ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.274
Committed: Thu Nov 20 00:35:10 2008 UTC (15 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.273: +29 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # endif
63
64 # if HAVE_CLOCK_GETTIME
65 # ifndef EV_USE_MONOTONIC
66 # define EV_USE_MONOTONIC 1
67 # endif
68 # ifndef EV_USE_REALTIME
69 # define EV_USE_REALTIME 1
70 # endif
71 # else
72 # ifndef EV_USE_MONOTONIC
73 # define EV_USE_MONOTONIC 0
74 # endif
75 # ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 0
77 # endif
78 # endif
79
80 # ifndef EV_USE_NANOSLEEP
81 # if HAVE_NANOSLEEP
82 # define EV_USE_NANOSLEEP 1
83 # else
84 # define EV_USE_NANOSLEEP 0
85 # endif
86 # endif
87
88 # ifndef EV_USE_SELECT
89 # if HAVE_SELECT && HAVE_SYS_SELECT_H
90 # define EV_USE_SELECT 1
91 # else
92 # define EV_USE_SELECT 0
93 # endif
94 # endif
95
96 # ifndef EV_USE_POLL
97 # if HAVE_POLL && HAVE_POLL_H
98 # define EV_USE_POLL 1
99 # else
100 # define EV_USE_POLL 0
101 # endif
102 # endif
103
104 # ifndef EV_USE_EPOLL
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # define EV_USE_EPOLL 1
107 # else
108 # define EV_USE_EPOLL 0
109 # endif
110 # endif
111
112 # ifndef EV_USE_KQUEUE
113 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114 # define EV_USE_KQUEUE 1
115 # else
116 # define EV_USE_KQUEUE 0
117 # endif
118 # endif
119
120 # ifndef EV_USE_PORT
121 # if HAVE_PORT_H && HAVE_PORT_CREATE
122 # define EV_USE_PORT 1
123 # else
124 # define EV_USE_PORT 0
125 # endif
126 # endif
127
128 # ifndef EV_USE_INOTIFY
129 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130 # define EV_USE_INOTIFY 1
131 # else
132 # define EV_USE_INOTIFY 0
133 # endif
134 # endif
135
136 # ifndef EV_USE_EVENTFD
137 # if HAVE_EVENTFD
138 # define EV_USE_EVENTFD 1
139 # else
140 # define EV_USE_EVENTFD 0
141 # endif
142 # endif
143
144 #endif
145
146 #include <math.h>
147 #include <stdlib.h>
148 #include <fcntl.h>
149 #include <stddef.h>
150
151 #include <stdio.h>
152
153 #include <assert.h>
154 #include <errno.h>
155 #include <sys/types.h>
156 #include <time.h>
157
158 #include <signal.h>
159
160 #ifdef EV_H
161 # include EV_H
162 #else
163 # include "ev.h"
164 #endif
165
166 #ifndef _WIN32
167 # include <sys/time.h>
168 # include <sys/wait.h>
169 # include <unistd.h>
170 #else
171 # include <io.h>
172 # define WIN32_LEAN_AND_MEAN
173 # include <windows.h>
174 # ifndef EV_SELECT_IS_WINSOCKET
175 # define EV_SELECT_IS_WINSOCKET 1
176 # endif
177 #endif
178
179 /* this block tries to deduce configuration from header-defined symbols and defaults */
180
181 #ifndef EV_USE_CLOCK_SYSCALL
182 # if __linux && __GLIBC__ >= 2
183 # define EV_USE_CLOCK_SYSCALL 1
184 # else
185 # define EV_USE_CLOCK_SYSCALL 0
186 # endif
187 #endif
188
189 #ifndef EV_USE_MONOTONIC
190 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191 # define EV_USE_MONOTONIC 1
192 # else
193 # define EV_USE_MONOTONIC 0
194 # endif
195 #endif
196
197 #ifndef EV_USE_REALTIME
198 # define EV_USE_REALTIME 0
199 #endif
200
201 #ifndef EV_USE_NANOSLEEP
202 # if _POSIX_C_SOURCE >= 199309L
203 # define EV_USE_NANOSLEEP 1
204 # else
205 # define EV_USE_NANOSLEEP 0
206 # endif
207 #endif
208
209 #ifndef EV_USE_SELECT
210 # define EV_USE_SELECT 1
211 #endif
212
213 #ifndef EV_USE_POLL
214 # ifdef _WIN32
215 # define EV_USE_POLL 0
216 # else
217 # define EV_USE_POLL 1
218 # endif
219 #endif
220
221 #ifndef EV_USE_EPOLL
222 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223 # define EV_USE_EPOLL 1
224 # else
225 # define EV_USE_EPOLL 0
226 # endif
227 #endif
228
229 #ifndef EV_USE_KQUEUE
230 # define EV_USE_KQUEUE 0
231 #endif
232
233 #ifndef EV_USE_PORT
234 # define EV_USE_PORT 0
235 #endif
236
237 #ifndef EV_USE_INOTIFY
238 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239 # define EV_USE_INOTIFY 1
240 # else
241 # define EV_USE_INOTIFY 0
242 # endif
243 #endif
244
245 #ifndef EV_PID_HASHSIZE
246 # if EV_MINIMAL
247 # define EV_PID_HASHSIZE 1
248 # else
249 # define EV_PID_HASHSIZE 16
250 # endif
251 #endif
252
253 #ifndef EV_INOTIFY_HASHSIZE
254 # if EV_MINIMAL
255 # define EV_INOTIFY_HASHSIZE 1
256 # else
257 # define EV_INOTIFY_HASHSIZE 16
258 # endif
259 #endif
260
261 #ifndef EV_USE_EVENTFD
262 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263 # define EV_USE_EVENTFD 1
264 # else
265 # define EV_USE_EVENTFD 0
266 # endif
267 #endif
268
269 #if 0 /* debugging */
270 # define EV_VERIFY 3
271 # define EV_USE_4HEAP 1
272 # define EV_HEAP_CACHE_AT 1
273 #endif
274
275 #ifndef EV_VERIFY
276 # define EV_VERIFY !EV_MINIMAL
277 #endif
278
279 #ifndef EV_USE_4HEAP
280 # define EV_USE_4HEAP !EV_MINIMAL
281 #endif
282
283 #ifndef EV_HEAP_CACHE_AT
284 # define EV_HEAP_CACHE_AT !EV_MINIMAL
285 #endif
286
287 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289 #ifndef CLOCK_MONOTONIC
290 # undef EV_USE_MONOTONIC
291 # define EV_USE_MONOTONIC 0
292 #endif
293
294 #ifndef CLOCK_REALTIME
295 # undef EV_USE_REALTIME
296 # define EV_USE_REALTIME 0
297 #endif
298
299 #if !EV_STAT_ENABLE
300 # undef EV_USE_INOTIFY
301 # define EV_USE_INOTIFY 0
302 #endif
303
304 #if !EV_USE_NANOSLEEP
305 # ifndef _WIN32
306 # include <sys/select.h>
307 # endif
308 #endif
309
310 #if EV_USE_INOTIFY
311 # include <sys/utsname.h>
312 # include <sys/statfs.h>
313 # include <sys/inotify.h>
314 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315 # ifndef IN_DONT_FOLLOW
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 # endif
319 #endif
320
321 #if EV_SELECT_IS_WINSOCKET
322 # include <winsock.h>
323 #endif
324
325 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326 /* which makes programs even slower. might work on other unices, too. */
327 #if EV_USE_CLOCK_SYSCALL
328 # include <syscall.h>
329 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330 # undef EV_USE_MONOTONIC
331 # define EV_USE_MONOTONIC 1
332 #endif
333
334 #if EV_USE_EVENTFD
335 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336 # include <stdint.h>
337 # ifdef __cplusplus
338 extern "C" {
339 # endif
340 int eventfd (unsigned int initval, int flags);
341 # ifdef __cplusplus
342 }
343 # endif
344 #endif
345
346 /**/
347
348 #if EV_VERIFY >= 3
349 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350 #else
351 # define EV_FREQUENT_CHECK do { } while (0)
352 #endif
353
354 /*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
364 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367
368 #if __GNUC__ >= 4
369 # define expect(expr,value) __builtin_expect ((expr),(value))
370 # define noinline __attribute__ ((noinline))
371 #else
372 # define expect(expr,value) (expr)
373 # define noinline
374 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375 # define inline
376 # endif
377 #endif
378
379 #define expect_false(expr) expect ((expr) != 0, 0)
380 #define expect_true(expr) expect ((expr) != 0, 1)
381 #define inline_size static inline
382
383 #if EV_MINIMAL
384 # define inline_speed static noinline
385 #else
386 # define inline_speed static inline
387 #endif
388
389 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392 #define EMPTY /* required for microsofts broken pseudo-c compiler */
393 #define EMPTY2(a,b) /* used to suppress some warnings */
394
395 typedef ev_watcher *W;
396 typedef ev_watcher_list *WL;
397 typedef ev_watcher_time *WT;
398
399 #define ev_active(w) ((W)(w))->active
400 #define ev_at(w) ((WT)(w))->at
401
402 #if EV_USE_MONOTONIC
403 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
404 /* giving it a reasonably high chance of working on typical architetcures */
405 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406 #endif
407
408 #ifdef _WIN32
409 # include "ev_win32.c"
410 #endif
411
412 /*****************************************************************************/
413
414 static void (*syserr_cb)(const char *msg);
415
416 void
417 ev_set_syserr_cb (void (*cb)(const char *msg))
418 {
419 syserr_cb = cb;
420 }
421
422 static void noinline
423 ev_syserr (const char *msg)
424 {
425 if (!msg)
426 msg = "(libev) system error";
427
428 if (syserr_cb)
429 syserr_cb (msg);
430 else
431 {
432 perror (msg);
433 abort ();
434 }
435 }
436
437 static void *
438 ev_realloc_emul (void *ptr, long size)
439 {
440 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here.
443 */
444
445 if (size)
446 return realloc (ptr, size);
447
448 free (ptr);
449 return 0;
450 }
451
452 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
453
454 void
455 ev_set_allocator (void *(*cb)(void *ptr, long size))
456 {
457 alloc = cb;
458 }
459
460 inline_speed void *
461 ev_realloc (void *ptr, long size)
462 {
463 ptr = alloc (ptr, size);
464
465 if (!ptr && size)
466 {
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
468 abort ();
469 }
470
471 return ptr;
472 }
473
474 #define ev_malloc(size) ev_realloc (0, (size))
475 #define ev_free(ptr) ev_realloc ((ptr), 0)
476
477 /*****************************************************************************/
478
479 typedef struct
480 {
481 WL head;
482 unsigned char events;
483 unsigned char reify;
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused;
486 #if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */
488 #endif
489 #if EV_SELECT_IS_WINSOCKET
490 SOCKET handle;
491 #endif
492 } ANFD;
493
494 typedef struct
495 {
496 W w;
497 int events;
498 } ANPENDING;
499
500 #if EV_USE_INOTIFY
501 /* hash table entry per inotify-id */
502 typedef struct
503 {
504 WL head;
505 } ANFS;
506 #endif
507
508 /* Heap Entry */
509 #if EV_HEAP_CACHE_AT
510 typedef struct {
511 ev_tstamp at;
512 WT w;
513 } ANHE;
514
515 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518 #else
519 typedef WT ANHE;
520
521 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he)
524 #endif
525
526 #if EV_MULTIPLICITY
527
528 struct ev_loop
529 {
530 ev_tstamp ev_rt_now;
531 #define ev_rt_now ((loop)->ev_rt_now)
532 #define VAR(name,decl) decl;
533 #include "ev_vars.h"
534 #undef VAR
535 };
536 #include "ev_wrap.h"
537
538 static struct ev_loop default_loop_struct;
539 struct ev_loop *ev_default_loop_ptr;
540
541 #else
542
543 ev_tstamp ev_rt_now;
544 #define VAR(name,decl) static decl;
545 #include "ev_vars.h"
546 #undef VAR
547
548 static int ev_default_loop_ptr;
549
550 #endif
551
552 /*****************************************************************************/
553
554 ev_tstamp
555 ev_time (void)
556 {
557 #if EV_USE_REALTIME
558 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9;
561 #else
562 struct timeval tv;
563 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6;
565 #endif
566 }
567
568 ev_tstamp inline_size
569 get_clock (void)
570 {
571 #if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic))
573 {
574 struct timespec ts;
575 clock_gettime (CLOCK_MONOTONIC, &ts);
576 return ts.tv_sec + ts.tv_nsec * 1e-9;
577 }
578 #endif
579
580 return ev_time ();
581 }
582
583 #if EV_MULTIPLICITY
584 ev_tstamp
585 ev_now (EV_P)
586 {
587 return ev_rt_now;
588 }
589 #endif
590
591 void
592 ev_sleep (ev_tstamp delay)
593 {
594 if (delay > 0.)
595 {
596 #if EV_USE_NANOSLEEP
597 struct timespec ts;
598
599 ts.tv_sec = (time_t)delay;
600 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
601
602 nanosleep (&ts, 0);
603 #elif defined(_WIN32)
604 Sleep ((unsigned long)(delay * 1e3));
605 #else
606 struct timeval tv;
607
608 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */
614 select (0, 0, 0, 0, &tv);
615 #endif
616 }
617 }
618
619 /*****************************************************************************/
620
621 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622
623 int inline_size
624 array_nextsize (int elem, int cur, int cnt)
625 {
626 int ncur = cur + 1;
627
628 do
629 ncur <<= 1;
630 while (cnt > ncur);
631
632 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
633 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
634 {
635 ncur *= elem;
636 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
637 ncur = ncur - sizeof (void *) * 4;
638 ncur /= elem;
639 }
640
641 return ncur;
642 }
643
644 static noinline void *
645 array_realloc (int elem, void *base, int *cur, int cnt)
646 {
647 *cur = array_nextsize (elem, *cur, cnt);
648 return ev_realloc (base, elem * *cur);
649 }
650
651 #define array_init_zero(base,count) \
652 memset ((void *)(base), 0, sizeof (*(base)) * (count))
653
654 #define array_needsize(type,base,cur,cnt,init) \
655 if (expect_false ((cnt) > (cur))) \
656 { \
657 int ocur_ = (cur); \
658 (base) = (type *)array_realloc \
659 (sizeof (type), (base), &(cur), (cnt)); \
660 init ((base) + (ocur_), (cur) - ocur_); \
661 }
662
663 #if 0
664 #define array_slim(type,stem) \
665 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
666 { \
667 stem ## max = array_roundsize (stem ## cnt >> 1); \
668 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 }
671 #endif
672
673 #define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
675
676 /*****************************************************************************/
677
678 void noinline
679 ev_feed_event (EV_P_ void *w, int revents)
680 {
681 W w_ = (W)w;
682 int pri = ABSPRI (w_);
683
684 if (expect_false (w_->pending))
685 pendings [pri][w_->pending - 1].events |= revents;
686 else
687 {
688 w_->pending = ++pendingcnt [pri];
689 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
690 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents;
692 }
693 }
694
695 void inline_speed
696 queue_events (EV_P_ W *events, int eventcnt, int type)
697 {
698 int i;
699
700 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type);
702 }
703
704 /*****************************************************************************/
705
706 void inline_speed
707 fd_event (EV_P_ int fd, int revents)
708 {
709 ANFD *anfd = anfds + fd;
710 ev_io *w;
711
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
713 {
714 int ev = w->events & revents;
715
716 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev);
718 }
719 }
720
721 void
722 ev_feed_fd_event (EV_P_ int fd, int revents)
723 {
724 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents);
726 }
727
728 void inline_size
729 fd_reify (EV_P)
730 {
731 int i;
732
733 for (i = 0; i < fdchangecnt; ++i)
734 {
735 int fd = fdchanges [i];
736 ANFD *anfd = anfds + fd;
737 ev_io *w;
738
739 unsigned char events = 0;
740
741 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
742 events |= (unsigned char)w->events;
743
744 #if EV_SELECT_IS_WINSOCKET
745 if (events)
746 {
747 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 }
755 #endif
756
757 {
758 unsigned char o_events = anfd->events;
759 unsigned char o_reify = anfd->reify;
760
761 anfd->reify = 0;
762 anfd->events = events;
763
764 if (o_events != events || o_reify & EV_IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events);
766 }
767 }
768
769 fdchangecnt = 0;
770 }
771
772 void inline_size
773 fd_change (EV_P_ int fd, int flags)
774 {
775 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags;
777
778 if (expect_true (!reify))
779 {
780 ++fdchangecnt;
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd;
783 }
784 }
785
786 void inline_speed
787 fd_kill (EV_P_ int fd)
788 {
789 ev_io *w;
790
791 while ((w = (ev_io *)anfds [fd].head))
792 {
793 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 }
796 }
797
798 int inline_size
799 fd_valid (int fd)
800 {
801 #ifdef _WIN32
802 return _get_osfhandle (fd) != -1;
803 #else
804 return fcntl (fd, F_GETFD) != -1;
805 #endif
806 }
807
808 /* called on EBADF to verify fds */
809 static void noinline
810 fd_ebadf (EV_P)
811 {
812 int fd;
813
814 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events)
816 if (!fd_valid (fd) && errno == EBADF)
817 fd_kill (EV_A_ fd);
818 }
819
820 /* called on ENOMEM in select/poll to kill some fds and retry */
821 static void noinline
822 fd_enomem (EV_P)
823 {
824 int fd;
825
826 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events)
828 {
829 fd_kill (EV_A_ fd);
830 return;
831 }
832 }
833
834 /* usually called after fork if backend needs to re-arm all fds from scratch */
835 static void noinline
836 fd_rearm_all (EV_P)
837 {
838 int fd;
839
840 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events)
842 {
843 anfds [fd].events = 0;
844 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1);
846 }
847 }
848
849 /*****************************************************************************/
850
851 /*
852 * the heap functions want a real array index. array index 0 uis guaranteed to not
853 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
854 * the branching factor of the d-tree.
855 */
856
857 /*
858 * at the moment we allow libev the luxury of two heaps,
859 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
860 * which is more cache-efficient.
861 * the difference is about 5% with 50000+ watchers.
862 */
863 #if EV_USE_4HEAP
864
865 #define DHEAP 4
866 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
867 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868 #define UPHEAP_DONE(p,k) ((p) == (k))
869
870 /* away from the root */
871 void inline_speed
872 downheap (ANHE *heap, int N, int k)
873 {
874 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0;
876
877 for (;;)
878 {
879 ev_tstamp minat;
880 ANHE *minpos;
881 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
882
883 /* find minimum child */
884 if (expect_true (pos + DHEAP - 1 < E))
885 {
886 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
887 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
888 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
889 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
890 }
891 else if (pos < E)
892 {
893 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else
899 break;
900
901 if (ANHE_at (he) <= minat)
902 break;
903
904 heap [k] = *minpos;
905 ev_active (ANHE_w (*minpos)) = k;
906
907 k = minpos - heap;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912 }
913
914 #else /* 4HEAP */
915
916 #define HEAP0 1
917 #define HPARENT(k) ((k) >> 1)
918 #define UPHEAP_DONE(p,k) (!(p))
919
920 /* away from the root */
921 void inline_speed
922 downheap (ANHE *heap, int N, int k)
923 {
924 ANHE he = heap [k];
925
926 for (;;)
927 {
928 int c = k << 1;
929
930 if (c > N + HEAP0 - 1)
931 break;
932
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0;
935
936 if (ANHE_at (he) <= ANHE_at (heap [c]))
937 break;
938
939 heap [k] = heap [c];
940 ev_active (ANHE_w (heap [k])) = k;
941
942 k = c;
943 }
944
945 heap [k] = he;
946 ev_active (ANHE_w (he)) = k;
947 }
948 #endif
949
950 /* towards the root */
951 void inline_speed
952 upheap (ANHE *heap, int k)
953 {
954 ANHE he = heap [k];
955
956 for (;;)
957 {
958 int p = HPARENT (k);
959
960 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
961 break;
962
963 heap [k] = heap [p];
964 ev_active (ANHE_w (heap [k])) = k;
965 k = p;
966 }
967
968 heap [k] = he;
969 ev_active (ANHE_w (he)) = k;
970 }
971
972 void inline_size
973 adjustheap (ANHE *heap, int N, int k)
974 {
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k);
977 else
978 downheap (heap, N, k);
979 }
980
981 /* rebuild the heap: this function is used only once and executed rarely */
982 void inline_size
983 reheap (ANHE *heap, int N)
984 {
985 int i;
986
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
988 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
989 for (i = 0; i < N; ++i)
990 upheap (heap, i + HEAP0);
991 }
992
993 /*****************************************************************************/
994
995 typedef struct
996 {
997 WL head;
998 EV_ATOMIC_T gotsig;
999 } ANSIG;
1000
1001 static ANSIG *signals;
1002 static int signalmax;
1003
1004 static EV_ATOMIC_T gotsig;
1005
1006 /*****************************************************************************/
1007
1008 void inline_speed
1009 fd_intern (int fd)
1010 {
1011 #ifdef _WIN32
1012 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1014 #else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK);
1017 #endif
1018 }
1019
1020 static void noinline
1021 evpipe_init (EV_P)
1022 {
1023 if (!ev_is_active (&pipeev))
1024 {
1025 #if EV_USE_EVENTFD
1026 if ((evfd = eventfd (0, 0)) >= 0)
1027 {
1028 evpipe [0] = -1;
1029 fd_intern (evfd);
1030 ev_io_set (&pipeev, evfd, EV_READ);
1031 }
1032 else
1033 #endif
1034 {
1035 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe");
1037
1038 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ);
1041 }
1042
1043 ev_io_start (EV_A_ &pipeev);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 }
1046 }
1047
1048 void inline_size
1049 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050 {
1051 if (!*flag)
1052 {
1053 int old_errno = errno; /* save errno because write might clobber it */
1054
1055 *flag = 1;
1056
1057 #if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter = 1;
1061 write (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064 #endif
1065 write (evpipe [1], &old_errno, 1);
1066
1067 errno = old_errno;
1068 }
1069 }
1070
1071 static void
1072 pipecb (EV_P_ ev_io *iow, int revents)
1073 {
1074 #if EV_USE_EVENTFD
1075 if (evfd >= 0)
1076 {
1077 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t));
1079 }
1080 else
1081 #endif
1082 {
1083 char dummy;
1084 read (evpipe [0], &dummy, 1);
1085 }
1086
1087 if (gotsig && ev_is_default_loop (EV_A))
1088 {
1089 int signum;
1090 gotsig = 0;
1091
1092 for (signum = signalmax; signum--; )
1093 if (signals [signum].gotsig)
1094 ev_feed_signal_event (EV_A_ signum + 1);
1095 }
1096
1097 #if EV_ASYNC_ENABLE
1098 if (gotasync)
1099 {
1100 int i;
1101 gotasync = 0;
1102
1103 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent)
1105 {
1106 asyncs [i]->sent = 0;
1107 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1108 }
1109 }
1110 #endif
1111 }
1112
1113 /*****************************************************************************/
1114
1115 static void
1116 ev_sighandler (int signum)
1117 {
1118 #if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct;
1120 #endif
1121
1122 #if _WIN32
1123 signal (signum, ev_sighandler);
1124 #endif
1125
1126 signals [signum - 1].gotsig = 1;
1127 evpipe_write (EV_A_ &gotsig);
1128 }
1129
1130 void noinline
1131 ev_feed_signal_event (EV_P_ int signum)
1132 {
1133 WL w;
1134
1135 #if EV_MULTIPLICITY
1136 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1137 #endif
1138
1139 --signum;
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return;
1143
1144 signals [signum].gotsig = 0;
1145
1146 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148 }
1149
1150 /*****************************************************************************/
1151
1152 static WL childs [EV_PID_HASHSIZE];
1153
1154 #ifndef _WIN32
1155
1156 static ev_signal childev;
1157
1158 #ifndef WIFCONTINUED
1159 # define WIFCONTINUED(status) 0
1160 #endif
1161
1162 void inline_speed
1163 child_reap (EV_P_ int chain, int pid, int status)
1164 {
1165 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167
1168 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1169 {
1170 if ((w->pid == pid || !w->pid)
1171 && (!traced || (w->flags & 1)))
1172 {
1173 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1174 w->rpid = pid;
1175 w->rstatus = status;
1176 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1177 }
1178 }
1179 }
1180
1181 #ifndef WCONTINUED
1182 # define WCONTINUED 0
1183 #endif
1184
1185 static void
1186 childcb (EV_P_ ev_signal *sw, int revents)
1187 {
1188 int pid, status;
1189
1190 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1191 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1192 if (!WCONTINUED
1193 || errno != EINVAL
1194 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1195 return;
1196
1197 /* make sure we are called again until all children have been reaped */
1198 /* we need to do it this way so that the callback gets called before we continue */
1199 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1200
1201 child_reap (EV_A_ pid, pid, status);
1202 if (EV_PID_HASHSIZE > 1)
1203 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1204 }
1205
1206 #endif
1207
1208 /*****************************************************************************/
1209
1210 #if EV_USE_PORT
1211 # include "ev_port.c"
1212 #endif
1213 #if EV_USE_KQUEUE
1214 # include "ev_kqueue.c"
1215 #endif
1216 #if EV_USE_EPOLL
1217 # include "ev_epoll.c"
1218 #endif
1219 #if EV_USE_POLL
1220 # include "ev_poll.c"
1221 #endif
1222 #if EV_USE_SELECT
1223 # include "ev_select.c"
1224 #endif
1225
1226 int
1227 ev_version_major (void)
1228 {
1229 return EV_VERSION_MAJOR;
1230 }
1231
1232 int
1233 ev_version_minor (void)
1234 {
1235 return EV_VERSION_MINOR;
1236 }
1237
1238 /* return true if we are running with elevated privileges and should ignore env variables */
1239 int inline_size
1240 enable_secure (void)
1241 {
1242 #ifdef _WIN32
1243 return 0;
1244 #else
1245 return getuid () != geteuid ()
1246 || getgid () != getegid ();
1247 #endif
1248 }
1249
1250 unsigned int
1251 ev_supported_backends (void)
1252 {
1253 unsigned int flags = 0;
1254
1255 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1256 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1257 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1258 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1259 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1260
1261 return flags;
1262 }
1263
1264 unsigned int
1265 ev_recommended_backends (void)
1266 {
1267 unsigned int flags = ev_supported_backends ();
1268
1269 #ifndef __NetBSD__
1270 /* kqueue is borked on everything but netbsd apparently */
1271 /* it usually doesn't work correctly on anything but sockets and pipes */
1272 flags &= ~EVBACKEND_KQUEUE;
1273 #endif
1274 #ifdef __APPLE__
1275 // flags &= ~EVBACKEND_KQUEUE; for documentation
1276 flags &= ~EVBACKEND_POLL;
1277 #endif
1278
1279 return flags;
1280 }
1281
1282 unsigned int
1283 ev_embeddable_backends (void)
1284 {
1285 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1286
1287 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1288 /* please fix it and tell me how to detect the fix */
1289 flags &= ~EVBACKEND_EPOLL;
1290
1291 return flags;
1292 }
1293
1294 unsigned int
1295 ev_backend (EV_P)
1296 {
1297 return backend;
1298 }
1299
1300 unsigned int
1301 ev_loop_count (EV_P)
1302 {
1303 return loop_count;
1304 }
1305
1306 void
1307 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1308 {
1309 io_blocktime = interval;
1310 }
1311
1312 void
1313 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1314 {
1315 timeout_blocktime = interval;
1316 }
1317
1318 static void noinline
1319 loop_init (EV_P_ unsigned int flags)
1320 {
1321 if (!backend)
1322 {
1323 #if EV_USE_MONOTONIC
1324 {
1325 struct timespec ts;
1326 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1327 have_monotonic = 1;
1328 }
1329 #endif
1330
1331 ev_rt_now = ev_time ();
1332 mn_now = get_clock ();
1333 now_floor = mn_now;
1334 rtmn_diff = ev_rt_now - mn_now;
1335
1336 io_blocktime = 0.;
1337 timeout_blocktime = 0.;
1338 backend = 0;
1339 backend_fd = -1;
1340 gotasync = 0;
1341 #if EV_USE_INOTIFY
1342 fs_fd = -2;
1343 #endif
1344
1345 /* pid check not overridable via env */
1346 #ifndef _WIN32
1347 if (flags & EVFLAG_FORKCHECK)
1348 curpid = getpid ();
1349 #endif
1350
1351 if (!(flags & EVFLAG_NOENV)
1352 && !enable_secure ()
1353 && getenv ("LIBEV_FLAGS"))
1354 flags = atoi (getenv ("LIBEV_FLAGS"));
1355
1356 if (!(flags & 0x0000ffffU))
1357 flags |= ev_recommended_backends ();
1358
1359 #if EV_USE_PORT
1360 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1361 #endif
1362 #if EV_USE_KQUEUE
1363 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1364 #endif
1365 #if EV_USE_EPOLL
1366 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1367 #endif
1368 #if EV_USE_POLL
1369 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1370 #endif
1371 #if EV_USE_SELECT
1372 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1373 #endif
1374
1375 ev_init (&pipeev, pipecb);
1376 ev_set_priority (&pipeev, EV_MAXPRI);
1377 }
1378 }
1379
1380 static void noinline
1381 loop_destroy (EV_P)
1382 {
1383 int i;
1384
1385 if (ev_is_active (&pipeev))
1386 {
1387 ev_ref (EV_A); /* signal watcher */
1388 ev_io_stop (EV_A_ &pipeev);
1389
1390 #if EV_USE_EVENTFD
1391 if (evfd >= 0)
1392 close (evfd);
1393 #endif
1394
1395 if (evpipe [0] >= 0)
1396 {
1397 close (evpipe [0]);
1398 close (evpipe [1]);
1399 }
1400 }
1401
1402 #if EV_USE_INOTIFY
1403 if (fs_fd >= 0)
1404 close (fs_fd);
1405 #endif
1406
1407 if (backend_fd >= 0)
1408 close (backend_fd);
1409
1410 #if EV_USE_PORT
1411 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1412 #endif
1413 #if EV_USE_KQUEUE
1414 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1415 #endif
1416 #if EV_USE_EPOLL
1417 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1418 #endif
1419 #if EV_USE_POLL
1420 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1421 #endif
1422 #if EV_USE_SELECT
1423 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1424 #endif
1425
1426 for (i = NUMPRI; i--; )
1427 {
1428 array_free (pending, [i]);
1429 #if EV_IDLE_ENABLE
1430 array_free (idle, [i]);
1431 #endif
1432 }
1433
1434 ev_free (anfds); anfdmax = 0;
1435
1436 /* have to use the microsoft-never-gets-it-right macro */
1437 array_free (fdchange, EMPTY);
1438 array_free (timer, EMPTY);
1439 #if EV_PERIODIC_ENABLE
1440 array_free (periodic, EMPTY);
1441 #endif
1442 #if EV_FORK_ENABLE
1443 array_free (fork, EMPTY);
1444 #endif
1445 array_free (prepare, EMPTY);
1446 array_free (check, EMPTY);
1447 #if EV_ASYNC_ENABLE
1448 array_free (async, EMPTY);
1449 #endif
1450
1451 backend = 0;
1452 }
1453
1454 #if EV_USE_INOTIFY
1455 void inline_size infy_fork (EV_P);
1456 #endif
1457
1458 void inline_size
1459 loop_fork (EV_P)
1460 {
1461 #if EV_USE_PORT
1462 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1463 #endif
1464 #if EV_USE_KQUEUE
1465 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1466 #endif
1467 #if EV_USE_EPOLL
1468 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1469 #endif
1470 #if EV_USE_INOTIFY
1471 infy_fork (EV_A);
1472 #endif
1473
1474 if (ev_is_active (&pipeev))
1475 {
1476 /* this "locks" the handlers against writing to the pipe */
1477 /* while we modify the fd vars */
1478 gotsig = 1;
1479 #if EV_ASYNC_ENABLE
1480 gotasync = 1;
1481 #endif
1482
1483 ev_ref (EV_A);
1484 ev_io_stop (EV_A_ &pipeev);
1485
1486 #if EV_USE_EVENTFD
1487 if (evfd >= 0)
1488 close (evfd);
1489 #endif
1490
1491 if (evpipe [0] >= 0)
1492 {
1493 close (evpipe [0]);
1494 close (evpipe [1]);
1495 }
1496
1497 evpipe_init (EV_A);
1498 /* now iterate over everything, in case we missed something */
1499 pipecb (EV_A_ &pipeev, EV_READ);
1500 }
1501
1502 postfork = 0;
1503 }
1504
1505 #if EV_MULTIPLICITY
1506
1507 struct ev_loop *
1508 ev_loop_new (unsigned int flags)
1509 {
1510 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1511
1512 memset (loop, 0, sizeof (struct ev_loop));
1513
1514 loop_init (EV_A_ flags);
1515
1516 if (ev_backend (EV_A))
1517 return loop;
1518
1519 return 0;
1520 }
1521
1522 void
1523 ev_loop_destroy (EV_P)
1524 {
1525 loop_destroy (EV_A);
1526 ev_free (loop);
1527 }
1528
1529 void
1530 ev_loop_fork (EV_P)
1531 {
1532 postfork = 1; /* must be in line with ev_default_fork */
1533 }
1534
1535 #if EV_VERIFY
1536 static void noinline
1537 verify_watcher (EV_P_ W w)
1538 {
1539 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1540
1541 if (w->pending)
1542 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1543 }
1544
1545 static void noinline
1546 verify_heap (EV_P_ ANHE *heap, int N)
1547 {
1548 int i;
1549
1550 for (i = HEAP0; i < N + HEAP0; ++i)
1551 {
1552 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1553 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1554 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1555
1556 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1557 }
1558 }
1559
1560 static void noinline
1561 array_verify (EV_P_ W *ws, int cnt)
1562 {
1563 while (cnt--)
1564 {
1565 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1566 verify_watcher (EV_A_ ws [cnt]);
1567 }
1568 }
1569 #endif
1570
1571 void
1572 ev_loop_verify (EV_P)
1573 {
1574 #if EV_VERIFY
1575 int i;
1576 WL w;
1577
1578 assert (activecnt >= -1);
1579
1580 assert (fdchangemax >= fdchangecnt);
1581 for (i = 0; i < fdchangecnt; ++i)
1582 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1583
1584 assert (anfdmax >= 0);
1585 for (i = 0; i < anfdmax; ++i)
1586 for (w = anfds [i].head; w; w = w->next)
1587 {
1588 verify_watcher (EV_A_ (W)w);
1589 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1590 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1591 }
1592
1593 assert (timermax >= timercnt);
1594 verify_heap (EV_A_ timers, timercnt);
1595
1596 #if EV_PERIODIC_ENABLE
1597 assert (periodicmax >= periodiccnt);
1598 verify_heap (EV_A_ periodics, periodiccnt);
1599 #endif
1600
1601 for (i = NUMPRI; i--; )
1602 {
1603 assert (pendingmax [i] >= pendingcnt [i]);
1604 #if EV_IDLE_ENABLE
1605 assert (idleall >= 0);
1606 assert (idlemax [i] >= idlecnt [i]);
1607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1608 #endif
1609 }
1610
1611 #if EV_FORK_ENABLE
1612 assert (forkmax >= forkcnt);
1613 array_verify (EV_A_ (W *)forks, forkcnt);
1614 #endif
1615
1616 #if EV_ASYNC_ENABLE
1617 assert (asyncmax >= asynccnt);
1618 array_verify (EV_A_ (W *)asyncs, asynccnt);
1619 #endif
1620
1621 assert (preparemax >= preparecnt);
1622 array_verify (EV_A_ (W *)prepares, preparecnt);
1623
1624 assert (checkmax >= checkcnt);
1625 array_verify (EV_A_ (W *)checks, checkcnt);
1626
1627 # if 0
1628 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1629 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1630 # endif
1631 #endif
1632 }
1633
1634 #endif /* multiplicity */
1635
1636 #if EV_MULTIPLICITY
1637 struct ev_loop *
1638 ev_default_loop_init (unsigned int flags)
1639 #else
1640 int
1641 ev_default_loop (unsigned int flags)
1642 #endif
1643 {
1644 if (!ev_default_loop_ptr)
1645 {
1646 #if EV_MULTIPLICITY
1647 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1648 #else
1649 ev_default_loop_ptr = 1;
1650 #endif
1651
1652 loop_init (EV_A_ flags);
1653
1654 if (ev_backend (EV_A))
1655 {
1656 #ifndef _WIN32
1657 ev_signal_init (&childev, childcb, SIGCHLD);
1658 ev_set_priority (&childev, EV_MAXPRI);
1659 ev_signal_start (EV_A_ &childev);
1660 ev_unref (EV_A); /* child watcher should not keep loop alive */
1661 #endif
1662 }
1663 else
1664 ev_default_loop_ptr = 0;
1665 }
1666
1667 return ev_default_loop_ptr;
1668 }
1669
1670 void
1671 ev_default_destroy (void)
1672 {
1673 #if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr;
1675 #endif
1676
1677 ev_default_loop_ptr = 0;
1678
1679 #ifndef _WIN32
1680 ev_ref (EV_A); /* child watcher */
1681 ev_signal_stop (EV_A_ &childev);
1682 #endif
1683
1684 loop_destroy (EV_A);
1685 }
1686
1687 void
1688 ev_default_fork (void)
1689 {
1690 #if EV_MULTIPLICITY
1691 struct ev_loop *loop = ev_default_loop_ptr;
1692 #endif
1693
1694 postfork = 1; /* must be in line with ev_loop_fork */
1695 }
1696
1697 /*****************************************************************************/
1698
1699 void
1700 ev_invoke (EV_P_ void *w, int revents)
1701 {
1702 EV_CB_INVOKE ((W)w, revents);
1703 }
1704
1705 void inline_speed
1706 call_pending (EV_P)
1707 {
1708 int pri;
1709
1710 for (pri = NUMPRI; pri--; )
1711 while (pendingcnt [pri])
1712 {
1713 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1714
1715 if (expect_true (p->w))
1716 {
1717 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1718
1719 p->w->pending = 0;
1720 EV_CB_INVOKE (p->w, p->events);
1721 EV_FREQUENT_CHECK;
1722 }
1723 }
1724 }
1725
1726 #if EV_IDLE_ENABLE
1727 void inline_size
1728 idle_reify (EV_P)
1729 {
1730 if (expect_false (idleall))
1731 {
1732 int pri;
1733
1734 for (pri = NUMPRI; pri--; )
1735 {
1736 if (pendingcnt [pri])
1737 break;
1738
1739 if (idlecnt [pri])
1740 {
1741 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1742 break;
1743 }
1744 }
1745 }
1746 }
1747 #endif
1748
1749 void inline_size
1750 timers_reify (EV_P)
1751 {
1752 EV_FREQUENT_CHECK;
1753
1754 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1755 {
1756 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1757
1758 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->repeat)
1762 {
1763 ev_at (w) += w->repeat;
1764 if (ev_at (w) < mn_now)
1765 ev_at (w) = mn_now;
1766
1767 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1768
1769 ANHE_at_cache (timers [HEAP0]);
1770 downheap (timers, timercnt, HEAP0);
1771 }
1772 else
1773 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1774
1775 EV_FREQUENT_CHECK;
1776 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1777 }
1778 }
1779
1780 #if EV_PERIODIC_ENABLE
1781 void inline_size
1782 periodics_reify (EV_P)
1783 {
1784 EV_FREQUENT_CHECK;
1785
1786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1787 {
1788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1789
1790 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1791
1792 /* first reschedule or stop timer */
1793 if (w->reschedule_cb)
1794 {
1795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1796
1797 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1798
1799 ANHE_at_cache (periodics [HEAP0]);
1800 downheap (periodics, periodiccnt, HEAP0);
1801 }
1802 else if (w->interval)
1803 {
1804 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1805 /* if next trigger time is not sufficiently in the future, put it there */
1806 /* this might happen because of floating point inexactness */
1807 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1808 {
1809 ev_at (w) += w->interval;
1810
1811 /* if interval is unreasonably low we might still have a time in the past */
1812 /* so correct this. this will make the periodic very inexact, but the user */
1813 /* has effectively asked to get triggered more often than possible */
1814 if (ev_at (w) < ev_rt_now)
1815 ev_at (w) = ev_rt_now;
1816 }
1817
1818 ANHE_at_cache (periodics [HEAP0]);
1819 downheap (periodics, periodiccnt, HEAP0);
1820 }
1821 else
1822 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1823
1824 EV_FREQUENT_CHECK;
1825 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1826 }
1827 }
1828
1829 static void noinline
1830 periodics_reschedule (EV_P)
1831 {
1832 int i;
1833
1834 /* adjust periodics after time jump */
1835 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1836 {
1837 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1838
1839 if (w->reschedule_cb)
1840 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1841 else if (w->interval)
1842 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1843
1844 ANHE_at_cache (periodics [i]);
1845 }
1846
1847 reheap (periodics, periodiccnt);
1848 }
1849 #endif
1850
1851 void inline_speed
1852 time_update (EV_P_ ev_tstamp max_block)
1853 {
1854 int i;
1855
1856 #if EV_USE_MONOTONIC
1857 if (expect_true (have_monotonic))
1858 {
1859 ev_tstamp odiff = rtmn_diff;
1860
1861 mn_now = get_clock ();
1862
1863 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1864 /* interpolate in the meantime */
1865 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1866 {
1867 ev_rt_now = rtmn_diff + mn_now;
1868 return;
1869 }
1870
1871 now_floor = mn_now;
1872 ev_rt_now = ev_time ();
1873
1874 /* loop a few times, before making important decisions.
1875 * on the choice of "4": one iteration isn't enough,
1876 * in case we get preempted during the calls to
1877 * ev_time and get_clock. a second call is almost guaranteed
1878 * to succeed in that case, though. and looping a few more times
1879 * doesn't hurt either as we only do this on time-jumps or
1880 * in the unlikely event of having been preempted here.
1881 */
1882 for (i = 4; --i; )
1883 {
1884 rtmn_diff = ev_rt_now - mn_now;
1885
1886 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1887 return; /* all is well */
1888
1889 ev_rt_now = ev_time ();
1890 mn_now = get_clock ();
1891 now_floor = mn_now;
1892 }
1893
1894 # if EV_PERIODIC_ENABLE
1895 periodics_reschedule (EV_A);
1896 # endif
1897 /* no timer adjustment, as the monotonic clock doesn't jump */
1898 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1899 }
1900 else
1901 #endif
1902 {
1903 ev_rt_now = ev_time ();
1904
1905 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1906 {
1907 #if EV_PERIODIC_ENABLE
1908 periodics_reschedule (EV_A);
1909 #endif
1910 /* adjust timers. this is easy, as the offset is the same for all of them */
1911 for (i = 0; i < timercnt; ++i)
1912 {
1913 ANHE *he = timers + i + HEAP0;
1914 ANHE_w (*he)->at += ev_rt_now - mn_now;
1915 ANHE_at_cache (*he);
1916 }
1917 }
1918
1919 mn_now = ev_rt_now;
1920 }
1921 }
1922
1923 void
1924 ev_ref (EV_P)
1925 {
1926 ++activecnt;
1927 }
1928
1929 void
1930 ev_unref (EV_P)
1931 {
1932 --activecnt;
1933 }
1934
1935 void
1936 ev_now_update (EV_P)
1937 {
1938 time_update (EV_A_ 1e100);
1939 }
1940
1941 static int loop_done;
1942
1943 void
1944 ev_loop (EV_P_ int flags)
1945 {
1946 loop_done = EVUNLOOP_CANCEL;
1947
1948 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1949
1950 do
1951 {
1952 #if EV_VERIFY >= 2
1953 ev_loop_verify (EV_A);
1954 #endif
1955
1956 #ifndef _WIN32
1957 if (expect_false (curpid)) /* penalise the forking check even more */
1958 if (expect_false (getpid () != curpid))
1959 {
1960 curpid = getpid ();
1961 postfork = 1;
1962 }
1963 #endif
1964
1965 #if EV_FORK_ENABLE
1966 /* we might have forked, so queue fork handlers */
1967 if (expect_false (postfork))
1968 if (forkcnt)
1969 {
1970 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1971 call_pending (EV_A);
1972 }
1973 #endif
1974
1975 /* queue prepare watchers (and execute them) */
1976 if (expect_false (preparecnt))
1977 {
1978 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1979 call_pending (EV_A);
1980 }
1981
1982 if (expect_false (!activecnt))
1983 break;
1984
1985 /* we might have forked, so reify kernel state if necessary */
1986 if (expect_false (postfork))
1987 loop_fork (EV_A);
1988
1989 /* update fd-related kernel structures */
1990 fd_reify (EV_A);
1991
1992 /* calculate blocking time */
1993 {
1994 ev_tstamp waittime = 0.;
1995 ev_tstamp sleeptime = 0.;
1996
1997 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1998 {
1999 /* update time to cancel out callback processing overhead */
2000 time_update (EV_A_ 1e100);
2001
2002 waittime = MAX_BLOCKTIME;
2003
2004 if (timercnt)
2005 {
2006 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2007 if (waittime > to) waittime = to;
2008 }
2009
2010 #if EV_PERIODIC_ENABLE
2011 if (periodiccnt)
2012 {
2013 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2014 if (waittime > to) waittime = to;
2015 }
2016 #endif
2017
2018 if (expect_false (waittime < timeout_blocktime))
2019 waittime = timeout_blocktime;
2020
2021 sleeptime = waittime - backend_fudge;
2022
2023 if (expect_true (sleeptime > io_blocktime))
2024 sleeptime = io_blocktime;
2025
2026 if (sleeptime)
2027 {
2028 ev_sleep (sleeptime);
2029 waittime -= sleeptime;
2030 }
2031 }
2032
2033 ++loop_count;
2034 backend_poll (EV_A_ waittime);
2035
2036 /* update ev_rt_now, do magic */
2037 time_update (EV_A_ waittime + sleeptime);
2038 }
2039
2040 /* queue pending timers and reschedule them */
2041 timers_reify (EV_A); /* relative timers called last */
2042 #if EV_PERIODIC_ENABLE
2043 periodics_reify (EV_A); /* absolute timers called first */
2044 #endif
2045
2046 #if EV_IDLE_ENABLE
2047 /* queue idle watchers unless other events are pending */
2048 idle_reify (EV_A);
2049 #endif
2050
2051 /* queue check watchers, to be executed first */
2052 if (expect_false (checkcnt))
2053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2054
2055 call_pending (EV_A);
2056 }
2057 while (expect_true (
2058 activecnt
2059 && !loop_done
2060 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2061 ));
2062
2063 if (loop_done == EVUNLOOP_ONE)
2064 loop_done = EVUNLOOP_CANCEL;
2065 }
2066
2067 void
2068 ev_unloop (EV_P_ int how)
2069 {
2070 loop_done = how;
2071 }
2072
2073 /*****************************************************************************/
2074
2075 void inline_size
2076 wlist_add (WL *head, WL elem)
2077 {
2078 elem->next = *head;
2079 *head = elem;
2080 }
2081
2082 void inline_size
2083 wlist_del (WL *head, WL elem)
2084 {
2085 while (*head)
2086 {
2087 if (*head == elem)
2088 {
2089 *head = elem->next;
2090 return;
2091 }
2092
2093 head = &(*head)->next;
2094 }
2095 }
2096
2097 void inline_speed
2098 clear_pending (EV_P_ W w)
2099 {
2100 if (w->pending)
2101 {
2102 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2103 w->pending = 0;
2104 }
2105 }
2106
2107 int
2108 ev_clear_pending (EV_P_ void *w)
2109 {
2110 W w_ = (W)w;
2111 int pending = w_->pending;
2112
2113 if (expect_true (pending))
2114 {
2115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2116 w_->pending = 0;
2117 p->w = 0;
2118 return p->events;
2119 }
2120 else
2121 return 0;
2122 }
2123
2124 void inline_size
2125 pri_adjust (EV_P_ W w)
2126 {
2127 int pri = w->priority;
2128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2130 w->priority = pri;
2131 }
2132
2133 void inline_speed
2134 ev_start (EV_P_ W w, int active)
2135 {
2136 pri_adjust (EV_A_ w);
2137 w->active = active;
2138 ev_ref (EV_A);
2139 }
2140
2141 void inline_size
2142 ev_stop (EV_P_ W w)
2143 {
2144 ev_unref (EV_A);
2145 w->active = 0;
2146 }
2147
2148 /*****************************************************************************/
2149
2150 void noinline
2151 ev_io_start (EV_P_ ev_io *w)
2152 {
2153 int fd = w->fd;
2154
2155 if (expect_false (ev_is_active (w)))
2156 return;
2157
2158 assert (("ev_io_start called with negative fd", fd >= 0));
2159 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2160
2161 EV_FREQUENT_CHECK;
2162
2163 ev_start (EV_A_ (W)w, 1);
2164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2165 wlist_add (&anfds[fd].head, (WL)w);
2166
2167 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2168 w->events &= ~EV_IOFDSET;
2169
2170 EV_FREQUENT_CHECK;
2171 }
2172
2173 void noinline
2174 ev_io_stop (EV_P_ ev_io *w)
2175 {
2176 clear_pending (EV_A_ (W)w);
2177 if (expect_false (!ev_is_active (w)))
2178 return;
2179
2180 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2181
2182 EV_FREQUENT_CHECK;
2183
2184 wlist_del (&anfds[w->fd].head, (WL)w);
2185 ev_stop (EV_A_ (W)w);
2186
2187 fd_change (EV_A_ w->fd, 1);
2188
2189 EV_FREQUENT_CHECK;
2190 }
2191
2192 void noinline
2193 ev_timer_start (EV_P_ ev_timer *w)
2194 {
2195 if (expect_false (ev_is_active (w)))
2196 return;
2197
2198 ev_at (w) += mn_now;
2199
2200 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2201
2202 EV_FREQUENT_CHECK;
2203
2204 ++timercnt;
2205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2207 ANHE_w (timers [ev_active (w)]) = (WT)w;
2208 ANHE_at_cache (timers [ev_active (w)]);
2209 upheap (timers, ev_active (w));
2210
2211 EV_FREQUENT_CHECK;
2212
2213 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2214 }
2215
2216 void noinline
2217 ev_timer_stop (EV_P_ ev_timer *w)
2218 {
2219 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w)))
2221 return;
2222
2223 EV_FREQUENT_CHECK;
2224
2225 {
2226 int active = ev_active (w);
2227
2228 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2229
2230 --timercnt;
2231
2232 if (expect_true (active < timercnt + HEAP0))
2233 {
2234 timers [active] = timers [timercnt + HEAP0];
2235 adjustheap (timers, timercnt, active);
2236 }
2237 }
2238
2239 EV_FREQUENT_CHECK;
2240
2241 ev_at (w) -= mn_now;
2242
2243 ev_stop (EV_A_ (W)w);
2244 }
2245
2246 void noinline
2247 ev_timer_again (EV_P_ ev_timer *w)
2248 {
2249 EV_FREQUENT_CHECK;
2250
2251 if (ev_is_active (w))
2252 {
2253 if (w->repeat)
2254 {
2255 ev_at (w) = mn_now + w->repeat;
2256 ANHE_at_cache (timers [ev_active (w)]);
2257 adjustheap (timers, timercnt, ev_active (w));
2258 }
2259 else
2260 ev_timer_stop (EV_A_ w);
2261 }
2262 else if (w->repeat)
2263 {
2264 ev_at (w) = w->repeat;
2265 ev_timer_start (EV_A_ w);
2266 }
2267
2268 EV_FREQUENT_CHECK;
2269 }
2270
2271 #if EV_PERIODIC_ENABLE
2272 void noinline
2273 ev_periodic_start (EV_P_ ev_periodic *w)
2274 {
2275 if (expect_false (ev_is_active (w)))
2276 return;
2277
2278 if (w->reschedule_cb)
2279 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2280 else if (w->interval)
2281 {
2282 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
2283 /* this formula differs from the one in periodic_reify because we do not always round up */
2284 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2285 }
2286 else
2287 ev_at (w) = w->offset;
2288
2289 EV_FREQUENT_CHECK;
2290
2291 ++periodiccnt;
2292 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2293 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2294 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2295 ANHE_at_cache (periodics [ev_active (w)]);
2296 upheap (periodics, ev_active (w));
2297
2298 EV_FREQUENT_CHECK;
2299
2300 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2301 }
2302
2303 void noinline
2304 ev_periodic_stop (EV_P_ ev_periodic *w)
2305 {
2306 clear_pending (EV_A_ (W)w);
2307 if (expect_false (!ev_is_active (w)))
2308 return;
2309
2310 EV_FREQUENT_CHECK;
2311
2312 {
2313 int active = ev_active (w);
2314
2315 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2316
2317 --periodiccnt;
2318
2319 if (expect_true (active < periodiccnt + HEAP0))
2320 {
2321 periodics [active] = periodics [periodiccnt + HEAP0];
2322 adjustheap (periodics, periodiccnt, active);
2323 }
2324 }
2325
2326 EV_FREQUENT_CHECK;
2327
2328 ev_stop (EV_A_ (W)w);
2329 }
2330
2331 void noinline
2332 ev_periodic_again (EV_P_ ev_periodic *w)
2333 {
2334 /* TODO: use adjustheap and recalculation */
2335 ev_periodic_stop (EV_A_ w);
2336 ev_periodic_start (EV_A_ w);
2337 }
2338 #endif
2339
2340 #ifndef SA_RESTART
2341 # define SA_RESTART 0
2342 #endif
2343
2344 void noinline
2345 ev_signal_start (EV_P_ ev_signal *w)
2346 {
2347 #if EV_MULTIPLICITY
2348 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2349 #endif
2350 if (expect_false (ev_is_active (w)))
2351 return;
2352
2353 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2354
2355 evpipe_init (EV_A);
2356
2357 EV_FREQUENT_CHECK;
2358
2359 {
2360 #ifndef _WIN32
2361 sigset_t full, prev;
2362 sigfillset (&full);
2363 sigprocmask (SIG_SETMASK, &full, &prev);
2364 #endif
2365
2366 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2367
2368 #ifndef _WIN32
2369 sigprocmask (SIG_SETMASK, &prev, 0);
2370 #endif
2371 }
2372
2373 ev_start (EV_A_ (W)w, 1);
2374 wlist_add (&signals [w->signum - 1].head, (WL)w);
2375
2376 if (!((WL)w)->next)
2377 {
2378 #if _WIN32
2379 signal (w->signum, ev_sighandler);
2380 #else
2381 struct sigaction sa;
2382 sa.sa_handler = ev_sighandler;
2383 sigfillset (&sa.sa_mask);
2384 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2385 sigaction (w->signum, &sa, 0);
2386 #endif
2387 }
2388
2389 EV_FREQUENT_CHECK;
2390 }
2391
2392 void noinline
2393 ev_signal_stop (EV_P_ ev_signal *w)
2394 {
2395 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w)))
2397 return;
2398
2399 EV_FREQUENT_CHECK;
2400
2401 wlist_del (&signals [w->signum - 1].head, (WL)w);
2402 ev_stop (EV_A_ (W)w);
2403
2404 if (!signals [w->signum - 1].head)
2405 signal (w->signum, SIG_DFL);
2406
2407 EV_FREQUENT_CHECK;
2408 }
2409
2410 void
2411 ev_child_start (EV_P_ ev_child *w)
2412 {
2413 #if EV_MULTIPLICITY
2414 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2415 #endif
2416 if (expect_false (ev_is_active (w)))
2417 return;
2418
2419 EV_FREQUENT_CHECK;
2420
2421 ev_start (EV_A_ (W)w, 1);
2422 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2423
2424 EV_FREQUENT_CHECK;
2425 }
2426
2427 void
2428 ev_child_stop (EV_P_ ev_child *w)
2429 {
2430 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w)))
2432 return;
2433
2434 EV_FREQUENT_CHECK;
2435
2436 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2437 ev_stop (EV_A_ (W)w);
2438
2439 EV_FREQUENT_CHECK;
2440 }
2441
2442 #if EV_STAT_ENABLE
2443
2444 # ifdef _WIN32
2445 # undef lstat
2446 # define lstat(a,b) _stati64 (a,b)
2447 # endif
2448
2449 #define DEF_STAT_INTERVAL 5.0074891
2450 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2451 #define MIN_STAT_INTERVAL 0.1074891
2452
2453 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2454
2455 #if EV_USE_INOTIFY
2456 # define EV_INOTIFY_BUFSIZE 8192
2457
2458 static void noinline
2459 infy_add (EV_P_ ev_stat *w)
2460 {
2461 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2462
2463 if (w->wd < 0)
2464 {
2465 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2466 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2467
2468 /* monitor some parent directory for speedup hints */
2469 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2470 /* but an efficiency issue only */
2471 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2472 {
2473 char path [4096];
2474 strcpy (path, w->path);
2475
2476 do
2477 {
2478 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2479 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2480
2481 char *pend = strrchr (path, '/');
2482
2483 if (!pend)
2484 break; /* whoops, no '/', complain to your admin */
2485
2486 *pend = 0;
2487 w->wd = inotify_add_watch (fs_fd, path, mask);
2488 }
2489 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2490 }
2491 }
2492 else
2493 {
2494 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2495
2496 /* now local changes will be tracked by inotify, but remote changes won't */
2497 /* unless the filesystem it known to be local, we therefore still poll */
2498 /* also do poll on <2.6.25, but with normal frequency */
2499 struct statfs sfs;
2500
2501 if (fs_2625 && !statfs (w->path, &sfs))
2502 if (sfs.f_type == 0x1373 /* devfs */
2503 || sfs.f_type == 0xEF53 /* ext2/3 */
2504 || sfs.f_type == 0x3153464a /* jfs */
2505 || sfs.f_type == 0x52654973 /* reiser3 */
2506 || sfs.f_type == 0x01021994 /* tempfs */
2507 || sfs.f_type == 0x58465342 /* xfs */)
2508 return;
2509
2510 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2511 ev_timer_again (EV_A_ &w->timer);
2512 }
2513 }
2514
2515 static void noinline
2516 infy_del (EV_P_ ev_stat *w)
2517 {
2518 int slot;
2519 int wd = w->wd;
2520
2521 if (wd < 0)
2522 return;
2523
2524 w->wd = -2;
2525 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2526 wlist_del (&fs_hash [slot].head, (WL)w);
2527
2528 /* remove this watcher, if others are watching it, they will rearm */
2529 inotify_rm_watch (fs_fd, wd);
2530 }
2531
2532 static void noinline
2533 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2534 {
2535 if (slot < 0)
2536 /* overflow, need to check for all hash slots */
2537 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2538 infy_wd (EV_A_ slot, wd, ev);
2539 else
2540 {
2541 WL w_;
2542
2543 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2544 {
2545 ev_stat *w = (ev_stat *)w_;
2546 w_ = w_->next; /* lets us remove this watcher and all before it */
2547
2548 if (w->wd == wd || wd == -1)
2549 {
2550 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2551 {
2552 w->wd = -1;
2553 infy_add (EV_A_ w); /* re-add, no matter what */
2554 }
2555
2556 stat_timer_cb (EV_A_ &w->timer, 0);
2557 }
2558 }
2559 }
2560 }
2561
2562 static void
2563 infy_cb (EV_P_ ev_io *w, int revents)
2564 {
2565 char buf [EV_INOTIFY_BUFSIZE];
2566 struct inotify_event *ev = (struct inotify_event *)buf;
2567 int ofs;
2568 int len = read (fs_fd, buf, sizeof (buf));
2569
2570 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2571 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2572 }
2573
2574 void inline_size
2575 check_2625 (EV_P)
2576 {
2577 /* kernels < 2.6.25 are borked
2578 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2579 */
2580 struct utsname buf;
2581 int major, minor, micro;
2582
2583 if (uname (&buf))
2584 return;
2585
2586 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2587 return;
2588
2589 if (major < 2
2590 || (major == 2 && minor < 6)
2591 || (major == 2 && minor == 6 && micro < 25))
2592 return;
2593
2594 fs_2625 = 1;
2595 }
2596
2597 void inline_size
2598 infy_init (EV_P)
2599 {
2600 if (fs_fd != -2)
2601 return;
2602
2603 fs_fd = -1;
2604
2605 check_2625 (EV_A);
2606
2607 fs_fd = inotify_init ();
2608
2609 if (fs_fd >= 0)
2610 {
2611 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2612 ev_set_priority (&fs_w, EV_MAXPRI);
2613 ev_io_start (EV_A_ &fs_w);
2614 }
2615 }
2616
2617 void inline_size
2618 infy_fork (EV_P)
2619 {
2620 int slot;
2621
2622 if (fs_fd < 0)
2623 return;
2624
2625 close (fs_fd);
2626 fs_fd = inotify_init ();
2627
2628 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2629 {
2630 WL w_ = fs_hash [slot].head;
2631 fs_hash [slot].head = 0;
2632
2633 while (w_)
2634 {
2635 ev_stat *w = (ev_stat *)w_;
2636 w_ = w_->next; /* lets us add this watcher */
2637
2638 w->wd = -1;
2639
2640 if (fs_fd >= 0)
2641 infy_add (EV_A_ w); /* re-add, no matter what */
2642 else
2643 ev_timer_again (EV_A_ &w->timer);
2644 }
2645 }
2646 }
2647
2648 #endif
2649
2650 #ifdef _WIN32
2651 # define EV_LSTAT(p,b) _stati64 (p, b)
2652 #else
2653 # define EV_LSTAT(p,b) lstat (p, b)
2654 #endif
2655
2656 void
2657 ev_stat_stat (EV_P_ ev_stat *w)
2658 {
2659 if (lstat (w->path, &w->attr) < 0)
2660 w->attr.st_nlink = 0;
2661 else if (!w->attr.st_nlink)
2662 w->attr.st_nlink = 1;
2663 }
2664
2665 static void noinline
2666 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2667 {
2668 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2669
2670 /* we copy this here each the time so that */
2671 /* prev has the old value when the callback gets invoked */
2672 w->prev = w->attr;
2673 ev_stat_stat (EV_A_ w);
2674
2675 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2676 if (
2677 w->prev.st_dev != w->attr.st_dev
2678 || w->prev.st_ino != w->attr.st_ino
2679 || w->prev.st_mode != w->attr.st_mode
2680 || w->prev.st_nlink != w->attr.st_nlink
2681 || w->prev.st_uid != w->attr.st_uid
2682 || w->prev.st_gid != w->attr.st_gid
2683 || w->prev.st_rdev != w->attr.st_rdev
2684 || w->prev.st_size != w->attr.st_size
2685 || w->prev.st_atime != w->attr.st_atime
2686 || w->prev.st_mtime != w->attr.st_mtime
2687 || w->prev.st_ctime != w->attr.st_ctime
2688 ) {
2689 #if EV_USE_INOTIFY
2690 if (fs_fd >= 0)
2691 {
2692 infy_del (EV_A_ w);
2693 infy_add (EV_A_ w);
2694 ev_stat_stat (EV_A_ w); /* avoid race... */
2695 }
2696 #endif
2697
2698 ev_feed_event (EV_A_ w, EV_STAT);
2699 }
2700 }
2701
2702 void
2703 ev_stat_start (EV_P_ ev_stat *w)
2704 {
2705 if (expect_false (ev_is_active (w)))
2706 return;
2707
2708 ev_stat_stat (EV_A_ w);
2709
2710 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2711 w->interval = MIN_STAT_INTERVAL;
2712
2713 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2714 ev_set_priority (&w->timer, ev_priority (w));
2715
2716 #if EV_USE_INOTIFY
2717 infy_init (EV_A);
2718
2719 if (fs_fd >= 0)
2720 infy_add (EV_A_ w);
2721 else
2722 #endif
2723 ev_timer_again (EV_A_ &w->timer);
2724
2725 ev_start (EV_A_ (W)w, 1);
2726
2727 EV_FREQUENT_CHECK;
2728 }
2729
2730 void
2731 ev_stat_stop (EV_P_ ev_stat *w)
2732 {
2733 clear_pending (EV_A_ (W)w);
2734 if (expect_false (!ev_is_active (w)))
2735 return;
2736
2737 EV_FREQUENT_CHECK;
2738
2739 #if EV_USE_INOTIFY
2740 infy_del (EV_A_ w);
2741 #endif
2742 ev_timer_stop (EV_A_ &w->timer);
2743
2744 ev_stop (EV_A_ (W)w);
2745
2746 EV_FREQUENT_CHECK;
2747 }
2748 #endif
2749
2750 #if EV_IDLE_ENABLE
2751 void
2752 ev_idle_start (EV_P_ ev_idle *w)
2753 {
2754 if (expect_false (ev_is_active (w)))
2755 return;
2756
2757 pri_adjust (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2760
2761 {
2762 int active = ++idlecnt [ABSPRI (w)];
2763
2764 ++idleall;
2765 ev_start (EV_A_ (W)w, active);
2766
2767 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2768 idles [ABSPRI (w)][active - 1] = w;
2769 }
2770
2771 EV_FREQUENT_CHECK;
2772 }
2773
2774 void
2775 ev_idle_stop (EV_P_ ev_idle *w)
2776 {
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2787 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2788
2789 ev_stop (EV_A_ (W)w);
2790 --idleall;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794 }
2795 #endif
2796
2797 void
2798 ev_prepare_start (EV_P_ ev_prepare *w)
2799 {
2800 if (expect_false (ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 ev_start (EV_A_ (W)w, ++preparecnt);
2806 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2807 prepares [preparecnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2810 }
2811
2812 void
2813 ev_prepare_stop (EV_P_ ev_prepare *w)
2814 {
2815 clear_pending (EV_A_ (W)w);
2816 if (expect_false (!ev_is_active (w)))
2817 return;
2818
2819 EV_FREQUENT_CHECK;
2820
2821 {
2822 int active = ev_active (w);
2823
2824 prepares [active - 1] = prepares [--preparecnt];
2825 ev_active (prepares [active - 1]) = active;
2826 }
2827
2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2831 }
2832
2833 void
2834 ev_check_start (EV_P_ ev_check *w)
2835 {
2836 if (expect_false (ev_is_active (w)))
2837 return;
2838
2839 EV_FREQUENT_CHECK;
2840
2841 ev_start (EV_A_ (W)w, ++checkcnt);
2842 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2843 checks [checkcnt - 1] = w;
2844
2845 EV_FREQUENT_CHECK;
2846 }
2847
2848 void
2849 ev_check_stop (EV_P_ ev_check *w)
2850 {
2851 clear_pending (EV_A_ (W)w);
2852 if (expect_false (!ev_is_active (w)))
2853 return;
2854
2855 EV_FREQUENT_CHECK;
2856
2857 {
2858 int active = ev_active (w);
2859
2860 checks [active - 1] = checks [--checkcnt];
2861 ev_active (checks [active - 1]) = active;
2862 }
2863
2864 ev_stop (EV_A_ (W)w);
2865
2866 EV_FREQUENT_CHECK;
2867 }
2868
2869 #if EV_EMBED_ENABLE
2870 void noinline
2871 ev_embed_sweep (EV_P_ ev_embed *w)
2872 {
2873 ev_loop (w->other, EVLOOP_NONBLOCK);
2874 }
2875
2876 static void
2877 embed_io_cb (EV_P_ ev_io *io, int revents)
2878 {
2879 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2880
2881 if (ev_cb (w))
2882 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2883 else
2884 ev_loop (w->other, EVLOOP_NONBLOCK);
2885 }
2886
2887 static void
2888 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2889 {
2890 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2891
2892 {
2893 struct ev_loop *loop = w->other;
2894
2895 while (fdchangecnt)
2896 {
2897 fd_reify (EV_A);
2898 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2899 }
2900 }
2901 }
2902
2903 static void
2904 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2905 {
2906 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2907
2908 {
2909 struct ev_loop *loop = w->other;
2910
2911 ev_loop_fork (EV_A);
2912 }
2913 }
2914
2915 #if 0
2916 static void
2917 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2918 {
2919 ev_idle_stop (EV_A_ idle);
2920 }
2921 #endif
2922
2923 void
2924 ev_embed_start (EV_P_ ev_embed *w)
2925 {
2926 if (expect_false (ev_is_active (w)))
2927 return;
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2932 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2933 }
2934
2935 EV_FREQUENT_CHECK;
2936
2937 ev_set_priority (&w->io, ev_priority (w));
2938 ev_io_start (EV_A_ &w->io);
2939
2940 ev_prepare_init (&w->prepare, embed_prepare_cb);
2941 ev_set_priority (&w->prepare, EV_MINPRI);
2942 ev_prepare_start (EV_A_ &w->prepare);
2943
2944 ev_fork_init (&w->fork, embed_fork_cb);
2945 ev_fork_start (EV_A_ &w->fork);
2946
2947 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2948
2949 ev_start (EV_A_ (W)w, 1);
2950
2951 EV_FREQUENT_CHECK;
2952 }
2953
2954 void
2955 ev_embed_stop (EV_P_ ev_embed *w)
2956 {
2957 clear_pending (EV_A_ (W)w);
2958 if (expect_false (!ev_is_active (w)))
2959 return;
2960
2961 EV_FREQUENT_CHECK;
2962
2963 ev_io_stop (EV_A_ &w->io);
2964 ev_prepare_stop (EV_A_ &w->prepare);
2965 ev_fork_stop (EV_A_ &w->fork);
2966
2967 EV_FREQUENT_CHECK;
2968 }
2969 #endif
2970
2971 #if EV_FORK_ENABLE
2972 void
2973 ev_fork_start (EV_P_ ev_fork *w)
2974 {
2975 if (expect_false (ev_is_active (w)))
2976 return;
2977
2978 EV_FREQUENT_CHECK;
2979
2980 ev_start (EV_A_ (W)w, ++forkcnt);
2981 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2982 forks [forkcnt - 1] = w;
2983
2984 EV_FREQUENT_CHECK;
2985 }
2986
2987 void
2988 ev_fork_stop (EV_P_ ev_fork *w)
2989 {
2990 clear_pending (EV_A_ (W)w);
2991 if (expect_false (!ev_is_active (w)))
2992 return;
2993
2994 EV_FREQUENT_CHECK;
2995
2996 {
2997 int active = ev_active (w);
2998
2999 forks [active - 1] = forks [--forkcnt];
3000 ev_active (forks [active - 1]) = active;
3001 }
3002
3003 ev_stop (EV_A_ (W)w);
3004
3005 EV_FREQUENT_CHECK;
3006 }
3007 #endif
3008
3009 #if EV_ASYNC_ENABLE
3010 void
3011 ev_async_start (EV_P_ ev_async *w)
3012 {
3013 if (expect_false (ev_is_active (w)))
3014 return;
3015
3016 evpipe_init (EV_A);
3017
3018 EV_FREQUENT_CHECK;
3019
3020 ev_start (EV_A_ (W)w, ++asynccnt);
3021 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3022 asyncs [asynccnt - 1] = w;
3023
3024 EV_FREQUENT_CHECK;
3025 }
3026
3027 void
3028 ev_async_stop (EV_P_ ev_async *w)
3029 {
3030 clear_pending (EV_A_ (W)w);
3031 if (expect_false (!ev_is_active (w)))
3032 return;
3033
3034 EV_FREQUENT_CHECK;
3035
3036 {
3037 int active = ev_active (w);
3038
3039 asyncs [active - 1] = asyncs [--asynccnt];
3040 ev_active (asyncs [active - 1]) = active;
3041 }
3042
3043 ev_stop (EV_A_ (W)w);
3044
3045 EV_FREQUENT_CHECK;
3046 }
3047
3048 void
3049 ev_async_send (EV_P_ ev_async *w)
3050 {
3051 w->sent = 1;
3052 evpipe_write (EV_A_ &gotasync);
3053 }
3054 #endif
3055
3056 /*****************************************************************************/
3057
3058 struct ev_once
3059 {
3060 ev_io io;
3061 ev_timer to;
3062 void (*cb)(int revents, void *arg);
3063 void *arg;
3064 };
3065
3066 static void
3067 once_cb (EV_P_ struct ev_once *once, int revents)
3068 {
3069 void (*cb)(int revents, void *arg) = once->cb;
3070 void *arg = once->arg;
3071
3072 ev_io_stop (EV_A_ &once->io);
3073 ev_timer_stop (EV_A_ &once->to);
3074 ev_free (once);
3075
3076 cb (revents, arg);
3077 }
3078
3079 static void
3080 once_cb_io (EV_P_ ev_io *w, int revents)
3081 {
3082 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3083
3084 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3085 }
3086
3087 static void
3088 once_cb_to (EV_P_ ev_timer *w, int revents)
3089 {
3090 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3091
3092 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3093 }
3094
3095 void
3096 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3097 {
3098 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3099
3100 if (expect_false (!once))
3101 {
3102 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3103 return;
3104 }
3105
3106 once->cb = cb;
3107 once->arg = arg;
3108
3109 ev_init (&once->io, once_cb_io);
3110 if (fd >= 0)
3111 {
3112 ev_io_set (&once->io, fd, events);
3113 ev_io_start (EV_A_ &once->io);
3114 }
3115
3116 ev_init (&once->to, once_cb_to);
3117 if (timeout >= 0.)
3118 {
3119 ev_timer_set (&once->to, timeout, 0.);
3120 ev_timer_start (EV_A_ &once->to);
3121 }
3122 }
3123
3124 #if EV_MULTIPLICITY
3125 #include "ev_wrap.h"
3126 #endif
3127
3128 #ifdef __cplusplus
3129 }
3130 #endif
3131