ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.247
Committed: Wed May 21 21:22:10 2008 UTC (15 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.246: +11 -7 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_GETTIME
53 # ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 # endif
56 # ifndef EV_USE_REALTIME
57 # define EV_USE_REALTIME 1
58 # endif
59 # else
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 0
62 # endif
63 # ifndef EV_USE_REALTIME
64 # define EV_USE_REALTIME 0
65 # endif
66 # endif
67
68 # ifndef EV_USE_NANOSLEEP
69 # if HAVE_NANOSLEEP
70 # define EV_USE_NANOSLEEP 1
71 # else
72 # define EV_USE_NANOSLEEP 0
73 # endif
74 # endif
75
76 # ifndef EV_USE_SELECT
77 # if HAVE_SELECT && HAVE_SYS_SELECT_H
78 # define EV_USE_SELECT 1
79 # else
80 # define EV_USE_SELECT 0
81 # endif
82 # endif
83
84 # ifndef EV_USE_POLL
85 # if HAVE_POLL && HAVE_POLL_H
86 # define EV_USE_POLL 1
87 # else
88 # define EV_USE_POLL 0
89 # endif
90 # endif
91
92 # ifndef EV_USE_EPOLL
93 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94 # define EV_USE_EPOLL 1
95 # else
96 # define EV_USE_EPOLL 0
97 # endif
98 # endif
99
100 # ifndef EV_USE_KQUEUE
101 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102 # define EV_USE_KQUEUE 1
103 # else
104 # define EV_USE_KQUEUE 0
105 # endif
106 # endif
107
108 # ifndef EV_USE_PORT
109 # if HAVE_PORT_H && HAVE_PORT_CREATE
110 # define EV_USE_PORT 1
111 # else
112 # define EV_USE_PORT 0
113 # endif
114 # endif
115
116 # ifndef EV_USE_INOTIFY
117 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118 # define EV_USE_INOTIFY 1
119 # else
120 # define EV_USE_INOTIFY 0
121 # endif
122 # endif
123
124 # ifndef EV_USE_EVENTFD
125 # if HAVE_EVENTFD
126 # define EV_USE_EVENTFD 1
127 # else
128 # define EV_USE_EVENTFD 0
129 # endif
130 # endif
131
132 #endif
133
134 #include <math.h>
135 #include <stdlib.h>
136 #include <fcntl.h>
137 #include <stddef.h>
138
139 #include <stdio.h>
140
141 #include <assert.h>
142 #include <errno.h>
143 #include <sys/types.h>
144 #include <time.h>
145
146 #include <signal.h>
147
148 #ifdef EV_H
149 # include EV_H
150 #else
151 # include "ev.h"
152 #endif
153
154 #ifndef _WIN32
155 # include <sys/time.h>
156 # include <sys/wait.h>
157 # include <unistd.h>
158 #else
159 # define WIN32_LEAN_AND_MEAN
160 # include <windows.h>
161 # ifndef EV_SELECT_IS_WINSOCKET
162 # define EV_SELECT_IS_WINSOCKET 1
163 # endif
164 #endif
165
166 /* this block tries to deduce configuration from header-defined symbols and defaults */
167
168 #ifndef EV_USE_MONOTONIC
169 # define EV_USE_MONOTONIC 0
170 #endif
171
172 #ifndef EV_USE_REALTIME
173 # define EV_USE_REALTIME 0
174 #endif
175
176 #ifndef EV_USE_NANOSLEEP
177 # define EV_USE_NANOSLEEP 0
178 #endif
179
180 #ifndef EV_USE_SELECT
181 # define EV_USE_SELECT 1
182 #endif
183
184 #ifndef EV_USE_POLL
185 # ifdef _WIN32
186 # define EV_USE_POLL 0
187 # else
188 # define EV_USE_POLL 1
189 # endif
190 #endif
191
192 #ifndef EV_USE_EPOLL
193 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194 # define EV_USE_EPOLL 1
195 # else
196 # define EV_USE_EPOLL 0
197 # endif
198 #endif
199
200 #ifndef EV_USE_KQUEUE
201 # define EV_USE_KQUEUE 0
202 #endif
203
204 #ifndef EV_USE_PORT
205 # define EV_USE_PORT 0
206 #endif
207
208 #ifndef EV_USE_INOTIFY
209 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210 # define EV_USE_INOTIFY 1
211 # else
212 # define EV_USE_INOTIFY 0
213 # endif
214 #endif
215
216 #ifndef EV_PID_HASHSIZE
217 # if EV_MINIMAL
218 # define EV_PID_HASHSIZE 1
219 # else
220 # define EV_PID_HASHSIZE 16
221 # endif
222 #endif
223
224 #ifndef EV_INOTIFY_HASHSIZE
225 # if EV_MINIMAL
226 # define EV_INOTIFY_HASHSIZE 1
227 # else
228 # define EV_INOTIFY_HASHSIZE 16
229 # endif
230 #endif
231
232 #ifndef EV_USE_EVENTFD
233 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234 # define EV_USE_EVENTFD 1
235 # else
236 # define EV_USE_EVENTFD 0
237 # endif
238 #endif
239
240 #ifndef EV_USE_4HEAP
241 # define EV_USE_4HEAP !EV_MINIMAL
242 #endif
243
244 #ifndef EV_HEAP_CACHE_AT
245 # define EV_HEAP_CACHE_AT !EV_MINIMAL
246 #endif
247
248 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
249
250 #ifndef CLOCK_MONOTONIC
251 # undef EV_USE_MONOTONIC
252 # define EV_USE_MONOTONIC 0
253 #endif
254
255 #ifndef CLOCK_REALTIME
256 # undef EV_USE_REALTIME
257 # define EV_USE_REALTIME 0
258 #endif
259
260 #if !EV_STAT_ENABLE
261 # undef EV_USE_INOTIFY
262 # define EV_USE_INOTIFY 0
263 #endif
264
265 #if !EV_USE_NANOSLEEP
266 # ifndef _WIN32
267 # include <sys/select.h>
268 # endif
269 #endif
270
271 #if EV_USE_INOTIFY
272 # include <sys/inotify.h>
273 #endif
274
275 #if EV_SELECT_IS_WINSOCKET
276 # include <winsock.h>
277 #endif
278
279 #if EV_USE_EVENTFD
280 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281 # include <stdint.h>
282 # ifdef __cplusplus
283 extern "C" {
284 # endif
285 int eventfd (unsigned int initval, int flags);
286 # ifdef __cplusplus
287 }
288 # endif
289 #endif
290
291 /**/
292
293 /*
294 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding
297 * errors are against us.
298 * This value is good at least till the year 4000.
299 * Better solutions welcome.
300 */
301 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302
303 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306
307 #if __GNUC__ >= 4
308 # define expect(expr,value) __builtin_expect ((expr),(value))
309 # define noinline __attribute__ ((noinline))
310 #else
311 # define expect(expr,value) (expr)
312 # define noinline
313 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
314 # define inline
315 # endif
316 #endif
317
318 #define expect_false(expr) expect ((expr) != 0, 0)
319 #define expect_true(expr) expect ((expr) != 0, 1)
320 #define inline_size static inline
321
322 #if EV_MINIMAL
323 # define inline_speed static noinline
324 #else
325 # define inline_speed static inline
326 #endif
327
328 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
330
331 #define EMPTY /* required for microsofts broken pseudo-c compiler */
332 #define EMPTY2(a,b) /* used to suppress some warnings */
333
334 typedef ev_watcher *W;
335 typedef ev_watcher_list *WL;
336 typedef ev_watcher_time *WT;
337
338 #define ev_active(w) ((W)(w))->active
339 #define ev_at(w) ((WT)(w))->at
340
341 #if EV_USE_MONOTONIC
342 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
343 /* giving it a reasonably high chance of working on typical architetcures */
344 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345 #endif
346
347 #ifdef _WIN32
348 # include "ev_win32.c"
349 #endif
350
351 /*****************************************************************************/
352
353 static void (*syserr_cb)(const char *msg);
354
355 void
356 ev_set_syserr_cb (void (*cb)(const char *msg))
357 {
358 syserr_cb = cb;
359 }
360
361 static void noinline
362 syserr (const char *msg)
363 {
364 if (!msg)
365 msg = "(libev) system error";
366
367 if (syserr_cb)
368 syserr_cb (msg);
369 else
370 {
371 perror (msg);
372 abort ();
373 }
374 }
375
376 static void *
377 ev_realloc_emul (void *ptr, long size)
378 {
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389 }
390
391 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392
393 void
394 ev_set_allocator (void *(*cb)(void *ptr, long size))
395 {
396 alloc = cb;
397 }
398
399 inline_speed void *
400 ev_realloc (void *ptr, long size)
401 {
402 ptr = alloc (ptr, size);
403
404 if (!ptr && size)
405 {
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
407 abort ();
408 }
409
410 return ptr;
411 }
412
413 #define ev_malloc(size) ev_realloc (0, (size))
414 #define ev_free(ptr) ev_realloc ((ptr), 0)
415
416 /*****************************************************************************/
417
418 typedef struct
419 {
420 WL head;
421 unsigned char events;
422 unsigned char reify;
423 #if EV_SELECT_IS_WINSOCKET
424 SOCKET handle;
425 #endif
426 } ANFD;
427
428 typedef struct
429 {
430 W w;
431 int events;
432 } ANPENDING;
433
434 #if EV_USE_INOTIFY
435 /* hash table entry per inotify-id */
436 typedef struct
437 {
438 WL head;
439 } ANFS;
440 #endif
441
442 /* Heap Entry */
443 #if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452 #else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
458 #endif
459
460 #if EV_MULTIPLICITY
461
462 struct ev_loop
463 {
464 ev_tstamp ev_rt_now;
465 #define ev_rt_now ((loop)->ev_rt_now)
466 #define VAR(name,decl) decl;
467 #include "ev_vars.h"
468 #undef VAR
469 };
470 #include "ev_wrap.h"
471
472 static struct ev_loop default_loop_struct;
473 struct ev_loop *ev_default_loop_ptr;
474
475 #else
476
477 ev_tstamp ev_rt_now;
478 #define VAR(name,decl) static decl;
479 #include "ev_vars.h"
480 #undef VAR
481
482 static int ev_default_loop_ptr;
483
484 #endif
485
486 /*****************************************************************************/
487
488 ev_tstamp
489 ev_time (void)
490 {
491 #if EV_USE_REALTIME
492 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9;
495 #else
496 struct timeval tv;
497 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6;
499 #endif
500 }
501
502 ev_tstamp inline_size
503 get_clock (void)
504 {
505 #if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic))
507 {
508 struct timespec ts;
509 clock_gettime (CLOCK_MONOTONIC, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9;
511 }
512 #endif
513
514 return ev_time ();
515 }
516
517 #if EV_MULTIPLICITY
518 ev_tstamp
519 ev_now (EV_P)
520 {
521 return ev_rt_now;
522 }
523 #endif
524
525 void
526 ev_sleep (ev_tstamp delay)
527 {
528 if (delay > 0.)
529 {
530 #if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537 #elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539 #else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546 #endif
547 }
548 }
549
550 /*****************************************************************************/
551
552 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
554 int inline_size
555 array_nextsize (int elem, int cur, int cnt)
556 {
557 int ncur = cur + 1;
558
559 do
560 ncur <<= 1;
561 while (cnt > ncur);
562
563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
565 {
566 ncur *= elem;
567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
568 ncur = ncur - sizeof (void *) * 4;
569 ncur /= elem;
570 }
571
572 return ncur;
573 }
574
575 static noinline void *
576 array_realloc (int elem, void *base, int *cur, int cnt)
577 {
578 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur);
580 }
581
582 #define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \
584 { \
585 int ocur_ = (cur); \
586 (base) = (type *)array_realloc \
587 (sizeof (type), (base), &(cur), (cnt)); \
588 init ((base) + (ocur_), (cur) - ocur_); \
589 }
590
591 #if 0
592 #define array_slim(type,stem) \
593 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
594 { \
595 stem ## max = array_roundsize (stem ## cnt >> 1); \
596 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 }
599 #endif
600
601 #define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
603
604 /*****************************************************************************/
605
606 void noinline
607 ev_feed_event (EV_P_ void *w, int revents)
608 {
609 W w_ = (W)w;
610 int pri = ABSPRI (w_);
611
612 if (expect_false (w_->pending))
613 pendings [pri][w_->pending - 1].events |= revents;
614 else
615 {
616 w_->pending = ++pendingcnt [pri];
617 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
618 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents;
620 }
621 }
622
623 void inline_speed
624 queue_events (EV_P_ W *events, int eventcnt, int type)
625 {
626 int i;
627
628 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type);
630 }
631
632 /*****************************************************************************/
633
634 void inline_size
635 anfds_init (ANFD *base, int count)
636 {
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645 }
646
647 void inline_speed
648 fd_event (EV_P_ int fd, int revents)
649 {
650 ANFD *anfd = anfds + fd;
651 ev_io *w;
652
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
654 {
655 int ev = w->events & revents;
656
657 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev);
659 }
660 }
661
662 void
663 ev_feed_fd_event (EV_P_ int fd, int revents)
664 {
665 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents);
667 }
668
669 void inline_size
670 fd_reify (EV_P)
671 {
672 int i;
673
674 for (i = 0; i < fdchangecnt; ++i)
675 {
676 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd;
678 ev_io *w;
679
680 unsigned char events = 0;
681
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 events |= (unsigned char)w->events;
684
685 #if EV_SELECT_IS_WINSOCKET
686 if (events)
687 {
688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
695 }
696 #endif
697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
708 }
709
710 fdchangecnt = 0;
711 }
712
713 void inline_size
714 fd_change (EV_P_ int fd, int flags)
715 {
716 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags;
718
719 if (expect_true (!reify))
720 {
721 ++fdchangecnt;
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd;
724 }
725 }
726
727 void inline_speed
728 fd_kill (EV_P_ int fd)
729 {
730 ev_io *w;
731
732 while ((w = (ev_io *)anfds [fd].head))
733 {
734 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 }
737 }
738
739 int inline_size
740 fd_valid (int fd)
741 {
742 #ifdef _WIN32
743 return _get_osfhandle (fd) != -1;
744 #else
745 return fcntl (fd, F_GETFD) != -1;
746 #endif
747 }
748
749 /* called on EBADF to verify fds */
750 static void noinline
751 fd_ebadf (EV_P)
752 {
753 int fd;
754
755 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF)
758 fd_kill (EV_A_ fd);
759 }
760
761 /* called on ENOMEM in select/poll to kill some fds and retry */
762 static void noinline
763 fd_enomem (EV_P)
764 {
765 int fd;
766
767 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events)
769 {
770 fd_kill (EV_A_ fd);
771 return;
772 }
773 }
774
775 /* usually called after fork if backend needs to re-arm all fds from scratch */
776 static void noinline
777 fd_rearm_all (EV_P)
778 {
779 int fd;
780
781 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events)
783 {
784 anfds [fd].events = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
786 }
787 }
788
789 /*****************************************************************************/
790
791 /*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797 /*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803 #if EV_USE_4HEAP
804
805 #define DHEAP 4
806 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809 /* towards the root */
810 void inline_speed
811 upheap (ANHE *heap, int k)
812 {
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829 }
830
831 /* away from the root */
832 void inline_speed
833 downheap (ANHE *heap, int N, int k)
834 {
835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
837
838 for (;;)
839 {
840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
843
844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
860 break;
861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873 }
874
875 #else // 4HEAP
876
877 #define HEAP0 1
878 #define HPARENT(k) ((k) >> 1)
879
880 /* towards the root */
881 void inline_speed
882 upheap (ANHE *heap, int k)
883 {
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901 }
902
903 /* away from the root */
904 void inline_speed
905 downheap (ANHE *heap, int N, int k)
906 {
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0;
918
919 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break;
921
922 heap [k] = heap [c];
923 ev_active (ANHE_w (heap [k])) = k;
924
925 k = c;
926 }
927
928 heap [k] = he;
929 ev_active (ANHE_w (he)) = k;
930 }
931 #endif
932
933 void inline_size
934 adjustheap (ANHE *heap, int N, int k)
935 {
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
937 upheap (heap, k);
938 else
939 downheap (heap, N, k);
940 }
941
942 /*****************************************************************************/
943
944 typedef struct
945 {
946 WL head;
947 EV_ATOMIC_T gotsig;
948 } ANSIG;
949
950 static ANSIG *signals;
951 static int signalmax;
952
953 static EV_ATOMIC_T gotsig;
954
955 void inline_size
956 signals_init (ANSIG *base, int count)
957 {
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965 }
966
967 /*****************************************************************************/
968
969 void inline_speed
970 fd_intern (int fd)
971 {
972 #ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975 #else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978 #endif
979 }
980
981 static void noinline
982 evpipe_init (EV_P)
983 {
984 if (!ev_is_active (&pipeev))
985 {
986 #if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994 #endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
999 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
1003
1004 ev_io_start (EV_A_ &pipeev);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007 }
1008
1009 void inline_size
1010 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011 {
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018 #if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025 #endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030 }
1031
1032 static void
1033 pipecb (EV_P_ ev_io *iow, int revents)
1034 {
1035 #if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042 #endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058 #if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071 #endif
1072 }
1073
1074 /*****************************************************************************/
1075
1076 static void
1077 ev_sighandler (int signum)
1078 {
1079 #if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081 #endif
1082
1083 #if _WIN32
1084 signal (signum, ev_sighandler);
1085 #endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089 }
1090
1091 void noinline
1092 ev_feed_signal_event (EV_P_ int signum)
1093 {
1094 WL w;
1095
1096 #if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098 #endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109 }
1110
1111 /*****************************************************************************/
1112
1113 static WL childs [EV_PID_HASHSIZE];
1114
1115 #ifndef _WIN32
1116
1117 static ev_signal childev;
1118
1119 #ifndef WIFCONTINUED
1120 # define WIFCONTINUED(status) 0
1121 #endif
1122
1123 void inline_speed
1124 child_reap (EV_P_ int chain, int pid, int status)
1125 {
1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
1133 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1135 w->rpid = pid;
1136 w->rstatus = status;
1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1138 }
1139 }
1140 }
1141
1142 #ifndef WCONTINUED
1143 # define WCONTINUED 0
1144 #endif
1145
1146 static void
1147 childcb (EV_P_ ev_signal *sw, int revents)
1148 {
1149 int pid, status;
1150
1151 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1152 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1153 if (!WCONTINUED
1154 || errno != EINVAL
1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1156 return;
1157
1158 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161
1162 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165 }
1166
1167 #endif
1168
1169 /*****************************************************************************/
1170
1171 #if EV_USE_PORT
1172 # include "ev_port.c"
1173 #endif
1174 #if EV_USE_KQUEUE
1175 # include "ev_kqueue.c"
1176 #endif
1177 #if EV_USE_EPOLL
1178 # include "ev_epoll.c"
1179 #endif
1180 #if EV_USE_POLL
1181 # include "ev_poll.c"
1182 #endif
1183 #if EV_USE_SELECT
1184 # include "ev_select.c"
1185 #endif
1186
1187 int
1188 ev_version_major (void)
1189 {
1190 return EV_VERSION_MAJOR;
1191 }
1192
1193 int
1194 ev_version_minor (void)
1195 {
1196 return EV_VERSION_MINOR;
1197 }
1198
1199 /* return true if we are running with elevated privileges and should ignore env variables */
1200 int inline_size
1201 enable_secure (void)
1202 {
1203 #ifdef _WIN32
1204 return 0;
1205 #else
1206 return getuid () != geteuid ()
1207 || getgid () != getegid ();
1208 #endif
1209 }
1210
1211 unsigned int
1212 ev_supported_backends (void)
1213 {
1214 unsigned int flags = 0;
1215
1216 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1217 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1218 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1219 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1220 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1221
1222 return flags;
1223 }
1224
1225 unsigned int
1226 ev_recommended_backends (void)
1227 {
1228 unsigned int flags = ev_supported_backends ();
1229
1230 #ifndef __NetBSD__
1231 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE;
1234 #endif
1235 #ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation
1237 flags &= ~EVBACKEND_POLL;
1238 #endif
1239
1240 return flags;
1241 }
1242
1243 unsigned int
1244 ev_embeddable_backends (void)
1245 {
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
1253 }
1254
1255 unsigned int
1256 ev_backend (EV_P)
1257 {
1258 return backend;
1259 }
1260
1261 unsigned int
1262 ev_loop_count (EV_P)
1263 {
1264 return loop_count;
1265 }
1266
1267 void
1268 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269 {
1270 io_blocktime = interval;
1271 }
1272
1273 void
1274 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275 {
1276 timeout_blocktime = interval;
1277 }
1278
1279 static void noinline
1280 loop_init (EV_P_ unsigned int flags)
1281 {
1282 if (!backend)
1283 {
1284 #if EV_USE_MONOTONIC
1285 {
1286 struct timespec ts;
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1;
1289 }
1290 #endif
1291
1292 ev_rt_now = ev_time ();
1293 mn_now = get_clock ();
1294 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302 #if EV_USE_INOTIFY
1303 fs_fd = -2;
1304 #endif
1305
1306 /* pid check not overridable via env */
1307 #ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310 #endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316
1317 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends ();
1319
1320 #if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322 #endif
1323 #if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1325 #endif
1326 #if EV_USE_EPOLL
1327 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1328 #endif
1329 #if EV_USE_POLL
1330 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1331 #endif
1332 #if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334 #endif
1335
1336 ev_init (&pipeev, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI);
1338 }
1339 }
1340
1341 static void noinline
1342 loop_destroy (EV_P)
1343 {
1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351 #if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354 #endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1362
1363 #if EV_USE_INOTIFY
1364 if (fs_fd >= 0)
1365 close (fs_fd);
1366 #endif
1367
1368 if (backend_fd >= 0)
1369 close (backend_fd);
1370
1371 #if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373 #endif
1374 #if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1376 #endif
1377 #if EV_USE_EPOLL
1378 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1379 #endif
1380 #if EV_USE_POLL
1381 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1382 #endif
1383 #if EV_USE_SELECT
1384 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1385 #endif
1386
1387 for (i = NUMPRI; i--; )
1388 {
1389 array_free (pending, [i]);
1390 #if EV_IDLE_ENABLE
1391 array_free (idle, [i]);
1392 #endif
1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
1396
1397 /* have to use the microsoft-never-gets-it-right macro */
1398 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY);
1400 #if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY);
1402 #endif
1403 #if EV_FORK_ENABLE
1404 array_free (fork, EMPTY);
1405 #endif
1406 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY);
1408 #if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410 #endif
1411
1412 backend = 0;
1413 }
1414
1415 #if EV_USE_INOTIFY
1416 void inline_size infy_fork (EV_P);
1417 #endif
1418
1419 void inline_size
1420 loop_fork (EV_P)
1421 {
1422 #if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424 #endif
1425 #if EV_USE_KQUEUE
1426 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1427 #endif
1428 #if EV_USE_EPOLL
1429 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1430 #endif
1431 #if EV_USE_INOTIFY
1432 infy_fork (EV_A);
1433 #endif
1434
1435 if (ev_is_active (&pipeev))
1436 {
1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440 #if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442 #endif
1443
1444 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev);
1446
1447 #if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450 #endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1454 close (evpipe [0]);
1455 close (evpipe [1]);
1456 }
1457
1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1461 }
1462
1463 postfork = 0;
1464 }
1465
1466 #if EV_MULTIPLICITY
1467 struct ev_loop *
1468 ev_loop_new (unsigned int flags)
1469 {
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471
1472 memset (loop, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags);
1475
1476 if (ev_backend (EV_A))
1477 return loop;
1478
1479 return 0;
1480 }
1481
1482 void
1483 ev_loop_destroy (EV_P)
1484 {
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487 }
1488
1489 void
1490 ev_loop_fork (EV_P)
1491 {
1492 postfork = 1; /* must be in line with ev_default_fork */
1493 }
1494 #endif
1495
1496 #if EV_MULTIPLICITY
1497 struct ev_loop *
1498 ev_default_loop_init (unsigned int flags)
1499 #else
1500 int
1501 ev_default_loop (unsigned int flags)
1502 #endif
1503 {
1504 if (!ev_default_loop_ptr)
1505 {
1506 #if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1508 #else
1509 ev_default_loop_ptr = 1;
1510 #endif
1511
1512 loop_init (EV_A_ flags);
1513
1514 if (ev_backend (EV_A))
1515 {
1516 #ifndef _WIN32
1517 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521 #endif
1522 }
1523 else
1524 ev_default_loop_ptr = 0;
1525 }
1526
1527 return ev_default_loop_ptr;
1528 }
1529
1530 void
1531 ev_default_destroy (void)
1532 {
1533 #if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535 #endif
1536
1537 #ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540 #endif
1541
1542 loop_destroy (EV_A);
1543 }
1544
1545 void
1546 ev_default_fork (void)
1547 {
1548 #if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550 #endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */
1554 }
1555
1556 /*****************************************************************************/
1557
1558 void
1559 ev_invoke (EV_P_ void *w, int revents)
1560 {
1561 EV_CB_INVOKE ((W)w, revents);
1562 }
1563
1564 void inline_speed
1565 call_pending (EV_P)
1566 {
1567 int pri;
1568
1569 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri])
1571 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1577
1578 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events);
1580 }
1581 }
1582 }
1583
1584 #if EV_IDLE_ENABLE
1585 void inline_size
1586 idle_reify (EV_P)
1587 {
1588 if (expect_false (idleall))
1589 {
1590 int pri;
1591
1592 for (pri = NUMPRI; pri--; )
1593 {
1594 if (pendingcnt [pri])
1595 break;
1596
1597 if (idlecnt [pri])
1598 {
1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1600 break;
1601 }
1602 }
1603 }
1604 }
1605 #endif
1606
1607 void inline_size
1608 timers_reify (EV_P)
1609 {
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633 }
1634
1635 #if EV_PERIODIC_ENABLE
1636 void inline_size
1637 periodics_reify (EV_P)
1638 {
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679 }
1680
1681 static void noinline
1682 periodics_reschedule (EV_P)
1683 {
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1703 }
1704 #endif
1705
1706 void inline_speed
1707 time_update (EV_P_ ev_tstamp max_block)
1708 {
1709 int i;
1710
1711 #if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic))
1713 {
1714 ev_tstamp odiff = rtmn_diff;
1715
1716 mn_now = get_clock ();
1717
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1719 /* interpolate in the meantime */
1720 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1721 {
1722 ev_rt_now = rtmn_diff + mn_now;
1723 return;
1724 }
1725
1726 now_floor = mn_now;
1727 ev_rt_now = ev_time ();
1728
1729 /* loop a few times, before making important decisions.
1730 * on the choice of "4": one iteration isn't enough,
1731 * in case we get preempted during the calls to
1732 * ev_time and get_clock. a second call is almost guaranteed
1733 * to succeed in that case, though. and looping a few more times
1734 * doesn't hurt either as we only do this on time-jumps or
1735 * in the unlikely event of having been preempted here.
1736 */
1737 for (i = 4; --i; )
1738 {
1739 rtmn_diff = ev_rt_now - mn_now;
1740
1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1742 return; /* all is well */
1743
1744 ev_rt_now = ev_time ();
1745 mn_now = get_clock ();
1746 now_floor = mn_now;
1747 }
1748
1749 # if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A);
1751 # endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 }
1755 else
1756 #endif
1757 {
1758 ev_rt_now = ev_time ();
1759
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 {
1762 #if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A);
1764 #endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 }
1773
1774 mn_now = ev_rt_now;
1775 }
1776 }
1777
1778 void
1779 ev_ref (EV_P)
1780 {
1781 ++activecnt;
1782 }
1783
1784 void
1785 ev_unref (EV_P)
1786 {
1787 --activecnt;
1788 }
1789
1790 static int loop_done;
1791
1792 void
1793 ev_loop (EV_P_ int flags)
1794 {
1795 loop_done = EVUNLOOP_CANCEL;
1796
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1798
1799 do
1800 {
1801 #ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid))
1804 {
1805 curpid = getpid ();
1806 postfork = 1;
1807 }
1808 #endif
1809
1810 #if EV_FORK_ENABLE
1811 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork))
1813 if (forkcnt)
1814 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A);
1817 }
1818 #endif
1819
1820 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt))
1822 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A);
1825 }
1826
1827 if (expect_false (!activecnt))
1828 break;
1829
1830 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork))
1832 loop_fork (EV_A);
1833
1834 /* update fd-related kernel structures */
1835 fd_reify (EV_A);
1836
1837 /* calculate blocking time */
1838 {
1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1841
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME;
1848
1849 if (timercnt)
1850 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1852 if (waittime > to) waittime = to;
1853 }
1854
1855 #if EV_PERIODIC_ENABLE
1856 if (periodiccnt)
1857 {
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to;
1860 }
1861 #endif
1862
1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1876 }
1877
1878 ++loop_count;
1879 backend_poll (EV_A_ waittime);
1880
1881 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime);
1883 }
1884
1885 /* queue pending timers and reschedule them */
1886 timers_reify (EV_A); /* relative timers called last */
1887 #if EV_PERIODIC_ENABLE
1888 periodics_reify (EV_A); /* absolute timers called first */
1889 #endif
1890
1891 #if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A);
1894 #endif
1895
1896 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899
1900 call_pending (EV_A);
1901 }
1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1907
1908 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL;
1910 }
1911
1912 void
1913 ev_unloop (EV_P_ int how)
1914 {
1915 loop_done = how;
1916 }
1917
1918 /*****************************************************************************/
1919
1920 void inline_size
1921 wlist_add (WL *head, WL elem)
1922 {
1923 elem->next = *head;
1924 *head = elem;
1925 }
1926
1927 void inline_size
1928 wlist_del (WL *head, WL elem)
1929 {
1930 while (*head)
1931 {
1932 if (*head == elem)
1933 {
1934 *head = elem->next;
1935 return;
1936 }
1937
1938 head = &(*head)->next;
1939 }
1940 }
1941
1942 void inline_speed
1943 clear_pending (EV_P_ W w)
1944 {
1945 if (w->pending)
1946 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1948 w->pending = 0;
1949 }
1950 }
1951
1952 int
1953 ev_clear_pending (EV_P_ void *w)
1954 {
1955 W w_ = (W)w;
1956 int pending = w_->pending;
1957
1958 if (expect_true (pending))
1959 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1961 w_->pending = 0;
1962 p->w = 0;
1963 return p->events;
1964 }
1965 else
1966 return 0;
1967 }
1968
1969 void inline_size
1970 pri_adjust (EV_P_ W w)
1971 {
1972 int pri = w->priority;
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri;
1976 }
1977
1978 void inline_speed
1979 ev_start (EV_P_ W w, int active)
1980 {
1981 pri_adjust (EV_A_ w);
1982 w->active = active;
1983 ev_ref (EV_A);
1984 }
1985
1986 void inline_size
1987 ev_stop (EV_P_ W w)
1988 {
1989 ev_unref (EV_A);
1990 w->active = 0;
1991 }
1992
1993 /*****************************************************************************/
1994
1995 void noinline
1996 ev_io_start (EV_P_ ev_io *w)
1997 {
1998 int fd = w->fd;
1999
2000 if (expect_false (ev_is_active (w)))
2001 return;
2002
2003 assert (("ev_io_start called with negative fd", fd >= 0));
2004
2005 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2007 wlist_add (&anfds[fd].head, (WL)w);
2008
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
2011 }
2012
2013 void noinline
2014 ev_io_stop (EV_P_ ev_io *w)
2015 {
2016 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w)))
2018 return;
2019
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2021
2022 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w);
2024
2025 fd_change (EV_A_ w->fd, 1);
2026 }
2027
2028 void noinline
2029 ev_timer_start (EV_P_ ev_timer *w)
2030 {
2031 if (expect_false (ev_is_active (w)))
2032 return;
2033
2034 ev_at (w) += mn_now;
2035
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
2043
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045 }
2046
2047 void noinline
2048 ev_timer_stop (EV_P_ ev_timer *w)
2049 {
2050 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w)))
2052 return;
2053
2054 {
2055 int active = ev_active (w);
2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
2059 if (expect_true (active < timercnt + HEAP0 - 1))
2060 {
2061 timers [active] = timers [timercnt + HEAP0 - 1];
2062 adjustheap (timers, timercnt, active);
2063 }
2064
2065 --timercnt;
2066 }
2067
2068 ev_at (w) -= mn_now;
2069
2070 ev_stop (EV_A_ (W)w);
2071 }
2072
2073 void noinline
2074 ev_timer_again (EV_P_ ev_timer *w)
2075 {
2076 if (ev_is_active (w))
2077 {
2078 if (w->repeat)
2079 {
2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w));
2083 }
2084 else
2085 ev_timer_stop (EV_A_ w);
2086 }
2087 else if (w->repeat)
2088 {
2089 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w);
2091 }
2092 }
2093
2094 #if EV_PERIODIC_ENABLE
2095 void noinline
2096 ev_periodic_start (EV_P_ ev_periodic *w)
2097 {
2098 if (expect_false (ev_is_active (w)))
2099 return;
2100
2101 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval)
2104 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 }
2109 else
2110 ev_at (w) = w->offset;
2111
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
2117
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119 }
2120
2121 void noinline
2122 ev_periodic_stop (EV_P_ ev_periodic *w)
2123 {
2124 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w)))
2126 return;
2127
2128 {
2129 int active = ev_active (w);
2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
2134 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
2136 adjustheap (periodics, periodiccnt, active);
2137 }
2138
2139 --periodiccnt;
2140 }
2141
2142 ev_stop (EV_A_ (W)w);
2143 }
2144
2145 void noinline
2146 ev_periodic_again (EV_P_ ev_periodic *w)
2147 {
2148 /* TODO: use adjustheap and recalculation */
2149 ev_periodic_stop (EV_A_ w);
2150 ev_periodic_start (EV_A_ w);
2151 }
2152 #endif
2153
2154 #ifndef SA_RESTART
2155 # define SA_RESTART 0
2156 #endif
2157
2158 void noinline
2159 ev_signal_start (EV_P_ ev_signal *w)
2160 {
2161 #if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163 #endif
2164 if (expect_false (ev_is_active (w)))
2165 return;
2166
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2168
2169 evpipe_init (EV_A);
2170
2171 {
2172 #ifndef _WIN32
2173 sigset_t full, prev;
2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176 #endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180 #ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182 #endif
2183 }
2184
2185 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187
2188 if (!((WL)w)->next)
2189 {
2190 #if _WIN32
2191 signal (w->signum, ev_sighandler);
2192 #else
2193 struct sigaction sa;
2194 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0);
2198 #endif
2199 }
2200 }
2201
2202 void noinline
2203 ev_signal_stop (EV_P_ ev_signal *w)
2204 {
2205 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w)))
2207 return;
2208
2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w);
2211
2212 if (!signals [w->signum - 1].head)
2213 signal (w->signum, SIG_DFL);
2214 }
2215
2216 void
2217 ev_child_start (EV_P_ ev_child *w)
2218 {
2219 #if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221 #endif
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2227 }
2228
2229 void
2230 ev_child_stop (EV_P_ ev_child *w)
2231 {
2232 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w)))
2234 return;
2235
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w);
2238 }
2239
2240 #if EV_STAT_ENABLE
2241
2242 # ifdef _WIN32
2243 # undef lstat
2244 # define lstat(a,b) _stati64 (a,b)
2245 # endif
2246
2247 #define DEF_STAT_INTERVAL 5.0074891
2248 #define MIN_STAT_INTERVAL 0.1074891
2249
2250 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251
2252 #if EV_USE_INOTIFY
2253 # define EV_INOTIFY_BUFSIZE 8192
2254
2255 static void noinline
2256 infy_add (EV_P_ ev_stat *w)
2257 {
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259
2260 if (w->wd < 0)
2261 {
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263
2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 {
2269 char path [4096];
2270 strcpy (path, w->path);
2271
2272 do
2273 {
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276
2277 char *pend = strrchr (path, '/');
2278
2279 if (!pend)
2280 break; /* whoops, no '/', complain to your admin */
2281
2282 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 }
2287 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290
2291 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2293 }
2294
2295 static void noinline
2296 infy_del (EV_P_ ev_stat *w)
2297 {
2298 int slot;
2299 int wd = w->wd;
2300
2301 if (wd < 0)
2302 return;
2303
2304 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w);
2307
2308 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd);
2310 }
2311
2312 static void noinline
2313 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314 {
2315 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev);
2319 else
2320 {
2321 WL w_;
2322
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2324 {
2325 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */
2327
2328 if (w->wd == wd || wd == -1)
2329 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 {
2332 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 }
2335
2336 stat_timer_cb (EV_A_ &w->timer, 0);
2337 }
2338 }
2339 }
2340 }
2341
2342 static void
2343 infy_cb (EV_P_ ev_io *w, int revents)
2344 {
2345 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf));
2349
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352 }
2353
2354 void inline_size
2355 infy_init (EV_P)
2356 {
2357 if (fs_fd != -2)
2358 return;
2359
2360 fs_fd = inotify_init ();
2361
2362 if (fs_fd >= 0)
2363 {
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w);
2367 }
2368 }
2369
2370 void inline_size
2371 infy_fork (EV_P)
2372 {
2373 int slot;
2374
2375 if (fs_fd < 0)
2376 return;
2377
2378 close (fs_fd);
2379 fs_fd = inotify_init ();
2380
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 {
2383 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0;
2385
2386 while (w_)
2387 {
2388 ev_stat *w = (ev_stat *)w_;
2389 w_ = w_->next; /* lets us add this watcher */
2390
2391 w->wd = -1;
2392
2393 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else
2396 ev_timer_start (EV_A_ &w->timer);
2397 }
2398
2399 }
2400 }
2401
2402 #endif
2403
2404 void
2405 ev_stat_stat (EV_P_ ev_stat *w)
2406 {
2407 if (lstat (w->path, &w->attr) < 0)
2408 w->attr.st_nlink = 0;
2409 else if (!w->attr.st_nlink)
2410 w->attr.st_nlink = 1;
2411 }
2412
2413 static void noinline
2414 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415 {
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417
2418 /* we copy this here each the time so that */
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w);
2422
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if (
2425 w->prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime
2436 ) {
2437 #if EV_USE_INOTIFY
2438 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */
2441 #endif
2442
2443 ev_feed_event (EV_A_ w, EV_STAT);
2444 }
2445 }
2446
2447 void
2448 ev_stat_start (EV_P_ ev_stat *w)
2449 {
2450 if (expect_false (ev_is_active (w)))
2451 return;
2452
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w);
2458
2459 if (w->interval < MIN_STAT_INTERVAL)
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2463 ev_set_priority (&w->timer, ev_priority (w));
2464
2465 #if EV_USE_INOTIFY
2466 infy_init (EV_A);
2467
2468 if (fs_fd >= 0)
2469 infy_add (EV_A_ w);
2470 else
2471 #endif
2472 ev_timer_start (EV_A_ &w->timer);
2473
2474 ev_start (EV_A_ (W)w, 1);
2475 }
2476
2477 void
2478 ev_stat_stop (EV_P_ ev_stat *w)
2479 {
2480 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w)))
2482 return;
2483
2484 #if EV_USE_INOTIFY
2485 infy_del (EV_A_ w);
2486 #endif
2487 ev_timer_stop (EV_A_ &w->timer);
2488
2489 ev_stop (EV_A_ (W)w);
2490 }
2491 #endif
2492
2493 #if EV_IDLE_ENABLE
2494 void
2495 ev_idle_start (EV_P_ ev_idle *w)
2496 {
2497 if (expect_false (ev_is_active (w)))
2498 return;
2499
2500 pri_adjust (EV_A_ (W)w);
2501
2502 {
2503 int active = ++idlecnt [ABSPRI (w)];
2504
2505 ++idleall;
2506 ev_start (EV_A_ (W)w, active);
2507
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w;
2510 }
2511 }
2512
2513 void
2514 ev_idle_stop (EV_P_ ev_idle *w)
2515 {
2516 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w)))
2518 return;
2519
2520 {
2521 int active = ev_active (w);
2522
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525
2526 ev_stop (EV_A_ (W)w);
2527 --idleall;
2528 }
2529 }
2530 #endif
2531
2532 void
2533 ev_prepare_start (EV_P_ ev_prepare *w)
2534 {
2535 if (expect_false (ev_is_active (w)))
2536 return;
2537
2538 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w;
2541 }
2542
2543 void
2544 ev_prepare_stop (EV_P_ ev_prepare *w)
2545 {
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 {
2551 int active = ev_active (w);
2552
2553 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active;
2555 }
2556
2557 ev_stop (EV_A_ (W)w);
2558 }
2559
2560 void
2561 ev_check_start (EV_P_ ev_check *w)
2562 {
2563 if (expect_false (ev_is_active (w)))
2564 return;
2565
2566 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w;
2569 }
2570
2571 void
2572 ev_check_stop (EV_P_ ev_check *w)
2573 {
2574 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w)))
2576 return;
2577
2578 {
2579 int active = ev_active (w);
2580
2581 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active;
2583 }
2584
2585 ev_stop (EV_A_ (W)w);
2586 }
2587
2588 #if EV_EMBED_ENABLE
2589 void noinline
2590 ev_embed_sweep (EV_P_ ev_embed *w)
2591 {
2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2593 }
2594
2595 static void
2596 embed_io_cb (EV_P_ ev_io *io, int revents)
2597 {
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599
2600 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2604 }
2605
2606 static void
2607 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608 {
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620 }
2621
2622 #if 0
2623 static void
2624 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625 {
2626 ev_idle_stop (EV_A_ idle);
2627 }
2628 #endif
2629
2630 void
2631 ev_embed_start (EV_P_ ev_embed *w)
2632 {
2633 if (expect_false (ev_is_active (w)))
2634 return;
2635
2636 {
2637 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 }
2641
2642 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io);
2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650
2651 ev_start (EV_A_ (W)w, 1);
2652 }
2653
2654 void
2655 ev_embed_stop (EV_P_ ev_embed *w)
2656 {
2657 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w)))
2659 return;
2660
2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2663
2664 ev_stop (EV_A_ (W)w);
2665 }
2666 #endif
2667
2668 #if EV_FORK_ENABLE
2669 void
2670 ev_fork_start (EV_P_ ev_fork *w)
2671 {
2672 if (expect_false (ev_is_active (w)))
2673 return;
2674
2675 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w;
2678 }
2679
2680 void
2681 ev_fork_stop (EV_P_ ev_fork *w)
2682 {
2683 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w)))
2685 return;
2686
2687 {
2688 int active = ev_active (w);
2689
2690 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active;
2692 }
2693
2694 ev_stop (EV_A_ (W)w);
2695 }
2696 #endif
2697
2698 #if EV_ASYNC_ENABLE
2699 void
2700 ev_async_start (EV_P_ ev_async *w)
2701 {
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710 }
2711
2712 void
2713 ev_async_stop (EV_P_ ev_async *w)
2714 {
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727 }
2728
2729 void
2730 ev_async_send (EV_P_ ev_async *w)
2731 {
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2734 }
2735 #endif
2736
2737 /*****************************************************************************/
2738
2739 struct ev_once
2740 {
2741 ev_io io;
2742 ev_timer to;
2743 void (*cb)(int revents, void *arg);
2744 void *arg;
2745 };
2746
2747 static void
2748 once_cb (EV_P_ struct ev_once *once, int revents)
2749 {
2750 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg;
2752
2753 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once);
2756
2757 cb (revents, arg);
2758 }
2759
2760 static void
2761 once_cb_io (EV_P_ ev_io *w, int revents)
2762 {
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2764 }
2765
2766 static void
2767 once_cb_to (EV_P_ ev_timer *w, int revents)
2768 {
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
2770 }
2771
2772 void
2773 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774 {
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776
2777 if (expect_false (!once))
2778 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2780 return;
2781 }
2782
2783 once->cb = cb;
2784 once->arg = arg;
2785
2786 ev_init (&once->io, once_cb_io);
2787 if (fd >= 0)
2788 {
2789 ev_io_set (&once->io, fd, events);
2790 ev_io_start (EV_A_ &once->io);
2791 }
2792
2793 ev_init (&once->to, once_cb_to);
2794 if (timeout >= 0.)
2795 {
2796 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to);
2798 }
2799 }
2800
2801 #if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803 #endif
2804
2805 #ifdef __cplusplus
2806 }
2807 #endif
2808