ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.242
Committed: Fri May 9 14:07:19 2008 UTC (16 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.241: +12 -6 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_GETTIME
53 # ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 # endif
56 # ifndef EV_USE_REALTIME
57 # define EV_USE_REALTIME 1
58 # endif
59 # else
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 0
62 # endif
63 # ifndef EV_USE_REALTIME
64 # define EV_USE_REALTIME 0
65 # endif
66 # endif
67
68 # ifndef EV_USE_NANOSLEEP
69 # if HAVE_NANOSLEEP
70 # define EV_USE_NANOSLEEP 1
71 # else
72 # define EV_USE_NANOSLEEP 0
73 # endif
74 # endif
75
76 # ifndef EV_USE_SELECT
77 # if HAVE_SELECT && HAVE_SYS_SELECT_H
78 # define EV_USE_SELECT 1
79 # else
80 # define EV_USE_SELECT 0
81 # endif
82 # endif
83
84 # ifndef EV_USE_POLL
85 # if HAVE_POLL && HAVE_POLL_H
86 # define EV_USE_POLL 1
87 # else
88 # define EV_USE_POLL 0
89 # endif
90 # endif
91
92 # ifndef EV_USE_EPOLL
93 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94 # define EV_USE_EPOLL 1
95 # else
96 # define EV_USE_EPOLL 0
97 # endif
98 # endif
99
100 # ifndef EV_USE_KQUEUE
101 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102 # define EV_USE_KQUEUE 1
103 # else
104 # define EV_USE_KQUEUE 0
105 # endif
106 # endif
107
108 # ifndef EV_USE_PORT
109 # if HAVE_PORT_H && HAVE_PORT_CREATE
110 # define EV_USE_PORT 1
111 # else
112 # define EV_USE_PORT 0
113 # endif
114 # endif
115
116 # ifndef EV_USE_INOTIFY
117 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118 # define EV_USE_INOTIFY 1
119 # else
120 # define EV_USE_INOTIFY 0
121 # endif
122 # endif
123
124 # ifndef EV_USE_EVENTFD
125 # if HAVE_EVENTFD
126 # define EV_USE_EVENTFD 1
127 # else
128 # define EV_USE_EVENTFD 0
129 # endif
130 # endif
131
132 #endif
133
134 #include <math.h>
135 #include <stdlib.h>
136 #include <fcntl.h>
137 #include <stddef.h>
138
139 #include <stdio.h>
140
141 #include <assert.h>
142 #include <errno.h>
143 #include <sys/types.h>
144 #include <time.h>
145
146 #include <signal.h>
147
148 #ifdef EV_H
149 # include EV_H
150 #else
151 # include "ev.h"
152 #endif
153
154 #ifndef _WIN32
155 # include <sys/time.h>
156 # include <sys/wait.h>
157 # include <unistd.h>
158 #else
159 # define WIN32_LEAN_AND_MEAN
160 # include <windows.h>
161 # ifndef EV_SELECT_IS_WINSOCKET
162 # define EV_SELECT_IS_WINSOCKET 1
163 # endif
164 #endif
165
166 /* this block tries to deduce configuration from header-defined symbols and defaults */
167
168 #ifndef EV_USE_MONOTONIC
169 # define EV_USE_MONOTONIC 0
170 #endif
171
172 #ifndef EV_USE_REALTIME
173 # define EV_USE_REALTIME 0
174 #endif
175
176 #ifndef EV_USE_NANOSLEEP
177 # define EV_USE_NANOSLEEP 0
178 #endif
179
180 #ifndef EV_USE_SELECT
181 # define EV_USE_SELECT 1
182 #endif
183
184 #ifndef EV_USE_POLL
185 # ifdef _WIN32
186 # define EV_USE_POLL 0
187 # else
188 # define EV_USE_POLL 1
189 # endif
190 #endif
191
192 #ifndef EV_USE_EPOLL
193 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194 # define EV_USE_EPOLL 1
195 # else
196 # define EV_USE_EPOLL 0
197 # endif
198 #endif
199
200 #ifndef EV_USE_KQUEUE
201 # define EV_USE_KQUEUE 0
202 #endif
203
204 #ifndef EV_USE_PORT
205 # define EV_USE_PORT 0
206 #endif
207
208 #ifndef EV_USE_INOTIFY
209 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210 # define EV_USE_INOTIFY 1
211 # else
212 # define EV_USE_INOTIFY 0
213 # endif
214 #endif
215
216 #ifndef EV_PID_HASHSIZE
217 # if EV_MINIMAL
218 # define EV_PID_HASHSIZE 1
219 # else
220 # define EV_PID_HASHSIZE 16
221 # endif
222 #endif
223
224 #ifndef EV_INOTIFY_HASHSIZE
225 # if EV_MINIMAL
226 # define EV_INOTIFY_HASHSIZE 1
227 # else
228 # define EV_INOTIFY_HASHSIZE 16
229 # endif
230 #endif
231
232 #ifndef EV_USE_EVENTFD
233 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234 # define EV_USE_EVENTFD 1
235 # else
236 # define EV_USE_EVENTFD 0
237 # endif
238 #endif
239
240 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242 #ifndef CLOCK_MONOTONIC
243 # undef EV_USE_MONOTONIC
244 # define EV_USE_MONOTONIC 0
245 #endif
246
247 #ifndef CLOCK_REALTIME
248 # undef EV_USE_REALTIME
249 # define EV_USE_REALTIME 0
250 #endif
251
252 #if !EV_STAT_ENABLE
253 # undef EV_USE_INOTIFY
254 # define EV_USE_INOTIFY 0
255 #endif
256
257 #if !EV_USE_NANOSLEEP
258 # ifndef _WIN32
259 # include <sys/select.h>
260 # endif
261 #endif
262
263 #if EV_USE_INOTIFY
264 # include <sys/inotify.h>
265 #endif
266
267 #if EV_SELECT_IS_WINSOCKET
268 # include <winsock.h>
269 #endif
270
271 #if EV_USE_EVENTFD
272 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273 # include <stdint.h>
274 # ifdef __cplusplus
275 extern "C" {
276 # endif
277 int eventfd (unsigned int initval, int flags);
278 # ifdef __cplusplus
279 }
280 # endif
281 #endif
282
283 /**/
284
285 /*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
299 #if __GNUC__ >= 4
300 # define expect(expr,value) __builtin_expect ((expr),(value))
301 # define noinline __attribute__ ((noinline))
302 #else
303 # define expect(expr,value) (expr)
304 # define noinline
305 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306 # define inline
307 # endif
308 #endif
309
310 #define expect_false(expr) expect ((expr) != 0, 0)
311 #define expect_true(expr) expect ((expr) != 0, 1)
312 #define inline_size static inline
313
314 #if EV_MINIMAL
315 # define inline_speed static noinline
316 #else
317 # define inline_speed static inline
318 #endif
319
320 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
322
323 #define EMPTY /* required for microsofts broken pseudo-c compiler */
324 #define EMPTY2(a,b) /* used to suppress some warnings */
325
326 typedef ev_watcher *W;
327 typedef ev_watcher_list *WL;
328 typedef ev_watcher_time *WT;
329
330 #define ev_active(w) ((W)(w))->active
331 #define ev_at(w) ((WT)(w))->at
332
333 #if EV_USE_MONOTONIC
334 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
335 /* giving it a reasonably high chance of working on typical architetcures */
336 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337 #endif
338
339 #ifdef _WIN32
340 # include "ev_win32.c"
341 #endif
342
343 /*****************************************************************************/
344
345 static void (*syserr_cb)(const char *msg);
346
347 void
348 ev_set_syserr_cb (void (*cb)(const char *msg))
349 {
350 syserr_cb = cb;
351 }
352
353 static void noinline
354 syserr (const char *msg)
355 {
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366 }
367
368 static void *
369 ev_realloc_emul (void *ptr, long size)
370 {
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381 }
382
383 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385 void
386 ev_set_allocator (void *(*cb)(void *ptr, long size))
387 {
388 alloc = cb;
389 }
390
391 inline_speed void *
392 ev_realloc (void *ptr, long size)
393 {
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403 }
404
405 #define ev_malloc(size) ev_realloc (0, (size))
406 #define ev_free(ptr) ev_realloc ((ptr), 0)
407
408 /*****************************************************************************/
409
410 typedef struct
411 {
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415 #if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417 #endif
418 } ANFD;
419
420 typedef struct
421 {
422 W w;
423 int events;
424 } ANPENDING;
425
426 #if EV_USE_INOTIFY
427 /* hash table entry per inotify-id */
428 typedef struct
429 {
430 WL head;
431 } ANFS;
432 #endif
433
434 /* Heap Entry */
435 #define EV_HEAP_CACHE_AT 0
436 #if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445 #else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
451 #endif
452
453 #if EV_MULTIPLICITY
454
455 struct ev_loop
456 {
457 ev_tstamp ev_rt_now;
458 #define ev_rt_now ((loop)->ev_rt_now)
459 #define VAR(name,decl) decl;
460 #include "ev_vars.h"
461 #undef VAR
462 };
463 #include "ev_wrap.h"
464
465 static struct ev_loop default_loop_struct;
466 struct ev_loop *ev_default_loop_ptr;
467
468 #else
469
470 ev_tstamp ev_rt_now;
471 #define VAR(name,decl) static decl;
472 #include "ev_vars.h"
473 #undef VAR
474
475 static int ev_default_loop_ptr;
476
477 #endif
478
479 /*****************************************************************************/
480
481 ev_tstamp
482 ev_time (void)
483 {
484 #if EV_USE_REALTIME
485 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9;
488 #else
489 struct timeval tv;
490 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6;
492 #endif
493 }
494
495 ev_tstamp inline_size
496 get_clock (void)
497 {
498 #if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic))
500 {
501 struct timespec ts;
502 clock_gettime (CLOCK_MONOTONIC, &ts);
503 return ts.tv_sec + ts.tv_nsec * 1e-9;
504 }
505 #endif
506
507 return ev_time ();
508 }
509
510 #if EV_MULTIPLICITY
511 ev_tstamp
512 ev_now (EV_P)
513 {
514 return ev_rt_now;
515 }
516 #endif
517
518 void
519 ev_sleep (ev_tstamp delay)
520 {
521 if (delay > 0.)
522 {
523 #if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530 #elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532 #else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539 #endif
540 }
541 }
542
543 /*****************************************************************************/
544
545 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
547 int inline_size
548 array_nextsize (int elem, int cur, int cnt)
549 {
550 int ncur = cur + 1;
551
552 do
553 ncur <<= 1;
554 while (cnt > ncur);
555
556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
558 {
559 ncur *= elem;
560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
561 ncur = ncur - sizeof (void *) * 4;
562 ncur /= elem;
563 }
564
565 return ncur;
566 }
567
568 static noinline void *
569 array_realloc (int elem, void *base, int *cur, int cnt)
570 {
571 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur);
573 }
574
575 #define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \
577 { \
578 int ocur_ = (cur); \
579 (base) = (type *)array_realloc \
580 (sizeof (type), (base), &(cur), (cnt)); \
581 init ((base) + (ocur_), (cur) - ocur_); \
582 }
583
584 #if 0
585 #define array_slim(type,stem) \
586 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
587 { \
588 stem ## max = array_roundsize (stem ## cnt >> 1); \
589 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 }
592 #endif
593
594 #define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
596
597 /*****************************************************************************/
598
599 void noinline
600 ev_feed_event (EV_P_ void *w, int revents)
601 {
602 W w_ = (W)w;
603 int pri = ABSPRI (w_);
604
605 if (expect_false (w_->pending))
606 pendings [pri][w_->pending - 1].events |= revents;
607 else
608 {
609 w_->pending = ++pendingcnt [pri];
610 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
611 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents;
613 }
614 }
615
616 void inline_speed
617 queue_events (EV_P_ W *events, int eventcnt, int type)
618 {
619 int i;
620
621 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type);
623 }
624
625 /*****************************************************************************/
626
627 void inline_size
628 anfds_init (ANFD *base, int count)
629 {
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638 }
639
640 void inline_speed
641 fd_event (EV_P_ int fd, int revents)
642 {
643 ANFD *anfd = anfds + fd;
644 ev_io *w;
645
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
647 {
648 int ev = w->events & revents;
649
650 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev);
652 }
653 }
654
655 void
656 ev_feed_fd_event (EV_P_ int fd, int revents)
657 {
658 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents);
660 }
661
662 void inline_size
663 fd_reify (EV_P)
664 {
665 int i;
666
667 for (i = 0; i < fdchangecnt; ++i)
668 {
669 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd;
671 ev_io *w;
672
673 unsigned char events = 0;
674
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
676 events |= (unsigned char)w->events;
677
678 #if EV_SELECT_IS_WINSOCKET
679 if (events)
680 {
681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
688 }
689 #endif
690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
701 }
702
703 fdchangecnt = 0;
704 }
705
706 void inline_size
707 fd_change (EV_P_ int fd, int flags)
708 {
709 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags;
711
712 if (expect_true (!reify))
713 {
714 ++fdchangecnt;
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd;
717 }
718 }
719
720 void inline_speed
721 fd_kill (EV_P_ int fd)
722 {
723 ev_io *w;
724
725 while ((w = (ev_io *)anfds [fd].head))
726 {
727 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 }
730 }
731
732 int inline_size
733 fd_valid (int fd)
734 {
735 #ifdef _WIN32
736 return _get_osfhandle (fd) != -1;
737 #else
738 return fcntl (fd, F_GETFD) != -1;
739 #endif
740 }
741
742 /* called on EBADF to verify fds */
743 static void noinline
744 fd_ebadf (EV_P)
745 {
746 int fd;
747
748 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF)
751 fd_kill (EV_A_ fd);
752 }
753
754 /* called on ENOMEM in select/poll to kill some fds and retry */
755 static void noinline
756 fd_enomem (EV_P)
757 {
758 int fd;
759
760 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events)
762 {
763 fd_kill (EV_A_ fd);
764 return;
765 }
766 }
767
768 /* usually called after fork if backend needs to re-arm all fds from scratch */
769 static void noinline
770 fd_rearm_all (EV_P)
771 {
772 int fd;
773
774 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events)
776 {
777 anfds [fd].events = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
779 }
780 }
781
782 /*****************************************************************************/
783
784 /*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790 /*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796 #define EV_USE_4HEAP !EV_MINIMAL
797 #if EV_USE_4HEAP
798
799 #define DHEAP 4
800 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802 /* towards the root */
803 void inline_speed
804 upheap (ANHE *heap, int k)
805 {
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822 }
823
824 /* away from the root */
825 void inline_speed
826 downheap (ANHE *heap, int N, int k)
827 {
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866 }
867
868 #else // 4HEAP
869
870 #define HEAP0 1
871
872 /* towards the root */
873 void inline_speed
874 upheap (ANHE *heap, int k)
875 {
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893 }
894
895 /* away from the root */
896 void inline_speed
897 downheap (ANHE *heap, int N, int k)
898 {
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
914 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k;
916
917 k = c;
918 }
919
920 heap [k] = he;
921 ev_active (ANHE_w (he)) = k;
922 }
923 #endif
924
925 void inline_size
926 adjustheap (ANHE *heap, int N, int k)
927 {
928 upheap (heap, k);
929 downheap (heap, N, k);
930 }
931
932 /*****************************************************************************/
933
934 typedef struct
935 {
936 WL head;
937 EV_ATOMIC_T gotsig;
938 } ANSIG;
939
940 static ANSIG *signals;
941 static int signalmax;
942
943 static EV_ATOMIC_T gotsig;
944
945 void inline_size
946 signals_init (ANSIG *base, int count)
947 {
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955 }
956
957 /*****************************************************************************/
958
959 void inline_speed
960 fd_intern (int fd)
961 {
962 #ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965 #else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968 #endif
969 }
970
971 static void noinline
972 evpipe_init (EV_P)
973 {
974 if (!ev_is_active (&pipeev))
975 {
976 #if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984 #endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
989 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
993
994 ev_io_start (EV_A_ &pipeev);
995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997 }
998
999 void inline_size
1000 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001 {
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008 #if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015 #endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020 }
1021
1022 static void
1023 pipecb (EV_P_ ev_io *iow, int revents)
1024 {
1025 #if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032 #endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048 #if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061 #endif
1062 }
1063
1064 /*****************************************************************************/
1065
1066 static void
1067 ev_sighandler (int signum)
1068 {
1069 #if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071 #endif
1072
1073 #if _WIN32
1074 signal (signum, ev_sighandler);
1075 #endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079 }
1080
1081 void noinline
1082 ev_feed_signal_event (EV_P_ int signum)
1083 {
1084 WL w;
1085
1086 #if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088 #endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099 }
1100
1101 /*****************************************************************************/
1102
1103 static WL childs [EV_PID_HASHSIZE];
1104
1105 #ifndef _WIN32
1106
1107 static ev_signal childev;
1108
1109 #ifndef WIFCONTINUED
1110 # define WIFCONTINUED(status) 0
1111 #endif
1112
1113 void inline_speed
1114 child_reap (EV_P_ int chain, int pid, int status)
1115 {
1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
1123 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1125 w->rpid = pid;
1126 w->rstatus = status;
1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1128 }
1129 }
1130 }
1131
1132 #ifndef WCONTINUED
1133 # define WCONTINUED 0
1134 #endif
1135
1136 static void
1137 childcb (EV_P_ ev_signal *sw, int revents)
1138 {
1139 int pid, status;
1140
1141 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1142 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1143 if (!WCONTINUED
1144 || errno != EINVAL
1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1146 return;
1147
1148 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151
1152 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155 }
1156
1157 #endif
1158
1159 /*****************************************************************************/
1160
1161 #if EV_USE_PORT
1162 # include "ev_port.c"
1163 #endif
1164 #if EV_USE_KQUEUE
1165 # include "ev_kqueue.c"
1166 #endif
1167 #if EV_USE_EPOLL
1168 # include "ev_epoll.c"
1169 #endif
1170 #if EV_USE_POLL
1171 # include "ev_poll.c"
1172 #endif
1173 #if EV_USE_SELECT
1174 # include "ev_select.c"
1175 #endif
1176
1177 int
1178 ev_version_major (void)
1179 {
1180 return EV_VERSION_MAJOR;
1181 }
1182
1183 int
1184 ev_version_minor (void)
1185 {
1186 return EV_VERSION_MINOR;
1187 }
1188
1189 /* return true if we are running with elevated privileges and should ignore env variables */
1190 int inline_size
1191 enable_secure (void)
1192 {
1193 #ifdef _WIN32
1194 return 0;
1195 #else
1196 return getuid () != geteuid ()
1197 || getgid () != getegid ();
1198 #endif
1199 }
1200
1201 unsigned int
1202 ev_supported_backends (void)
1203 {
1204 unsigned int flags = 0;
1205
1206 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1207 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1208 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1209 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1210 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1211
1212 return flags;
1213 }
1214
1215 unsigned int
1216 ev_recommended_backends (void)
1217 {
1218 unsigned int flags = ev_supported_backends ();
1219
1220 #ifndef __NetBSD__
1221 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE;
1224 #endif
1225 #ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation
1227 flags &= ~EVBACKEND_POLL;
1228 #endif
1229
1230 return flags;
1231 }
1232
1233 unsigned int
1234 ev_embeddable_backends (void)
1235 {
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
1243 }
1244
1245 unsigned int
1246 ev_backend (EV_P)
1247 {
1248 return backend;
1249 }
1250
1251 unsigned int
1252 ev_loop_count (EV_P)
1253 {
1254 return loop_count;
1255 }
1256
1257 void
1258 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259 {
1260 io_blocktime = interval;
1261 }
1262
1263 void
1264 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265 {
1266 timeout_blocktime = interval;
1267 }
1268
1269 static void noinline
1270 loop_init (EV_P_ unsigned int flags)
1271 {
1272 if (!backend)
1273 {
1274 #if EV_USE_MONOTONIC
1275 {
1276 struct timespec ts;
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1;
1279 }
1280 #endif
1281
1282 ev_rt_now = ev_time ();
1283 mn_now = get_clock ();
1284 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292 #if EV_USE_INOTIFY
1293 fs_fd = -2;
1294 #endif
1295
1296 /* pid check not overridable via env */
1297 #ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300 #endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306
1307 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends ();
1309
1310 #if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312 #endif
1313 #if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1315 #endif
1316 #if EV_USE_EPOLL
1317 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1318 #endif
1319 #if EV_USE_POLL
1320 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1321 #endif
1322 #if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324 #endif
1325
1326 ev_init (&pipeev, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI);
1328 }
1329 }
1330
1331 static void noinline
1332 loop_destroy (EV_P)
1333 {
1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341 #if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344 #endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
1352
1353 #if EV_USE_INOTIFY
1354 if (fs_fd >= 0)
1355 close (fs_fd);
1356 #endif
1357
1358 if (backend_fd >= 0)
1359 close (backend_fd);
1360
1361 #if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363 #endif
1364 #if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1366 #endif
1367 #if EV_USE_EPOLL
1368 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1369 #endif
1370 #if EV_USE_POLL
1371 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1372 #endif
1373 #if EV_USE_SELECT
1374 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1375 #endif
1376
1377 for (i = NUMPRI; i--; )
1378 {
1379 array_free (pending, [i]);
1380 #if EV_IDLE_ENABLE
1381 array_free (idle, [i]);
1382 #endif
1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
1386
1387 /* have to use the microsoft-never-gets-it-right macro */
1388 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY);
1390 #if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY);
1392 #endif
1393 #if EV_FORK_ENABLE
1394 array_free (fork, EMPTY);
1395 #endif
1396 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY);
1398 #if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400 #endif
1401
1402 backend = 0;
1403 }
1404
1405 #if EV_USE_INOTIFY
1406 void inline_size infy_fork (EV_P);
1407 #endif
1408
1409 void inline_size
1410 loop_fork (EV_P)
1411 {
1412 #if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414 #endif
1415 #if EV_USE_KQUEUE
1416 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1417 #endif
1418 #if EV_USE_EPOLL
1419 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1420 #endif
1421 #if EV_USE_INOTIFY
1422 infy_fork (EV_A);
1423 #endif
1424
1425 if (ev_is_active (&pipeev))
1426 {
1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430 #if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432 #endif
1433
1434 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev);
1436
1437 #if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440 #endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1444 close (evpipe [0]);
1445 close (evpipe [1]);
1446 }
1447
1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1451 }
1452
1453 postfork = 0;
1454 }
1455
1456 #if EV_MULTIPLICITY
1457 struct ev_loop *
1458 ev_loop_new (unsigned int flags)
1459 {
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470 }
1471
1472 void
1473 ev_loop_destroy (EV_P)
1474 {
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477 }
1478
1479 void
1480 ev_loop_fork (EV_P)
1481 {
1482 postfork = 1; /* must be in line with ev_default_fork */
1483 }
1484 #endif
1485
1486 #if EV_MULTIPLICITY
1487 struct ev_loop *
1488 ev_default_loop_init (unsigned int flags)
1489 #else
1490 int
1491 ev_default_loop (unsigned int flags)
1492 #endif
1493 {
1494 if (!ev_default_loop_ptr)
1495 {
1496 #if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1498 #else
1499 ev_default_loop_ptr = 1;
1500 #endif
1501
1502 loop_init (EV_A_ flags);
1503
1504 if (ev_backend (EV_A))
1505 {
1506 #ifndef _WIN32
1507 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511 #endif
1512 }
1513 else
1514 ev_default_loop_ptr = 0;
1515 }
1516
1517 return ev_default_loop_ptr;
1518 }
1519
1520 void
1521 ev_default_destroy (void)
1522 {
1523 #if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525 #endif
1526
1527 #ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530 #endif
1531
1532 loop_destroy (EV_A);
1533 }
1534
1535 void
1536 ev_default_fork (void)
1537 {
1538 #if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540 #endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */
1544 }
1545
1546 /*****************************************************************************/
1547
1548 void
1549 ev_invoke (EV_P_ void *w, int revents)
1550 {
1551 EV_CB_INVOKE ((W)w, revents);
1552 }
1553
1554 void inline_speed
1555 call_pending (EV_P)
1556 {
1557 int pri;
1558
1559 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri])
1561 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events);
1570 }
1571 }
1572 }
1573
1574 #if EV_IDLE_ENABLE
1575 void inline_size
1576 idle_reify (EV_P)
1577 {
1578 if (expect_false (idleall))
1579 {
1580 int pri;
1581
1582 for (pri = NUMPRI; pri--; )
1583 {
1584 if (pendingcnt [pri])
1585 break;
1586
1587 if (idlecnt [pri])
1588 {
1589 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1590 break;
1591 }
1592 }
1593 }
1594 }
1595 #endif
1596
1597 void inline_size
1598 timers_reify (EV_P)
1599 {
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1601 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0);
1617 }
1618 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623 }
1624
1625 #if EV_PERIODIC_ENABLE
1626 void inline_size
1627 periodics_reify (EV_P)
1628 {
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1630 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 }
1656 }
1657
1658 static void noinline
1659 periodics_reschedule (EV_P)
1660 {
1661 int i;
1662
1663 /* adjust periodics after time jump */
1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1665 {
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1679 }
1680 #endif
1681
1682 void inline_speed
1683 time_update (EV_P_ ev_tstamp max_block)
1684 {
1685 int i;
1686
1687 #if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1692 mn_now = get_clock ();
1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1697 {
1698 ev_rt_now = rtmn_diff + mn_now;
1699 return;
1700 }
1701
1702 now_floor = mn_now;
1703 ev_rt_now = ev_time ();
1704
1705 /* loop a few times, before making important decisions.
1706 * on the choice of "4": one iteration isn't enough,
1707 * in case we get preempted during the calls to
1708 * ev_time and get_clock. a second call is almost guaranteed
1709 * to succeed in that case, though. and looping a few more times
1710 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here.
1712 */
1713 for (i = 4; --i; )
1714 {
1715 rtmn_diff = ev_rt_now - mn_now;
1716
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1718 return; /* all is well */
1719
1720 ev_rt_now = ev_time ();
1721 mn_now = get_clock ();
1722 now_floor = mn_now;
1723 }
1724
1725 # if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A);
1727 # endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 }
1731 else
1732 #endif
1733 {
1734 ev_rt_now = ev_time ();
1735
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 {
1738 #if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A);
1740 #endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 }
1749
1750 mn_now = ev_rt_now;
1751 }
1752 }
1753
1754 void
1755 ev_ref (EV_P)
1756 {
1757 ++activecnt;
1758 }
1759
1760 void
1761 ev_unref (EV_P)
1762 {
1763 --activecnt;
1764 }
1765
1766 static int loop_done;
1767
1768 void
1769 ev_loop (EV_P_ int flags)
1770 {
1771 loop_done = EVUNLOOP_CANCEL;
1772
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1774
1775 do
1776 {
1777 #ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid))
1780 {
1781 curpid = getpid ();
1782 postfork = 1;
1783 }
1784 #endif
1785
1786 #if EV_FORK_ENABLE
1787 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork))
1789 if (forkcnt)
1790 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A);
1793 }
1794 #endif
1795
1796 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt))
1798 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A);
1801 }
1802
1803 if (expect_false (!activecnt))
1804 break;
1805
1806 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork))
1808 loop_fork (EV_A);
1809
1810 /* update fd-related kernel structures */
1811 fd_reify (EV_A);
1812
1813 /* calculate blocking time */
1814 {
1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1817
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME;
1824
1825 if (timercnt)
1826 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1828 if (waittime > to) waittime = to;
1829 }
1830
1831 #if EV_PERIODIC_ENABLE
1832 if (periodiccnt)
1833 {
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to;
1836 }
1837 #endif
1838
1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1852 }
1853
1854 ++loop_count;
1855 backend_poll (EV_A_ waittime);
1856
1857 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime);
1859 }
1860
1861 /* queue pending timers and reschedule them */
1862 timers_reify (EV_A); /* relative timers called last */
1863 #if EV_PERIODIC_ENABLE
1864 periodics_reify (EV_A); /* absolute timers called first */
1865 #endif
1866
1867 #if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A);
1870 #endif
1871
1872 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1875
1876 call_pending (EV_A);
1877 }
1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1883
1884 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL;
1886 }
1887
1888 void
1889 ev_unloop (EV_P_ int how)
1890 {
1891 loop_done = how;
1892 }
1893
1894 /*****************************************************************************/
1895
1896 void inline_size
1897 wlist_add (WL *head, WL elem)
1898 {
1899 elem->next = *head;
1900 *head = elem;
1901 }
1902
1903 void inline_size
1904 wlist_del (WL *head, WL elem)
1905 {
1906 while (*head)
1907 {
1908 if (*head == elem)
1909 {
1910 *head = elem->next;
1911 return;
1912 }
1913
1914 head = &(*head)->next;
1915 }
1916 }
1917
1918 void inline_speed
1919 clear_pending (EV_P_ W w)
1920 {
1921 if (w->pending)
1922 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1924 w->pending = 0;
1925 }
1926 }
1927
1928 int
1929 ev_clear_pending (EV_P_ void *w)
1930 {
1931 W w_ = (W)w;
1932 int pending = w_->pending;
1933
1934 if (expect_true (pending))
1935 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1937 w_->pending = 0;
1938 p->w = 0;
1939 return p->events;
1940 }
1941 else
1942 return 0;
1943 }
1944
1945 void inline_size
1946 pri_adjust (EV_P_ W w)
1947 {
1948 int pri = w->priority;
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri;
1952 }
1953
1954 void inline_speed
1955 ev_start (EV_P_ W w, int active)
1956 {
1957 pri_adjust (EV_A_ w);
1958 w->active = active;
1959 ev_ref (EV_A);
1960 }
1961
1962 void inline_size
1963 ev_stop (EV_P_ W w)
1964 {
1965 ev_unref (EV_A);
1966 w->active = 0;
1967 }
1968
1969 /*****************************************************************************/
1970
1971 void noinline
1972 ev_io_start (EV_P_ ev_io *w)
1973 {
1974 int fd = w->fd;
1975
1976 if (expect_false (ev_is_active (w)))
1977 return;
1978
1979 assert (("ev_io_start called with negative fd", fd >= 0));
1980
1981 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1983 wlist_add (&anfds[fd].head, (WL)w);
1984
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1987 }
1988
1989 void noinline
1990 ev_io_stop (EV_P_ ev_io *w)
1991 {
1992 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w)))
1994 return;
1995
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1997
1998 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w);
2000
2001 fd_change (EV_A_ w->fd, 1);
2002 }
2003
2004 void noinline
2005 ev_timer_start (EV_P_ ev_timer *w)
2006 {
2007 if (expect_false (ev_is_active (w)))
2008 return;
2009
2010 ev_at (w) += mn_now;
2011
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
2019
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021 }
2022
2023 void noinline
2024 ev_timer_stop (EV_P_ ev_timer *w)
2025 {
2026 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w)))
2028 return;
2029
2030 {
2031 int active = ev_active (w);
2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
2035 if (expect_true (active < timercnt + HEAP0 - 1))
2036 {
2037 timers [active] = timers [timercnt + HEAP0 - 1];
2038 adjustheap (timers, timercnt, active);
2039 }
2040
2041 --timercnt;
2042 }
2043
2044 ev_at (w) -= mn_now;
2045
2046 ev_stop (EV_A_ (W)w);
2047 }
2048
2049 void noinline
2050 ev_timer_again (EV_P_ ev_timer *w)
2051 {
2052 if (ev_is_active (w))
2053 {
2054 if (w->repeat)
2055 {
2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w));
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w);
2062 }
2063 else if (w->repeat)
2064 {
2065 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w);
2067 }
2068 }
2069
2070 #if EV_PERIODIC_ENABLE
2071 void noinline
2072 ev_periodic_start (EV_P_ ev_periodic *w)
2073 {
2074 if (expect_false (ev_is_active (w)))
2075 return;
2076
2077 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval)
2080 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 }
2085 else
2086 ev_at (w) = w->offset;
2087
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2091 upheap (periodics, ev_active (w));
2092
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094 }
2095
2096 void noinline
2097 ev_periodic_stop (EV_P_ ev_periodic *w)
2098 {
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ev_active (w);
2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
2109 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2111 adjustheap (periodics, periodiccnt, active);
2112 }
2113
2114 --periodiccnt;
2115 }
2116
2117 ev_stop (EV_A_ (W)w);
2118 }
2119
2120 void noinline
2121 ev_periodic_again (EV_P_ ev_periodic *w)
2122 {
2123 /* TODO: use adjustheap and recalculation */
2124 ev_periodic_stop (EV_A_ w);
2125 ev_periodic_start (EV_A_ w);
2126 }
2127 #endif
2128
2129 #ifndef SA_RESTART
2130 # define SA_RESTART 0
2131 #endif
2132
2133 void noinline
2134 ev_signal_start (EV_P_ ev_signal *w)
2135 {
2136 #if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138 #endif
2139 if (expect_false (ev_is_active (w)))
2140 return;
2141
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2143
2144 evpipe_init (EV_A);
2145
2146 {
2147 #ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151 #endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155 #ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157 #endif
2158 }
2159
2160 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162
2163 if (!((WL)w)->next)
2164 {
2165 #if _WIN32
2166 signal (w->signum, ev_sighandler);
2167 #else
2168 struct sigaction sa;
2169 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0);
2173 #endif
2174 }
2175 }
2176
2177 void noinline
2178 ev_signal_stop (EV_P_ ev_signal *w)
2179 {
2180 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w)))
2182 return;
2183
2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w);
2186
2187 if (!signals [w->signum - 1].head)
2188 signal (w->signum, SIG_DFL);
2189 }
2190
2191 void
2192 ev_child_start (EV_P_ ev_child *w)
2193 {
2194 #if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196 #endif
2197 if (expect_false (ev_is_active (w)))
2198 return;
2199
2200 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2202 }
2203
2204 void
2205 ev_child_stop (EV_P_ ev_child *w)
2206 {
2207 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w)))
2209 return;
2210
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w);
2213 }
2214
2215 #if EV_STAT_ENABLE
2216
2217 # ifdef _WIN32
2218 # undef lstat
2219 # define lstat(a,b) _stati64 (a,b)
2220 # endif
2221
2222 #define DEF_STAT_INTERVAL 5.0074891
2223 #define MIN_STAT_INTERVAL 0.1074891
2224
2225 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226
2227 #if EV_USE_INOTIFY
2228 # define EV_INOTIFY_BUFSIZE 8192
2229
2230 static void noinline
2231 infy_add (EV_P_ ev_stat *w)
2232 {
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234
2235 if (w->wd < 0)
2236 {
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2238
2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 {
2244 char path [4096];
2245 strcpy (path, w->path);
2246
2247 do
2248 {
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251
2252 char *pend = strrchr (path, '/');
2253
2254 if (!pend)
2255 break; /* whoops, no '/', complain to your admin */
2256
2257 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 }
2262 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265
2266 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2268 }
2269
2270 static void noinline
2271 infy_del (EV_P_ ev_stat *w)
2272 {
2273 int slot;
2274 int wd = w->wd;
2275
2276 if (wd < 0)
2277 return;
2278
2279 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w);
2282
2283 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd);
2285 }
2286
2287 static void noinline
2288 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289 {
2290 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2293 infy_wd (EV_A_ slot, wd, ev);
2294 else
2295 {
2296 WL w_;
2297
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2299 {
2300 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */
2302
2303 if (w->wd == wd || wd == -1)
2304 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 {
2307 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */
2309 }
2310
2311 stat_timer_cb (EV_A_ &w->timer, 0);
2312 }
2313 }
2314 }
2315 }
2316
2317 static void
2318 infy_cb (EV_P_ ev_io *w, int revents)
2319 {
2320 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf));
2324
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2327 }
2328
2329 void inline_size
2330 infy_init (EV_P)
2331 {
2332 if (fs_fd != -2)
2333 return;
2334
2335 fs_fd = inotify_init ();
2336
2337 if (fs_fd >= 0)
2338 {
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w);
2342 }
2343 }
2344
2345 void inline_size
2346 infy_fork (EV_P)
2347 {
2348 int slot;
2349
2350 if (fs_fd < 0)
2351 return;
2352
2353 close (fs_fd);
2354 fs_fd = inotify_init ();
2355
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2357 {
2358 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0;
2360
2361 while (w_)
2362 {
2363 ev_stat *w = (ev_stat *)w_;
2364 w_ = w_->next; /* lets us add this watcher */
2365
2366 w->wd = -1;
2367
2368 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else
2371 ev_timer_start (EV_A_ &w->timer);
2372 }
2373
2374 }
2375 }
2376
2377 #endif
2378
2379 void
2380 ev_stat_stat (EV_P_ ev_stat *w)
2381 {
2382 if (lstat (w->path, &w->attr) < 0)
2383 w->attr.st_nlink = 0;
2384 else if (!w->attr.st_nlink)
2385 w->attr.st_nlink = 1;
2386 }
2387
2388 static void noinline
2389 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390 {
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392
2393 /* we copy this here each the time so that */
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w);
2397
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if (
2400 w->prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime
2411 ) {
2412 #if EV_USE_INOTIFY
2413 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */
2416 #endif
2417
2418 ev_feed_event (EV_A_ w, EV_STAT);
2419 }
2420 }
2421
2422 void
2423 ev_stat_start (EV_P_ ev_stat *w)
2424 {
2425 if (expect_false (ev_is_active (w)))
2426 return;
2427
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w);
2433
2434 if (w->interval < MIN_STAT_INTERVAL)
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2438 ev_set_priority (&w->timer, ev_priority (w));
2439
2440 #if EV_USE_INOTIFY
2441 infy_init (EV_A);
2442
2443 if (fs_fd >= 0)
2444 infy_add (EV_A_ w);
2445 else
2446 #endif
2447 ev_timer_start (EV_A_ &w->timer);
2448
2449 ev_start (EV_A_ (W)w, 1);
2450 }
2451
2452 void
2453 ev_stat_stop (EV_P_ ev_stat *w)
2454 {
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 #if EV_USE_INOTIFY
2460 infy_del (EV_A_ w);
2461 #endif
2462 ev_timer_stop (EV_A_ &w->timer);
2463
2464 ev_stop (EV_A_ (W)w);
2465 }
2466 #endif
2467
2468 #if EV_IDLE_ENABLE
2469 void
2470 ev_idle_start (EV_P_ ev_idle *w)
2471 {
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 pri_adjust (EV_A_ (W)w);
2476
2477 {
2478 int active = ++idlecnt [ABSPRI (w)];
2479
2480 ++idleall;
2481 ev_start (EV_A_ (W)w, active);
2482
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w;
2485 }
2486 }
2487
2488 void
2489 ev_idle_stop (EV_P_ ev_idle *w)
2490 {
2491 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w)))
2493 return;
2494
2495 {
2496 int active = ev_active (w);
2497
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500
2501 ev_stop (EV_A_ (W)w);
2502 --idleall;
2503 }
2504 }
2505 #endif
2506
2507 void
2508 ev_prepare_start (EV_P_ ev_prepare *w)
2509 {
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
2513 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w;
2516 }
2517
2518 void
2519 ev_prepare_stop (EV_P_ ev_prepare *w)
2520 {
2521 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w)))
2523 return;
2524
2525 {
2526 int active = ev_active (w);
2527
2528 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active;
2530 }
2531
2532 ev_stop (EV_A_ (W)w);
2533 }
2534
2535 void
2536 ev_check_start (EV_P_ ev_check *w)
2537 {
2538 if (expect_false (ev_is_active (w)))
2539 return;
2540
2541 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w;
2544 }
2545
2546 void
2547 ev_check_stop (EV_P_ ev_check *w)
2548 {
2549 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w)))
2551 return;
2552
2553 {
2554 int active = ev_active (w);
2555
2556 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active;
2558 }
2559
2560 ev_stop (EV_A_ (W)w);
2561 }
2562
2563 #if EV_EMBED_ENABLE
2564 void noinline
2565 ev_embed_sweep (EV_P_ ev_embed *w)
2566 {
2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2568 }
2569
2570 static void
2571 embed_io_cb (EV_P_ ev_io *io, int revents)
2572 {
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574
2575 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2579 }
2580
2581 static void
2582 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583 {
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595 }
2596
2597 #if 0
2598 static void
2599 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600 {
2601 ev_idle_stop (EV_A_ idle);
2602 }
2603 #endif
2604
2605 void
2606 ev_embed_start (EV_P_ ev_embed *w)
2607 {
2608 if (expect_false (ev_is_active (w)))
2609 return;
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 }
2616
2617 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625
2626 ev_start (EV_A_ (W)w, 1);
2627 }
2628
2629 void
2630 ev_embed_stop (EV_P_ ev_embed *w)
2631 {
2632 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w)))
2634 return;
2635
2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2638
2639 ev_stop (EV_A_ (W)w);
2640 }
2641 #endif
2642
2643 #if EV_FORK_ENABLE
2644 void
2645 ev_fork_start (EV_P_ ev_fork *w)
2646 {
2647 if (expect_false (ev_is_active (w)))
2648 return;
2649
2650 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w;
2653 }
2654
2655 void
2656 ev_fork_stop (EV_P_ ev_fork *w)
2657 {
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 {
2663 int active = ev_active (w);
2664
2665 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active;
2667 }
2668
2669 ev_stop (EV_A_ (W)w);
2670 }
2671 #endif
2672
2673 #if EV_ASYNC_ENABLE
2674 void
2675 ev_async_start (EV_P_ ev_async *w)
2676 {
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685 }
2686
2687 void
2688 ev_async_stop (EV_P_ ev_async *w)
2689 {
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702 }
2703
2704 void
2705 ev_async_send (EV_P_ ev_async *w)
2706 {
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2709 }
2710 #endif
2711
2712 /*****************************************************************************/
2713
2714 struct ev_once
2715 {
2716 ev_io io;
2717 ev_timer to;
2718 void (*cb)(int revents, void *arg);
2719 void *arg;
2720 };
2721
2722 static void
2723 once_cb (EV_P_ struct ev_once *once, int revents)
2724 {
2725 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg;
2727
2728 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once);
2731
2732 cb (revents, arg);
2733 }
2734
2735 static void
2736 once_cb_io (EV_P_ ev_io *w, int revents)
2737 {
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2739 }
2740
2741 static void
2742 once_cb_to (EV_P_ ev_timer *w, int revents)
2743 {
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
2745 }
2746
2747 void
2748 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749 {
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751
2752 if (expect_false (!once))
2753 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2755 return;
2756 }
2757
2758 once->cb = cb;
2759 once->arg = arg;
2760
2761 ev_init (&once->io, once_cb_io);
2762 if (fd >= 0)
2763 {
2764 ev_io_set (&once->io, fd, events);
2765 ev_io_start (EV_A_ &once->io);
2766 }
2767
2768 ev_init (&once->to, once_cb_to);
2769 if (timeout >= 0.)
2770 {
2771 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to);
2773 }
2774 }
2775
2776 #if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778 #endif
2779
2780 #ifdef __cplusplus
2781 }
2782 #endif
2783