ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.283
Committed: Wed Apr 15 09:51:19 2009 UTC (15 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.282: +0 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # endif
63
64 # if HAVE_CLOCK_GETTIME
65 # ifndef EV_USE_MONOTONIC
66 # define EV_USE_MONOTONIC 1
67 # endif
68 # ifndef EV_USE_REALTIME
69 # define EV_USE_REALTIME 0
70 # endif
71 # else
72 # ifndef EV_USE_MONOTONIC
73 # define EV_USE_MONOTONIC 0
74 # endif
75 # ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 0
77 # endif
78 # endif
79
80 # ifndef EV_USE_NANOSLEEP
81 # if HAVE_NANOSLEEP
82 # define EV_USE_NANOSLEEP 1
83 # else
84 # define EV_USE_NANOSLEEP 0
85 # endif
86 # endif
87
88 # ifndef EV_USE_SELECT
89 # if HAVE_SELECT && HAVE_SYS_SELECT_H
90 # define EV_USE_SELECT 1
91 # else
92 # define EV_USE_SELECT 0
93 # endif
94 # endif
95
96 # ifndef EV_USE_POLL
97 # if HAVE_POLL && HAVE_POLL_H
98 # define EV_USE_POLL 1
99 # else
100 # define EV_USE_POLL 0
101 # endif
102 # endif
103
104 # ifndef EV_USE_EPOLL
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # define EV_USE_EPOLL 1
107 # else
108 # define EV_USE_EPOLL 0
109 # endif
110 # endif
111
112 # ifndef EV_USE_KQUEUE
113 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114 # define EV_USE_KQUEUE 1
115 # else
116 # define EV_USE_KQUEUE 0
117 # endif
118 # endif
119
120 # ifndef EV_USE_PORT
121 # if HAVE_PORT_H && HAVE_PORT_CREATE
122 # define EV_USE_PORT 1
123 # else
124 # define EV_USE_PORT 0
125 # endif
126 # endif
127
128 # ifndef EV_USE_INOTIFY
129 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130 # define EV_USE_INOTIFY 1
131 # else
132 # define EV_USE_INOTIFY 0
133 # endif
134 # endif
135
136 # ifndef EV_USE_EVENTFD
137 # if HAVE_EVENTFD
138 # define EV_USE_EVENTFD 1
139 # else
140 # define EV_USE_EVENTFD 0
141 # endif
142 # endif
143
144 #endif
145
146 #include <math.h>
147 #include <stdlib.h>
148 #include <fcntl.h>
149 #include <stddef.h>
150
151 #include <stdio.h>
152
153 #include <assert.h>
154 #include <errno.h>
155 #include <sys/types.h>
156 #include <time.h>
157
158 #include <signal.h>
159
160 #ifdef EV_H
161 # include EV_H
162 #else
163 # include "ev.h"
164 #endif
165
166 #ifndef _WIN32
167 # include <sys/time.h>
168 # include <sys/wait.h>
169 # include <unistd.h>
170 #else
171 # include <io.h>
172 # define WIN32_LEAN_AND_MEAN
173 # include <windows.h>
174 # ifndef EV_SELECT_IS_WINSOCKET
175 # define EV_SELECT_IS_WINSOCKET 1
176 # endif
177 #endif
178
179 /* this block tries to deduce configuration from header-defined symbols and defaults */
180
181 #ifndef EV_USE_CLOCK_SYSCALL
182 # if __linux && __GLIBC__ >= 2
183 # define EV_USE_CLOCK_SYSCALL 1
184 # else
185 # define EV_USE_CLOCK_SYSCALL 0
186 # endif
187 #endif
188
189 #ifndef EV_USE_MONOTONIC
190 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191 # define EV_USE_MONOTONIC 1
192 # else
193 # define EV_USE_MONOTONIC 0
194 # endif
195 #endif
196
197 #ifndef EV_USE_REALTIME
198 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199 #endif
200
201 #ifndef EV_USE_NANOSLEEP
202 # if _POSIX_C_SOURCE >= 199309L
203 # define EV_USE_NANOSLEEP 1
204 # else
205 # define EV_USE_NANOSLEEP 0
206 # endif
207 #endif
208
209 #ifndef EV_USE_SELECT
210 # define EV_USE_SELECT 1
211 #endif
212
213 #ifndef EV_USE_POLL
214 # ifdef _WIN32
215 # define EV_USE_POLL 0
216 # else
217 # define EV_USE_POLL 1
218 # endif
219 #endif
220
221 #ifndef EV_USE_EPOLL
222 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223 # define EV_USE_EPOLL 1
224 # else
225 # define EV_USE_EPOLL 0
226 # endif
227 #endif
228
229 #ifndef EV_USE_KQUEUE
230 # define EV_USE_KQUEUE 0
231 #endif
232
233 #ifndef EV_USE_PORT
234 # define EV_USE_PORT 0
235 #endif
236
237 #ifndef EV_USE_INOTIFY
238 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239 # define EV_USE_INOTIFY 1
240 # else
241 # define EV_USE_INOTIFY 0
242 # endif
243 #endif
244
245 #ifndef EV_PID_HASHSIZE
246 # if EV_MINIMAL
247 # define EV_PID_HASHSIZE 1
248 # else
249 # define EV_PID_HASHSIZE 16
250 # endif
251 #endif
252
253 #ifndef EV_INOTIFY_HASHSIZE
254 # if EV_MINIMAL
255 # define EV_INOTIFY_HASHSIZE 1
256 # else
257 # define EV_INOTIFY_HASHSIZE 16
258 # endif
259 #endif
260
261 #ifndef EV_USE_EVENTFD
262 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263 # define EV_USE_EVENTFD 1
264 # else
265 # define EV_USE_EVENTFD 0
266 # endif
267 #endif
268
269 #if 0 /* debugging */
270 # define EV_VERIFY 3
271 # define EV_USE_4HEAP 1
272 # define EV_HEAP_CACHE_AT 1
273 #endif
274
275 #ifndef EV_VERIFY
276 # define EV_VERIFY !EV_MINIMAL
277 #endif
278
279 #ifndef EV_USE_4HEAP
280 # define EV_USE_4HEAP !EV_MINIMAL
281 #endif
282
283 #ifndef EV_HEAP_CACHE_AT
284 # define EV_HEAP_CACHE_AT !EV_MINIMAL
285 #endif
286
287 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289 #ifndef CLOCK_MONOTONIC
290 # undef EV_USE_MONOTONIC
291 # define EV_USE_MONOTONIC 0
292 #endif
293
294 #ifndef CLOCK_REALTIME
295 # undef EV_USE_REALTIME
296 # define EV_USE_REALTIME 0
297 #endif
298
299 #if !EV_STAT_ENABLE
300 # undef EV_USE_INOTIFY
301 # define EV_USE_INOTIFY 0
302 #endif
303
304 #if !EV_USE_NANOSLEEP
305 # ifndef _WIN32
306 # include <sys/select.h>
307 # endif
308 #endif
309
310 #if EV_USE_INOTIFY
311 # include <sys/utsname.h>
312 # include <sys/statfs.h>
313 # include <sys/inotify.h>
314 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315 # ifndef IN_DONT_FOLLOW
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 # endif
319 #endif
320
321 #if EV_SELECT_IS_WINSOCKET
322 # include <winsock.h>
323 #endif
324
325 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326 /* which makes programs even slower. might work on other unices, too. */
327 #if EV_USE_CLOCK_SYSCALL
328 # include <syscall.h>
329 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330 # undef EV_USE_MONOTONIC
331 # define EV_USE_MONOTONIC 1
332 #endif
333
334 #if EV_USE_EVENTFD
335 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336 # include <stdint.h>
337 # ifdef __cplusplus
338 extern "C" {
339 # endif
340 int eventfd (unsigned int initval, int flags);
341 # ifdef __cplusplus
342 }
343 # endif
344 #endif
345
346 /**/
347
348 #if EV_VERIFY >= 3
349 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350 #else
351 # define EV_FREQUENT_CHECK do { } while (0)
352 #endif
353
354 /*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
364 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367
368 #if __GNUC__ >= 4
369 # define expect(expr,value) __builtin_expect ((expr),(value))
370 # define noinline __attribute__ ((noinline))
371 #else
372 # define expect(expr,value) (expr)
373 # define noinline
374 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375 # define inline
376 # endif
377 #endif
378
379 #define expect_false(expr) expect ((expr) != 0, 0)
380 #define expect_true(expr) expect ((expr) != 0, 1)
381 #define inline_size static inline
382
383 #if EV_MINIMAL
384 # define inline_speed static noinline
385 #else
386 # define inline_speed static inline
387 #endif
388
389 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392 #define EMPTY /* required for microsofts broken pseudo-c compiler */
393 #define EMPTY2(a,b) /* used to suppress some warnings */
394
395 typedef ev_watcher *W;
396 typedef ev_watcher_list *WL;
397 typedef ev_watcher_time *WT;
398
399 #define ev_active(w) ((W)(w))->active
400 #define ev_at(w) ((WT)(w))->at
401
402 #if EV_USE_REALTIME
403 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
404 /* giving it a reasonably high chance of working on typical architetcures */
405 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406 #endif
407
408 #if EV_USE_MONOTONIC
409 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410 #endif
411
412 #ifdef _WIN32
413 # include "ev_win32.c"
414 #endif
415
416 /*****************************************************************************/
417
418 static void (*syserr_cb)(const char *msg);
419
420 void
421 ev_set_syserr_cb (void (*cb)(const char *msg))
422 {
423 syserr_cb = cb;
424 }
425
426 static void noinline
427 ev_syserr (const char *msg)
428 {
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439 }
440
441 static void *
442 ev_realloc_emul (void *ptr, long size)
443 {
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454 }
455
456 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458 void
459 ev_set_allocator (void *(*cb)(void *ptr, long size))
460 {
461 alloc = cb;
462 }
463
464 inline_speed void *
465 ev_realloc (void *ptr, long size)
466 {
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476 }
477
478 #define ev_malloc(size) ev_realloc (0, (size))
479 #define ev_free(ptr) ev_realloc ((ptr), 0)
480
481 /*****************************************************************************/
482
483 typedef struct
484 {
485 WL head;
486 unsigned char events;
487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490 #if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492 #endif
493 #if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495 #endif
496 } ANFD;
497
498 typedef struct
499 {
500 W w;
501 int events;
502 } ANPENDING;
503
504 #if EV_USE_INOTIFY
505 /* hash table entry per inotify-id */
506 typedef struct
507 {
508 WL head;
509 } ANFS;
510 #endif
511
512 /* Heap Entry */
513 #if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522 #else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528 #endif
529
530 #if EV_MULTIPLICITY
531
532 struct ev_loop
533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
536 #define VAR(name,decl) decl;
537 #include "ev_vars.h"
538 #undef VAR
539 };
540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
544
545 #else
546
547 ev_tstamp ev_rt_now;
548 #define VAR(name,decl) static decl;
549 #include "ev_vars.h"
550 #undef VAR
551
552 static int ev_default_loop_ptr;
553
554 #endif
555
556 /*****************************************************************************/
557
558 ev_tstamp
559 ev_time (void)
560 {
561 #if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
564 struct timespec ts;
565 clock_gettime (CLOCK_REALTIME, &ts);
566 return ts.tv_sec + ts.tv_nsec * 1e-9;
567 }
568 #endif
569
570 struct timeval tv;
571 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6;
573 }
574
575 ev_tstamp inline_size
576 get_clock (void)
577 {
578 #if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic))
580 {
581 struct timespec ts;
582 clock_gettime (CLOCK_MONOTONIC, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9;
584 }
585 #endif
586
587 return ev_time ();
588 }
589
590 #if EV_MULTIPLICITY
591 ev_tstamp
592 ev_now (EV_P)
593 {
594 return ev_rt_now;
595 }
596 #endif
597
598 void
599 ev_sleep (ev_tstamp delay)
600 {
601 if (delay > 0.)
602 {
603 #if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610 #elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612 #else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622 #endif
623 }
624 }
625
626 /*****************************************************************************/
627
628 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630 int inline_size
631 array_nextsize (int elem, int cur, int cnt)
632 {
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649 }
650
651 static noinline void *
652 array_realloc (int elem, void *base, int *cur, int cnt)
653 {
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656 }
657
658 #define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661 #define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670 #if 0
671 #define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678 #endif
679
680 #define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682
683 /*****************************************************************************/
684
685 void noinline
686 ev_feed_event (EV_P_ void *w, int revents)
687 {
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents;
699 }
700 }
701
702 void inline_speed
703 queue_events (EV_P_ W *events, int eventcnt, int type)
704 {
705 int i;
706
707 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type);
709 }
710
711 /*****************************************************************************/
712
713 void inline_speed
714 fd_event (EV_P_ int fd, int revents)
715 {
716 ANFD *anfd = anfds + fd;
717 ev_io *w;
718
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
720 {
721 int ev = w->events & revents;
722
723 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev);
725 }
726 }
727
728 void
729 ev_feed_fd_event (EV_P_ int fd, int revents)
730 {
731 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents);
733 }
734
735 void inline_size
736 fd_reify (EV_P)
737 {
738 int i;
739
740 for (i = 0; i < fdchangecnt; ++i)
741 {
742 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd;
744 ev_io *w;
745
746 unsigned char events = 0;
747
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
749 events |= (unsigned char)w->events;
750
751 #if EV_SELECT_IS_WINSOCKET
752 if (events)
753 {
754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 }
762 #endif
763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
774 }
775
776 fdchangecnt = 0;
777 }
778
779 void inline_size
780 fd_change (EV_P_ int fd, int flags)
781 {
782 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags;
784
785 if (expect_true (!reify))
786 {
787 ++fdchangecnt;
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd;
790 }
791 }
792
793 void inline_speed
794 fd_kill (EV_P_ int fd)
795 {
796 ev_io *w;
797
798 while ((w = (ev_io *)anfds [fd].head))
799 {
800 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 }
803 }
804
805 int inline_size
806 fd_valid (int fd)
807 {
808 #ifdef _WIN32
809 return _get_osfhandle (fd) != -1;
810 #else
811 return fcntl (fd, F_GETFD) != -1;
812 #endif
813 }
814
815 /* called on EBADF to verify fds */
816 static void noinline
817 fd_ebadf (EV_P)
818 {
819 int fd;
820
821 for (fd = 0; fd < anfdmax; ++fd)
822 if (anfds [fd].events)
823 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd);
825 }
826
827 /* called on ENOMEM in select/poll to kill some fds and retry */
828 static void noinline
829 fd_enomem (EV_P)
830 {
831 int fd;
832
833 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events)
835 {
836 fd_kill (EV_A_ fd);
837 return;
838 }
839 }
840
841 /* usually called after fork if backend needs to re-arm all fds from scratch */
842 static void noinline
843 fd_rearm_all (EV_P)
844 {
845 int fd;
846
847 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events)
849 {
850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
853 }
854 }
855
856 /*****************************************************************************/
857
858 /*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree.
862 */
863
864 /*
865 * at the moment we allow libev the luxury of two heaps,
866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
867 * which is more cache-efficient.
868 * the difference is about 5% with 50000+ watchers.
869 */
870 #if EV_USE_4HEAP
871
872 #define DHEAP 4
873 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
874 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875 #define UPHEAP_DONE(p,k) ((p) == (k))
876
877 /* away from the root */
878 void inline_speed
879 downheap (ANHE *heap, int N, int k)
880 {
881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
883
884 for (;;)
885 {
886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
889
890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
892 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
906 break;
907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919 }
920
921 #else /* 4HEAP */
922
923 #define HEAP0 1
924 #define HPARENT(k) ((k) >> 1)
925 #define UPHEAP_DONE(p,k) (!(p))
926
927 /* away from the root */
928 void inline_speed
929 downheap (ANHE *heap, int N, int k)
930 {
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
946 heap [k] = heap [c];
947 ev_active (ANHE_w (heap [k])) = k;
948
949 k = c;
950 }
951
952 heap [k] = he;
953 ev_active (ANHE_w (he)) = k;
954 }
955 #endif
956
957 /* towards the root */
958 void inline_speed
959 upheap (ANHE *heap, int k)
960 {
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977 }
978
979 void inline_size
980 adjustheap (ANHE *heap, int N, int k)
981 {
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k);
984 else
985 downheap (heap, N, k);
986 }
987
988 /* rebuild the heap: this function is used only once and executed rarely */
989 void inline_size
990 reheap (ANHE *heap, int N)
991 {
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
998 }
999
1000 /*****************************************************************************/
1001
1002 typedef struct
1003 {
1004 WL head;
1005 EV_ATOMIC_T gotsig;
1006 } ANSIG;
1007
1008 static ANSIG *signals;
1009 static int signalmax;
1010
1011 static EV_ATOMIC_T gotsig;
1012
1013 /*****************************************************************************/
1014
1015 void inline_speed
1016 fd_intern (int fd)
1017 {
1018 #ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021 #else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024 #endif
1025 }
1026
1027 static void noinline
1028 evpipe_init (EV_P)
1029 {
1030 if (!ev_is_active (&pipeev))
1031 {
1032 #if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040 #endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053 }
1054
1055 void inline_size
1056 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057 {
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064 #if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071 #endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076 }
1077
1078 static void
1079 pipecb (EV_P_ ev_io *iow, int revents)
1080 {
1081 #if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088 #endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
1097 gotsig = 0;
1098
1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104 #if EV_ASYNC_ENABLE
1105 if (gotasync)
1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117 #endif
1118 }
1119
1120 /*****************************************************************************/
1121
1122 static void
1123 ev_sighandler (int signum)
1124 {
1125 #if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127 #endif
1128
1129 #if _WIN32
1130 signal (signum, ev_sighandler);
1131 #endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135 }
1136
1137 void noinline
1138 ev_feed_signal_event (EV_P_ int signum)
1139 {
1140 WL w;
1141
1142 #if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144 #endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return;
1150
1151 signals [signum].gotsig = 0;
1152
1153 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155 }
1156
1157 /*****************************************************************************/
1158
1159 static WL childs [EV_PID_HASHSIZE];
1160
1161 #ifndef _WIN32
1162
1163 static ev_signal childev;
1164
1165 #ifndef WIFCONTINUED
1166 # define WIFCONTINUED(status) 0
1167 #endif
1168
1169 void inline_speed
1170 child_reap (EV_P_ int chain, int pid, int status)
1171 {
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186 }
1187
1188 #ifndef WCONTINUED
1189 # define WCONTINUED 0
1190 #endif
1191
1192 static void
1193 childcb (EV_P_ ev_signal *sw, int revents)
1194 {
1195 int pid, status;
1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207
1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211 }
1212
1213 #endif
1214
1215 /*****************************************************************************/
1216
1217 #if EV_USE_PORT
1218 # include "ev_port.c"
1219 #endif
1220 #if EV_USE_KQUEUE
1221 # include "ev_kqueue.c"
1222 #endif
1223 #if EV_USE_EPOLL
1224 # include "ev_epoll.c"
1225 #endif
1226 #if EV_USE_POLL
1227 # include "ev_poll.c"
1228 #endif
1229 #if EV_USE_SELECT
1230 # include "ev_select.c"
1231 #endif
1232
1233 int
1234 ev_version_major (void)
1235 {
1236 return EV_VERSION_MAJOR;
1237 }
1238
1239 int
1240 ev_version_minor (void)
1241 {
1242 return EV_VERSION_MINOR;
1243 }
1244
1245 /* return true if we are running with elevated privileges and should ignore env variables */
1246 int inline_size
1247 enable_secure (void)
1248 {
1249 #ifdef _WIN32
1250 return 0;
1251 #else
1252 return getuid () != geteuid ()
1253 || getgid () != getegid ();
1254 #endif
1255 }
1256
1257 unsigned int
1258 ev_supported_backends (void)
1259 {
1260 unsigned int flags = 0;
1261
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267
1268 return flags;
1269 }
1270
1271 unsigned int
1272 ev_recommended_backends (void)
1273 {
1274 unsigned int flags = ev_supported_backends ();
1275
1276 #ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */
1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1279 flags &= ~EVBACKEND_KQUEUE;
1280 #endif
1281 #ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285 #endif
1286
1287 return flags;
1288 }
1289
1290 unsigned int
1291 ev_embeddable_backends (void)
1292 {
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300 }
1301
1302 unsigned int
1303 ev_backend (EV_P)
1304 {
1305 return backend;
1306 }
1307
1308 unsigned int
1309 ev_loop_count (EV_P)
1310 {
1311 return loop_count;
1312 }
1313
1314 void
1315 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316 {
1317 io_blocktime = interval;
1318 }
1319
1320 void
1321 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322 {
1323 timeout_blocktime = interval;
1324 }
1325
1326 static void noinline
1327 loop_init (EV_P_ unsigned int flags)
1328 {
1329 if (!backend)
1330 {
1331 #if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339 #endif
1340
1341 #if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1343 {
1344 struct timespec ts;
1345
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1;
1348 }
1349 #endif
1350
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361 #if EV_USE_INOTIFY
1362 fs_fd = -2;
1363 #endif
1364
1365 /* pid check not overridable via env */
1366 #ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369 #endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends ();
1378
1379 #if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381 #endif
1382 #if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1384 #endif
1385 #if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387 #endif
1388 #if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390 #endif
1391 #if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393 #endif
1394
1395 ev_init (&pipeev, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI);
1397 }
1398 }
1399
1400 static void noinline
1401 loop_destroy (EV_P)
1402 {
1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410 #if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413 #endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422 #if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425 #endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
1429
1430 #if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432 #endif
1433 #if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1435 #endif
1436 #if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438 #endif
1439 #if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441 #endif
1442 #if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1444 #endif
1445
1446 for (i = NUMPRI; i--; )
1447 {
1448 array_free (pending, [i]);
1449 #if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451 #endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1455
1456 /* have to use the microsoft-never-gets-it-right macro */
1457 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY);
1459 #if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY);
1461 #endif
1462 #if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464 #endif
1465 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY);
1467 #if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469 #endif
1470
1471 backend = 0;
1472 }
1473
1474 #if EV_USE_INOTIFY
1475 void inline_size infy_fork (EV_P);
1476 #endif
1477
1478 void inline_size
1479 loop_fork (EV_P)
1480 {
1481 #if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483 #endif
1484 #if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1486 #endif
1487 #if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489 #endif
1490 #if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492 #endif
1493
1494 if (ev_is_active (&pipeev))
1495 {
1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499 #if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501 #endif
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506 #if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509 #endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516
1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1520 }
1521
1522 postfork = 0;
1523 }
1524
1525 #if EV_MULTIPLICITY
1526
1527 struct ev_loop *
1528 ev_loop_new (unsigned int flags)
1529 {
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531
1532 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags);
1535
1536 if (ev_backend (EV_A))
1537 return loop;
1538
1539 return 0;
1540 }
1541
1542 void
1543 ev_loop_destroy (EV_P)
1544 {
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547 }
1548
1549 void
1550 ev_loop_fork (EV_P)
1551 {
1552 postfork = 1; /* must be in line with ev_default_fork */
1553 }
1554
1555 #if EV_VERIFY
1556 static void noinline
1557 verify_watcher (EV_P_ W w)
1558 {
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563 }
1564
1565 static void noinline
1566 verify_heap (EV_P_ ANHE *heap, int N)
1567 {
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578 }
1579
1580 static void noinline
1581 array_verify (EV_P_ W *ws, int cnt)
1582 {
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588 }
1589 #endif
1590
1591 void
1592 ev_loop_verify (EV_P)
1593 {
1594 #if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
1607 {
1608 verify_watcher (EV_A_ (W)w);
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616 #if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619 #endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624 #if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628 #endif
1629 }
1630
1631 #if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634 #endif
1635
1636 #if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639 #endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647 # if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1650 # endif
1651 #endif
1652 }
1653
1654 #endif /* multiplicity */
1655
1656 #if EV_MULTIPLICITY
1657 struct ev_loop *
1658 ev_default_loop_init (unsigned int flags)
1659 #else
1660 int
1661 ev_default_loop (unsigned int flags)
1662 #endif
1663 {
1664 if (!ev_default_loop_ptr)
1665 {
1666 #if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1668 #else
1669 ev_default_loop_ptr = 1;
1670 #endif
1671
1672 loop_init (EV_A_ flags);
1673
1674 if (ev_backend (EV_A))
1675 {
1676 #ifndef _WIN32
1677 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681 #endif
1682 }
1683 else
1684 ev_default_loop_ptr = 0;
1685 }
1686
1687 return ev_default_loop_ptr;
1688 }
1689
1690 void
1691 ev_default_destroy (void)
1692 {
1693 #if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695 #endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699 #ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702 #endif
1703
1704 loop_destroy (EV_A);
1705 }
1706
1707 void
1708 ev_default_fork (void)
1709 {
1710 #if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712 #endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715 }
1716
1717 /*****************************************************************************/
1718
1719 void
1720 ev_invoke (EV_P_ void *w, int revents)
1721 {
1722 EV_CB_INVOKE ((W)w, revents);
1723 }
1724
1725 void inline_speed
1726 call_pending (EV_P)
1727 {
1728 int pri;
1729
1730 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1739 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
1742 }
1743 }
1744 }
1745
1746 #if EV_IDLE_ENABLE
1747 void inline_size
1748 idle_reify (EV_P)
1749 {
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766 }
1767 #endif
1768
1769 void inline_size
1770 timers_reify (EV_P)
1771 {
1772 EV_FREQUENT_CHECK;
1773
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788
1789 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0);
1791 }
1792 else
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 }
1798 }
1799
1800 #if EV_PERIODIC_ENABLE
1801 void inline_size
1802 periodics_reify (EV_P)
1803 {
1804 EV_FREQUENT_CHECK;
1805
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1846 }
1847 }
1848
1849 static void noinline
1850 periodics_reschedule (EV_P)
1851 {
1852 int i;
1853
1854 /* adjust periodics after time jump */
1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1856 {
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868 }
1869 #endif
1870
1871 void inline_speed
1872 time_update (EV_P_ ev_tstamp max_block)
1873 {
1874 int i;
1875
1876 #if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1878 {
1879 ev_tstamp odiff = rtmn_diff;
1880
1881 mn_now = get_clock ();
1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1886 {
1887 ev_rt_now = rtmn_diff + mn_now;
1888 return;
1889 }
1890
1891 now_floor = mn_now;
1892 ev_rt_now = ev_time ();
1893
1894 /* loop a few times, before making important decisions.
1895 * on the choice of "4": one iteration isn't enough,
1896 * in case we get preempted during the calls to
1897 * ev_time and get_clock. a second call is almost guaranteed
1898 * to succeed in that case, though. and looping a few more times
1899 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here.
1901 */
1902 for (i = 4; --i; )
1903 {
1904 rtmn_diff = ev_rt_now - mn_now;
1905
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914 # if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916 # endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921 #endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927 #if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929 #endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 }
1938
1939 mn_now = ev_rt_now;
1940 }
1941 }
1942
1943 void
1944 ev_ref (EV_P)
1945 {
1946 ++activecnt;
1947 }
1948
1949 void
1950 ev_unref (EV_P)
1951 {
1952 --activecnt;
1953 }
1954
1955 void
1956 ev_now_update (EV_P)
1957 {
1958 time_update (EV_A_ 1e100);
1959 }
1960
1961 static int loop_done;
1962
1963 void
1964 ev_loop (EV_P_ int flags)
1965 {
1966 loop_done = EVUNLOOP_CANCEL;
1967
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1969
1970 do
1971 {
1972 #if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974 #endif
1975
1976 #ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983 #endif
1984
1985 #if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993 #endif
1994
1995 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt))
1997 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A);
2000 }
2001
2002 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork))
2004 loop_fork (EV_A);
2005
2006 /* update fd-related kernel structures */
2007 fd_reify (EV_A);
2008
2009 /* calculate blocking time */
2010 {
2011 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.;
2013
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME;
2020
2021 if (timercnt)
2022 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2024 if (waittime > to) waittime = to;
2025 }
2026
2027 #if EV_PERIODIC_ENABLE
2028 if (periodiccnt)
2029 {
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to;
2032 }
2033 #endif
2034
2035 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime;
2037
2038 sleeptime = waittime - backend_fudge;
2039
2040 if (expect_true (sleeptime > io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 {
2045 ev_sleep (sleeptime);
2046 waittime -= sleeptime;
2047 }
2048 }
2049
2050 ++loop_count;
2051 backend_poll (EV_A_ waittime);
2052
2053 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime);
2055 }
2056
2057 /* queue pending timers and reschedule them */
2058 timers_reify (EV_A); /* relative timers called last */
2059 #if EV_PERIODIC_ENABLE
2060 periodics_reify (EV_A); /* absolute timers called first */
2061 #endif
2062
2063 #if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A);
2066 #endif
2067
2068 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2071
2072 call_pending (EV_A);
2073 }
2074 while (expect_true (
2075 activecnt
2076 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 ));
2079
2080 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL;
2082 }
2083
2084 void
2085 ev_unloop (EV_P_ int how)
2086 {
2087 loop_done = how;
2088 }
2089
2090 /*****************************************************************************/
2091
2092 void inline_size
2093 wlist_add (WL *head, WL elem)
2094 {
2095 elem->next = *head;
2096 *head = elem;
2097 }
2098
2099 void inline_size
2100 wlist_del (WL *head, WL elem)
2101 {
2102 while (*head)
2103 {
2104 if (*head == elem)
2105 {
2106 *head = elem->next;
2107 return;
2108 }
2109
2110 head = &(*head)->next;
2111 }
2112 }
2113
2114 void inline_speed
2115 clear_pending (EV_P_ W w)
2116 {
2117 if (w->pending)
2118 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2120 w->pending = 0;
2121 }
2122 }
2123
2124 int
2125 ev_clear_pending (EV_P_ void *w)
2126 {
2127 W w_ = (W)w;
2128 int pending = w_->pending;
2129
2130 if (expect_true (pending))
2131 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2133 w_->pending = 0;
2134 p->w = 0;
2135 return p->events;
2136 }
2137 else
2138 return 0;
2139 }
2140
2141 void inline_size
2142 pri_adjust (EV_P_ W w)
2143 {
2144 int pri = w->priority;
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri;
2148 }
2149
2150 void inline_speed
2151 ev_start (EV_P_ W w, int active)
2152 {
2153 pri_adjust (EV_A_ w);
2154 w->active = active;
2155 ev_ref (EV_A);
2156 }
2157
2158 void inline_size
2159 ev_stop (EV_P_ W w)
2160 {
2161 ev_unref (EV_A);
2162 w->active = 0;
2163 }
2164
2165 /*****************************************************************************/
2166
2167 void noinline
2168 ev_io_start (EV_P_ ev_io *w)
2169 {
2170 int fd = w->fd;
2171
2172 if (expect_false (ev_is_active (w)))
2173 return;
2174
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177
2178 EV_FREQUENT_CHECK;
2179
2180 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w);
2183
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2185 w->events &= ~EV__IOFDSET;
2186
2187 EV_FREQUENT_CHECK;
2188 }
2189
2190 void noinline
2191 ev_io_stop (EV_P_ ev_io *w)
2192 {
2193 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w)))
2195 return;
2196
2197 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2198
2199 EV_FREQUENT_CHECK;
2200
2201 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w);
2203
2204 fd_change (EV_A_ w->fd, 1);
2205
2206 EV_FREQUENT_CHECK;
2207 }
2208
2209 void noinline
2210 ev_timer_start (EV_P_ ev_timer *w)
2211 {
2212 if (expect_false (ev_is_active (w)))
2213 return;
2214
2215 ev_at (w) += mn_now;
2216
2217 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2218
2219 EV_FREQUENT_CHECK;
2220
2221 ++timercnt;
2222 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2223 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2224 ANHE_w (timers [ev_active (w)]) = (WT)w;
2225 ANHE_at_cache (timers [ev_active (w)]);
2226 upheap (timers, ev_active (w));
2227
2228 EV_FREQUENT_CHECK;
2229
2230 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2231 }
2232
2233 void noinline
2234 ev_timer_stop (EV_P_ ev_timer *w)
2235 {
2236 clear_pending (EV_A_ (W)w);
2237 if (expect_false (!ev_is_active (w)))
2238 return;
2239
2240 EV_FREQUENT_CHECK;
2241
2242 {
2243 int active = ev_active (w);
2244
2245 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2246
2247 --timercnt;
2248
2249 if (expect_true (active < timercnt + HEAP0))
2250 {
2251 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active);
2253 }
2254 }
2255
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now;
2259
2260 ev_stop (EV_A_ (W)w);
2261 }
2262
2263 void noinline
2264 ev_timer_again (EV_P_ ev_timer *w)
2265 {
2266 EV_FREQUENT_CHECK;
2267
2268 if (ev_is_active (w))
2269 {
2270 if (w->repeat)
2271 {
2272 ev_at (w) = mn_now + w->repeat;
2273 ANHE_at_cache (timers [ev_active (w)]);
2274 adjustheap (timers, timercnt, ev_active (w));
2275 }
2276 else
2277 ev_timer_stop (EV_A_ w);
2278 }
2279 else if (w->repeat)
2280 {
2281 ev_at (w) = w->repeat;
2282 ev_timer_start (EV_A_ w);
2283 }
2284
2285 EV_FREQUENT_CHECK;
2286 }
2287
2288 #if EV_PERIODIC_ENABLE
2289 void noinline
2290 ev_periodic_start (EV_P_ ev_periodic *w)
2291 {
2292 if (expect_false (ev_is_active (w)))
2293 return;
2294
2295 if (w->reschedule_cb)
2296 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2297 else if (w->interval)
2298 {
2299 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2300 /* this formula differs from the one in periodic_reify because we do not always round up */
2301 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2302 }
2303 else
2304 ev_at (w) = w->offset;
2305
2306 EV_FREQUENT_CHECK;
2307
2308 ++periodiccnt;
2309 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2310 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2311 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2312 ANHE_at_cache (periodics [ev_active (w)]);
2313 upheap (periodics, ev_active (w));
2314
2315 EV_FREQUENT_CHECK;
2316
2317 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2318 }
2319
2320 void noinline
2321 ev_periodic_stop (EV_P_ ev_periodic *w)
2322 {
2323 clear_pending (EV_A_ (W)w);
2324 if (expect_false (!ev_is_active (w)))
2325 return;
2326
2327 EV_FREQUENT_CHECK;
2328
2329 {
2330 int active = ev_active (w);
2331
2332 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2333
2334 --periodiccnt;
2335
2336 if (expect_true (active < periodiccnt + HEAP0))
2337 {
2338 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active);
2340 }
2341 }
2342
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w);
2346 }
2347
2348 void noinline
2349 ev_periodic_again (EV_P_ ev_periodic *w)
2350 {
2351 /* TODO: use adjustheap and recalculation */
2352 ev_periodic_stop (EV_A_ w);
2353 ev_periodic_start (EV_A_ w);
2354 }
2355 #endif
2356
2357 #ifndef SA_RESTART
2358 # define SA_RESTART 0
2359 #endif
2360
2361 void noinline
2362 ev_signal_start (EV_P_ ev_signal *w)
2363 {
2364 #if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366 #endif
2367 if (expect_false (ev_is_active (w)))
2368 return;
2369
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371
2372 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
2375
2376 {
2377 #ifndef _WIN32
2378 sigset_t full, prev;
2379 sigfillset (&full);
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381 #endif
2382
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2384
2385 #ifndef _WIN32
2386 sigprocmask (SIG_SETMASK, &prev, 0);
2387 #endif
2388 }
2389
2390 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392
2393 if (!((WL)w)->next)
2394 {
2395 #if _WIN32
2396 signal (w->signum, ev_sighandler);
2397 #else
2398 struct sigaction sa;
2399 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0);
2403 #endif
2404 }
2405
2406 EV_FREQUENT_CHECK;
2407 }
2408
2409 void noinline
2410 ev_signal_stop (EV_P_ ev_signal *w)
2411 {
2412 clear_pending (EV_A_ (W)w);
2413 if (expect_false (!ev_is_active (w)))
2414 return;
2415
2416 EV_FREQUENT_CHECK;
2417
2418 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w);
2420
2421 if (!signals [w->signum - 1].head)
2422 signal (w->signum, SIG_DFL);
2423
2424 EV_FREQUENT_CHECK;
2425 }
2426
2427 void
2428 ev_child_start (EV_P_ ev_child *w)
2429 {
2430 #if EV_MULTIPLICITY
2431 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2432 #endif
2433 if (expect_false (ev_is_active (w)))
2434 return;
2435
2436 EV_FREQUENT_CHECK;
2437
2438 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2440
2441 EV_FREQUENT_CHECK;
2442 }
2443
2444 void
2445 ev_child_stop (EV_P_ ev_child *w)
2446 {
2447 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w)))
2449 return;
2450
2451 EV_FREQUENT_CHECK;
2452
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w);
2455
2456 EV_FREQUENT_CHECK;
2457 }
2458
2459 #if EV_STAT_ENABLE
2460
2461 # ifdef _WIN32
2462 # undef lstat
2463 # define lstat(a,b) _stati64 (a,b)
2464 # endif
2465
2466 #define DEF_STAT_INTERVAL 5.0074891
2467 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2468 #define MIN_STAT_INTERVAL 0.1074891
2469
2470 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471
2472 #if EV_USE_INOTIFY
2473 # define EV_INOTIFY_BUFSIZE 8192
2474
2475 static void noinline
2476 infy_add (EV_P_ ev_stat *w)
2477 {
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479
2480 if (w->wd < 0)
2481 {
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484
2485 /* monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 {
2490 char path [4096];
2491 strcpy (path, w->path);
2492
2493 do
2494 {
2495 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2496 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2497
2498 char *pend = strrchr (path, '/');
2499
2500 if (!pend || pend == path)
2501 break;
2502
2503 *pend = 0;
2504 w->wd = inotify_add_watch (fs_fd, path, mask);
2505 }
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 }
2508 }
2509
2510 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2513
2514 /* now local changes will be tracked by inotify, but remote changes won't */
2515 /* unless the filesystem it known to be local, we therefore still poll */
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer);
2530 }
2531 }
2532
2533 static void noinline
2534 infy_del (EV_P_ ev_stat *w)
2535 {
2536 int slot;
2537 int wd = w->wd;
2538
2539 if (wd < 0)
2540 return;
2541
2542 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w);
2545
2546 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd);
2548 }
2549
2550 static void noinline
2551 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552 {
2553 if (slot < 0)
2554 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2556 infy_wd (EV_A_ slot, wd, ev);
2557 else
2558 {
2559 WL w_;
2560
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2562 {
2563 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */
2565
2566 if (w->wd == wd || wd == -1)
2567 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2571 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */
2573 }
2574
2575 stat_timer_cb (EV_A_ &w->timer, 0);
2576 }
2577 }
2578 }
2579 }
2580
2581 static void
2582 infy_cb (EV_P_ ev_io *w, int revents)
2583 {
2584 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf));
2588
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591 }
2592
2593 void inline_size
2594 check_2625 (EV_P)
2595 {
2596 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */
2599 struct utsname buf;
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return;
2604
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1;
2614 }
2615
2616 void inline_size
2617 infy_init (EV_P)
2618 {
2619 if (fs_fd != -2)
2620 return;
2621
2622 fs_fd = -1;
2623
2624 check_2625 (EV_A);
2625
2626 fs_fd = inotify_init ();
2627
2628 if (fs_fd >= 0)
2629 {
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w);
2633 }
2634 }
2635
2636 void inline_size
2637 infy_fork (EV_P)
2638 {
2639 int slot;
2640
2641 if (fs_fd < 0)
2642 return;
2643
2644 close (fs_fd);
2645 fs_fd = inotify_init ();
2646
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2648 {
2649 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0;
2651
2652 while (w_)
2653 {
2654 ev_stat *w = (ev_stat *)w_;
2655 w_ = w_->next; /* lets us add this watcher */
2656
2657 w->wd = -1;
2658
2659 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else
2662 ev_timer_again (EV_A_ &w->timer);
2663 }
2664 }
2665 }
2666
2667 #endif
2668
2669 #ifdef _WIN32
2670 # define EV_LSTAT(p,b) _stati64 (p, b)
2671 #else
2672 # define EV_LSTAT(p,b) lstat (p, b)
2673 #endif
2674
2675 void
2676 ev_stat_stat (EV_P_ ev_stat *w)
2677 {
2678 if (lstat (w->path, &w->attr) < 0)
2679 w->attr.st_nlink = 0;
2680 else if (!w->attr.st_nlink)
2681 w->attr.st_nlink = 1;
2682 }
2683
2684 static void noinline
2685 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686 {
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688
2689 /* we copy this here each the time so that */
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w);
2693
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if (
2696 w->prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime
2707 ) {
2708 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0)
2710 {
2711 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w);
2713 ev_stat_stat (EV_A_ w); /* avoid race... */
2714 }
2715 #endif
2716
2717 ev_feed_event (EV_A_ w, EV_STAT);
2718 }
2719 }
2720
2721 void
2722 ev_stat_start (EV_P_ ev_stat *w)
2723 {
2724 if (expect_false (ev_is_active (w)))
2725 return;
2726
2727 ev_stat_stat (EV_A_ w);
2728
2729 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2730 w->interval = MIN_STAT_INTERVAL;
2731
2732 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2733 ev_set_priority (&w->timer, ev_priority (w));
2734
2735 #if EV_USE_INOTIFY
2736 infy_init (EV_A);
2737
2738 if (fs_fd >= 0)
2739 infy_add (EV_A_ w);
2740 else
2741 #endif
2742 ev_timer_again (EV_A_ &w->timer);
2743
2744 ev_start (EV_A_ (W)w, 1);
2745
2746 EV_FREQUENT_CHECK;
2747 }
2748
2749 void
2750 ev_stat_stop (EV_P_ ev_stat *w)
2751 {
2752 clear_pending (EV_A_ (W)w);
2753 if (expect_false (!ev_is_active (w)))
2754 return;
2755
2756 EV_FREQUENT_CHECK;
2757
2758 #if EV_USE_INOTIFY
2759 infy_del (EV_A_ w);
2760 #endif
2761 ev_timer_stop (EV_A_ &w->timer);
2762
2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2766 }
2767 #endif
2768
2769 #if EV_IDLE_ENABLE
2770 void
2771 ev_idle_start (EV_P_ ev_idle *w)
2772 {
2773 if (expect_false (ev_is_active (w)))
2774 return;
2775
2776 pri_adjust (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2779
2780 {
2781 int active = ++idlecnt [ABSPRI (w)];
2782
2783 ++idleall;
2784 ev_start (EV_A_ (W)w, active);
2785
2786 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2787 idles [ABSPRI (w)][active - 1] = w;
2788 }
2789
2790 EV_FREQUENT_CHECK;
2791 }
2792
2793 void
2794 ev_idle_stop (EV_P_ ev_idle *w)
2795 {
2796 clear_pending (EV_A_ (W)w);
2797 if (expect_false (!ev_is_active (w)))
2798 return;
2799
2800 EV_FREQUENT_CHECK;
2801
2802 {
2803 int active = ev_active (w);
2804
2805 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2806 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2807
2808 ev_stop (EV_A_ (W)w);
2809 --idleall;
2810 }
2811
2812 EV_FREQUENT_CHECK;
2813 }
2814 #endif
2815
2816 void
2817 ev_prepare_start (EV_P_ ev_prepare *w)
2818 {
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
2823
2824 ev_start (EV_A_ (W)w, ++preparecnt);
2825 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2826 prepares [preparecnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2829 }
2830
2831 void
2832 ev_prepare_stop (EV_P_ ev_prepare *w)
2833 {
2834 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w)))
2836 return;
2837
2838 EV_FREQUENT_CHECK;
2839
2840 {
2841 int active = ev_active (w);
2842
2843 prepares [active - 1] = prepares [--preparecnt];
2844 ev_active (prepares [active - 1]) = active;
2845 }
2846
2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850 }
2851
2852 void
2853 ev_check_start (EV_P_ ev_check *w)
2854 {
2855 if (expect_false (ev_is_active (w)))
2856 return;
2857
2858 EV_FREQUENT_CHECK;
2859
2860 ev_start (EV_A_ (W)w, ++checkcnt);
2861 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2862 checks [checkcnt - 1] = w;
2863
2864 EV_FREQUENT_CHECK;
2865 }
2866
2867 void
2868 ev_check_stop (EV_P_ ev_check *w)
2869 {
2870 clear_pending (EV_A_ (W)w);
2871 if (expect_false (!ev_is_active (w)))
2872 return;
2873
2874 EV_FREQUENT_CHECK;
2875
2876 {
2877 int active = ev_active (w);
2878
2879 checks [active - 1] = checks [--checkcnt];
2880 ev_active (checks [active - 1]) = active;
2881 }
2882
2883 ev_stop (EV_A_ (W)w);
2884
2885 EV_FREQUENT_CHECK;
2886 }
2887
2888 #if EV_EMBED_ENABLE
2889 void noinline
2890 ev_embed_sweep (EV_P_ ev_embed *w)
2891 {
2892 ev_loop (w->other, EVLOOP_NONBLOCK);
2893 }
2894
2895 static void
2896 embed_io_cb (EV_P_ ev_io *io, int revents)
2897 {
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899
2900 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK);
2904 }
2905
2906 static void
2907 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908 {
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910
2911 {
2912 struct ev_loop *loop = w->other;
2913
2914 while (fdchangecnt)
2915 {
2916 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 }
2919 }
2920 }
2921
2922 static void
2923 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2924 {
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926
2927 ev_embed_stop (EV_A_ w);
2928
2929 {
2930 struct ev_loop *loop = w->other;
2931
2932 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2934 }
2935
2936 ev_embed_start (EV_A_ w);
2937 }
2938
2939 #if 0
2940 static void
2941 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2942 {
2943 ev_idle_stop (EV_A_ idle);
2944 }
2945 #endif
2946
2947 void
2948 ev_embed_start (EV_P_ ev_embed *w)
2949 {
2950 if (expect_false (ev_is_active (w)))
2951 return;
2952
2953 {
2954 struct ev_loop *loop = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 }
2958
2959 EV_FREQUENT_CHECK;
2960
2961 ev_set_priority (&w->io, ev_priority (w));
2962 ev_io_start (EV_A_ &w->io);
2963
2964 ev_prepare_init (&w->prepare, embed_prepare_cb);
2965 ev_set_priority (&w->prepare, EV_MINPRI);
2966 ev_prepare_start (EV_A_ &w->prepare);
2967
2968 ev_fork_init (&w->fork, embed_fork_cb);
2969 ev_fork_start (EV_A_ &w->fork);
2970
2971 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2972
2973 ev_start (EV_A_ (W)w, 1);
2974
2975 EV_FREQUENT_CHECK;
2976 }
2977
2978 void
2979 ev_embed_stop (EV_P_ ev_embed *w)
2980 {
2981 clear_pending (EV_A_ (W)w);
2982 if (expect_false (!ev_is_active (w)))
2983 return;
2984
2985 EV_FREQUENT_CHECK;
2986
2987 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork);
2990
2991 EV_FREQUENT_CHECK;
2992 }
2993 #endif
2994
2995 #if EV_FORK_ENABLE
2996 void
2997 ev_fork_start (EV_P_ ev_fork *w)
2998 {
2999 if (expect_false (ev_is_active (w)))
3000 return;
3001
3002 EV_FREQUENT_CHECK;
3003
3004 ev_start (EV_A_ (W)w, ++forkcnt);
3005 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3006 forks [forkcnt - 1] = w;
3007
3008 EV_FREQUENT_CHECK;
3009 }
3010
3011 void
3012 ev_fork_stop (EV_P_ ev_fork *w)
3013 {
3014 clear_pending (EV_A_ (W)w);
3015 if (expect_false (!ev_is_active (w)))
3016 return;
3017
3018 EV_FREQUENT_CHECK;
3019
3020 {
3021 int active = ev_active (w);
3022
3023 forks [active - 1] = forks [--forkcnt];
3024 ev_active (forks [active - 1]) = active;
3025 }
3026
3027 ev_stop (EV_A_ (W)w);
3028
3029 EV_FREQUENT_CHECK;
3030 }
3031 #endif
3032
3033 #if EV_ASYNC_ENABLE
3034 void
3035 ev_async_start (EV_P_ ev_async *w)
3036 {
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 evpipe_init (EV_A);
3041
3042 EV_FREQUENT_CHECK;
3043
3044 ev_start (EV_A_ (W)w, ++asynccnt);
3045 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3046 asyncs [asynccnt - 1] = w;
3047
3048 EV_FREQUENT_CHECK;
3049 }
3050
3051 void
3052 ev_async_stop (EV_P_ ev_async *w)
3053 {
3054 clear_pending (EV_A_ (W)w);
3055 if (expect_false (!ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 {
3061 int active = ev_active (w);
3062
3063 asyncs [active - 1] = asyncs [--asynccnt];
3064 ev_active (asyncs [active - 1]) = active;
3065 }
3066
3067 ev_stop (EV_A_ (W)w);
3068
3069 EV_FREQUENT_CHECK;
3070 }
3071
3072 void
3073 ev_async_send (EV_P_ ev_async *w)
3074 {
3075 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync);
3077 }
3078 #endif
3079
3080 /*****************************************************************************/
3081
3082 struct ev_once
3083 {
3084 ev_io io;
3085 ev_timer to;
3086 void (*cb)(int revents, void *arg);
3087 void *arg;
3088 };
3089
3090 static void
3091 once_cb (EV_P_ struct ev_once *once, int revents)
3092 {
3093 void (*cb)(int revents, void *arg) = once->cb;
3094 void *arg = once->arg;
3095
3096 ev_io_stop (EV_A_ &once->io);
3097 ev_timer_stop (EV_A_ &once->to);
3098 ev_free (once);
3099
3100 cb (revents, arg);
3101 }
3102
3103 static void
3104 once_cb_io (EV_P_ ev_io *w, int revents)
3105 {
3106 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3107
3108 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3109 }
3110
3111 static void
3112 once_cb_to (EV_P_ ev_timer *w, int revents)
3113 {
3114 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3115
3116 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3117 }
3118
3119 void
3120 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3121 {
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123
3124 if (expect_false (!once))
3125 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3127 return;
3128 }
3129
3130 once->cb = cb;
3131 once->arg = arg;
3132
3133 ev_init (&once->io, once_cb_io);
3134 if (fd >= 0)
3135 {
3136 ev_io_set (&once->io, fd, events);
3137 ev_io_start (EV_A_ &once->io);
3138 }
3139
3140 ev_init (&once->to, once_cb_to);
3141 if (timeout >= 0.)
3142 {
3143 ev_timer_set (&once->to, timeout, 0.);
3144 ev_timer_start (EV_A_ &once->to);
3145 }
3146 }
3147
3148 /*****************************************************************************/
3149
3150 #if 0
3151 void
3152 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153 {
3154 int i, j;
3155 ev_watcher_list *wl, *wn;
3156
3157 if (types & (EV_IO | EV_EMBED))
3158 for (i = 0; i < anfdmax; ++i)
3159 for (wl = anfds [i].head; wl; )
3160 {
3161 wn = wl->next;
3162
3163 #if EV_EMBED_ENABLE
3164 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3165 {
3166 if (types & EV_EMBED)
3167 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3168 }
3169 else
3170 #endif
3171 #if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ;
3174 else
3175 #endif
3176 if ((ev_io *)wl != &pipeev)
3177 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl);
3179
3180 wl = wn;
3181 }
3182
3183 if (types & (EV_TIMER | EV_STAT))
3184 for (i = timercnt + HEAP0; i-- > HEAP0; )
3185 #if EV_STAT_ENABLE
3186 /*TODO: timer is not always active*/
3187 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3188 {
3189 if (types & EV_STAT)
3190 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3191 }
3192 else
3193 #endif
3194 if (types & EV_TIMER)
3195 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3196
3197 #if EV_PERIODIC_ENABLE
3198 if (types & EV_PERIODIC)
3199 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3200 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3201 #endif
3202
3203 #if EV_IDLE_ENABLE
3204 if (types & EV_IDLE)
3205 for (j = NUMPRI; i--; )
3206 for (i = idlecnt [j]; i--; )
3207 cb (EV_A_ EV_IDLE, idles [j][i]);
3208 #endif
3209
3210 #if EV_FORK_ENABLE
3211 if (types & EV_FORK)
3212 for (i = forkcnt; i--; )
3213 if (ev_cb (forks [i]) != embed_fork_cb)
3214 cb (EV_A_ EV_FORK, forks [i]);
3215 #endif
3216
3217 #if EV_ASYNC_ENABLE
3218 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221 #endif
3222
3223 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; )
3225 #if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227 #endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]);
3229
3230 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]);
3233
3234 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i)
3236 for (wl = signals [i].head; wl; )
3237 {
3238 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn;
3241 }
3242
3243 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; )
3245 for (wl = childs [i]; wl; )
3246 {
3247 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn;
3250 }
3251 /* EV_STAT 0x00001000 /* stat data changed */
3252 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253 }
3254 #endif
3255
3256 #if EV_MULTIPLICITY
3257 #include "ev_wrap.h"
3258 #endif
3259
3260 #ifdef __cplusplus
3261 }
3262 #endif
3263