ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.246
Committed: Wed May 21 12:51:38 2008 UTC (15 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.245: +11 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_GETTIME
53 # ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 # endif
56 # ifndef EV_USE_REALTIME
57 # define EV_USE_REALTIME 1
58 # endif
59 # else
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 0
62 # endif
63 # ifndef EV_USE_REALTIME
64 # define EV_USE_REALTIME 0
65 # endif
66 # endif
67
68 # ifndef EV_USE_NANOSLEEP
69 # if HAVE_NANOSLEEP
70 # define EV_USE_NANOSLEEP 1
71 # else
72 # define EV_USE_NANOSLEEP 0
73 # endif
74 # endif
75
76 # ifndef EV_USE_SELECT
77 # if HAVE_SELECT && HAVE_SYS_SELECT_H
78 # define EV_USE_SELECT 1
79 # else
80 # define EV_USE_SELECT 0
81 # endif
82 # endif
83
84 # ifndef EV_USE_POLL
85 # if HAVE_POLL && HAVE_POLL_H
86 # define EV_USE_POLL 1
87 # else
88 # define EV_USE_POLL 0
89 # endif
90 # endif
91
92 # ifndef EV_USE_EPOLL
93 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94 # define EV_USE_EPOLL 1
95 # else
96 # define EV_USE_EPOLL 0
97 # endif
98 # endif
99
100 # ifndef EV_USE_KQUEUE
101 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102 # define EV_USE_KQUEUE 1
103 # else
104 # define EV_USE_KQUEUE 0
105 # endif
106 # endif
107
108 # ifndef EV_USE_PORT
109 # if HAVE_PORT_H && HAVE_PORT_CREATE
110 # define EV_USE_PORT 1
111 # else
112 # define EV_USE_PORT 0
113 # endif
114 # endif
115
116 # ifndef EV_USE_INOTIFY
117 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118 # define EV_USE_INOTIFY 1
119 # else
120 # define EV_USE_INOTIFY 0
121 # endif
122 # endif
123
124 # ifndef EV_USE_EVENTFD
125 # if HAVE_EVENTFD
126 # define EV_USE_EVENTFD 1
127 # else
128 # define EV_USE_EVENTFD 0
129 # endif
130 # endif
131
132 #endif
133
134 #include <math.h>
135 #include <stdlib.h>
136 #include <fcntl.h>
137 #include <stddef.h>
138
139 #include <stdio.h>
140
141 #include <assert.h>
142 #include <errno.h>
143 #include <sys/types.h>
144 #include <time.h>
145
146 #include <signal.h>
147
148 #ifdef EV_H
149 # include EV_H
150 #else
151 # include "ev.h"
152 #endif
153
154 #ifndef _WIN32
155 # include <sys/time.h>
156 # include <sys/wait.h>
157 # include <unistd.h>
158 #else
159 # define WIN32_LEAN_AND_MEAN
160 # include <windows.h>
161 # ifndef EV_SELECT_IS_WINSOCKET
162 # define EV_SELECT_IS_WINSOCKET 1
163 # endif
164 #endif
165
166 /* this block tries to deduce configuration from header-defined symbols and defaults */
167
168 #ifndef EV_USE_MONOTONIC
169 # define EV_USE_MONOTONIC 0
170 #endif
171
172 #ifndef EV_USE_REALTIME
173 # define EV_USE_REALTIME 0
174 #endif
175
176 #ifndef EV_USE_NANOSLEEP
177 # define EV_USE_NANOSLEEP 0
178 #endif
179
180 #ifndef EV_USE_SELECT
181 # define EV_USE_SELECT 1
182 #endif
183
184 #ifndef EV_USE_POLL
185 # ifdef _WIN32
186 # define EV_USE_POLL 0
187 # else
188 # define EV_USE_POLL 1
189 # endif
190 #endif
191
192 #ifndef EV_USE_EPOLL
193 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194 # define EV_USE_EPOLL 1
195 # else
196 # define EV_USE_EPOLL 0
197 # endif
198 #endif
199
200 #ifndef EV_USE_KQUEUE
201 # define EV_USE_KQUEUE 0
202 #endif
203
204 #ifndef EV_USE_PORT
205 # define EV_USE_PORT 0
206 #endif
207
208 #ifndef EV_USE_INOTIFY
209 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210 # define EV_USE_INOTIFY 1
211 # else
212 # define EV_USE_INOTIFY 0
213 # endif
214 #endif
215
216 #ifndef EV_PID_HASHSIZE
217 # if EV_MINIMAL
218 # define EV_PID_HASHSIZE 1
219 # else
220 # define EV_PID_HASHSIZE 16
221 # endif
222 #endif
223
224 #ifndef EV_INOTIFY_HASHSIZE
225 # if EV_MINIMAL
226 # define EV_INOTIFY_HASHSIZE 1
227 # else
228 # define EV_INOTIFY_HASHSIZE 16
229 # endif
230 #endif
231
232 #ifndef EV_USE_EVENTFD
233 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234 # define EV_USE_EVENTFD 1
235 # else
236 # define EV_USE_EVENTFD 0
237 # endif
238 #endif
239
240 #ifndef EV_USE_4HEAP
241 # define EV_USE_4HEAP !EV_MINIMAL
242 #endif
243
244 #ifndef EV_HEAP_CACHE_AT
245 # define EV_HEAP_CACHE_AT !EV_MINIMAL
246 #endif
247
248 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
249
250 #ifndef CLOCK_MONOTONIC
251 # undef EV_USE_MONOTONIC
252 # define EV_USE_MONOTONIC 0
253 #endif
254
255 #ifndef CLOCK_REALTIME
256 # undef EV_USE_REALTIME
257 # define EV_USE_REALTIME 0
258 #endif
259
260 #if !EV_STAT_ENABLE
261 # undef EV_USE_INOTIFY
262 # define EV_USE_INOTIFY 0
263 #endif
264
265 #if !EV_USE_NANOSLEEP
266 # ifndef _WIN32
267 # include <sys/select.h>
268 # endif
269 #endif
270
271 #if EV_USE_INOTIFY
272 # include <sys/inotify.h>
273 #endif
274
275 #if EV_SELECT_IS_WINSOCKET
276 # include <winsock.h>
277 #endif
278
279 #if EV_USE_EVENTFD
280 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281 # include <stdint.h>
282 # ifdef __cplusplus
283 extern "C" {
284 # endif
285 int eventfd (unsigned int initval, int flags);
286 # ifdef __cplusplus
287 }
288 # endif
289 #endif
290
291 /**/
292
293 /*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
303 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306
307 #if __GNUC__ >= 4
308 # define expect(expr,value) __builtin_expect ((expr),(value))
309 # define noinline __attribute__ ((noinline))
310 #else
311 # define expect(expr,value) (expr)
312 # define noinline
313 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314 # define inline
315 # endif
316 #endif
317
318 #define expect_false(expr) expect ((expr) != 0, 0)
319 #define expect_true(expr) expect ((expr) != 0, 1)
320 #define inline_size static inline
321
322 #if EV_MINIMAL
323 # define inline_speed static noinline
324 #else
325 # define inline_speed static inline
326 #endif
327
328 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
330
331 #define EMPTY /* required for microsofts broken pseudo-c compiler */
332 #define EMPTY2(a,b) /* used to suppress some warnings */
333
334 typedef ev_watcher *W;
335 typedef ev_watcher_list *WL;
336 typedef ev_watcher_time *WT;
337
338 #define ev_active(w) ((W)(w))->active
339 #define ev_at(w) ((WT)(w))->at
340
341 #if EV_USE_MONOTONIC
342 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
343 /* giving it a reasonably high chance of working on typical architetcures */
344 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345 #endif
346
347 #ifdef _WIN32
348 # include "ev_win32.c"
349 #endif
350
351 /*****************************************************************************/
352
353 static void (*syserr_cb)(const char *msg);
354
355 void
356 ev_set_syserr_cb (void (*cb)(const char *msg))
357 {
358 syserr_cb = cb;
359 }
360
361 static void noinline
362 syserr (const char *msg)
363 {
364 if (!msg)
365 msg = "(libev) system error";
366
367 if (syserr_cb)
368 syserr_cb (msg);
369 else
370 {
371 perror (msg);
372 abort ();
373 }
374 }
375
376 static void *
377 ev_realloc_emul (void *ptr, long size)
378 {
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389 }
390
391 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392
393 void
394 ev_set_allocator (void *(*cb)(void *ptr, long size))
395 {
396 alloc = cb;
397 }
398
399 inline_speed void *
400 ev_realloc (void *ptr, long size)
401 {
402 ptr = alloc (ptr, size);
403
404 if (!ptr && size)
405 {
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
407 abort ();
408 }
409
410 return ptr;
411 }
412
413 #define ev_malloc(size) ev_realloc (0, (size))
414 #define ev_free(ptr) ev_realloc ((ptr), 0)
415
416 /*****************************************************************************/
417
418 typedef struct
419 {
420 WL head;
421 unsigned char events;
422 unsigned char reify;
423 #if EV_SELECT_IS_WINSOCKET
424 SOCKET handle;
425 #endif
426 } ANFD;
427
428 typedef struct
429 {
430 W w;
431 int events;
432 } ANPENDING;
433
434 #if EV_USE_INOTIFY
435 /* hash table entry per inotify-id */
436 typedef struct
437 {
438 WL head;
439 } ANFS;
440 #endif
441
442 /* Heap Entry */
443 #if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452 #else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458 #endif
459
460 #if EV_MULTIPLICITY
461
462 struct ev_loop
463 {
464 ev_tstamp ev_rt_now;
465 #define ev_rt_now ((loop)->ev_rt_now)
466 #define VAR(name,decl) decl;
467 #include "ev_vars.h"
468 #undef VAR
469 };
470 #include "ev_wrap.h"
471
472 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr;
474
475 #else
476
477 ev_tstamp ev_rt_now;
478 #define VAR(name,decl) static decl;
479 #include "ev_vars.h"
480 #undef VAR
481
482 static int ev_default_loop_ptr;
483
484 #endif
485
486 /*****************************************************************************/
487
488 ev_tstamp
489 ev_time (void)
490 {
491 #if EV_USE_REALTIME
492 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9;
495 #else
496 struct timeval tv;
497 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6;
499 #endif
500 }
501
502 ev_tstamp inline_size
503 get_clock (void)
504 {
505 #if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic))
507 {
508 struct timespec ts;
509 clock_gettime (CLOCK_MONOTONIC, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9;
511 }
512 #endif
513
514 return ev_time ();
515 }
516
517 #if EV_MULTIPLICITY
518 ev_tstamp
519 ev_now (EV_P)
520 {
521 return ev_rt_now;
522 }
523 #endif
524
525 void
526 ev_sleep (ev_tstamp delay)
527 {
528 if (delay > 0.)
529 {
530 #if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537 #elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539 #else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546 #endif
547 }
548 }
549
550 /*****************************************************************************/
551
552 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554 int inline_size
555 array_nextsize (int elem, int cur, int cnt)
556 {
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573 }
574
575 static noinline void *
576 array_realloc (int elem, void *base, int *cur, int cnt)
577 {
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580 }
581
582 #define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \
584 { \
585 int ocur_ = (cur); \
586 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \
589 }
590
591 #if 0
592 #define array_slim(type,stem) \
593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
594 { \
595 stem ## max = array_roundsize (stem ## cnt >> 1); \
596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 }
599 #endif
600
601 #define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
603
604 /*****************************************************************************/
605
606 void noinline
607 ev_feed_event (EV_P_ void *w, int revents)
608 {
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621 }
622
623 void inline_speed
624 queue_events (EV_P_ W *events, int eventcnt, int type)
625 {
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630 }
631
632 /*****************************************************************************/
633
634 void inline_size
635 anfds_init (ANFD *base, int count)
636 {
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645 }
646
647 void inline_speed
648 fd_event (EV_P_ int fd, int revents)
649 {
650 ANFD *anfd = anfds + fd;
651 ev_io *w;
652
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
654 {
655 int ev = w->events & revents;
656
657 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev);
659 }
660 }
661
662 void
663 ev_feed_fd_event (EV_P_ int fd, int revents)
664 {
665 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents);
667 }
668
669 void inline_size
670 fd_reify (EV_P)
671 {
672 int i;
673
674 for (i = 0; i < fdchangecnt; ++i)
675 {
676 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd;
678 ev_io *w;
679
680 unsigned char events = 0;
681
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 events |= (unsigned char)w->events;
684
685 #if EV_SELECT_IS_WINSOCKET
686 if (events)
687 {
688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
695 }
696 #endif
697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
708 }
709
710 fdchangecnt = 0;
711 }
712
713 void inline_size
714 fd_change (EV_P_ int fd, int flags)
715 {
716 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags;
718
719 if (expect_true (!reify))
720 {
721 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd;
724 }
725 }
726
727 void inline_speed
728 fd_kill (EV_P_ int fd)
729 {
730 ev_io *w;
731
732 while ((w = (ev_io *)anfds [fd].head))
733 {
734 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 }
737 }
738
739 int inline_size
740 fd_valid (int fd)
741 {
742 #ifdef _WIN32
743 return _get_osfhandle (fd) != -1;
744 #else
745 return fcntl (fd, F_GETFD) != -1;
746 #endif
747 }
748
749 /* called on EBADF to verify fds */
750 static void noinline
751 fd_ebadf (EV_P)
752 {
753 int fd;
754
755 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF)
758 fd_kill (EV_A_ fd);
759 }
760
761 /* called on ENOMEM in select/poll to kill some fds and retry */
762 static void noinline
763 fd_enomem (EV_P)
764 {
765 int fd;
766
767 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events)
769 {
770 fd_kill (EV_A_ fd);
771 return;
772 }
773 }
774
775 /* usually called after fork if backend needs to re-arm all fds from scratch */
776 static void noinline
777 fd_rearm_all (EV_P)
778 {
779 int fd;
780
781 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events)
783 {
784 anfds [fd].events = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
786 }
787 }
788
789 /*****************************************************************************/
790
791 /*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797 /*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803 #if EV_USE_4HEAP
804
805 #define DHEAP 4
806 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808 /* towards the root */
809 void inline_speed
810 upheap (ANHE *heap, int k)
811 {
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828 }
829
830 /* away from the root */
831 void inline_speed
832 downheap (ANHE *heap, int N, int k)
833 {
834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
836
837 for (;;)
838 {
839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
842
843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
845 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
859 break;
860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872 }
873
874 #else // 4HEAP
875
876 #define HEAP0 1
877
878 /* towards the root */
879 void inline_speed
880 upheap (ANHE *heap, int k)
881 {
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899 }
900
901 /* away from the root */
902 void inline_speed
903 downheap (ANHE *heap, int N, int k)
904 {
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928 }
929 #endif
930
931 void inline_size
932 adjustheap (ANHE *heap, int N, int k)
933 {
934 upheap (heap, k);
935 downheap (heap, N, k);
936 }
937
938 /*****************************************************************************/
939
940 typedef struct
941 {
942 WL head;
943 EV_ATOMIC_T gotsig;
944 } ANSIG;
945
946 static ANSIG *signals;
947 static int signalmax;
948
949 static EV_ATOMIC_T gotsig;
950
951 void inline_size
952 signals_init (ANSIG *base, int count)
953 {
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961 }
962
963 /*****************************************************************************/
964
965 void inline_speed
966 fd_intern (int fd)
967 {
968 #ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971 #else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974 #endif
975 }
976
977 static void noinline
978 evpipe_init (EV_P)
979 {
980 if (!ev_is_active (&pipeev))
981 {
982 #if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990 #endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
995 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
999
1000 ev_io_start (EV_A_ &pipeev);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003 }
1004
1005 void inline_size
1006 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007 {
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014 #if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021 #endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026 }
1027
1028 static void
1029 pipecb (EV_P_ ev_io *iow, int revents)
1030 {
1031 #if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038 #endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054 #if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067 #endif
1068 }
1069
1070 /*****************************************************************************/
1071
1072 static void
1073 ev_sighandler (int signum)
1074 {
1075 #if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077 #endif
1078
1079 #if _WIN32
1080 signal (signum, ev_sighandler);
1081 #endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085 }
1086
1087 void noinline
1088 ev_feed_signal_event (EV_P_ int signum)
1089 {
1090 WL w;
1091
1092 #if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094 #endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105 }
1106
1107 /*****************************************************************************/
1108
1109 static WL childs [EV_PID_HASHSIZE];
1110
1111 #ifndef _WIN32
1112
1113 static ev_signal childev;
1114
1115 #ifndef WIFCONTINUED
1116 # define WIFCONTINUED(status) 0
1117 #endif
1118
1119 void inline_speed
1120 child_reap (EV_P_ int chain, int pid, int status)
1121 {
1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
1129 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 w->rpid = pid;
1132 w->rstatus = status;
1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1134 }
1135 }
1136 }
1137
1138 #ifndef WCONTINUED
1139 # define WCONTINUED 0
1140 #endif
1141
1142 static void
1143 childcb (EV_P_ ev_signal *sw, int revents)
1144 {
1145 int pid, status;
1146
1147 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1148 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1149 if (!WCONTINUED
1150 || errno != EINVAL
1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1152 return;
1153
1154 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157
1158 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161 }
1162
1163 #endif
1164
1165 /*****************************************************************************/
1166
1167 #if EV_USE_PORT
1168 # include "ev_port.c"
1169 #endif
1170 #if EV_USE_KQUEUE
1171 # include "ev_kqueue.c"
1172 #endif
1173 #if EV_USE_EPOLL
1174 # include "ev_epoll.c"
1175 #endif
1176 #if EV_USE_POLL
1177 # include "ev_poll.c"
1178 #endif
1179 #if EV_USE_SELECT
1180 # include "ev_select.c"
1181 #endif
1182
1183 int
1184 ev_version_major (void)
1185 {
1186 return EV_VERSION_MAJOR;
1187 }
1188
1189 int
1190 ev_version_minor (void)
1191 {
1192 return EV_VERSION_MINOR;
1193 }
1194
1195 /* return true if we are running with elevated privileges and should ignore env variables */
1196 int inline_size
1197 enable_secure (void)
1198 {
1199 #ifdef _WIN32
1200 return 0;
1201 #else
1202 return getuid () != geteuid ()
1203 || getgid () != getegid ();
1204 #endif
1205 }
1206
1207 unsigned int
1208 ev_supported_backends (void)
1209 {
1210 unsigned int flags = 0;
1211
1212 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1213 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1214 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1215 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1216 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1217
1218 return flags;
1219 }
1220
1221 unsigned int
1222 ev_recommended_backends (void)
1223 {
1224 unsigned int flags = ev_supported_backends ();
1225
1226 #ifndef __NetBSD__
1227 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE;
1230 #endif
1231 #ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation
1233 flags &= ~EVBACKEND_POLL;
1234 #endif
1235
1236 return flags;
1237 }
1238
1239 unsigned int
1240 ev_embeddable_backends (void)
1241 {
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
1249 }
1250
1251 unsigned int
1252 ev_backend (EV_P)
1253 {
1254 return backend;
1255 }
1256
1257 unsigned int
1258 ev_loop_count (EV_P)
1259 {
1260 return loop_count;
1261 }
1262
1263 void
1264 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265 {
1266 io_blocktime = interval;
1267 }
1268
1269 void
1270 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271 {
1272 timeout_blocktime = interval;
1273 }
1274
1275 static void noinline
1276 loop_init (EV_P_ unsigned int flags)
1277 {
1278 if (!backend)
1279 {
1280 #if EV_USE_MONOTONIC
1281 {
1282 struct timespec ts;
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1;
1285 }
1286 #endif
1287
1288 ev_rt_now = ev_time ();
1289 mn_now = get_clock ();
1290 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298 #if EV_USE_INOTIFY
1299 fs_fd = -2;
1300 #endif
1301
1302 /* pid check not overridable via env */
1303 #ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306 #endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312
1313 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends ();
1315
1316 #if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318 #endif
1319 #if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321 #endif
1322 #if EV_USE_EPOLL
1323 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1324 #endif
1325 #if EV_USE_POLL
1326 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1327 #endif
1328 #if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330 #endif
1331
1332 ev_init (&pipeev, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI);
1334 }
1335 }
1336
1337 static void noinline
1338 loop_destroy (EV_P)
1339 {
1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347 #if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350 #endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
1358
1359 #if EV_USE_INOTIFY
1360 if (fs_fd >= 0)
1361 close (fs_fd);
1362 #endif
1363
1364 if (backend_fd >= 0)
1365 close (backend_fd);
1366
1367 #if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369 #endif
1370 #if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1372 #endif
1373 #if EV_USE_EPOLL
1374 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1375 #endif
1376 #if EV_USE_POLL
1377 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1378 #endif
1379 #if EV_USE_SELECT
1380 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1381 #endif
1382
1383 for (i = NUMPRI; i--; )
1384 {
1385 array_free (pending, [i]);
1386 #if EV_IDLE_ENABLE
1387 array_free (idle, [i]);
1388 #endif
1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
1392
1393 /* have to use the microsoft-never-gets-it-right macro */
1394 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY);
1396 #if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY);
1398 #endif
1399 #if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401 #endif
1402 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY);
1404 #if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406 #endif
1407
1408 backend = 0;
1409 }
1410
1411 #if EV_USE_INOTIFY
1412 void inline_size infy_fork (EV_P);
1413 #endif
1414
1415 void inline_size
1416 loop_fork (EV_P)
1417 {
1418 #if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420 #endif
1421 #if EV_USE_KQUEUE
1422 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1423 #endif
1424 #if EV_USE_EPOLL
1425 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1426 #endif
1427 #if EV_USE_INOTIFY
1428 infy_fork (EV_A);
1429 #endif
1430
1431 if (ev_is_active (&pipeev))
1432 {
1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436 #if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438 #endif
1439
1440 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev);
1442
1443 #if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446 #endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1450 close (evpipe [0]);
1451 close (evpipe [1]);
1452 }
1453
1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1457 }
1458
1459 postfork = 0;
1460 }
1461
1462 #if EV_MULTIPLICITY
1463 struct ev_loop *
1464 ev_loop_new (unsigned int flags)
1465 {
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476 }
1477
1478 void
1479 ev_loop_destroy (EV_P)
1480 {
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483 }
1484
1485 void
1486 ev_loop_fork (EV_P)
1487 {
1488 postfork = 1; /* must be in line with ev_default_fork */
1489 }
1490 #endif
1491
1492 #if EV_MULTIPLICITY
1493 struct ev_loop *
1494 ev_default_loop_init (unsigned int flags)
1495 #else
1496 int
1497 ev_default_loop (unsigned int flags)
1498 #endif
1499 {
1500 if (!ev_default_loop_ptr)
1501 {
1502 #if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1504 #else
1505 ev_default_loop_ptr = 1;
1506 #endif
1507
1508 loop_init (EV_A_ flags);
1509
1510 if (ev_backend (EV_A))
1511 {
1512 #ifndef _WIN32
1513 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517 #endif
1518 }
1519 else
1520 ev_default_loop_ptr = 0;
1521 }
1522
1523 return ev_default_loop_ptr;
1524 }
1525
1526 void
1527 ev_default_destroy (void)
1528 {
1529 #if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531 #endif
1532
1533 #ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536 #endif
1537
1538 loop_destroy (EV_A);
1539 }
1540
1541 void
1542 ev_default_fork (void)
1543 {
1544 #if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546 #endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */
1550 }
1551
1552 /*****************************************************************************/
1553
1554 void
1555 ev_invoke (EV_P_ void *w, int revents)
1556 {
1557 EV_CB_INVOKE ((W)w, revents);
1558 }
1559
1560 void inline_speed
1561 call_pending (EV_P)
1562 {
1563 int pri;
1564
1565 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri])
1567 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1573
1574 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events);
1576 }
1577 }
1578 }
1579
1580 #if EV_IDLE_ENABLE
1581 void inline_size
1582 idle_reify (EV_P)
1583 {
1584 if (expect_false (idleall))
1585 {
1586 int pri;
1587
1588 for (pri = NUMPRI; pri--; )
1589 {
1590 if (pendingcnt [pri])
1591 break;
1592
1593 if (idlecnt [pri])
1594 {
1595 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1596 break;
1597 }
1598 }
1599 }
1600 }
1601 #endif
1602
1603 void inline_size
1604 timers_reify (EV_P)
1605 {
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629 }
1630
1631 #if EV_PERIODIC_ENABLE
1632 void inline_size
1633 periodics_reify (EV_P)
1634 {
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 }
1675 }
1676
1677 static void noinline
1678 periodics_reschedule (EV_P)
1679 {
1680 int i;
1681
1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1699 }
1700 #endif
1701
1702 void inline_speed
1703 time_update (EV_P_ ev_tstamp max_block)
1704 {
1705 int i;
1706
1707 #if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1709 {
1710 ev_tstamp odiff = rtmn_diff;
1711
1712 mn_now = get_clock ();
1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1717 {
1718 ev_rt_now = rtmn_diff + mn_now;
1719 return;
1720 }
1721
1722 now_floor = mn_now;
1723 ev_rt_now = ev_time ();
1724
1725 /* loop a few times, before making important decisions.
1726 * on the choice of "4": one iteration isn't enough,
1727 * in case we get preempted during the calls to
1728 * ev_time and get_clock. a second call is almost guaranteed
1729 * to succeed in that case, though. and looping a few more times
1730 * doesn't hurt either as we only do this on time-jumps or
1731 * in the unlikely event of having been preempted here.
1732 */
1733 for (i = 4; --i; )
1734 {
1735 rtmn_diff = ev_rt_now - mn_now;
1736
1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1738 return; /* all is well */
1739
1740 ev_rt_now = ev_time ();
1741 mn_now = get_clock ();
1742 now_floor = mn_now;
1743 }
1744
1745 # if EV_PERIODIC_ENABLE
1746 periodics_reschedule (EV_A);
1747 # endif
1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1750 }
1751 else
1752 #endif
1753 {
1754 ev_rt_now = ev_time ();
1755
1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1757 {
1758 #if EV_PERIODIC_ENABLE
1759 periodics_reschedule (EV_A);
1760 #endif
1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1768 }
1769
1770 mn_now = ev_rt_now;
1771 }
1772 }
1773
1774 void
1775 ev_ref (EV_P)
1776 {
1777 ++activecnt;
1778 }
1779
1780 void
1781 ev_unref (EV_P)
1782 {
1783 --activecnt;
1784 }
1785
1786 static int loop_done;
1787
1788 void
1789 ev_loop (EV_P_ int flags)
1790 {
1791 loop_done = EVUNLOOP_CANCEL;
1792
1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1794
1795 do
1796 {
1797 #ifndef _WIN32
1798 if (expect_false (curpid)) /* penalise the forking check even more */
1799 if (expect_false (getpid () != curpid))
1800 {
1801 curpid = getpid ();
1802 postfork = 1;
1803 }
1804 #endif
1805
1806 #if EV_FORK_ENABLE
1807 /* we might have forked, so queue fork handlers */
1808 if (expect_false (postfork))
1809 if (forkcnt)
1810 {
1811 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1812 call_pending (EV_A);
1813 }
1814 #endif
1815
1816 /* queue prepare watchers (and execute them) */
1817 if (expect_false (preparecnt))
1818 {
1819 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1820 call_pending (EV_A);
1821 }
1822
1823 if (expect_false (!activecnt))
1824 break;
1825
1826 /* we might have forked, so reify kernel state if necessary */
1827 if (expect_false (postfork))
1828 loop_fork (EV_A);
1829
1830 /* update fd-related kernel structures */
1831 fd_reify (EV_A);
1832
1833 /* calculate blocking time */
1834 {
1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1837
1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1839 {
1840 /* update time to cancel out callback processing overhead */
1841 time_update (EV_A_ 1e100);
1842
1843 waittime = MAX_BLOCKTIME;
1844
1845 if (timercnt)
1846 {
1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1848 if (waittime > to) waittime = to;
1849 }
1850
1851 #if EV_PERIODIC_ENABLE
1852 if (periodiccnt)
1853 {
1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1855 if (waittime > to) waittime = to;
1856 }
1857 #endif
1858
1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1872 }
1873
1874 ++loop_count;
1875 backend_poll (EV_A_ waittime);
1876
1877 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime);
1879 }
1880
1881 /* queue pending timers and reschedule them */
1882 timers_reify (EV_A); /* relative timers called last */
1883 #if EV_PERIODIC_ENABLE
1884 periodics_reify (EV_A); /* absolute timers called first */
1885 #endif
1886
1887 #if EV_IDLE_ENABLE
1888 /* queue idle watchers unless other events are pending */
1889 idle_reify (EV_A);
1890 #endif
1891
1892 /* queue check watchers, to be executed first */
1893 if (expect_false (checkcnt))
1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1895
1896 call_pending (EV_A);
1897 }
1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1903
1904 if (loop_done == EVUNLOOP_ONE)
1905 loop_done = EVUNLOOP_CANCEL;
1906 }
1907
1908 void
1909 ev_unloop (EV_P_ int how)
1910 {
1911 loop_done = how;
1912 }
1913
1914 /*****************************************************************************/
1915
1916 void inline_size
1917 wlist_add (WL *head, WL elem)
1918 {
1919 elem->next = *head;
1920 *head = elem;
1921 }
1922
1923 void inline_size
1924 wlist_del (WL *head, WL elem)
1925 {
1926 while (*head)
1927 {
1928 if (*head == elem)
1929 {
1930 *head = elem->next;
1931 return;
1932 }
1933
1934 head = &(*head)->next;
1935 }
1936 }
1937
1938 void inline_speed
1939 clear_pending (EV_P_ W w)
1940 {
1941 if (w->pending)
1942 {
1943 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1944 w->pending = 0;
1945 }
1946 }
1947
1948 int
1949 ev_clear_pending (EV_P_ void *w)
1950 {
1951 W w_ = (W)w;
1952 int pending = w_->pending;
1953
1954 if (expect_true (pending))
1955 {
1956 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1957 w_->pending = 0;
1958 p->w = 0;
1959 return p->events;
1960 }
1961 else
1962 return 0;
1963 }
1964
1965 void inline_size
1966 pri_adjust (EV_P_ W w)
1967 {
1968 int pri = w->priority;
1969 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1970 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1971 w->priority = pri;
1972 }
1973
1974 void inline_speed
1975 ev_start (EV_P_ W w, int active)
1976 {
1977 pri_adjust (EV_A_ w);
1978 w->active = active;
1979 ev_ref (EV_A);
1980 }
1981
1982 void inline_size
1983 ev_stop (EV_P_ W w)
1984 {
1985 ev_unref (EV_A);
1986 w->active = 0;
1987 }
1988
1989 /*****************************************************************************/
1990
1991 void noinline
1992 ev_io_start (EV_P_ ev_io *w)
1993 {
1994 int fd = w->fd;
1995
1996 if (expect_false (ev_is_active (w)))
1997 return;
1998
1999 assert (("ev_io_start called with negative fd", fd >= 0));
2000
2001 ev_start (EV_A_ (W)w, 1);
2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2003 wlist_add (&anfds[fd].head, (WL)w);
2004
2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
2007 }
2008
2009 void noinline
2010 ev_io_stop (EV_P_ ev_io *w)
2011 {
2012 clear_pending (EV_A_ (W)w);
2013 if (expect_false (!ev_is_active (w)))
2014 return;
2015
2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2017
2018 wlist_del (&anfds[w->fd].head, (WL)w);
2019 ev_stop (EV_A_ (W)w);
2020
2021 fd_change (EV_A_ w->fd, 1);
2022 }
2023
2024 void noinline
2025 ev_timer_start (EV_P_ ev_timer *w)
2026 {
2027 if (expect_false (ev_is_active (w)))
2028 return;
2029
2030 ev_at (w) += mn_now;
2031
2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2033
2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
2039
2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2041 }
2042
2043 void noinline
2044 ev_timer_stop (EV_P_ ev_timer *w)
2045 {
2046 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w)))
2048 return;
2049
2050 {
2051 int active = ev_active (w);
2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
2055 if (expect_true (active < timercnt + HEAP0 - 1))
2056 {
2057 timers [active] = timers [timercnt + HEAP0 - 1];
2058 adjustheap (timers, timercnt, active);
2059 }
2060
2061 --timercnt;
2062 }
2063
2064 ev_at (w) -= mn_now;
2065
2066 ev_stop (EV_A_ (W)w);
2067 }
2068
2069 void noinline
2070 ev_timer_again (EV_P_ ev_timer *w)
2071 {
2072 if (ev_is_active (w))
2073 {
2074 if (w->repeat)
2075 {
2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
2078 adjustheap (timers, timercnt, ev_active (w));
2079 }
2080 else
2081 ev_timer_stop (EV_A_ w);
2082 }
2083 else if (w->repeat)
2084 {
2085 ev_at (w) = w->repeat;
2086 ev_timer_start (EV_A_ w);
2087 }
2088 }
2089
2090 #if EV_PERIODIC_ENABLE
2091 void noinline
2092 ev_periodic_start (EV_P_ ev_periodic *w)
2093 {
2094 if (expect_false (ev_is_active (w)))
2095 return;
2096
2097 if (w->reschedule_cb)
2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2099 else if (w->interval)
2100 {
2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2102 /* this formula differs from the one in periodic_reify because we do not always round up */
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104 }
2105 else
2106 ev_at (w) = w->offset;
2107
2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
2113
2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2115 }
2116
2117 void noinline
2118 ev_periodic_stop (EV_P_ ev_periodic *w)
2119 {
2120 clear_pending (EV_A_ (W)w);
2121 if (expect_false (!ev_is_active (w)))
2122 return;
2123
2124 {
2125 int active = ev_active (w);
2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
2130 {
2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2132 adjustheap (periodics, periodiccnt, active);
2133 }
2134
2135 --periodiccnt;
2136 }
2137
2138 ev_stop (EV_A_ (W)w);
2139 }
2140
2141 void noinline
2142 ev_periodic_again (EV_P_ ev_periodic *w)
2143 {
2144 /* TODO: use adjustheap and recalculation */
2145 ev_periodic_stop (EV_A_ w);
2146 ev_periodic_start (EV_A_ w);
2147 }
2148 #endif
2149
2150 #ifndef SA_RESTART
2151 # define SA_RESTART 0
2152 #endif
2153
2154 void noinline
2155 ev_signal_start (EV_P_ ev_signal *w)
2156 {
2157 #if EV_MULTIPLICITY
2158 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159 #endif
2160 if (expect_false (ev_is_active (w)))
2161 return;
2162
2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2164
2165 evpipe_init (EV_A);
2166
2167 {
2168 #ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172 #endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176 #ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178 #endif
2179 }
2180
2181 ev_start (EV_A_ (W)w, 1);
2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
2183
2184 if (!((WL)w)->next)
2185 {
2186 #if _WIN32
2187 signal (w->signum, ev_sighandler);
2188 #else
2189 struct sigaction sa;
2190 sa.sa_handler = ev_sighandler;
2191 sigfillset (&sa.sa_mask);
2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2193 sigaction (w->signum, &sa, 0);
2194 #endif
2195 }
2196 }
2197
2198 void noinline
2199 ev_signal_stop (EV_P_ ev_signal *w)
2200 {
2201 clear_pending (EV_A_ (W)w);
2202 if (expect_false (!ev_is_active (w)))
2203 return;
2204
2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
2206 ev_stop (EV_A_ (W)w);
2207
2208 if (!signals [w->signum - 1].head)
2209 signal (w->signum, SIG_DFL);
2210 }
2211
2212 void
2213 ev_child_start (EV_P_ ev_child *w)
2214 {
2215 #if EV_MULTIPLICITY
2216 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2217 #endif
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, 1);
2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2223 }
2224
2225 void
2226 ev_child_stop (EV_P_ ev_child *w)
2227 {
2228 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w)))
2230 return;
2231
2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2233 ev_stop (EV_A_ (W)w);
2234 }
2235
2236 #if EV_STAT_ENABLE
2237
2238 # ifdef _WIN32
2239 # undef lstat
2240 # define lstat(a,b) _stati64 (a,b)
2241 # endif
2242
2243 #define DEF_STAT_INTERVAL 5.0074891
2244 #define MIN_STAT_INTERVAL 0.1074891
2245
2246 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2247
2248 #if EV_USE_INOTIFY
2249 # define EV_INOTIFY_BUFSIZE 8192
2250
2251 static void noinline
2252 infy_add (EV_P_ ev_stat *w)
2253 {
2254 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2255
2256 if (w->wd < 0)
2257 {
2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2259
2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2264 {
2265 char path [4096];
2266 strcpy (path, w->path);
2267
2268 do
2269 {
2270 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2271 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2272
2273 char *pend = strrchr (path, '/');
2274
2275 if (!pend)
2276 break; /* whoops, no '/', complain to your admin */
2277
2278 *pend = 0;
2279 w->wd = inotify_add_watch (fs_fd, path, mask);
2280 }
2281 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2282 }
2283 }
2284 else
2285 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2286
2287 if (w->wd >= 0)
2288 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2289 }
2290
2291 static void noinline
2292 infy_del (EV_P_ ev_stat *w)
2293 {
2294 int slot;
2295 int wd = w->wd;
2296
2297 if (wd < 0)
2298 return;
2299
2300 w->wd = -2;
2301 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2302 wlist_del (&fs_hash [slot].head, (WL)w);
2303
2304 /* remove this watcher, if others are watching it, they will rearm */
2305 inotify_rm_watch (fs_fd, wd);
2306 }
2307
2308 static void noinline
2309 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2310 {
2311 if (slot < 0)
2312 /* overflow, need to check for all hahs slots */
2313 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2314 infy_wd (EV_A_ slot, wd, ev);
2315 else
2316 {
2317 WL w_;
2318
2319 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2320 {
2321 ev_stat *w = (ev_stat *)w_;
2322 w_ = w_->next; /* lets us remove this watcher and all before it */
2323
2324 if (w->wd == wd || wd == -1)
2325 {
2326 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2327 {
2328 w->wd = -1;
2329 infy_add (EV_A_ w); /* re-add, no matter what */
2330 }
2331
2332 stat_timer_cb (EV_A_ &w->timer, 0);
2333 }
2334 }
2335 }
2336 }
2337
2338 static void
2339 infy_cb (EV_P_ ev_io *w, int revents)
2340 {
2341 char buf [EV_INOTIFY_BUFSIZE];
2342 struct inotify_event *ev = (struct inotify_event *)buf;
2343 int ofs;
2344 int len = read (fs_fd, buf, sizeof (buf));
2345
2346 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2347 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2348 }
2349
2350 void inline_size
2351 infy_init (EV_P)
2352 {
2353 if (fs_fd != -2)
2354 return;
2355
2356 fs_fd = inotify_init ();
2357
2358 if (fs_fd >= 0)
2359 {
2360 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2361 ev_set_priority (&fs_w, EV_MAXPRI);
2362 ev_io_start (EV_A_ &fs_w);
2363 }
2364 }
2365
2366 void inline_size
2367 infy_fork (EV_P)
2368 {
2369 int slot;
2370
2371 if (fs_fd < 0)
2372 return;
2373
2374 close (fs_fd);
2375 fs_fd = inotify_init ();
2376
2377 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2378 {
2379 WL w_ = fs_hash [slot].head;
2380 fs_hash [slot].head = 0;
2381
2382 while (w_)
2383 {
2384 ev_stat *w = (ev_stat *)w_;
2385 w_ = w_->next; /* lets us add this watcher */
2386
2387 w->wd = -1;
2388
2389 if (fs_fd >= 0)
2390 infy_add (EV_A_ w); /* re-add, no matter what */
2391 else
2392 ev_timer_start (EV_A_ &w->timer);
2393 }
2394
2395 }
2396 }
2397
2398 #endif
2399
2400 void
2401 ev_stat_stat (EV_P_ ev_stat *w)
2402 {
2403 if (lstat (w->path, &w->attr) < 0)
2404 w->attr.st_nlink = 0;
2405 else if (!w->attr.st_nlink)
2406 w->attr.st_nlink = 1;
2407 }
2408
2409 static void noinline
2410 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2411 {
2412 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2413
2414 /* we copy this here each the time so that */
2415 /* prev has the old value when the callback gets invoked */
2416 w->prev = w->attr;
2417 ev_stat_stat (EV_A_ w);
2418
2419 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2420 if (
2421 w->prev.st_dev != w->attr.st_dev
2422 || w->prev.st_ino != w->attr.st_ino
2423 || w->prev.st_mode != w->attr.st_mode
2424 || w->prev.st_nlink != w->attr.st_nlink
2425 || w->prev.st_uid != w->attr.st_uid
2426 || w->prev.st_gid != w->attr.st_gid
2427 || w->prev.st_rdev != w->attr.st_rdev
2428 || w->prev.st_size != w->attr.st_size
2429 || w->prev.st_atime != w->attr.st_atime
2430 || w->prev.st_mtime != w->attr.st_mtime
2431 || w->prev.st_ctime != w->attr.st_ctime
2432 ) {
2433 #if EV_USE_INOTIFY
2434 infy_del (EV_A_ w);
2435 infy_add (EV_A_ w);
2436 ev_stat_stat (EV_A_ w); /* avoid race... */
2437 #endif
2438
2439 ev_feed_event (EV_A_ w, EV_STAT);
2440 }
2441 }
2442
2443 void
2444 ev_stat_start (EV_P_ ev_stat *w)
2445 {
2446 if (expect_false (ev_is_active (w)))
2447 return;
2448
2449 /* since we use memcmp, we need to clear any padding data etc. */
2450 memset (&w->prev, 0, sizeof (ev_statdata));
2451 memset (&w->attr, 0, sizeof (ev_statdata));
2452
2453 ev_stat_stat (EV_A_ w);
2454
2455 if (w->interval < MIN_STAT_INTERVAL)
2456 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2457
2458 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2459 ev_set_priority (&w->timer, ev_priority (w));
2460
2461 #if EV_USE_INOTIFY
2462 infy_init (EV_A);
2463
2464 if (fs_fd >= 0)
2465 infy_add (EV_A_ w);
2466 else
2467 #endif
2468 ev_timer_start (EV_A_ &w->timer);
2469
2470 ev_start (EV_A_ (W)w, 1);
2471 }
2472
2473 void
2474 ev_stat_stop (EV_P_ ev_stat *w)
2475 {
2476 clear_pending (EV_A_ (W)w);
2477 if (expect_false (!ev_is_active (w)))
2478 return;
2479
2480 #if EV_USE_INOTIFY
2481 infy_del (EV_A_ w);
2482 #endif
2483 ev_timer_stop (EV_A_ &w->timer);
2484
2485 ev_stop (EV_A_ (W)w);
2486 }
2487 #endif
2488
2489 #if EV_IDLE_ENABLE
2490 void
2491 ev_idle_start (EV_P_ ev_idle *w)
2492 {
2493 if (expect_false (ev_is_active (w)))
2494 return;
2495
2496 pri_adjust (EV_A_ (W)w);
2497
2498 {
2499 int active = ++idlecnt [ABSPRI (w)];
2500
2501 ++idleall;
2502 ev_start (EV_A_ (W)w, active);
2503
2504 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2505 idles [ABSPRI (w)][active - 1] = w;
2506 }
2507 }
2508
2509 void
2510 ev_idle_stop (EV_P_ ev_idle *w)
2511 {
2512 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w)))
2514 return;
2515
2516 {
2517 int active = ev_active (w);
2518
2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2521
2522 ev_stop (EV_A_ (W)w);
2523 --idleall;
2524 }
2525 }
2526 #endif
2527
2528 void
2529 ev_prepare_start (EV_P_ ev_prepare *w)
2530 {
2531 if (expect_false (ev_is_active (w)))
2532 return;
2533
2534 ev_start (EV_A_ (W)w, ++preparecnt);
2535 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2536 prepares [preparecnt - 1] = w;
2537 }
2538
2539 void
2540 ev_prepare_stop (EV_P_ ev_prepare *w)
2541 {
2542 clear_pending (EV_A_ (W)w);
2543 if (expect_false (!ev_is_active (w)))
2544 return;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 prepares [active - 1] = prepares [--preparecnt];
2550 ev_active (prepares [active - 1]) = active;
2551 }
2552
2553 ev_stop (EV_A_ (W)w);
2554 }
2555
2556 void
2557 ev_check_start (EV_P_ ev_check *w)
2558 {
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 ev_start (EV_A_ (W)w, ++checkcnt);
2563 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2564 checks [checkcnt - 1] = w;
2565 }
2566
2567 void
2568 ev_check_stop (EV_P_ ev_check *w)
2569 {
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 {
2575 int active = ev_active (w);
2576
2577 checks [active - 1] = checks [--checkcnt];
2578 ev_active (checks [active - 1]) = active;
2579 }
2580
2581 ev_stop (EV_A_ (W)w);
2582 }
2583
2584 #if EV_EMBED_ENABLE
2585 void noinline
2586 ev_embed_sweep (EV_P_ ev_embed *w)
2587 {
2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2589 }
2590
2591 static void
2592 embed_io_cb (EV_P_ ev_io *io, int revents)
2593 {
2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2595
2596 if (ev_cb (w))
2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2598 else
2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2600 }
2601
2602 static void
2603 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604 {
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616 }
2617
2618 #if 0
2619 static void
2620 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621 {
2622 ev_idle_stop (EV_A_ idle);
2623 }
2624 #endif
2625
2626 void
2627 ev_embed_start (EV_P_ ev_embed *w)
2628 {
2629 if (expect_false (ev_is_active (w)))
2630 return;
2631
2632 {
2633 struct ev_loop *loop = w->other;
2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2636 }
2637
2638 ev_set_priority (&w->io, ev_priority (w));
2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2646
2647 ev_start (EV_A_ (W)w, 1);
2648 }
2649
2650 void
2651 ev_embed_stop (EV_P_ ev_embed *w)
2652 {
2653 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w)))
2655 return;
2656
2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2659
2660 ev_stop (EV_A_ (W)w);
2661 }
2662 #endif
2663
2664 #if EV_FORK_ENABLE
2665 void
2666 ev_fork_start (EV_P_ ev_fork *w)
2667 {
2668 if (expect_false (ev_is_active (w)))
2669 return;
2670
2671 ev_start (EV_A_ (W)w, ++forkcnt);
2672 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2673 forks [forkcnt - 1] = w;
2674 }
2675
2676 void
2677 ev_fork_stop (EV_P_ ev_fork *w)
2678 {
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 {
2684 int active = ev_active (w);
2685
2686 forks [active - 1] = forks [--forkcnt];
2687 ev_active (forks [active - 1]) = active;
2688 }
2689
2690 ev_stop (EV_A_ (W)w);
2691 }
2692 #endif
2693
2694 #if EV_ASYNC_ENABLE
2695 void
2696 ev_async_start (EV_P_ ev_async *w)
2697 {
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706 }
2707
2708 void
2709 ev_async_stop (EV_P_ ev_async *w)
2710 {
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723 }
2724
2725 void
2726 ev_async_send (EV_P_ ev_async *w)
2727 {
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2730 }
2731 #endif
2732
2733 /*****************************************************************************/
2734
2735 struct ev_once
2736 {
2737 ev_io io;
2738 ev_timer to;
2739 void (*cb)(int revents, void *arg);
2740 void *arg;
2741 };
2742
2743 static void
2744 once_cb (EV_P_ struct ev_once *once, int revents)
2745 {
2746 void (*cb)(int revents, void *arg) = once->cb;
2747 void *arg = once->arg;
2748
2749 ev_io_stop (EV_A_ &once->io);
2750 ev_timer_stop (EV_A_ &once->to);
2751 ev_free (once);
2752
2753 cb (revents, arg);
2754 }
2755
2756 static void
2757 once_cb_io (EV_P_ ev_io *w, int revents)
2758 {
2759 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2760 }
2761
2762 static void
2763 once_cb_to (EV_P_ ev_timer *w, int revents)
2764 {
2765 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
2766 }
2767
2768 void
2769 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2770 {
2771 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2772
2773 if (expect_false (!once))
2774 {
2775 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2776 return;
2777 }
2778
2779 once->cb = cb;
2780 once->arg = arg;
2781
2782 ev_init (&once->io, once_cb_io);
2783 if (fd >= 0)
2784 {
2785 ev_io_set (&once->io, fd, events);
2786 ev_io_start (EV_A_ &once->io);
2787 }
2788
2789 ev_init (&once->to, once_cb_to);
2790 if (timeout >= 0.)
2791 {
2792 ev_timer_set (&once->to, timeout, 0.);
2793 ev_timer_start (EV_A_ &once->to);
2794 }
2795 }
2796
2797 #if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799 #endif
2800
2801 #ifdef __cplusplus
2802 }
2803 #endif
2804