ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.252
Committed: Thu May 22 03:43:32 2008 UTC (15 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-3_41
Changes since 1.251: +1 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_GETTIME
53 # ifndef EV_USE_MONOTONIC
54 # define EV_USE_MONOTONIC 1
55 # endif
56 # ifndef EV_USE_REALTIME
57 # define EV_USE_REALTIME 1
58 # endif
59 # else
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 0
62 # endif
63 # ifndef EV_USE_REALTIME
64 # define EV_USE_REALTIME 0
65 # endif
66 # endif
67
68 # ifndef EV_USE_NANOSLEEP
69 # if HAVE_NANOSLEEP
70 # define EV_USE_NANOSLEEP 1
71 # else
72 # define EV_USE_NANOSLEEP 0
73 # endif
74 # endif
75
76 # ifndef EV_USE_SELECT
77 # if HAVE_SELECT && HAVE_SYS_SELECT_H
78 # define EV_USE_SELECT 1
79 # else
80 # define EV_USE_SELECT 0
81 # endif
82 # endif
83
84 # ifndef EV_USE_POLL
85 # if HAVE_POLL && HAVE_POLL_H
86 # define EV_USE_POLL 1
87 # else
88 # define EV_USE_POLL 0
89 # endif
90 # endif
91
92 # ifndef EV_USE_EPOLL
93 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94 # define EV_USE_EPOLL 1
95 # else
96 # define EV_USE_EPOLL 0
97 # endif
98 # endif
99
100 # ifndef EV_USE_KQUEUE
101 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102 # define EV_USE_KQUEUE 1
103 # else
104 # define EV_USE_KQUEUE 0
105 # endif
106 # endif
107
108 # ifndef EV_USE_PORT
109 # if HAVE_PORT_H && HAVE_PORT_CREATE
110 # define EV_USE_PORT 1
111 # else
112 # define EV_USE_PORT 0
113 # endif
114 # endif
115
116 # ifndef EV_USE_INOTIFY
117 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118 # define EV_USE_INOTIFY 1
119 # else
120 # define EV_USE_INOTIFY 0
121 # endif
122 # endif
123
124 # ifndef EV_USE_EVENTFD
125 # if HAVE_EVENTFD
126 # define EV_USE_EVENTFD 1
127 # else
128 # define EV_USE_EVENTFD 0
129 # endif
130 # endif
131
132 #endif
133
134 #include <math.h>
135 #include <stdlib.h>
136 #include <fcntl.h>
137 #include <stddef.h>
138
139 #include <stdio.h>
140
141 #include <assert.h>
142 #include <errno.h>
143 #include <sys/types.h>
144 #include <time.h>
145
146 #include <signal.h>
147
148 #ifdef EV_H
149 # include EV_H
150 #else
151 # include "ev.h"
152 #endif
153
154 #ifndef _WIN32
155 # include <sys/time.h>
156 # include <sys/wait.h>
157 # include <unistd.h>
158 #else
159 # define WIN32_LEAN_AND_MEAN
160 # include <windows.h>
161 # ifndef EV_SELECT_IS_WINSOCKET
162 # define EV_SELECT_IS_WINSOCKET 1
163 # endif
164 #endif
165
166 /* this block tries to deduce configuration from header-defined symbols and defaults */
167
168 #ifndef EV_USE_MONOTONIC
169 # define EV_USE_MONOTONIC 0
170 #endif
171
172 #ifndef EV_USE_REALTIME
173 # define EV_USE_REALTIME 0
174 #endif
175
176 #ifndef EV_USE_NANOSLEEP
177 # define EV_USE_NANOSLEEP 0
178 #endif
179
180 #ifndef EV_USE_SELECT
181 # define EV_USE_SELECT 1
182 #endif
183
184 #ifndef EV_USE_POLL
185 # ifdef _WIN32
186 # define EV_USE_POLL 0
187 # else
188 # define EV_USE_POLL 1
189 # endif
190 #endif
191
192 #ifndef EV_USE_EPOLL
193 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194 # define EV_USE_EPOLL 1
195 # else
196 # define EV_USE_EPOLL 0
197 # endif
198 #endif
199
200 #ifndef EV_USE_KQUEUE
201 # define EV_USE_KQUEUE 0
202 #endif
203
204 #ifndef EV_USE_PORT
205 # define EV_USE_PORT 0
206 #endif
207
208 #ifndef EV_USE_INOTIFY
209 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210 # define EV_USE_INOTIFY 1
211 # else
212 # define EV_USE_INOTIFY 0
213 # endif
214 #endif
215
216 #ifndef EV_PID_HASHSIZE
217 # if EV_MINIMAL
218 # define EV_PID_HASHSIZE 1
219 # else
220 # define EV_PID_HASHSIZE 16
221 # endif
222 #endif
223
224 #ifndef EV_INOTIFY_HASHSIZE
225 # if EV_MINIMAL
226 # define EV_INOTIFY_HASHSIZE 1
227 # else
228 # define EV_INOTIFY_HASHSIZE 16
229 # endif
230 #endif
231
232 #ifndef EV_USE_EVENTFD
233 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234 # define EV_USE_EVENTFD 1
235 # else
236 # define EV_USE_EVENTFD 0
237 # endif
238 #endif
239
240 #if 0 /* debugging */
241 # define EV_VERIFY 3
242 # define EV_USE_4HEAP 1
243 # define EV_HEAP_CACHE_AT 1
244 #endif
245
246 #ifndef EV_VERIFY
247 # define EV_VERIFY !EV_MINIMAL
248 #endif
249
250 #ifndef EV_USE_4HEAP
251 # define EV_USE_4HEAP !EV_MINIMAL
252 #endif
253
254 #ifndef EV_HEAP_CACHE_AT
255 # define EV_HEAP_CACHE_AT !EV_MINIMAL
256 #endif
257
258 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
259
260 #ifndef CLOCK_MONOTONIC
261 # undef EV_USE_MONOTONIC
262 # define EV_USE_MONOTONIC 0
263 #endif
264
265 #ifndef CLOCK_REALTIME
266 # undef EV_USE_REALTIME
267 # define EV_USE_REALTIME 0
268 #endif
269
270 #if !EV_STAT_ENABLE
271 # undef EV_USE_INOTIFY
272 # define EV_USE_INOTIFY 0
273 #endif
274
275 #if !EV_USE_NANOSLEEP
276 # ifndef _WIN32
277 # include <sys/select.h>
278 # endif
279 #endif
280
281 #if EV_USE_INOTIFY
282 # include <sys/inotify.h>
283 #endif
284
285 #if EV_SELECT_IS_WINSOCKET
286 # include <winsock.h>
287 #endif
288
289 #if EV_USE_EVENTFD
290 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291 # include <stdint.h>
292 # ifdef __cplusplus
293 extern "C" {
294 # endif
295 int eventfd (unsigned int initval, int flags);
296 # ifdef __cplusplus
297 }
298 # endif
299 #endif
300
301 /**/
302
303 #if EV_VERIFY >= 3
304 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305 #else
306 # define EV_FREQUENT_CHECK do { } while (0)
307 #endif
308
309 /*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318
319 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322
323 #if __GNUC__ >= 4
324 # define expect(expr,value) __builtin_expect ((expr),(value))
325 # define noinline __attribute__ ((noinline))
326 #else
327 # define expect(expr,value) (expr)
328 # define noinline
329 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330 # define inline
331 # endif
332 #endif
333
334 #define expect_false(expr) expect ((expr) != 0, 0)
335 #define expect_true(expr) expect ((expr) != 0, 1)
336 #define inline_size static inline
337
338 #if EV_MINIMAL
339 # define inline_speed static noinline
340 #else
341 # define inline_speed static inline
342 #endif
343
344 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
346
347 #define EMPTY /* required for microsofts broken pseudo-c compiler */
348 #define EMPTY2(a,b) /* used to suppress some warnings */
349
350 typedef ev_watcher *W;
351 typedef ev_watcher_list *WL;
352 typedef ev_watcher_time *WT;
353
354 #define ev_active(w) ((W)(w))->active
355 #define ev_at(w) ((WT)(w))->at
356
357 #if EV_USE_MONOTONIC
358 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
359 /* giving it a reasonably high chance of working on typical architetcures */
360 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361 #endif
362
363 #ifdef _WIN32
364 # include "ev_win32.c"
365 #endif
366
367 /*****************************************************************************/
368
369 static void (*syserr_cb)(const char *msg);
370
371 void
372 ev_set_syserr_cb (void (*cb)(const char *msg))
373 {
374 syserr_cb = cb;
375 }
376
377 static void noinline
378 syserr (const char *msg)
379 {
380 if (!msg)
381 msg = "(libev) system error";
382
383 if (syserr_cb)
384 syserr_cb (msg);
385 else
386 {
387 perror (msg);
388 abort ();
389 }
390 }
391
392 static void *
393 ev_realloc_emul (void *ptr, long size)
394 {
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405 }
406
407 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408
409 void
410 ev_set_allocator (void *(*cb)(void *ptr, long size))
411 {
412 alloc = cb;
413 }
414
415 inline_speed void *
416 ev_realloc (void *ptr, long size)
417 {
418 ptr = alloc (ptr, size);
419
420 if (!ptr && size)
421 {
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
423 abort ();
424 }
425
426 return ptr;
427 }
428
429 #define ev_malloc(size) ev_realloc (0, (size))
430 #define ev_free(ptr) ev_realloc ((ptr), 0)
431
432 /*****************************************************************************/
433
434 typedef struct
435 {
436 WL head;
437 unsigned char events;
438 unsigned char reify;
439 #if EV_SELECT_IS_WINSOCKET
440 SOCKET handle;
441 #endif
442 } ANFD;
443
444 typedef struct
445 {
446 W w;
447 int events;
448 } ANPENDING;
449
450 #if EV_USE_INOTIFY
451 /* hash table entry per inotify-id */
452 typedef struct
453 {
454 WL head;
455 } ANFS;
456 #endif
457
458 /* Heap Entry */
459 #if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468 #else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474 #endif
475
476 #if EV_MULTIPLICITY
477
478 struct ev_loop
479 {
480 ev_tstamp ev_rt_now;
481 #define ev_rt_now ((loop)->ev_rt_now)
482 #define VAR(name,decl) decl;
483 #include "ev_vars.h"
484 #undef VAR
485 };
486 #include "ev_wrap.h"
487
488 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr;
490
491 #else
492
493 ev_tstamp ev_rt_now;
494 #define VAR(name,decl) static decl;
495 #include "ev_vars.h"
496 #undef VAR
497
498 static int ev_default_loop_ptr;
499
500 #endif
501
502 /*****************************************************************************/
503
504 ev_tstamp
505 ev_time (void)
506 {
507 #if EV_USE_REALTIME
508 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9;
511 #else
512 struct timeval tv;
513 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6;
515 #endif
516 }
517
518 ev_tstamp inline_size
519 get_clock (void)
520 {
521 #if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic))
523 {
524 struct timespec ts;
525 clock_gettime (CLOCK_MONOTONIC, &ts);
526 return ts.tv_sec + ts.tv_nsec * 1e-9;
527 }
528 #endif
529
530 return ev_time ();
531 }
532
533 #if EV_MULTIPLICITY
534 ev_tstamp
535 ev_now (EV_P)
536 {
537 return ev_rt_now;
538 }
539 #endif
540
541 void
542 ev_sleep (ev_tstamp delay)
543 {
544 if (delay > 0.)
545 {
546 #if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553 #elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555 #else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562 #endif
563 }
564 }
565
566 /*****************************************************************************/
567
568 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570 int inline_size
571 array_nextsize (int elem, int cur, int cnt)
572 {
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589 }
590
591 static noinline void *
592 array_realloc (int elem, void *base, int *cur, int cnt)
593 {
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596 }
597
598 #define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \
600 { \
601 int ocur_ = (cur); \
602 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \
605 }
606
607 #if 0
608 #define array_slim(type,stem) \
609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
610 { \
611 stem ## max = array_roundsize (stem ## cnt >> 1); \
612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 }
615 #endif
616
617 #define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
619
620 /*****************************************************************************/
621
622 void noinline
623 ev_feed_event (EV_P_ void *w, int revents)
624 {
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637 }
638
639 void inline_speed
640 queue_events (EV_P_ W *events, int eventcnt, int type)
641 {
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646 }
647
648 /*****************************************************************************/
649
650 void inline_size
651 anfds_init (ANFD *base, int count)
652 {
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661 }
662
663 void inline_speed
664 fd_event (EV_P_ int fd, int revents)
665 {
666 ANFD *anfd = anfds + fd;
667 ev_io *w;
668
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
670 {
671 int ev = w->events & revents;
672
673 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev);
675 }
676 }
677
678 void
679 ev_feed_fd_event (EV_P_ int fd, int revents)
680 {
681 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents);
683 }
684
685 void inline_size
686 fd_reify (EV_P)
687 {
688 int i;
689
690 for (i = 0; i < fdchangecnt; ++i)
691 {
692 int fd = fdchanges [i];
693 ANFD *anfd = anfds + fd;
694 ev_io *w;
695
696 unsigned char events = 0;
697
698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
699 events |= (unsigned char)w->events;
700
701 #if EV_SELECT_IS_WINSOCKET
702 if (events)
703 {
704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
711 }
712 #endif
713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
724 }
725
726 fdchangecnt = 0;
727 }
728
729 void inline_size
730 fd_change (EV_P_ int fd, int flags)
731 {
732 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags;
734
735 if (expect_true (!reify))
736 {
737 ++fdchangecnt;
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd;
740 }
741 }
742
743 void inline_speed
744 fd_kill (EV_P_ int fd)
745 {
746 ev_io *w;
747
748 while ((w = (ev_io *)anfds [fd].head))
749 {
750 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 }
753 }
754
755 int inline_size
756 fd_valid (int fd)
757 {
758 #ifdef _WIN32
759 return _get_osfhandle (fd) != -1;
760 #else
761 return fcntl (fd, F_GETFD) != -1;
762 #endif
763 }
764
765 /* called on EBADF to verify fds */
766 static void noinline
767 fd_ebadf (EV_P)
768 {
769 int fd;
770
771 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF)
774 fd_kill (EV_A_ fd);
775 }
776
777 /* called on ENOMEM in select/poll to kill some fds and retry */
778 static void noinline
779 fd_enomem (EV_P)
780 {
781 int fd;
782
783 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events)
785 {
786 fd_kill (EV_A_ fd);
787 return;
788 }
789 }
790
791 /* usually called after fork if backend needs to re-arm all fds from scratch */
792 static void noinline
793 fd_rearm_all (EV_P)
794 {
795 int fd;
796
797 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events)
799 {
800 anfds [fd].events = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
802 }
803 }
804
805 /*****************************************************************************/
806
807 /*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813 /*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819 #if EV_USE_4HEAP
820
821 #define DHEAP 4
822 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
823 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824 #define UPHEAP_DONE(p,k) ((p) == (k))
825
826 /* away from the root */
827 void inline_speed
828 downheap (ANHE *heap, int N, int k)
829 {
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868 }
869
870 #else /* 4HEAP */
871
872 #define HEAP0 1
873 #define HPARENT(k) ((k) >> 1)
874 #define UPHEAP_DONE(p,k) (!(p))
875
876 /* away from the root */
877 void inline_speed
878 downheap (ANHE *heap, int N, int k)
879 {
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903 }
904 #endif
905
906 /* towards the root */
907 void inline_speed
908 upheap (ANHE *heap, int k)
909 {
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926 }
927
928 void inline_size
929 adjustheap (ANHE *heap, int N, int k)
930 {
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935 }
936
937 /* rebuild the heap: this function is used only once and executed rarely */
938 void inline_size
939 reheap (ANHE *heap, int N)
940 {
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947 }
948
949 /*****************************************************************************/
950
951 typedef struct
952 {
953 WL head;
954 EV_ATOMIC_T gotsig;
955 } ANSIG;
956
957 static ANSIG *signals;
958 static int signalmax;
959
960 static EV_ATOMIC_T gotsig;
961
962 void inline_size
963 signals_init (ANSIG *base, int count)
964 {
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972 }
973
974 /*****************************************************************************/
975
976 void inline_speed
977 fd_intern (int fd)
978 {
979 #ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982 #else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985 #endif
986 }
987
988 static void noinline
989 evpipe_init (EV_P)
990 {
991 if (!ev_is_active (&pipeev))
992 {
993 #if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001 #endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
1006 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
1011 ev_io_start (EV_A_ &pipeev);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014 }
1015
1016 void inline_size
1017 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018 {
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025 #if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032 #endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037 }
1038
1039 static void
1040 pipecb (EV_P_ ev_io *iow, int revents)
1041 {
1042 #if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049 #endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065 #if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078 #endif
1079 }
1080
1081 /*****************************************************************************/
1082
1083 static void
1084 ev_sighandler (int signum)
1085 {
1086 #if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088 #endif
1089
1090 #if _WIN32
1091 signal (signum, ev_sighandler);
1092 #endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096 }
1097
1098 void noinline
1099 ev_feed_signal_event (EV_P_ int signum)
1100 {
1101 WL w;
1102
1103 #if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105 #endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116 }
1117
1118 /*****************************************************************************/
1119
1120 static WL childs [EV_PID_HASHSIZE];
1121
1122 #ifndef _WIN32
1123
1124 static ev_signal childev;
1125
1126 #ifndef WIFCONTINUED
1127 # define WIFCONTINUED(status) 0
1128 #endif
1129
1130 void inline_speed
1131 child_reap (EV_P_ int chain, int pid, int status)
1132 {
1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
1140 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1142 w->rpid = pid;
1143 w->rstatus = status;
1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1145 }
1146 }
1147 }
1148
1149 #ifndef WCONTINUED
1150 # define WCONTINUED 0
1151 #endif
1152
1153 static void
1154 childcb (EV_P_ ev_signal *sw, int revents)
1155 {
1156 int pid, status;
1157
1158 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1159 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1160 if (!WCONTINUED
1161 || errno != EINVAL
1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1163 return;
1164
1165 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168
1169 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172 }
1173
1174 #endif
1175
1176 /*****************************************************************************/
1177
1178 #if EV_USE_PORT
1179 # include "ev_port.c"
1180 #endif
1181 #if EV_USE_KQUEUE
1182 # include "ev_kqueue.c"
1183 #endif
1184 #if EV_USE_EPOLL
1185 # include "ev_epoll.c"
1186 #endif
1187 #if EV_USE_POLL
1188 # include "ev_poll.c"
1189 #endif
1190 #if EV_USE_SELECT
1191 # include "ev_select.c"
1192 #endif
1193
1194 int
1195 ev_version_major (void)
1196 {
1197 return EV_VERSION_MAJOR;
1198 }
1199
1200 int
1201 ev_version_minor (void)
1202 {
1203 return EV_VERSION_MINOR;
1204 }
1205
1206 /* return true if we are running with elevated privileges and should ignore env variables */
1207 int inline_size
1208 enable_secure (void)
1209 {
1210 #ifdef _WIN32
1211 return 0;
1212 #else
1213 return getuid () != geteuid ()
1214 || getgid () != getegid ();
1215 #endif
1216 }
1217
1218 unsigned int
1219 ev_supported_backends (void)
1220 {
1221 unsigned int flags = 0;
1222
1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1226 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228
1229 return flags;
1230 }
1231
1232 unsigned int
1233 ev_recommended_backends (void)
1234 {
1235 unsigned int flags = ev_supported_backends ();
1236
1237 #ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE;
1241 #endif
1242 #ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation
1244 flags &= ~EVBACKEND_POLL;
1245 #endif
1246
1247 return flags;
1248 }
1249
1250 unsigned int
1251 ev_embeddable_backends (void)
1252 {
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260 }
1261
1262 unsigned int
1263 ev_backend (EV_P)
1264 {
1265 return backend;
1266 }
1267
1268 unsigned int
1269 ev_loop_count (EV_P)
1270 {
1271 return loop_count;
1272 }
1273
1274 void
1275 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276 {
1277 io_blocktime = interval;
1278 }
1279
1280 void
1281 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282 {
1283 timeout_blocktime = interval;
1284 }
1285
1286 static void noinline
1287 loop_init (EV_P_ unsigned int flags)
1288 {
1289 if (!backend)
1290 {
1291 #if EV_USE_MONOTONIC
1292 {
1293 struct timespec ts;
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1;
1296 }
1297 #endif
1298
1299 ev_rt_now = ev_time ();
1300 mn_now = get_clock ();
1301 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309 #if EV_USE_INOTIFY
1310 fs_fd = -2;
1311 #endif
1312
1313 /* pid check not overridable via env */
1314 #ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317 #endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1323
1324 if (!(flags & 0x0000ffffU))
1325 flags |= ev_recommended_backends ();
1326
1327 #if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1329 #endif
1330 #if EV_USE_KQUEUE
1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1332 #endif
1333 #if EV_USE_EPOLL
1334 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1335 #endif
1336 #if EV_USE_POLL
1337 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1338 #endif
1339 #if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341 #endif
1342
1343 ev_init (&pipeev, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI);
1345 }
1346 }
1347
1348 static void noinline
1349 loop_destroy (EV_P)
1350 {
1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358 #if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361 #endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369
1370 #if EV_USE_INOTIFY
1371 if (fs_fd >= 0)
1372 close (fs_fd);
1373 #endif
1374
1375 if (backend_fd >= 0)
1376 close (backend_fd);
1377
1378 #if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1380 #endif
1381 #if EV_USE_KQUEUE
1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1383 #endif
1384 #if EV_USE_EPOLL
1385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1386 #endif
1387 #if EV_USE_POLL
1388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1389 #endif
1390 #if EV_USE_SELECT
1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1392 #endif
1393
1394 for (i = NUMPRI; i--; )
1395 {
1396 array_free (pending, [i]);
1397 #if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399 #endif
1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1403
1404 /* have to use the microsoft-never-gets-it-right macro */
1405 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY);
1407 #if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY);
1409 #endif
1410 #if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412 #endif
1413 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY);
1415 #if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417 #endif
1418
1419 backend = 0;
1420 }
1421
1422 #if EV_USE_INOTIFY
1423 void inline_size infy_fork (EV_P);
1424 #endif
1425
1426 void inline_size
1427 loop_fork (EV_P)
1428 {
1429 #if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431 #endif
1432 #if EV_USE_KQUEUE
1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1434 #endif
1435 #if EV_USE_EPOLL
1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1437 #endif
1438 #if EV_USE_INOTIFY
1439 infy_fork (EV_A);
1440 #endif
1441
1442 if (ev_is_active (&pipeev))
1443 {
1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447 #if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449 #endif
1450
1451 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev);
1453
1454 #if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457 #endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464
1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1468 }
1469
1470 postfork = 0;
1471 }
1472
1473 #if EV_MULTIPLICITY
1474
1475 struct ev_loop *
1476 ev_loop_new (unsigned int flags)
1477 {
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479
1480 memset (loop, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags);
1483
1484 if (ev_backend (EV_A))
1485 return loop;
1486
1487 return 0;
1488 }
1489
1490 void
1491 ev_loop_destroy (EV_P)
1492 {
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495 }
1496
1497 void
1498 ev_loop_fork (EV_P)
1499 {
1500 postfork = 1; /* must be in line with ev_default_fork */
1501 }
1502
1503 #if EV_VERIFY
1504 void noinline
1505 verify_watcher (EV_P_ W w)
1506 {
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511 }
1512
1513 static void noinline
1514 verify_heap (EV_P_ ANHE *heap, int N)
1515 {
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526 }
1527
1528 static void noinline
1529 array_verify (EV_P_ W *ws, int cnt)
1530 {
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536 }
1537 #endif
1538
1539 void
1540 ev_loop_verify (EV_P)
1541 {
1542 #if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564 #if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567 #endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572 #if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576 #endif
1577 }
1578
1579 #if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582 #endif
1583
1584 #if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587 #endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595 # if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1598 # endif
1599 #endif
1600 }
1601
1602 #endif /* multiplicity */
1603
1604 #if EV_MULTIPLICITY
1605 struct ev_loop *
1606 ev_default_loop_init (unsigned int flags)
1607 #else
1608 int
1609 ev_default_loop (unsigned int flags)
1610 #endif
1611 {
1612 if (!ev_default_loop_ptr)
1613 {
1614 #if EV_MULTIPLICITY
1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1616 #else
1617 ev_default_loop_ptr = 1;
1618 #endif
1619
1620 loop_init (EV_A_ flags);
1621
1622 if (ev_backend (EV_A))
1623 {
1624 #ifndef _WIN32
1625 ev_signal_init (&childev, childcb, SIGCHLD);
1626 ev_set_priority (&childev, EV_MAXPRI);
1627 ev_signal_start (EV_A_ &childev);
1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1629 #endif
1630 }
1631 else
1632 ev_default_loop_ptr = 0;
1633 }
1634
1635 return ev_default_loop_ptr;
1636 }
1637
1638 void
1639 ev_default_destroy (void)
1640 {
1641 #if EV_MULTIPLICITY
1642 struct ev_loop *loop = ev_default_loop_ptr;
1643 #endif
1644
1645 #ifndef _WIN32
1646 ev_ref (EV_A); /* child watcher */
1647 ev_signal_stop (EV_A_ &childev);
1648 #endif
1649
1650 loop_destroy (EV_A);
1651 }
1652
1653 void
1654 ev_default_fork (void)
1655 {
1656 #if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr;
1658 #endif
1659
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */
1662 }
1663
1664 /*****************************************************************************/
1665
1666 void
1667 ev_invoke (EV_P_ void *w, int revents)
1668 {
1669 EV_CB_INVOKE ((W)w, revents);
1670 }
1671
1672 void inline_speed
1673 call_pending (EV_P)
1674 {
1675 int pri;
1676
1677 for (pri = NUMPRI; pri--; )
1678 while (pendingcnt [pri])
1679 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681
1682 if (expect_true (p->w))
1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1685
1686 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1689 }
1690 }
1691 }
1692
1693 #if EV_IDLE_ENABLE
1694 void inline_size
1695 idle_reify (EV_P)
1696 {
1697 if (expect_false (idleall))
1698 {
1699 int pri;
1700
1701 for (pri = NUMPRI; pri--; )
1702 {
1703 if (pendingcnt [pri])
1704 break;
1705
1706 if (idlecnt [pri])
1707 {
1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1709 break;
1710 }
1711 }
1712 }
1713 }
1714 #endif
1715
1716 void inline_size
1717 timers_reify (EV_P)
1718 {
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745 }
1746
1747 #if EV_PERIODIC_ENABLE
1748 void inline_size
1749 periodics_reify (EV_P)
1750 {
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794 }
1795
1796 static void noinline
1797 periodics_reschedule (EV_P)
1798 {
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1815 }
1816 #endif
1817
1818 void inline_speed
1819 time_update (EV_P_ ev_tstamp max_block)
1820 {
1821 int i;
1822
1823 #if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic))
1825 {
1826 ev_tstamp odiff = rtmn_diff;
1827
1828 mn_now = get_clock ();
1829
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1831 /* interpolate in the meantime */
1832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1833 {
1834 ev_rt_now = rtmn_diff + mn_now;
1835 return;
1836 }
1837
1838 now_floor = mn_now;
1839 ev_rt_now = ev_time ();
1840
1841 /* loop a few times, before making important decisions.
1842 * on the choice of "4": one iteration isn't enough,
1843 * in case we get preempted during the calls to
1844 * ev_time and get_clock. a second call is almost guaranteed
1845 * to succeed in that case, though. and looping a few more times
1846 * doesn't hurt either as we only do this on time-jumps or
1847 * in the unlikely event of having been preempted here.
1848 */
1849 for (i = 4; --i; )
1850 {
1851 rtmn_diff = ev_rt_now - mn_now;
1852
1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1854 return; /* all is well */
1855
1856 ev_rt_now = ev_time ();
1857 mn_now = get_clock ();
1858 now_floor = mn_now;
1859 }
1860
1861 # if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A);
1863 # endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 }
1867 else
1868 #endif
1869 {
1870 ev_rt_now = ev_time ();
1871
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 {
1874 #if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A);
1876 #endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 }
1885
1886 mn_now = ev_rt_now;
1887 }
1888 }
1889
1890 void
1891 ev_ref (EV_P)
1892 {
1893 ++activecnt;
1894 }
1895
1896 void
1897 ev_unref (EV_P)
1898 {
1899 --activecnt;
1900 }
1901
1902 static int loop_done;
1903
1904 void
1905 ev_loop (EV_P_ int flags)
1906 {
1907 loop_done = EVUNLOOP_CANCEL;
1908
1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1910
1911 do
1912 {
1913 #if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915 #endif
1916
1917 #ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid))
1920 {
1921 curpid = getpid ();
1922 postfork = 1;
1923 }
1924 #endif
1925
1926 #if EV_FORK_ENABLE
1927 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork))
1929 if (forkcnt)
1930 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A);
1933 }
1934 #endif
1935
1936 /* queue prepare watchers (and execute them) */
1937 if (expect_false (preparecnt))
1938 {
1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1940 call_pending (EV_A);
1941 }
1942
1943 if (expect_false (!activecnt))
1944 break;
1945
1946 /* we might have forked, so reify kernel state if necessary */
1947 if (expect_false (postfork))
1948 loop_fork (EV_A);
1949
1950 /* update fd-related kernel structures */
1951 fd_reify (EV_A);
1952
1953 /* calculate blocking time */
1954 {
1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1957
1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1959 {
1960 /* update time to cancel out callback processing overhead */
1961 time_update (EV_A_ 1e100);
1962
1963 waittime = MAX_BLOCKTIME;
1964
1965 if (timercnt)
1966 {
1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1968 if (waittime > to) waittime = to;
1969 }
1970
1971 #if EV_PERIODIC_ENABLE
1972 if (periodiccnt)
1973 {
1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1975 if (waittime > to) waittime = to;
1976 }
1977 #endif
1978
1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1992 }
1993
1994 ++loop_count;
1995 backend_poll (EV_A_ waittime);
1996
1997 /* update ev_rt_now, do magic */
1998 time_update (EV_A_ waittime + sleeptime);
1999 }
2000
2001 /* queue pending timers and reschedule them */
2002 timers_reify (EV_A); /* relative timers called last */
2003 #if EV_PERIODIC_ENABLE
2004 periodics_reify (EV_A); /* absolute timers called first */
2005 #endif
2006
2007 #if EV_IDLE_ENABLE
2008 /* queue idle watchers unless other events are pending */
2009 idle_reify (EV_A);
2010 #endif
2011
2012 /* queue check watchers, to be executed first */
2013 if (expect_false (checkcnt))
2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2015
2016 call_pending (EV_A);
2017 }
2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
2023
2024 if (loop_done == EVUNLOOP_ONE)
2025 loop_done = EVUNLOOP_CANCEL;
2026 }
2027
2028 void
2029 ev_unloop (EV_P_ int how)
2030 {
2031 loop_done = how;
2032 }
2033
2034 /*****************************************************************************/
2035
2036 void inline_size
2037 wlist_add (WL *head, WL elem)
2038 {
2039 elem->next = *head;
2040 *head = elem;
2041 }
2042
2043 void inline_size
2044 wlist_del (WL *head, WL elem)
2045 {
2046 while (*head)
2047 {
2048 if (*head == elem)
2049 {
2050 *head = elem->next;
2051 return;
2052 }
2053
2054 head = &(*head)->next;
2055 }
2056 }
2057
2058 void inline_speed
2059 clear_pending (EV_P_ W w)
2060 {
2061 if (w->pending)
2062 {
2063 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2064 w->pending = 0;
2065 }
2066 }
2067
2068 int
2069 ev_clear_pending (EV_P_ void *w)
2070 {
2071 W w_ = (W)w;
2072 int pending = w_->pending;
2073
2074 if (expect_true (pending))
2075 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2077 w_->pending = 0;
2078 p->w = 0;
2079 return p->events;
2080 }
2081 else
2082 return 0;
2083 }
2084
2085 void inline_size
2086 pri_adjust (EV_P_ W w)
2087 {
2088 int pri = w->priority;
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri;
2092 }
2093
2094 void inline_speed
2095 ev_start (EV_P_ W w, int active)
2096 {
2097 pri_adjust (EV_A_ w);
2098 w->active = active;
2099 ev_ref (EV_A);
2100 }
2101
2102 void inline_size
2103 ev_stop (EV_P_ W w)
2104 {
2105 ev_unref (EV_A);
2106 w->active = 0;
2107 }
2108
2109 /*****************************************************************************/
2110
2111 void noinline
2112 ev_io_start (EV_P_ ev_io *w)
2113 {
2114 int fd = w->fd;
2115
2116 if (expect_false (ev_is_active (w)))
2117 return;
2118
2119 assert (("ev_io_start called with negative fd", fd >= 0));
2120
2121 EV_FREQUENT_CHECK;
2122
2123 ev_start (EV_A_ (W)w, 1);
2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
2125 wlist_add (&anfds[fd].head, (WL)w);
2126
2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
2131 }
2132
2133 void noinline
2134 ev_io_stop (EV_P_ ev_io *w)
2135 {
2136 clear_pending (EV_A_ (W)w);
2137 if (expect_false (!ev_is_active (w)))
2138 return;
2139
2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141
2142 EV_FREQUENT_CHECK;
2143
2144 wlist_del (&anfds[w->fd].head, (WL)w);
2145 ev_stop (EV_A_ (W)w);
2146
2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
2150 }
2151
2152 void noinline
2153 ev_timer_start (EV_P_ ev_timer *w)
2154 {
2155 if (expect_false (ev_is_active (w)))
2156 return;
2157
2158 ev_at (w) += mn_now;
2159
2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
2170
2171 EV_FREQUENT_CHECK;
2172
2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2174 }
2175
2176 void noinline
2177 ev_timer_stop (EV_P_ ev_timer *w)
2178 {
2179 clear_pending (EV_A_ (W)w);
2180 if (expect_false (!ev_is_active (w)))
2181 return;
2182
2183 EV_FREQUENT_CHECK;
2184
2185 {
2186 int active = ev_active (w);
2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
2192 if (expect_true (active < timercnt + HEAP0))
2193 {
2194 timers [active] = timers [timercnt + HEAP0];
2195 adjustheap (timers, timercnt, active);
2196 }
2197 }
2198
2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
2202
2203 ev_stop (EV_A_ (W)w);
2204 }
2205
2206 void noinline
2207 ev_timer_again (EV_P_ ev_timer *w)
2208 {
2209 EV_FREQUENT_CHECK;
2210
2211 if (ev_is_active (w))
2212 {
2213 if (w->repeat)
2214 {
2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
2217 adjustheap (timers, timercnt, ev_active (w));
2218 }
2219 else
2220 ev_timer_stop (EV_A_ w);
2221 }
2222 else if (w->repeat)
2223 {
2224 ev_at (w) = w->repeat;
2225 ev_timer_start (EV_A_ w);
2226 }
2227
2228 EV_FREQUENT_CHECK;
2229 }
2230
2231 #if EV_PERIODIC_ENABLE
2232 void noinline
2233 ev_periodic_start (EV_P_ ev_periodic *w)
2234 {
2235 if (expect_false (ev_is_active (w)))
2236 return;
2237
2238 if (w->reschedule_cb)
2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2240 else if (w->interval)
2241 {
2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2243 /* this formula differs from the one in periodic_reify because we do not always round up */
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245 }
2246 else
2247 ev_at (w) = w->offset;
2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
2257
2258 EV_FREQUENT_CHECK;
2259
2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2261 }
2262
2263 void noinline
2264 ev_periodic_stop (EV_P_ ev_periodic *w)
2265 {
2266 clear_pending (EV_A_ (W)w);
2267 if (expect_false (!ev_is_active (w)))
2268 return;
2269
2270 EV_FREQUENT_CHECK;
2271
2272 {
2273 int active = ev_active (w);
2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
2279 if (expect_true (active < periodiccnt + HEAP0))
2280 {
2281 periodics [active] = periodics [periodiccnt + HEAP0];
2282 adjustheap (periodics, periodiccnt, active);
2283 }
2284 }
2285
2286 EV_FREQUENT_CHECK;
2287
2288 ev_stop (EV_A_ (W)w);
2289 }
2290
2291 void noinline
2292 ev_periodic_again (EV_P_ ev_periodic *w)
2293 {
2294 /* TODO: use adjustheap and recalculation */
2295 ev_periodic_stop (EV_A_ w);
2296 ev_periodic_start (EV_A_ w);
2297 }
2298 #endif
2299
2300 #ifndef SA_RESTART
2301 # define SA_RESTART 0
2302 #endif
2303
2304 void noinline
2305 ev_signal_start (EV_P_ ev_signal *w)
2306 {
2307 #if EV_MULTIPLICITY
2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2309 #endif
2310 if (expect_false (ev_is_active (w)))
2311 return;
2312
2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2318
2319 {
2320 #ifndef _WIN32
2321 sigset_t full, prev;
2322 sigfillset (&full);
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324 #endif
2325
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2327
2328 #ifndef _WIN32
2329 sigprocmask (SIG_SETMASK, &prev, 0);
2330 #endif
2331 }
2332
2333 ev_start (EV_A_ (W)w, 1);
2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
2335
2336 if (!((WL)w)->next)
2337 {
2338 #if _WIN32
2339 signal (w->signum, ev_sighandler);
2340 #else
2341 struct sigaction sa;
2342 sa.sa_handler = ev_sighandler;
2343 sigfillset (&sa.sa_mask);
2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2345 sigaction (w->signum, &sa, 0);
2346 #endif
2347 }
2348
2349 EV_FREQUENT_CHECK;
2350 }
2351
2352 void noinline
2353 ev_signal_stop (EV_P_ ev_signal *w)
2354 {
2355 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w)))
2357 return;
2358
2359 EV_FREQUENT_CHECK;
2360
2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
2362 ev_stop (EV_A_ (W)w);
2363
2364 if (!signals [w->signum - 1].head)
2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
2368 }
2369
2370 void
2371 ev_child_start (EV_P_ ev_child *w)
2372 {
2373 #if EV_MULTIPLICITY
2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2375 #endif
2376 if (expect_false (ev_is_active (w)))
2377 return;
2378
2379 EV_FREQUENT_CHECK;
2380
2381 ev_start (EV_A_ (W)w, 1);
2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
2385 }
2386
2387 void
2388 ev_child_stop (EV_P_ ev_child *w)
2389 {
2390 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w)))
2392 return;
2393
2394 EV_FREQUENT_CHECK;
2395
2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
2400 }
2401
2402 #if EV_STAT_ENABLE
2403
2404 # ifdef _WIN32
2405 # undef lstat
2406 # define lstat(a,b) _stati64 (a,b)
2407 # endif
2408
2409 #define DEF_STAT_INTERVAL 5.0074891
2410 #define MIN_STAT_INTERVAL 0.1074891
2411
2412 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413
2414 #if EV_USE_INOTIFY
2415 # define EV_INOTIFY_BUFSIZE 8192
2416
2417 static void noinline
2418 infy_add (EV_P_ ev_stat *w)
2419 {
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2421
2422 if (w->wd < 0)
2423 {
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2425
2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 {
2431 char path [4096];
2432 strcpy (path, w->path);
2433
2434 do
2435 {
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438
2439 char *pend = strrchr (path, '/');
2440
2441 if (!pend)
2442 break; /* whoops, no '/', complain to your admin */
2443
2444 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 }
2449 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452
2453 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2455 }
2456
2457 static void noinline
2458 infy_del (EV_P_ ev_stat *w)
2459 {
2460 int slot;
2461 int wd = w->wd;
2462
2463 if (wd < 0)
2464 return;
2465
2466 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w);
2469
2470 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd);
2472 }
2473
2474 static void noinline
2475 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476 {
2477 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2480 infy_wd (EV_A_ slot, wd, ev);
2481 else
2482 {
2483 WL w_;
2484
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2486 {
2487 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */
2489
2490 if (w->wd == wd || wd == -1)
2491 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 {
2494 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */
2496 }
2497
2498 stat_timer_cb (EV_A_ &w->timer, 0);
2499 }
2500 }
2501 }
2502 }
2503
2504 static void
2505 infy_cb (EV_P_ ev_io *w, int revents)
2506 {
2507 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf));
2511
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2514 }
2515
2516 void inline_size
2517 infy_init (EV_P)
2518 {
2519 if (fs_fd != -2)
2520 return;
2521
2522 fs_fd = inotify_init ();
2523
2524 if (fs_fd >= 0)
2525 {
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w);
2529 }
2530 }
2531
2532 void inline_size
2533 infy_fork (EV_P)
2534 {
2535 int slot;
2536
2537 if (fs_fd < 0)
2538 return;
2539
2540 close (fs_fd);
2541 fs_fd = inotify_init ();
2542
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2544 {
2545 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0;
2547
2548 while (w_)
2549 {
2550 ev_stat *w = (ev_stat *)w_;
2551 w_ = w_->next; /* lets us add this watcher */
2552
2553 w->wd = -1;
2554
2555 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else
2558 ev_timer_start (EV_A_ &w->timer);
2559 }
2560
2561 }
2562 }
2563
2564 #endif
2565
2566 void
2567 ev_stat_stat (EV_P_ ev_stat *w)
2568 {
2569 if (lstat (w->path, &w->attr) < 0)
2570 w->attr.st_nlink = 0;
2571 else if (!w->attr.st_nlink)
2572 w->attr.st_nlink = 1;
2573 }
2574
2575 static void noinline
2576 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577 {
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579
2580 /* we copy this here each the time so that */
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w);
2584
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if (
2587 w->prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime
2598 ) {
2599 #if EV_USE_INOTIFY
2600 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */
2603 #endif
2604
2605 ev_feed_event (EV_A_ w, EV_STAT);
2606 }
2607 }
2608
2609 void
2610 ev_stat_start (EV_P_ ev_stat *w)
2611 {
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w);
2620
2621 if (w->interval < MIN_STAT_INTERVAL)
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2625 ev_set_priority (&w->timer, ev_priority (w));
2626
2627 #if EV_USE_INOTIFY
2628 infy_init (EV_A);
2629
2630 if (fs_fd >= 0)
2631 infy_add (EV_A_ w);
2632 else
2633 #endif
2634 ev_timer_start (EV_A_ &w->timer);
2635
2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2639 }
2640
2641 void
2642 ev_stat_stop (EV_P_ ev_stat *w)
2643 {
2644 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w)))
2646 return;
2647
2648 EV_FREQUENT_CHECK;
2649
2650 #if EV_USE_INOTIFY
2651 infy_del (EV_A_ w);
2652 #endif
2653 ev_timer_stop (EV_A_ &w->timer);
2654
2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2658 }
2659 #endif
2660
2661 #if EV_IDLE_ENABLE
2662 void
2663 ev_idle_start (EV_P_ ev_idle *w)
2664 {
2665 if (expect_false (ev_is_active (w)))
2666 return;
2667
2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ++idlecnt [ABSPRI (w)];
2674
2675 ++idleall;
2676 ev_start (EV_A_ (W)w, active);
2677
2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2679 idles [ABSPRI (w)][active - 1] = w;
2680 }
2681
2682 EV_FREQUENT_CHECK;
2683 }
2684
2685 void
2686 ev_idle_stop (EV_P_ ev_idle *w)
2687 {
2688 clear_pending (EV_A_ (W)w);
2689 if (expect_false (!ev_is_active (w)))
2690 return;
2691
2692 EV_FREQUENT_CHECK;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2699
2700 ev_stop (EV_A_ (W)w);
2701 --idleall;
2702 }
2703
2704 EV_FREQUENT_CHECK;
2705 }
2706 #endif
2707
2708 void
2709 ev_prepare_start (EV_P_ ev_prepare *w)
2710 {
2711 if (expect_false (ev_is_active (w)))
2712 return;
2713
2714 EV_FREQUENT_CHECK;
2715
2716 ev_start (EV_A_ (W)w, ++preparecnt);
2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2721 }
2722
2723 void
2724 ev_prepare_stop (EV_P_ ev_prepare *w)
2725 {
2726 clear_pending (EV_A_ (W)w);
2727 if (expect_false (!ev_is_active (w)))
2728 return;
2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ev_active (w);
2734
2735 prepares [active - 1] = prepares [--preparecnt];
2736 ev_active (prepares [active - 1]) = active;
2737 }
2738
2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2742 }
2743
2744 void
2745 ev_check_start (EV_P_ ev_check *w)
2746 {
2747 if (expect_false (ev_is_active (w)))
2748 return;
2749
2750 EV_FREQUENT_CHECK;
2751
2752 ev_start (EV_A_ (W)w, ++checkcnt);
2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2757 }
2758
2759 void
2760 ev_check_stop (EV_P_ ev_check *w)
2761 {
2762 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w)))
2764 return;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
2771 checks [active - 1] = checks [--checkcnt];
2772 ev_active (checks [active - 1]) = active;
2773 }
2774
2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2778 }
2779
2780 #if EV_EMBED_ENABLE
2781 void noinline
2782 ev_embed_sweep (EV_P_ ev_embed *w)
2783 {
2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2785 }
2786
2787 static void
2788 embed_io_cb (EV_P_ ev_io *io, int revents)
2789 {
2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2791
2792 if (ev_cb (w))
2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2794 else
2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2796 }
2797
2798 static void
2799 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800 {
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812 }
2813
2814 #if 0
2815 static void
2816 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817 {
2818 ev_idle_stop (EV_A_ idle);
2819 }
2820 #endif
2821
2822 void
2823 ev_embed_start (EV_P_ ev_embed *w)
2824 {
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 {
2829 struct ev_loop *loop = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 }
2833
2834 EV_FREQUENT_CHECK;
2835
2836 ev_set_priority (&w->io, ev_priority (w));
2837 ev_io_start (EV_A_ &w->io);
2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2848 }
2849
2850 void
2851 ev_embed_stop (EV_P_ ev_embed *w)
2852 {
2853 clear_pending (EV_A_ (W)w);
2854 if (expect_false (!ev_is_active (w)))
2855 return;
2856
2857 EV_FREQUENT_CHECK;
2858
2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2861
2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2865 }
2866 #endif
2867
2868 #if EV_FORK_ENABLE
2869 void
2870 ev_fork_start (EV_P_ ev_fork *w)
2871 {
2872 if (expect_false (ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 ev_start (EV_A_ (W)w, ++forkcnt);
2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2882 }
2883
2884 void
2885 ev_fork_stop (EV_P_ ev_fork *w)
2886 {
2887 clear_pending (EV_A_ (W)w);
2888 if (expect_false (!ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
2892
2893 {
2894 int active = ev_active (w);
2895
2896 forks [active - 1] = forks [--forkcnt];
2897 ev_active (forks [active - 1]) = active;
2898 }
2899
2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903 }
2904 #endif
2905
2906 #if EV_ASYNC_ENABLE
2907 void
2908 ev_async_start (EV_P_ ev_async *w)
2909 {
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922 }
2923
2924 void
2925 ev_async_stop (EV_P_ ev_async *w)
2926 {
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943 }
2944
2945 void
2946 ev_async_send (EV_P_ ev_async *w)
2947 {
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2950 }
2951 #endif
2952
2953 /*****************************************************************************/
2954
2955 struct ev_once
2956 {
2957 ev_io io;
2958 ev_timer to;
2959 void (*cb)(int revents, void *arg);
2960 void *arg;
2961 };
2962
2963 static void
2964 once_cb (EV_P_ struct ev_once *once, int revents)
2965 {
2966 void (*cb)(int revents, void *arg) = once->cb;
2967 void *arg = once->arg;
2968
2969 ev_io_stop (EV_A_ &once->io);
2970 ev_timer_stop (EV_A_ &once->to);
2971 ev_free (once);
2972
2973 cb (revents, arg);
2974 }
2975
2976 static void
2977 once_cb_io (EV_P_ ev_io *w, int revents)
2978 {
2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
2980 }
2981
2982 static void
2983 once_cb_to (EV_P_ ev_timer *w, int revents)
2984 {
2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
2986 }
2987
2988 void
2989 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2990 {
2991 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2992
2993 if (expect_false (!once))
2994 {
2995 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
2996 return;
2997 }
2998
2999 once->cb = cb;
3000 once->arg = arg;
3001
3002 ev_init (&once->io, once_cb_io);
3003 if (fd >= 0)
3004 {
3005 ev_io_set (&once->io, fd, events);
3006 ev_io_start (EV_A_ &once->io);
3007 }
3008
3009 ev_init (&once->to, once_cb_to);
3010 if (timeout >= 0.)
3011 {
3012 ev_timer_set (&once->to, timeout, 0.);
3013 ev_timer_start (EV_A_ &once->to);
3014 }
3015 }
3016
3017 #if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019 #endif
3020
3021 #ifdef __cplusplus
3022 }
3023 #endif
3024