233 ev_embeddable_backends (void)
1234 {
1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1236
1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
1242 }
1243
1244 unsigned int
1245 ev_backend (EV_P)
1246 {
1247 return backend;
1248 }
1249
1250 unsigned int
1251 ev_loop_count (EV_P)
1252 {
1253 return loop_count;
1254 }
1255
1256 void
1257 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258 {
1259 io_blocktime = interval;
1260 }
1261
1262 void
1263 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264 {
1265 timeout_blocktime = interval;
1266 }
1267
1268 static void noinline
1269 loop_init (EV_P_ unsigned int flags)
1270 {
1271 if (!backend)
1272 {
1273 #if EV_USE_MONOTONIC
1274 {
1275 struct timespec ts;
1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1277 have_monotonic = 1;
1278 }
1279 #endif
1280
1281 ev_rt_now = ev_time ();
1282 mn_now = get_clock ();
1283 now_floor = mn_now;
1284 rtmn_diff = ev_rt_now - mn_now;
1285
1286 io_blocktime = 0.;
1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291 #if EV_USE_INOTIFY
1292 fs_fd = -2;
1293 #endif
1294
1295 /* pid check not overridable via env */
1296 #ifndef _WIN32
1297 if (flags & EVFLAG_FORKCHECK)
1298 curpid = getpid ();
1299 #endif
1300
1301 if (!(flags & EVFLAG_NOENV)
1302 && !enable_secure ()
1303 && getenv ("LIBEV_FLAGS"))
1304 flags = atoi (getenv ("LIBEV_FLAGS"));
1305
1306 if (!(flags & 0x0000ffffU))
1307 flags |= ev_recommended_backends ();
1308
1309 #if EV_USE_PORT
1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1311 #endif
1312 #if EV_USE_KQUEUE
1313 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1314 #endif
1315 #if EV_USE_EPOLL
1316 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1317 #endif
1318 #if EV_USE_POLL
1319 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1320 #endif
1321 #if EV_USE_SELECT
1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1323 #endif
1324
1325 ev_init (&pipeev, pipecb);
1326 ev_set_priority (&pipeev, EV_MAXPRI);
1327 }
1328 }
1329
1330 static void noinline
1331 loop_destroy (EV_P)
1332 {
1333 int i;
1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340 #if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343 #endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1350 }
1351
1352 #if EV_USE_INOTIFY
1353 if (fs_fd >= 0)
1354 close (fs_fd);
1355 #endif
1356
1357 if (backend_fd >= 0)
1358 close (backend_fd);
1359
1360 #if EV_USE_PORT
1361 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1362 #endif
1363 #if EV_USE_KQUEUE
1364 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1365 #endif
1366 #if EV_USE_EPOLL
1367 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1368 #endif
1369 #if EV_USE_POLL
1370 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1371 #endif
1372 #if EV_USE_SELECT
1373 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1374 #endif
1375
1376 for (i = NUMPRI; i--; )
1377 {
1378 array_free (pending, [i]);
1379 #if EV_IDLE_ENABLE
1380 array_free (idle, [i]);
1381 #endif
1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
1385
1386 /* have to use the microsoft-never-gets-it-right macro */
1387 array_free (fdchange, EMPTY);
1388 array_free (timer, EMPTY);
1389 #if EV_PERIODIC_ENABLE
1390 array_free (periodic, EMPTY);
1391 #endif
1392 #if EV_FORK_ENABLE
1393 array_free (fork, EMPTY);
1394 #endif
1395 array_free (prepare, EMPTY);
1396 array_free (check, EMPTY);
1397 #if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399 #endif
1400
1401 backend = 0;
1402 }
1403
1404 #if EV_USE_INOTIFY
1405 void inline_size infy_fork (EV_P);
1406 #endif
1407
1408 void inline_size
1409 loop_fork (EV_P)
1410 {
1411 #if EV_USE_PORT
1412 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1413 #endif
1414 #if EV_USE_KQUEUE
1415 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1416 #endif
1417 #if EV_USE_EPOLL
1418 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1419 #endif
1420 #if EV_USE_INOTIFY
1421 infy_fork (EV_A);
1422 #endif
1423
1424 if (ev_is_active (&pipeev))
1425 {
1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429 #if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431 #endif
1432
1433 ev_ref (EV_A);
1434 ev_io_stop (EV_A_ &pipeev);
1435
1436 #if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439 #endif
1440
1441 if (evpipe [0] >= 0)
1442 {
1443 close (evpipe [0]);
1444 close (evpipe [1]);
1445 }
1446
1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
1450 }
1451
1452 postfork = 0;
1453 }
1454
1455 #if EV_MULTIPLICITY
1456 struct ev_loop *
1457 ev_loop_new (unsigned int flags)
1458 {
1459 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1460
1461 memset (loop, 0, sizeof (struct ev_loop));
1462
1463 loop_init (EV_A_ flags);
1464
1465 if (ev_backend (EV_A))
1466 return loop;
1467
1468 return 0;
1469 }
1470
1471 void
1472 ev_loop_destroy (EV_P)
1473 {
1474 loop_destroy (EV_A);
1475 ev_free (loop);
1476 }
1477
1478 void
1479 ev_loop_fork (EV_P)
1480 {
1481 postfork = 1; /* must be in line with ev_default_fork */
1482 }
1483 #endif
1484
1485 #if EV_MULTIPLICITY
1486 struct ev_loop *
1487 ev_default_loop_init (unsigned int flags)
1488 #else
1489 int
1490 ev_default_loop (unsigned int flags)
1491 #endif
1492 {
1493 if (!ev_default_loop_ptr)
1494 {
1495 #if EV_MULTIPLICITY
1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1497 #else
1498 ev_default_loop_ptr = 1;
1499 #endif
1500
1501 loop_init (EV_A_ flags);
1502
1503 if (ev_backend (EV_A))
1504 {
1505 #ifndef _WIN32
1506 ev_signal_init (&childev, childcb, SIGCHLD);
1507 ev_set_priority (&childev, EV_MAXPRI);
1508 ev_signal_start (EV_A_ &childev);
1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
1510 #endif
1511 }
1512 else
1513 ev_default_loop_ptr = 0;
1514 }
1515
1516 return ev_default_loop_ptr;
1517 }
1518
1519 void
1520 ev_default_destroy (void)
1521 {
1522 #if EV_MULTIPLICITY
1523 struct ev_loop *loop = ev_default_loop_ptr;
1524 #endif
1525
1526 #ifndef _WIN32
1527 ev_ref (EV_A); /* child watcher */
1528 ev_signal_stop (EV_A_ &childev);
1529 #endif
1530
1531 loop_destroy (EV_A);
1532 }
1533
1534 void
1535 ev_default_fork (void)
1536 {
1537 #if EV_MULTIPLICITY
1538 struct ev_loop *loop = ev_default_loop_ptr;
1539 #endif
1540
1541 if (backend)
1542 postfork = 1; /* must be in line with ev_loop_fork */
1543 }
1544
1545 /*****************************************************************************/
1546
1547 void
1548 ev_invoke (EV_P_ void *w, int revents)
1549 {
1550 EV_CB_INVOKE ((W)w, revents);
1551 }
1552
1553 void inline_speed
1554 call_pending (EV_P)
1555 {
1556 int pri;
1557
1558 for (pri = NUMPRI; pri--; )
1559 while (pendingcnt [pri])
1560 {
1561 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1562
1563 if (expect_true (p->w))
1564 {
1565 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1566
1567 p->w->pending = 0;
1568 EV_CB_INVOKE (p->w, p->events);
1569 }
1570 }
1571 }
1572
1573 #if EV_IDLE_ENABLE
1574 void inline_size
1575 idle_reify (EV_P)
1576 {
1577 if (expect_false (idleall))
1578 {
1579 int pri;
1580
1581 for (pri = NUMPRI; pri--; )
1582 {
1583 if (pendingcnt [pri])
1584 break;
1585
1586 if (idlecnt [pri])
1587 {
1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1589 break;
1590 }
1591 }
1592 }
1593 }
1594 #endif
1595
1596 void inline_size
1597 timers_reify (EV_P)
1598 {
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1600 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604
1605 /* first reschedule or stop timer */
1606 if (w->repeat)
1607 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
1614 downheap (timers, timercnt, HEAP0);
1615 }
1616 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 }
1621 }
1622
1623 #if EV_PERIODIC_ENABLE
1624 void inline_size
1625 periodics_reify (EV_P)
1626 {
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1628 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632
1633 /* first reschedule or stop timer */
1634 if (w->reschedule_cb)
1635 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1638 downheap (periodics, periodiccnt, 1);
1639 }
1640 else if (w->interval)
1641 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1645 downheap (periodics, periodiccnt, HEAP0);
1646 }
1647 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 }
1652 }
1653
1654 static void noinline
1655 periodics_reschedule (EV_P)
1656 {
1657 int i;
1658
1659 /* adjust periodics after time jump */
1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1661 {
1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1663
1664 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1671 for (i = periodiccnt >> 1; --i; )
1672 downheap (periodics, periodiccnt, i + HEAP0);
1673 }
1674 #endif
1675
1676 void inline_speed
1677 time_update (EV_P_ ev_tstamp max_block)
1678 {
1679 int i;
1680
1681 #if EV_USE_MONOTONIC
1682 if (expect_true (have_monotonic))
1683 {
1684 ev_tstamp odiff = rtmn_diff;
1685
1686 mn_now = get_clock ();
1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1691 {
1692 ev_rt_now = rtmn_diff + mn_now;
1693 return;
1694 }
1695
1696 now_floor = mn_now;
1697 ev_rt_now = ev_time ();
1698
1699 /* loop a few times, before making important decisions.
1700 * on the choice of "4": one iteration isn't enough,
1701 * in case we get preempted during the calls to
1702 * ev_time and get_clock. a second call is almost guaranteed
1703 * to succeed in that case, though. and looping a few more times
1704 * doesn't hurt either as we only do this on time-jumps or
1705 * in the unlikely event of having been preempted here.
1706 */
1707 for (i = 4; --i; )
1708 {
1709 rtmn_diff = ev_rt_now - mn_now;
1710
1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1712 return; /* all is well */
1713
1714 ev_rt_now = ev_time ();
1715 mn_now = get_clock ();
1716 now_floor = mn_now;
1717 }
1718
1719 # if EV_PERIODIC_ENABLE
1720 periodics_reschedule (EV_A);
1721 # endif
1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1724 }
1725 else
1726 #endif
1727 {
1728 ev_rt_now = ev_time ();
1729
1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1731 {
1732 #if EV_PERIODIC_ENABLE
1733 periodics_reschedule (EV_A);
1734 #endif
1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1736 for (i = 0; i < timercnt; ++i)
1737 {
1738 ANHE *he = timers + i + HEAP0;
1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he);
1741 }
1742 }
1743
1744 mn_now = ev_rt_now;
1745 }
1746 }
1747
1748 void
1749 ev_ref (EV_P)
1750 {
1751 ++activecnt;
1752 }
1753
1754 void
1755 ev_unref (EV_P)
1756 {
1757 --activecnt;
1758 }
1759
1760 static int loop_done;
1761
1762 void
1763 ev_loop (EV_P_ int flags)
1764 {
1765 loop_done = EVUNLOOP_CANCEL;
1766
1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1768
1769 do
1770 {
1771 #ifndef _WIN32
1772 if (expect_false (curpid)) /* penalise the forking check even more */
1773 if (expect_false (getpid () != curpid))
1774 {
1775 curpid = getpid ();
1776 postfork = 1;
1777 }
1778 #endif
1779
1780 #if EV_FORK_ENABLE
1781 /* we might have forked, so queue fork handlers */
1782 if (expect_false (postfork))
1783 if (forkcnt)
1784 {
1785 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1786 call_pending (EV_A);
1787 }
1788 #endif
1789
1790 /* queue prepare watchers (and execute them) */
1791 if (expect_false (preparecnt))
1792 {
1793 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1794 call_pending (EV_A);
1795 }
1796
1797 if (expect_false (!activecnt))
1798 break;
1799
1800 /* we might have forked, so reify kernel state if necessary */
1801 if (expect_false (postfork))
1802 loop_fork (EV_A);
1803
1804 /* update fd-related kernel structures */
1805 fd_reify (EV_A);
1806
1807 /* calculate blocking time */
1808 {
1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
1811
1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1813 {
1814 /* update time to cancel out callback processing overhead */
1815 time_update (EV_A_ 1e100);
1816
1817 waittime = MAX_BLOCKTIME;
1818
1819 if (timercnt)
1820 {
1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1822 if (waittime > to) waittime = to;
1823 }
1824
1825 #if EV_PERIODIC_ENABLE
1826 if (periodiccnt)
1827 {
1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1829 if (waittime > to) waittime = to;
1830 }
1831 #endif
1832
1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
1846 }
1847
1848 ++loop_count;
1849 backend_poll (EV_A_ waittime);
1850
1851 /* update ev_rt_now, do magic */
1852 time_update (EV_A_ waittime + sleeptime);
1853 }
1854
1855 /* queue pending timers and reschedule them */
1856 timers_reify (EV_A); /* relative timers called last */
1857 #if EV_PERIODIC_ENABLE
1858 periodics_reify (EV_A); /* absolute timers called first */
1859 #endif
1860
1861 #if EV_IDLE_ENABLE
1862 /* queue idle watchers unless other events are pending */
1863 idle_reify (EV_A);
1864 #endif
1865
1866 /* queue check watchers, to be executed first */
1867 if (expect_false (checkcnt))
1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1869
1870 call_pending (EV_A);
1871 }
1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1877
1878 if (loop_done == EVUNLOOP_ONE)
1879 loop_done = EVUNLOOP_CANCEL;
1880 }
1881
1882 void
1883 ev_unloop (EV_P_ int how)
1884 {
1885 loop_done = how;
1886 }
1887
1888 /*****************************************************************************/
1889
1890 void inline_size
1891 wlist_add (WL *head, WL elem)
1892 {
1893 elem->next = *head;
1894 *head = elem;
1895 }
1896
1897 void inline_size
1898 wlist_del (WL *head, WL elem)
1899 {
1900 while (*head)
1901 {
1902 if (*head == elem)
1903 {
1904 *head = elem->next;
1905 return;
1906 }
1907
1908 head = &(*head)->next;
1909 }
1910 }
1911
1912 void inline_speed
1913 clear_pending (EV_P_ W w)
1914 {
1915 if (w->pending)
1916 {
1917 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1918 w->pending = 0;
1919 }
1920 }
1921
1922 int
1923 ev_clear_pending (EV_P_ void *w)
1924 {
1925 W w_ = (W)w;
1926 int pending = w_->pending;
1927
1928 if (expect_true (pending))
1929 {
1930 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1931 w_->pending = 0;
1932 p->w = 0;
1933 return p->events;
1934 }
1935 else
1936 return 0;
1937 }
1938
1939 void inline_size
1940 pri_adjust (EV_P_ W w)
1941 {
1942 int pri = w->priority;
1943 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1944 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1945 w->priority = pri;
1946 }
1947
1948 void inline_speed
1949 ev_start (EV_P_ W w, int active)
1950 {
1951 pri_adjust (EV_A_ w);
1952 w->active = active;
1953 ev_ref (EV_A);
1954 }
1955
1956 void inline_size
1957 ev_stop (EV_P_ W w)
1958 {
1959 ev_unref (EV_A);
1960 w->active = 0;
1961 }
1962
1963 /*****************************************************************************/
1964
1965 void noinline
1966 ev_io_start (EV_P_ ev_io *w)
1967 {
1968 int fd = w->fd;
1969
1970 if (expect_false (ev_is_active (w)))
1971 return;
1972
1973 assert (("ev_io_start called with negative fd", fd >= 0));
1974
1975 ev_start (EV_A_ (W)w, 1);
1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1977 wlist_add (&anfds[fd].head, (WL)w);
1978
1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
1981 }
1982
1983 void noinline
1984 ev_io_stop (EV_P_ ev_io *w)
1985 {
1986 clear_pending (EV_A_ (W)w);
1987 if (expect_false (!ev_is_active (w)))
1988 return;
1989
1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1991
1992 wlist_del (&anfds[w->fd].head, (WL)w);
1993 ev_stop (EV_A_ (W)w);
1994
1995 fd_change (EV_A_ w->fd, 1);
1996 }
1997
1998 void noinline
1999 ev_timer_start (EV_P_ ev_timer *w)
2000 {
2001 if (expect_false (ev_is_active (w)))
2002 return;
2003
2004 ev_at (w) += mn_now;
2005
2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2007
2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
2013
2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
2015 }
2016
2017 void noinline
2018 ev_timer_stop (EV_P_ ev_timer *w)
2019 {
2020 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w)))
2022 return;
2023
2024 {
2025 int active = ev_active (w);
2026
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028
2029 if (expect_true (active < timercnt + HEAP0 - 1))
2030 {
2031 timers [active] = timers [timercnt + HEAP0 - 1];
2032 adjustheap (timers, timercnt, active);
2033 }
2034
2035 --timercnt;
2036 }
2037
2038 ev_at (w) -= mn_now;
2039
2040 ev_stop (EV_A_ (W)w);
2041 }
2042
2043 void noinline
2044 ev_timer_again (EV_P_ ev_timer *w)
2045 {
2046 if (ev_is_active (w))
2047 {
2048 if (w->repeat)
2049 {
2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
2052 adjustheap (timers, timercnt, ev_active (w));
2053 }
2054 else
2055 ev_timer_stop (EV_A_ w);
2056 }
2057 else if (w->repeat)
2058 {
2059 ev_at (w) = w->repeat;
2060 ev_timer_start (EV_A_ w);
2061 }
2062 }
2063
2064 #if EV_PERIODIC_ENABLE
2065 void noinline
2066 ev_periodic_start (EV_P_ ev_periodic *w)
2067 {
2068 if (expect_false (ev_is_active (w)))
2069 return;
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 {
2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2076 /* this formula differs from the one in periodic_reify because we do not always round up */
2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2078 }
2079 else
2080 ev_at (w) = w->offset;
2081
2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2085 upheap (periodics, ev_active (w));
2086
2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2088 }
2089
2090 void noinline
2091 ev_periodic_stop (EV_P_ ev_periodic *w)
2092 {
2093 clear_pending (EV_A_ (W)w);
2094 if (expect_false (!ev_is_active (w)))
2095 return;
2096
2097 {
2098 int active = ev_active (w);
2099
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101
2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
2103 {
2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2105 adjustheap (periodics, periodiccnt, active);
2106 }
2107
2108 --periodiccnt;
2109 }
2110
2111 ev_stop (EV_A_ (W)w);
2112 }
2113
2114 void noinline
2115 ev_periodic_again (EV_P_ ev_periodic *w)
2116 {
2117 /* TODO: use adjustheap and recalculation */
2118 ev_periodic_stop (EV_A_ w);
2119 ev_periodic_start (EV_A_ w);
2120 }
2121 #endif
2122
2123 #ifndef SA_RESTART
2124 # define SA_RESTART 0
2125 #endif
2126
2127 void noinline
2128 ev_signal_start (EV_P_ ev_signal *w)
2129 {
2130 #if EV_MULTIPLICITY
2131 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2132 #endif
2133 if (expect_false (ev_is_active (w)))
2134 return;
2135
2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2137
2138 evpipe_init (EV_A);
2139
2140 {
2141 #ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145 #endif
2146
2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149 #ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151 #endif
2152 }
2153
2154 ev_start (EV_A_ (W)w, 1);
2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
2156
2157 if (!((WL)w)->next)
2158 {
2159 #if _WIN32
2160 signal (w->signum, ev_sighandler);
2161 #else
2162 struct sigaction sa;
2163 sa.sa_handler = ev_sighandler;
2164 sigfillset (&sa.sa_mask);
2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2166 sigaction (w->signum, &sa, 0);
2167 #endif
2168 }
2169 }
2170
2171 void noinline
2172 ev_signal_stop (EV_P_ ev_signal *w)
2173 {
2174 clear_pending (EV_A_ (W)w);
2175 if (expect_false (!ev_is_active (w)))
2176 return;
2177
2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
2179 ev_stop (EV_A_ (W)w);
2180
2181 if (!signals [w->signum - 1].head)
2182 signal (w->signum, SIG_DFL);
2183 }
2184
2185 void
2186 ev_child_start (EV_P_ ev_child *w)
2187 {
2188 #if EV_MULTIPLICITY
2189 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2190 #endif
2191 if (expect_false (ev_is_active (w)))
2192 return;
2193
2194 ev_start (EV_A_ (W)w, 1);
2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2196 }
2197
2198 void
2199 ev_child_stop (EV_P_ ev_child *w)
2200 {
2201 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w)))
2203 return;
2204
2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2206 ev_stop (EV_A_ (W)w);
2207 }
2208
2209 #if EV_STAT_ENABLE
2210
2211 # ifdef _WIN32
2212 # undef lstat
2213 # define lstat(a,b) _stati64 (a,b)
2214 # endif
2215
2216 #define DEF_STAT_INTERVAL 5.0074891
2217 #define MIN_STAT_INTERVAL 0.1074891
2218
2219 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2220
2221 #if EV_USE_INOTIFY
2222 # define EV_INOTIFY_BUFSIZE 8192
2223
2224 static void noinline
2225 infy_add (EV_P_ ev_stat *w)
2226 {
2227 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2228
2229 if (w->wd < 0)
2230 {
2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2232
2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2237 {
2238 char path [4096];
2239 strcpy (path, w->path);
2240
2241 do
2242 {
2243 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2244 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2245
2246 char *pend = strrchr (path, '/');
2247
2248 if (!pend)
2249 break; /* whoops, no '/', complain to your admin */
2250
2251 *pend = 0;
2252 w->wd = inotify_add_watch (fs_fd, path, mask);
2253 }
2254 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2255 }
2256 }
2257 else
2258 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2259
2260 if (w->wd >= 0)
2261 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2262 }
2263
2264 static void noinline
2265 infy_del (EV_P_ ev_stat *w)
2266 {
2267 int slot;
2268 int wd = w->wd;
2269
2270 if (wd < 0)
2271 return;
2272
2273 w->wd = -2;
2274 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2275 wlist_del (&fs_hash [slot].head, (WL)w);
2276
2277 /* remove this watcher, if others are watching it, they will rearm */
2278 inotify_rm_watch (fs_fd, wd);
2279 }
2280
2281 static void noinline
2282 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2283 {
2284 if (slot < 0)
2285 /* overflow, need to check for all hahs slots */
2286 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2287 infy_wd (EV_A_ slot, wd, ev);
2288 else
2289 {
2290 WL w_;
2291
2292 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2293 {
2294 ev_stat *w = (ev_stat *)w_;
2295 w_ = w_->next; /* lets us remove this watcher and all before it */
2296
2297 if (w->wd == wd || wd == -1)
2298 {
2299 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2300 {
2301 w->wd = -1;
2302 infy_add (EV_A_ w); /* re-add, no matter what */
2303 }
2304
2305 stat_timer_cb (EV_A_ &w->timer, 0);
2306 }
2307 }
2308 }
2309 }
2310
2311 static void
2312 infy_cb (EV_P_ ev_io *w, int revents)
2313 {
2314 char buf [EV_INOTIFY_BUFSIZE];
2315 struct inotify_event *ev = (struct inotify_event *)buf;
2316 int ofs;
2317 int len = read (fs_fd, buf, sizeof (buf));
2318
2319 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2320 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2321 }
2322
2323 void inline_size
2324 infy_init (EV_P)
2325 {
2326 if (fs_fd != -2)
2327 return;
2328
2329 fs_fd = inotify_init ();
2330
2331 if (fs_fd >= 0)
2332 {
2333 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2334 ev_set_priority (&fs_w, EV_MAXPRI);
2335 ev_io_start (EV_A_ &fs_w);
2336 }
2337 }
2338
2339 void inline_size
2340 infy_fork (EV_P)
2341 {
2342 int slot;
2343
2344 if (fs_fd < 0)
2345 return;
2346
2347 close (fs_fd);
2348 fs_fd = inotify_init ();
2349
2350 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2351 {
2352 WL w_ = fs_hash [slot].head;
2353 fs_hash [slot].head = 0;
2354
2355 while (w_)
2356 {
2357 ev_stat *w = (ev_stat *)w_;
2358 w_ = w_->next; /* lets us add this watcher */
2359
2360 w->wd = -1;
2361
2362 if (fs_fd >= 0)
2363 infy_add (EV_A_ w); /* re-add, no matter what */
2364 else
2365 ev_timer_start (EV_A_ &w->timer);
2366 }
2367
2368 }
2369 }
2370
2371 #endif
2372
2373 void
2374 ev_stat_stat (EV_P_ ev_stat *w)
2375 {
2376 if (lstat (w->path, &w->attr) < 0)
2377 w->attr.st_nlink = 0;
2378 else if (!w->attr.st_nlink)
2379 w->attr.st_nlink = 1;
2380 }
2381
2382 static void noinline
2383 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2384 {
2385 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2386
2387 /* we copy this here each the time so that */
2388 /* prev has the old value when the callback gets invoked */
2389 w->prev = w->attr;
2390 ev_stat_stat (EV_A_ w);
2391
2392 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2393 if (
2394 w->prev.st_dev != w->attr.st_dev
2395 || w->prev.st_ino != w->attr.st_ino
2396 || w->prev.st_mode != w->attr.st_mode
2397 || w->prev.st_nlink != w->attr.st_nlink
2398 || w->prev.st_uid != w->attr.st_uid
2399 || w->prev.st_gid != w->attr.st_gid
2400 || w->prev.st_rdev != w->attr.st_rdev
2401 || w->prev.st_size != w->attr.st_size
2402 || w->prev.st_atime != w->attr.st_atime
2403 || w->prev.st_mtime != w->attr.st_mtime
2404 || w->prev.st_ctime != w->attr.st_ctime
2405 ) {
2406 #if EV_USE_INOTIFY
2407 infy_del (EV_A_ w);
2408 infy_add (EV_A_ w);
2409 ev_stat_stat (EV_A_ w); /* avoid race... */
2410 #endif
2411
2412 ev_feed_event (EV_A_ w, EV_STAT);
2413 }
2414 }
2415
2416 void
2417 ev_stat_start (EV_P_ ev_stat *w)
2418 {
2419 if (expect_false (ev_is_active (w)))
2420 return;
2421
2422 /* since we use memcmp, we need to clear any padding data etc. */
2423 memset (&w->prev, 0, sizeof (ev_statdata));
2424 memset (&w->attr, 0, sizeof (ev_statdata));
2425
2426 ev_stat_stat (EV_A_ w);
2427
2428 if (w->interval < MIN_STAT_INTERVAL)
2429 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2430
2431 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2432 ev_set_priority (&w->timer, ev_priority (w));
2433
2434 #if EV_USE_INOTIFY
2435 infy_init (EV_A);
2436
2437 if (fs_fd >= 0)
2438 infy_add (EV_A_ w);
2439 else
2440 #endif
2441 ev_timer_start (EV_A_ &w->timer);
2442
2443 ev_start (EV_A_ (W)w, 1);
2444 }
2445
2446 void
2447 ev_stat_stop (EV_P_ ev_stat *w)
2448 {
2449 clear_pending (EV_A_ (W)w);
2450 if (expect_false (!ev_is_active (w)))
2451 return;
2452
2453 #if EV_USE_INOTIFY
2454 infy_del (EV_A_ w);
2455 #endif
2456 ev_timer_stop (EV_A_ &w->timer);
2457
2458 ev_stop (EV_A_ (W)w);
2459 }
2460 #endif
2461
2462 #if EV_IDLE_ENABLE
2463 void
2464 ev_idle_start (EV_P_ ev_idle *w)
2465 {
2466 if (expect_false (ev_is_active (w)))
2467 return;
2468
2469 pri_adjust (EV_A_ (W)w);
2470
2471 {
2472 int active = ++idlecnt [ABSPRI (w)];
2473
2474 ++idleall;
2475 ev_start (EV_A_ (W)w, active);
2476
2477 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2478 idles [ABSPRI (w)][active - 1] = w;
2479 }
2480 }
2481
2482 void
2483 ev_idle_stop (EV_P_ ev_idle *w)
2484 {
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2494
2495 ev_stop (EV_A_ (W)w);
2496 --idleall;
2497 }
2498 }
2499 #endif
2500
2501 void
2502 ev_prepare_start (EV_P_ ev_prepare *w)
2503 {
2504 if (expect_false (ev_is_active (w)))
2505 return;
2506
2507 ev_start (EV_A_ (W)w, ++preparecnt);
2508 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2509 prepares [preparecnt - 1] = w;
2510 }
2511
2512 void
2513 ev_prepare_stop (EV_P_ ev_prepare *w)
2514 {
2515 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w)))
2517 return;
2518
2519 {
2520 int active = ev_active (w);
2521
2522 prepares [active - 1] = prepares [--preparecnt];
2523 ev_active (prepares [active - 1]) = active;
2524 }
2525
2526 ev_stop (EV_A_ (W)w);
2527 }
2528
2529 void
2530 ev_check_start (EV_P_ ev_check *w)
2531 {
2532 if (expect_false (ev_is_active (w)))
2533 return;
2534
2535 ev_start (EV_A_ (W)w, ++checkcnt);
2536 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2537 checks [checkcnt - 1] = w;
2538 }
2539
2540 void
2541 ev_check_stop (EV_P_ ev_check *w)
2542 {
2543 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w)))
2545 return;
2546
2547 {
2548 int active = ev_active (w);
2549
2550 checks [active - 1] = checks [--checkcnt];
2551 ev_active (checks [active - 1]) = active;
2552 }
2553
2554 ev_stop (EV_A_ (W)w);
2555 }
2556
2557 #if EV_EMBED_ENABLE
2558 void noinline
2559 ev_embed_sweep (EV_P_ ev_embed *w)
2560 {
2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2562 }
2563
2564 static void
2565 embed_io_cb (EV_P_ ev_io *io, int revents)
2566 {
2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2568
2569 if (ev_cb (w))
2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2571 else
2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2573 }
2574
2575 static void
2576 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577 {
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589 }
2590
2591 #if 0
2592 static void
2593 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594 {
2595 ev_idle_stop (EV_A_ idle);
2596 }
2597 #endif
2598
2599 void
2600 ev_embed_start (EV_P_ ev_embed *w)
2601 {
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 {
2606 struct ev_loop *loop = w->other;
2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2609 }
2610
2611 ev_set_priority (&w->io, ev_priority (w));
2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2619
2620 ev_start (EV_A_ (W)w, 1);
2621 }
2622
2623 void
2624 ev_embed_stop (EV_P_ ev_embed *w)
2625 {
2626 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w)))
2628 return;
2629
2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2632
2633 ev_stop (EV_A_ (W)w);
2634 }
2635 #endif
2636
2637 #if EV_FORK_ENABLE
2638 void
2639 ev_fork_start (EV_P_ ev_fork *w)
2640 {
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 ev_start (EV_A_ (W)w, ++forkcnt);
2645 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2646 forks [forkcnt - 1] = w;
2647 }
2648
2649 void
2650 ev_fork_stop (EV_P_ ev_fork *w)
2651 {
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 {
2657 int active = ev_active (w);
2658
2659 forks [active - 1] = forks [--forkcnt];
2660 ev_active (forks [active - 1]) = active;
2661 }
2662
2663 ev_stop (EV_A_ (W)w);
2664 }
2665 #endif
2666
2667 #if EV_ASYNC_ENABLE
2668 void
2669 ev_async_start (EV_P_ ev_async *w)
2670 {
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679 }
2680
2681 void
2682 ev_async_stop (EV_P_ ev_async *w)
2683 {
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696 }
2697
2698 void
2699 ev_async_send (EV_P_ ev_async *w)
2700 {
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2703 }
2704 #endif
2705
2706 /*****************************************************************************/
2707
2708 struct ev_once
2709 {
2710 ev_io io;
2711 ev_timer to;
2712 void (*cb)(int revents, void *arg);
2713 void *arg;
2714 };
2715
2716 static void
2717 once_cb (EV_P_ struct ev_once *once, int revents)
2718 {
2719 void (*cb)(int revents, void *arg) = once->cb;
2720 void *arg = once->arg;
2721
2722 ev_io_stop (EV_A_ &once->io);
2723 ev_timer_stop (EV_A_ &once->to);
2724 ev_free (once);
2725
2726 cb (revents, arg);
2727 }
2728
2729 static void
2730 once_cb_io (EV_P_ ev_io *w, int revents)
2731 {
2732 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2733 }
2734
2735 static void
2736 once_cb_to (EV_P_ ev_timer *w, int revents)
2737 {
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
2739 }
2740
2741 void
2742 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2743 {
2744 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2745
2746 if (expect_false (!once))
2747 {
2748 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2749 return;
2750 }
2751
2752 once->cb = cb;
2753 once->arg = arg;
2754
2755 ev_init (&once->io, once_cb_io);
2756 if (fd >= 0)
2757 {
2758 ev_io_set (&once->io, fd, events);
2759 ev_io_start (EV_A_ &once->io);
2760 }
2761
2762 ev_init (&once->to, once_cb_to);
2763 if (timeout >= 0.)
2764 {
2765 ev_timer_set (&once->to, timeout, 0.);
2766 ev_timer_start (EV_A_ &once->to);
2767 }
2768 }
2769
2770 #if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
2772 #endif
2773
2774 #ifdef __cplusplus
2775 }
2776 #endif
2777