ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.287
Committed: Mon Apr 20 19:45:58 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.286: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # endif
63
64 # if HAVE_CLOCK_GETTIME
65 # ifndef EV_USE_MONOTONIC
66 # define EV_USE_MONOTONIC 1
67 # endif
68 # ifndef EV_USE_REALTIME
69 # define EV_USE_REALTIME 0
70 # endif
71 # else
72 # ifndef EV_USE_MONOTONIC
73 # define EV_USE_MONOTONIC 0
74 # endif
75 # ifndef EV_USE_REALTIME
76 # define EV_USE_REALTIME 0
77 # endif
78 # endif
79
80 # ifndef EV_USE_NANOSLEEP
81 # if HAVE_NANOSLEEP
82 # define EV_USE_NANOSLEEP 1
83 # else
84 # define EV_USE_NANOSLEEP 0
85 # endif
86 # endif
87
88 # ifndef EV_USE_SELECT
89 # if HAVE_SELECT && HAVE_SYS_SELECT_H
90 # define EV_USE_SELECT 1
91 # else
92 # define EV_USE_SELECT 0
93 # endif
94 # endif
95
96 # ifndef EV_USE_POLL
97 # if HAVE_POLL && HAVE_POLL_H
98 # define EV_USE_POLL 1
99 # else
100 # define EV_USE_POLL 0
101 # endif
102 # endif
103
104 # ifndef EV_USE_EPOLL
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # define EV_USE_EPOLL 1
107 # else
108 # define EV_USE_EPOLL 0
109 # endif
110 # endif
111
112 # ifndef EV_USE_KQUEUE
113 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114 # define EV_USE_KQUEUE 1
115 # else
116 # define EV_USE_KQUEUE 0
117 # endif
118 # endif
119
120 # ifndef EV_USE_PORT
121 # if HAVE_PORT_H && HAVE_PORT_CREATE
122 # define EV_USE_PORT 1
123 # else
124 # define EV_USE_PORT 0
125 # endif
126 # endif
127
128 # ifndef EV_USE_INOTIFY
129 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130 # define EV_USE_INOTIFY 1
131 # else
132 # define EV_USE_INOTIFY 0
133 # endif
134 # endif
135
136 # ifndef EV_USE_EVENTFD
137 # if HAVE_EVENTFD
138 # define EV_USE_EVENTFD 1
139 # else
140 # define EV_USE_EVENTFD 0
141 # endif
142 # endif
143
144 #endif
145
146 #include <math.h>
147 #include <stdlib.h>
148 #include <fcntl.h>
149 #include <stddef.h>
150
151 #include <stdio.h>
152
153 #include <assert.h>
154 #include <errno.h>
155 #include <sys/types.h>
156 #include <time.h>
157
158 #include <signal.h>
159
160 #ifdef EV_H
161 # include EV_H
162 #else
163 # include "ev.h"
164 #endif
165
166 #ifndef _WIN32
167 # include <sys/time.h>
168 # include <sys/wait.h>
169 # include <unistd.h>
170 #else
171 # include <io.h>
172 # define WIN32_LEAN_AND_MEAN
173 # include <windows.h>
174 # ifndef EV_SELECT_IS_WINSOCKET
175 # define EV_SELECT_IS_WINSOCKET 1
176 # endif
177 #endif
178
179 /* this block tries to deduce configuration from header-defined symbols and defaults */
180
181 #ifndef EV_USE_CLOCK_SYSCALL
182 # if __linux && __GLIBC__ >= 2
183 # define EV_USE_CLOCK_SYSCALL 1
184 # else
185 # define EV_USE_CLOCK_SYSCALL 0
186 # endif
187 #endif
188
189 #ifndef EV_USE_MONOTONIC
190 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191 # define EV_USE_MONOTONIC 1
192 # else
193 # define EV_USE_MONOTONIC 0
194 # endif
195 #endif
196
197 #ifndef EV_USE_REALTIME
198 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199 #endif
200
201 #ifndef EV_USE_NANOSLEEP
202 # if _POSIX_C_SOURCE >= 199309L
203 # define EV_USE_NANOSLEEP 1
204 # else
205 # define EV_USE_NANOSLEEP 0
206 # endif
207 #endif
208
209 #ifndef EV_USE_SELECT
210 # define EV_USE_SELECT 1
211 #endif
212
213 #ifndef EV_USE_POLL
214 # ifdef _WIN32
215 # define EV_USE_POLL 0
216 # else
217 # define EV_USE_POLL 1
218 # endif
219 #endif
220
221 #ifndef EV_USE_EPOLL
222 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223 # define EV_USE_EPOLL 1
224 # else
225 # define EV_USE_EPOLL 0
226 # endif
227 #endif
228
229 #ifndef EV_USE_KQUEUE
230 # define EV_USE_KQUEUE 0
231 #endif
232
233 #ifndef EV_USE_PORT
234 # define EV_USE_PORT 0
235 #endif
236
237 #ifndef EV_USE_INOTIFY
238 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239 # define EV_USE_INOTIFY 1
240 # else
241 # define EV_USE_INOTIFY 0
242 # endif
243 #endif
244
245 #ifndef EV_PID_HASHSIZE
246 # if EV_MINIMAL
247 # define EV_PID_HASHSIZE 1
248 # else
249 # define EV_PID_HASHSIZE 16
250 # endif
251 #endif
252
253 #ifndef EV_INOTIFY_HASHSIZE
254 # if EV_MINIMAL
255 # define EV_INOTIFY_HASHSIZE 1
256 # else
257 # define EV_INOTIFY_HASHSIZE 16
258 # endif
259 #endif
260
261 #ifndef EV_USE_EVENTFD
262 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263 # define EV_USE_EVENTFD 1
264 # else
265 # define EV_USE_EVENTFD 0
266 # endif
267 #endif
268
269 #if 0 /* debugging */
270 # define EV_VERIFY 3
271 # define EV_USE_4HEAP 1
272 # define EV_HEAP_CACHE_AT 1
273 #endif
274
275 #ifndef EV_VERIFY
276 # define EV_VERIFY !EV_MINIMAL
277 #endif
278
279 #ifndef EV_USE_4HEAP
280 # define EV_USE_4HEAP !EV_MINIMAL
281 #endif
282
283 #ifndef EV_HEAP_CACHE_AT
284 # define EV_HEAP_CACHE_AT !EV_MINIMAL
285 #endif
286
287 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289 #ifndef CLOCK_MONOTONIC
290 # undef EV_USE_MONOTONIC
291 # define EV_USE_MONOTONIC 0
292 #endif
293
294 #ifndef CLOCK_REALTIME
295 # undef EV_USE_REALTIME
296 # define EV_USE_REALTIME 0
297 #endif
298
299 #if !EV_STAT_ENABLE
300 # undef EV_USE_INOTIFY
301 # define EV_USE_INOTIFY 0
302 #endif
303
304 #if !EV_USE_NANOSLEEP
305 # ifndef _WIN32
306 # include <sys/select.h>
307 # endif
308 #endif
309
310 #if EV_USE_INOTIFY
311 # include <sys/utsname.h>
312 # include <sys/statfs.h>
313 # include <sys/inotify.h>
314 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315 # ifndef IN_DONT_FOLLOW
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 # endif
319 #endif
320
321 #if EV_SELECT_IS_WINSOCKET
322 # include <winsock.h>
323 #endif
324
325 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326 /* which makes programs even slower. might work on other unices, too. */
327 #if EV_USE_CLOCK_SYSCALL
328 # include <syscall.h>
329 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330 # undef EV_USE_MONOTONIC
331 # define EV_USE_MONOTONIC 1
332 #endif
333
334 #if EV_USE_EVENTFD
335 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336 # include <stdint.h>
337 # ifdef __cplusplus
338 extern "C" {
339 # endif
340 int eventfd (unsigned int initval, int flags);
341 # ifdef __cplusplus
342 }
343 # endif
344 #endif
345
346 /**/
347
348 #if EV_VERIFY >= 3
349 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350 #else
351 # define EV_FREQUENT_CHECK do { } while (0)
352 #endif
353
354 /*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
364 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367
368 #if __GNUC__ >= 4
369 # define expect(expr,value) __builtin_expect ((expr),(value))
370 # define noinline __attribute__ ((noinline))
371 #else
372 # define expect(expr,value) (expr)
373 # define noinline
374 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375 # define inline
376 # endif
377 #endif
378
379 #define expect_false(expr) expect ((expr) != 0, 0)
380 #define expect_true(expr) expect ((expr) != 0, 1)
381 #define inline_size static inline
382
383 #if EV_MINIMAL
384 # define inline_speed static noinline
385 #else
386 # define inline_speed static inline
387 #endif
388
389 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
391
392 #define EMPTY /* required for microsofts broken pseudo-c compiler */
393 #define EMPTY2(a,b) /* used to suppress some warnings */
394
395 typedef ev_watcher *W;
396 typedef ev_watcher_list *WL;
397 typedef ev_watcher_time *WT;
398
399 #define ev_active(w) ((W)(w))->active
400 #define ev_at(w) ((WT)(w))->at
401
402 #if EV_USE_REALTIME
403 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
404 /* giving it a reasonably high chance of working on typical architetcures */
405 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406 #endif
407
408 #if EV_USE_MONOTONIC
409 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410 #endif
411
412 #ifdef _WIN32
413 # include "ev_win32.c"
414 #endif
415
416 /*****************************************************************************/
417
418 static void (*syserr_cb)(const char *msg);
419
420 void
421 ev_set_syserr_cb (void (*cb)(const char *msg))
422 {
423 syserr_cb = cb;
424 }
425
426 static void noinline
427 ev_syserr (const char *msg)
428 {
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439 }
440
441 static void *
442 ev_realloc_emul (void *ptr, long size)
443 {
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454 }
455
456 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458 void
459 ev_set_allocator (void *(*cb)(void *ptr, long size))
460 {
461 alloc = cb;
462 }
463
464 inline_speed void *
465 ev_realloc (void *ptr, long size)
466 {
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476 }
477
478 #define ev_malloc(size) ev_realloc (0, (size))
479 #define ev_free(ptr) ev_realloc ((ptr), 0)
480
481 /*****************************************************************************/
482
483 typedef struct
484 {
485 WL head;
486 unsigned char events;
487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490 #if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492 #endif
493 #if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495 #endif
496 } ANFD;
497
498 typedef struct
499 {
500 W w;
501 int events;
502 } ANPENDING;
503
504 #if EV_USE_INOTIFY
505 /* hash table entry per inotify-id */
506 typedef struct
507 {
508 WL head;
509 } ANFS;
510 #endif
511
512 /* Heap Entry */
513 #if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522 #else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528 #endif
529
530 #if EV_MULTIPLICITY
531
532 struct ev_loop
533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
536 #define VAR(name,decl) decl;
537 #include "ev_vars.h"
538 #undef VAR
539 };
540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
544
545 #else
546
547 ev_tstamp ev_rt_now;
548 #define VAR(name,decl) static decl;
549 #include "ev_vars.h"
550 #undef VAR
551
552 static int ev_default_loop_ptr;
553
554 #endif
555
556 /*****************************************************************************/
557
558 ev_tstamp
559 ev_time (void)
560 {
561 #if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
564 struct timespec ts;
565 clock_gettime (CLOCK_REALTIME, &ts);
566 return ts.tv_sec + ts.tv_nsec * 1e-9;
567 }
568 #endif
569
570 struct timeval tv;
571 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6;
573 }
574
575 inline_size ev_tstamp
576 get_clock (void)
577 {
578 #if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic))
580 {
581 struct timespec ts;
582 clock_gettime (CLOCK_MONOTONIC, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9;
584 }
585 #endif
586
587 return ev_time ();
588 }
589
590 #if EV_MULTIPLICITY
591 ev_tstamp
592 ev_now (EV_P)
593 {
594 return ev_rt_now;
595 }
596 #endif
597
598 void
599 ev_sleep (ev_tstamp delay)
600 {
601 if (delay > 0.)
602 {
603 #if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610 #elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612 #else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622 #endif
623 }
624 }
625
626 /*****************************************************************************/
627
628 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630 inline_size int
631 array_nextsize (int elem, int cur, int cnt)
632 {
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649 }
650
651 static noinline void *
652 array_realloc (int elem, void *base, int *cur, int cnt)
653 {
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656 }
657
658 #define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661 #define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670 #if 0
671 #define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678 #endif
679
680 #define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682
683 /*****************************************************************************/
684
685 void noinline
686 ev_feed_event (EV_P_ void *w, int revents)
687 {
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents;
699 }
700 }
701
702 inline_speed void
703 feed_reverse (EV_P_ W w)
704 {
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707 }
708
709 inline_size void
710 feed_reverse_done (EV_P_ int revents)
711 {
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715 }
716
717 inline_speed void
718 queue_events (EV_P_ W *events, int eventcnt, int type)
719 {
720 int i;
721
722 for (i = 0; i < eventcnt; ++i)
723 ev_feed_event (EV_A_ events [i], type);
724 }
725
726 /*****************************************************************************/
727
728 inline_speed void
729 fd_event (EV_P_ int fd, int revents)
730 {
731 ANFD *anfd = anfds + fd;
732 ev_io *w;
733
734 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
735 {
736 int ev = w->events & revents;
737
738 if (ev)
739 ev_feed_event (EV_A_ (W)w, ev);
740 }
741 }
742
743 void
744 ev_feed_fd_event (EV_P_ int fd, int revents)
745 {
746 if (fd >= 0 && fd < anfdmax)
747 fd_event (EV_A_ fd, revents);
748 }
749
750 inline_size void
751 fd_reify (EV_P)
752 {
753 int i;
754
755 for (i = 0; i < fdchangecnt; ++i)
756 {
757 int fd = fdchanges [i];
758 ANFD *anfd = anfds + fd;
759 ev_io *w;
760
761 unsigned char events = 0;
762
763 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
764 events |= (unsigned char)w->events;
765
766 #if EV_SELECT_IS_WINSOCKET
767 if (events)
768 {
769 unsigned long arg;
770 #ifdef EV_FD_TO_WIN32_HANDLE
771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
772 #else
773 anfd->handle = _get_osfhandle (fd);
774 #endif
775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
776 }
777 #endif
778
779 {
780 unsigned char o_events = anfd->events;
781 unsigned char o_reify = anfd->reify;
782
783 anfd->reify = 0;
784 anfd->events = events;
785
786 if (o_events != events || o_reify & EV__IOFDSET)
787 backend_modify (EV_A_ fd, o_events, events);
788 }
789 }
790
791 fdchangecnt = 0;
792 }
793
794 inline_size void
795 fd_change (EV_P_ int fd, int flags)
796 {
797 unsigned char reify = anfds [fd].reify;
798 anfds [fd].reify |= flags;
799
800 if (expect_true (!reify))
801 {
802 ++fdchangecnt;
803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
804 fdchanges [fdchangecnt - 1] = fd;
805 }
806 }
807
808 inline_speed void
809 fd_kill (EV_P_ int fd)
810 {
811 ev_io *w;
812
813 while ((w = (ev_io *)anfds [fd].head))
814 {
815 ev_io_stop (EV_A_ w);
816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
817 }
818 }
819
820 inline_size int
821 fd_valid (int fd)
822 {
823 #ifdef _WIN32
824 return _get_osfhandle (fd) != -1;
825 #else
826 return fcntl (fd, F_GETFD) != -1;
827 #endif
828 }
829
830 /* called on EBADF to verify fds */
831 static void noinline
832 fd_ebadf (EV_P)
833 {
834 int fd;
835
836 for (fd = 0; fd < anfdmax; ++fd)
837 if (anfds [fd].events)
838 if (!fd_valid (fd) && errno == EBADF)
839 fd_kill (EV_A_ fd);
840 }
841
842 /* called on ENOMEM in select/poll to kill some fds and retry */
843 static void noinline
844 fd_enomem (EV_P)
845 {
846 int fd;
847
848 for (fd = anfdmax; fd--; )
849 if (anfds [fd].events)
850 {
851 fd_kill (EV_A_ fd);
852 return;
853 }
854 }
855
856 /* usually called after fork if backend needs to re-arm all fds from scratch */
857 static void noinline
858 fd_rearm_all (EV_P)
859 {
860 int fd;
861
862 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events)
864 {
865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
868 }
869 }
870
871 /*****************************************************************************/
872
873 /*
874 * the heap functions want a real array index. array index 0 uis guaranteed to not
875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
876 * the branching factor of the d-tree.
877 */
878
879 /*
880 * at the moment we allow libev the luxury of two heaps,
881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885 #if EV_USE_4HEAP
886
887 #define DHEAP 4
888 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
889 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890 #define UPHEAP_DONE(p,k) ((p) == (k))
891
892 /* away from the root */
893 inline_speed void
894 downheap (ANHE *heap, int N, int k)
895 {
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
921 break;
922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934 }
935
936 #else /* 4HEAP */
937
938 #define HEAP0 1
939 #define HPARENT(k) ((k) >> 1)
940 #define UPHEAP_DONE(p,k) (!(p))
941
942 /* away from the root */
943 inline_speed void
944 downheap (ANHE *heap, int N, int k)
945 {
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969 }
970 #endif
971
972 /* towards the root */
973 inline_speed void
974 upheap (ANHE *heap, int k)
975 {
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
985 heap [k] = heap [p];
986 ev_active (ANHE_w (heap [k])) = k;
987 k = p;
988 }
989
990 heap [k] = he;
991 ev_active (ANHE_w (he)) = k;
992 }
993
994 inline_size void
995 adjustheap (ANHE *heap, int N, int k)
996 {
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
998 upheap (heap, k);
999 else
1000 downheap (heap, N, k);
1001 }
1002
1003 /* rebuild the heap: this function is used only once and executed rarely */
1004 inline_size void
1005 reheap (ANHE *heap, int N)
1006 {
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
1013 }
1014
1015 /*****************************************************************************/
1016
1017 typedef struct
1018 {
1019 WL head;
1020 EV_ATOMIC_T gotsig;
1021 } ANSIG;
1022
1023 static ANSIG *signals;
1024 static int signalmax;
1025
1026 static EV_ATOMIC_T gotsig;
1027
1028 /*****************************************************************************/
1029
1030 inline_speed void
1031 fd_intern (int fd)
1032 {
1033 #ifdef _WIN32
1034 unsigned long arg = 1;
1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1036 #else
1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
1038 fcntl (fd, F_SETFL, O_NONBLOCK);
1039 #endif
1040 }
1041
1042 static void noinline
1043 evpipe_init (EV_P)
1044 {
1045 if (!ev_is_active (&pipeev))
1046 {
1047 #if EV_USE_EVENTFD
1048 if ((evfd = eventfd (0, 0)) >= 0)
1049 {
1050 evpipe [0] = -1;
1051 fd_intern (evfd);
1052 ev_io_set (&pipeev, evfd, EV_READ);
1053 }
1054 else
1055 #endif
1056 {
1057 while (pipe (evpipe))
1058 ev_syserr ("(libev) error creating signal/async pipe");
1059
1060 fd_intern (evpipe [0]);
1061 fd_intern (evpipe [1]);
1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
1063 }
1064
1065 ev_io_start (EV_A_ &pipeev);
1066 ev_unref (EV_A); /* watcher should not keep loop alive */
1067 }
1068 }
1069
1070 inline_size void
1071 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1072 {
1073 if (!*flag)
1074 {
1075 int old_errno = errno; /* save errno because write might clobber it */
1076
1077 *flag = 1;
1078
1079 #if EV_USE_EVENTFD
1080 if (evfd >= 0)
1081 {
1082 uint64_t counter = 1;
1083 write (evfd, &counter, sizeof (uint64_t));
1084 }
1085 else
1086 #endif
1087 write (evpipe [1], &old_errno, 1);
1088
1089 errno = old_errno;
1090 }
1091 }
1092
1093 static void
1094 pipecb (EV_P_ ev_io *iow, int revents)
1095 {
1096 #if EV_USE_EVENTFD
1097 if (evfd >= 0)
1098 {
1099 uint64_t counter;
1100 read (evfd, &counter, sizeof (uint64_t));
1101 }
1102 else
1103 #endif
1104 {
1105 char dummy;
1106 read (evpipe [0], &dummy, 1);
1107 }
1108
1109 if (gotsig && ev_is_default_loop (EV_A))
1110 {
1111 int signum;
1112 gotsig = 0;
1113
1114 for (signum = signalmax; signum--; )
1115 if (signals [signum].gotsig)
1116 ev_feed_signal_event (EV_A_ signum + 1);
1117 }
1118
1119 #if EV_ASYNC_ENABLE
1120 if (gotasync)
1121 {
1122 int i;
1123 gotasync = 0;
1124
1125 for (i = asynccnt; i--; )
1126 if (asyncs [i]->sent)
1127 {
1128 asyncs [i]->sent = 0;
1129 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1130 }
1131 }
1132 #endif
1133 }
1134
1135 /*****************************************************************************/
1136
1137 static void
1138 ev_sighandler (int signum)
1139 {
1140 #if EV_MULTIPLICITY
1141 struct ev_loop *loop = &default_loop_struct;
1142 #endif
1143
1144 #if _WIN32
1145 signal (signum, ev_sighandler);
1146 #endif
1147
1148 signals [signum - 1].gotsig = 1;
1149 evpipe_write (EV_A_ &gotsig);
1150 }
1151
1152 void noinline
1153 ev_feed_signal_event (EV_P_ int signum)
1154 {
1155 WL w;
1156
1157 #if EV_MULTIPLICITY
1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1159 #endif
1160
1161 --signum;
1162
1163 if (signum < 0 || signum >= signalmax)
1164 return;
1165
1166 signals [signum].gotsig = 0;
1167
1168 for (w = signals [signum].head; w; w = w->next)
1169 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1170 }
1171
1172 /*****************************************************************************/
1173
1174 static WL childs [EV_PID_HASHSIZE];
1175
1176 #ifndef _WIN32
1177
1178 static ev_signal childev;
1179
1180 #ifndef WIFCONTINUED
1181 # define WIFCONTINUED(status) 0
1182 #endif
1183
1184 inline_speed void
1185 child_reap (EV_P_ int chain, int pid, int status)
1186 {
1187 ev_child *w;
1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1189
1190 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1191 {
1192 if ((w->pid == pid || !w->pid)
1193 && (!traced || (w->flags & 1)))
1194 {
1195 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1196 w->rpid = pid;
1197 w->rstatus = status;
1198 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1199 }
1200 }
1201 }
1202
1203 #ifndef WCONTINUED
1204 # define WCONTINUED 0
1205 #endif
1206
1207 static void
1208 childcb (EV_P_ ev_signal *sw, int revents)
1209 {
1210 int pid, status;
1211
1212 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1213 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1214 if (!WCONTINUED
1215 || errno != EINVAL
1216 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1217 return;
1218
1219 /* make sure we are called again until all children have been reaped */
1220 /* we need to do it this way so that the callback gets called before we continue */
1221 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1222
1223 child_reap (EV_A_ pid, pid, status);
1224 if (EV_PID_HASHSIZE > 1)
1225 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1226 }
1227
1228 #endif
1229
1230 /*****************************************************************************/
1231
1232 #if EV_USE_PORT
1233 # include "ev_port.c"
1234 #endif
1235 #if EV_USE_KQUEUE
1236 # include "ev_kqueue.c"
1237 #endif
1238 #if EV_USE_EPOLL
1239 # include "ev_epoll.c"
1240 #endif
1241 #if EV_USE_POLL
1242 # include "ev_poll.c"
1243 #endif
1244 #if EV_USE_SELECT
1245 # include "ev_select.c"
1246 #endif
1247
1248 int
1249 ev_version_major (void)
1250 {
1251 return EV_VERSION_MAJOR;
1252 }
1253
1254 int
1255 ev_version_minor (void)
1256 {
1257 return EV_VERSION_MINOR;
1258 }
1259
1260 /* return true if we are running with elevated privileges and should ignore env variables */
1261 int inline_size
1262 enable_secure (void)
1263 {
1264 #ifdef _WIN32
1265 return 0;
1266 #else
1267 return getuid () != geteuid ()
1268 || getgid () != getegid ();
1269 #endif
1270 }
1271
1272 unsigned int
1273 ev_supported_backends (void)
1274 {
1275 unsigned int flags = 0;
1276
1277 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1278 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1279 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1280 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1281 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1282
1283 return flags;
1284 }
1285
1286 unsigned int
1287 ev_recommended_backends (void)
1288 {
1289 unsigned int flags = ev_supported_backends ();
1290
1291 #ifndef __NetBSD__
1292 /* kqueue is borked on everything but netbsd apparently */
1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1294 flags &= ~EVBACKEND_KQUEUE;
1295 #endif
1296 #ifdef __APPLE__
1297 /* only select works correctly on that "unix-certified" platform */
1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1300 #endif
1301
1302 return flags;
1303 }
1304
1305 unsigned int
1306 ev_embeddable_backends (void)
1307 {
1308 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1309
1310 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1311 /* please fix it and tell me how to detect the fix */
1312 flags &= ~EVBACKEND_EPOLL;
1313
1314 return flags;
1315 }
1316
1317 unsigned int
1318 ev_backend (EV_P)
1319 {
1320 return backend;
1321 }
1322
1323 unsigned int
1324 ev_loop_count (EV_P)
1325 {
1326 return loop_count;
1327 }
1328
1329 void
1330 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1331 {
1332 io_blocktime = interval;
1333 }
1334
1335 void
1336 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1337 {
1338 timeout_blocktime = interval;
1339 }
1340
1341 static void noinline
1342 loop_init (EV_P_ unsigned int flags)
1343 {
1344 if (!backend)
1345 {
1346 #if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354 #endif
1355
1356 #if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1358 {
1359 struct timespec ts;
1360
1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1362 have_monotonic = 1;
1363 }
1364 #endif
1365
1366 ev_rt_now = ev_time ();
1367 mn_now = get_clock ();
1368 now_floor = mn_now;
1369 rtmn_diff = ev_rt_now - mn_now;
1370
1371 io_blocktime = 0.;
1372 timeout_blocktime = 0.;
1373 backend = 0;
1374 backend_fd = -1;
1375 gotasync = 0;
1376 #if EV_USE_INOTIFY
1377 fs_fd = -2;
1378 #endif
1379
1380 /* pid check not overridable via env */
1381 #ifndef _WIN32
1382 if (flags & EVFLAG_FORKCHECK)
1383 curpid = getpid ();
1384 #endif
1385
1386 if (!(flags & EVFLAG_NOENV)
1387 && !enable_secure ()
1388 && getenv ("LIBEV_FLAGS"))
1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1390
1391 if (!(flags & 0x0000ffffU))
1392 flags |= ev_recommended_backends ();
1393
1394 #if EV_USE_PORT
1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1396 #endif
1397 #if EV_USE_KQUEUE
1398 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1399 #endif
1400 #if EV_USE_EPOLL
1401 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1402 #endif
1403 #if EV_USE_POLL
1404 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1405 #endif
1406 #if EV_USE_SELECT
1407 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1408 #endif
1409
1410 ev_init (&pipeev, pipecb);
1411 ev_set_priority (&pipeev, EV_MAXPRI);
1412 }
1413 }
1414
1415 static void noinline
1416 loop_destroy (EV_P)
1417 {
1418 int i;
1419
1420 if (ev_is_active (&pipeev))
1421 {
1422 ev_ref (EV_A); /* signal watcher */
1423 ev_io_stop (EV_A_ &pipeev);
1424
1425 #if EV_USE_EVENTFD
1426 if (evfd >= 0)
1427 close (evfd);
1428 #endif
1429
1430 if (evpipe [0] >= 0)
1431 {
1432 close (evpipe [0]);
1433 close (evpipe [1]);
1434 }
1435 }
1436
1437 #if EV_USE_INOTIFY
1438 if (fs_fd >= 0)
1439 close (fs_fd);
1440 #endif
1441
1442 if (backend_fd >= 0)
1443 close (backend_fd);
1444
1445 #if EV_USE_PORT
1446 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1447 #endif
1448 #if EV_USE_KQUEUE
1449 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1450 #endif
1451 #if EV_USE_EPOLL
1452 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1453 #endif
1454 #if EV_USE_POLL
1455 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1456 #endif
1457 #if EV_USE_SELECT
1458 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1459 #endif
1460
1461 for (i = NUMPRI; i--; )
1462 {
1463 array_free (pending, [i]);
1464 #if EV_IDLE_ENABLE
1465 array_free (idle, [i]);
1466 #endif
1467 }
1468
1469 ev_free (anfds); anfdmax = 0;
1470
1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1473 array_free (fdchange, EMPTY);
1474 array_free (timer, EMPTY);
1475 #if EV_PERIODIC_ENABLE
1476 array_free (periodic, EMPTY);
1477 #endif
1478 #if EV_FORK_ENABLE
1479 array_free (fork, EMPTY);
1480 #endif
1481 array_free (prepare, EMPTY);
1482 array_free (check, EMPTY);
1483 #if EV_ASYNC_ENABLE
1484 array_free (async, EMPTY);
1485 #endif
1486
1487 backend = 0;
1488 }
1489
1490 #if EV_USE_INOTIFY
1491 inline_size void infy_fork (EV_P);
1492 #endif
1493
1494 inline_size void
1495 loop_fork (EV_P)
1496 {
1497 #if EV_USE_PORT
1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1499 #endif
1500 #if EV_USE_KQUEUE
1501 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1502 #endif
1503 #if EV_USE_EPOLL
1504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1505 #endif
1506 #if EV_USE_INOTIFY
1507 infy_fork (EV_A);
1508 #endif
1509
1510 if (ev_is_active (&pipeev))
1511 {
1512 /* this "locks" the handlers against writing to the pipe */
1513 /* while we modify the fd vars */
1514 gotsig = 1;
1515 #if EV_ASYNC_ENABLE
1516 gotasync = 1;
1517 #endif
1518
1519 ev_ref (EV_A);
1520 ev_io_stop (EV_A_ &pipeev);
1521
1522 #if EV_USE_EVENTFD
1523 if (evfd >= 0)
1524 close (evfd);
1525 #endif
1526
1527 if (evpipe [0] >= 0)
1528 {
1529 close (evpipe [0]);
1530 close (evpipe [1]);
1531 }
1532
1533 evpipe_init (EV_A);
1534 /* now iterate over everything, in case we missed something */
1535 pipecb (EV_A_ &pipeev, EV_READ);
1536 }
1537
1538 postfork = 0;
1539 }
1540
1541 #if EV_MULTIPLICITY
1542
1543 struct ev_loop *
1544 ev_loop_new (unsigned int flags)
1545 {
1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1547
1548 memset (loop, 0, sizeof (struct ev_loop));
1549
1550 loop_init (EV_A_ flags);
1551
1552 if (ev_backend (EV_A))
1553 return loop;
1554
1555 return 0;
1556 }
1557
1558 void
1559 ev_loop_destroy (EV_P)
1560 {
1561 loop_destroy (EV_A);
1562 ev_free (loop);
1563 }
1564
1565 void
1566 ev_loop_fork (EV_P)
1567 {
1568 postfork = 1; /* must be in line with ev_default_fork */
1569 }
1570
1571 #if EV_VERIFY
1572 static void noinline
1573 verify_watcher (EV_P_ W w)
1574 {
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579 }
1580
1581 static void noinline
1582 verify_heap (EV_P_ ANHE *heap, int N)
1583 {
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594 }
1595
1596 static void noinline
1597 array_verify (EV_P_ W *ws, int cnt)
1598 {
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604 }
1605 #endif
1606
1607 void
1608 ev_loop_verify (EV_P)
1609 {
1610 #if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632 #if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635 #endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640 #if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644 #endif
1645 }
1646
1647 #if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650 #endif
1651
1652 #if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655 #endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663 # if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1666 # endif
1667 #endif
1668 }
1669
1670 #endif /* multiplicity */
1671
1672 #if EV_MULTIPLICITY
1673 struct ev_loop *
1674 ev_default_loop_init (unsigned int flags)
1675 #else
1676 int
1677 ev_default_loop (unsigned int flags)
1678 #endif
1679 {
1680 if (!ev_default_loop_ptr)
1681 {
1682 #if EV_MULTIPLICITY
1683 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1684 #else
1685 ev_default_loop_ptr = 1;
1686 #endif
1687
1688 loop_init (EV_A_ flags);
1689
1690 if (ev_backend (EV_A))
1691 {
1692 #ifndef _WIN32
1693 ev_signal_init (&childev, childcb, SIGCHLD);
1694 ev_set_priority (&childev, EV_MAXPRI);
1695 ev_signal_start (EV_A_ &childev);
1696 ev_unref (EV_A); /* child watcher should not keep loop alive */
1697 #endif
1698 }
1699 else
1700 ev_default_loop_ptr = 0;
1701 }
1702
1703 return ev_default_loop_ptr;
1704 }
1705
1706 void
1707 ev_default_destroy (void)
1708 {
1709 #if EV_MULTIPLICITY
1710 struct ev_loop *loop = ev_default_loop_ptr;
1711 #endif
1712
1713 ev_default_loop_ptr = 0;
1714
1715 #ifndef _WIN32
1716 ev_ref (EV_A); /* child watcher */
1717 ev_signal_stop (EV_A_ &childev);
1718 #endif
1719
1720 loop_destroy (EV_A);
1721 }
1722
1723 void
1724 ev_default_fork (void)
1725 {
1726 #if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr;
1728 #endif
1729
1730 postfork = 1; /* must be in line with ev_loop_fork */
1731 }
1732
1733 /*****************************************************************************/
1734
1735 void
1736 ev_invoke (EV_P_ void *w, int revents)
1737 {
1738 EV_CB_INVOKE ((W)w, revents);
1739 }
1740
1741 inline_speed void
1742 call_pending (EV_P)
1743 {
1744 int pri;
1745
1746 for (pri = NUMPRI; pri--; )
1747 while (pendingcnt [pri])
1748 {
1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1750
1751 if (expect_true (p->w))
1752 {
1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1754
1755 p->w->pending = 0;
1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1758 }
1759 }
1760 }
1761
1762 #if EV_IDLE_ENABLE
1763 inline_size void
1764 idle_reify (EV_P)
1765 {
1766 if (expect_false (idleall))
1767 {
1768 int pri;
1769
1770 for (pri = NUMPRI; pri--; )
1771 {
1772 if (pendingcnt [pri])
1773 break;
1774
1775 if (idlecnt [pri])
1776 {
1777 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1778 break;
1779 }
1780 }
1781 }
1782 }
1783 #endif
1784
1785 inline_size void
1786 timers_reify (EV_P)
1787 {
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820 }
1821
1822 #if EV_PERIODIC_ENABLE
1823 inline_size void
1824 periodics_reify (EV_P)
1825 {
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877 }
1878
1879 static void noinline
1880 periodics_reschedule (EV_P)
1881 {
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898 }
1899 #endif
1900
1901 static void noinline
1902 timers_reschedule (EV_P_ ev_tstamp adjust)
1903 {
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912 }
1913
1914 inline_speed void
1915 time_update (EV_P_ ev_tstamp max_block)
1916 {
1917 int i;
1918
1919 #if EV_USE_MONOTONIC
1920 if (expect_true (have_monotonic))
1921 {
1922 ev_tstamp odiff = rtmn_diff;
1923
1924 mn_now = get_clock ();
1925
1926 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1927 /* interpolate in the meantime */
1928 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1929 {
1930 ev_rt_now = rtmn_diff + mn_now;
1931 return;
1932 }
1933
1934 now_floor = mn_now;
1935 ev_rt_now = ev_time ();
1936
1937 /* loop a few times, before making important decisions.
1938 * on the choice of "4": one iteration isn't enough,
1939 * in case we get preempted during the calls to
1940 * ev_time and get_clock. a second call is almost guaranteed
1941 * to succeed in that case, though. and looping a few more times
1942 * doesn't hurt either as we only do this on time-jumps or
1943 * in the unlikely event of having been preempted here.
1944 */
1945 for (i = 4; --i; )
1946 {
1947 rtmn_diff = ev_rt_now - mn_now;
1948
1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1950 return; /* all is well */
1951
1952 ev_rt_now = ev_time ();
1953 mn_now = get_clock ();
1954 now_floor = mn_now;
1955 }
1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1959 # if EV_PERIODIC_ENABLE
1960 periodics_reschedule (EV_A);
1961 # endif
1962 }
1963 else
1964 #endif
1965 {
1966 ev_rt_now = ev_time ();
1967
1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1972 #if EV_PERIODIC_ENABLE
1973 periodics_reschedule (EV_A);
1974 #endif
1975 }
1976
1977 mn_now = ev_rt_now;
1978 }
1979 }
1980
1981 static int loop_done;
1982
1983 void
1984 ev_loop (EV_P_ int flags)
1985 {
1986 loop_done = EVUNLOOP_CANCEL;
1987
1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1989
1990 do
1991 {
1992 #if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994 #endif
1995
1996 #ifndef _WIN32
1997 if (expect_false (curpid)) /* penalise the forking check even more */
1998 if (expect_false (getpid () != curpid))
1999 {
2000 curpid = getpid ();
2001 postfork = 1;
2002 }
2003 #endif
2004
2005 #if EV_FORK_ENABLE
2006 /* we might have forked, so queue fork handlers */
2007 if (expect_false (postfork))
2008 if (forkcnt)
2009 {
2010 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2011 call_pending (EV_A);
2012 }
2013 #endif
2014
2015 /* queue prepare watchers (and execute them) */
2016 if (expect_false (preparecnt))
2017 {
2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2019 call_pending (EV_A);
2020 }
2021
2022 /* we might have forked, so reify kernel state if necessary */
2023 if (expect_false (postfork))
2024 loop_fork (EV_A);
2025
2026 /* update fd-related kernel structures */
2027 fd_reify (EV_A);
2028
2029 /* calculate blocking time */
2030 {
2031 ev_tstamp waittime = 0.;
2032 ev_tstamp sleeptime = 0.;
2033
2034 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2035 {
2036 /* update time to cancel out callback processing overhead */
2037 time_update (EV_A_ 1e100);
2038
2039 waittime = MAX_BLOCKTIME;
2040
2041 if (timercnt)
2042 {
2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2044 if (waittime > to) waittime = to;
2045 }
2046
2047 #if EV_PERIODIC_ENABLE
2048 if (periodiccnt)
2049 {
2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2051 if (waittime > to) waittime = to;
2052 }
2053 #endif
2054
2055 if (expect_false (waittime < timeout_blocktime))
2056 waittime = timeout_blocktime;
2057
2058 sleeptime = waittime - backend_fudge;
2059
2060 if (expect_true (sleeptime > io_blocktime))
2061 sleeptime = io_blocktime;
2062
2063 if (sleeptime)
2064 {
2065 ev_sleep (sleeptime);
2066 waittime -= sleeptime;
2067 }
2068 }
2069
2070 ++loop_count;
2071 backend_poll (EV_A_ waittime);
2072
2073 /* update ev_rt_now, do magic */
2074 time_update (EV_A_ waittime + sleeptime);
2075 }
2076
2077 /* queue pending timers and reschedule them */
2078 timers_reify (EV_A); /* relative timers called last */
2079 #if EV_PERIODIC_ENABLE
2080 periodics_reify (EV_A); /* absolute timers called first */
2081 #endif
2082
2083 #if EV_IDLE_ENABLE
2084 /* queue idle watchers unless other events are pending */
2085 idle_reify (EV_A);
2086 #endif
2087
2088 /* queue check watchers, to be executed first */
2089 if (expect_false (checkcnt))
2090 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2091
2092 call_pending (EV_A);
2093 }
2094 while (expect_true (
2095 activecnt
2096 && !loop_done
2097 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2098 ));
2099
2100 if (loop_done == EVUNLOOP_ONE)
2101 loop_done = EVUNLOOP_CANCEL;
2102 }
2103
2104 void
2105 ev_unloop (EV_P_ int how)
2106 {
2107 loop_done = how;
2108 }
2109
2110 void
2111 ev_ref (EV_P)
2112 {
2113 ++activecnt;
2114 }
2115
2116 void
2117 ev_unref (EV_P)
2118 {
2119 --activecnt;
2120 }
2121
2122 void
2123 ev_now_update (EV_P)
2124 {
2125 time_update (EV_A_ 1e100);
2126 }
2127
2128 void
2129 ev_suspend (EV_P)
2130 {
2131 ev_now_update (EV_A);
2132 }
2133
2134 void
2135 ev_resume (EV_P)
2136 {
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141 #if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143 #endif
2144 }
2145
2146 /*****************************************************************************/
2147
2148 inline_size void
2149 wlist_add (WL *head, WL elem)
2150 {
2151 elem->next = *head;
2152 *head = elem;
2153 }
2154
2155 inline_size void
2156 wlist_del (WL *head, WL elem)
2157 {
2158 while (*head)
2159 {
2160 if (*head == elem)
2161 {
2162 *head = elem->next;
2163 return;
2164 }
2165
2166 head = &(*head)->next;
2167 }
2168 }
2169
2170 inline_speed void
2171 clear_pending (EV_P_ W w)
2172 {
2173 if (w->pending)
2174 {
2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
2176 w->pending = 0;
2177 }
2178 }
2179
2180 int
2181 ev_clear_pending (EV_P_ void *w)
2182 {
2183 W w_ = (W)w;
2184 int pending = w_->pending;
2185
2186 if (expect_true (pending))
2187 {
2188 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2189 w_->pending = 0;
2190 p->w = 0;
2191 return p->events;
2192 }
2193 else
2194 return 0;
2195 }
2196
2197 inline_size void
2198 pri_adjust (EV_P_ W w)
2199 {
2200 int pri = w->priority;
2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2203 w->priority = pri;
2204 }
2205
2206 inline_speed void
2207 ev_start (EV_P_ W w, int active)
2208 {
2209 pri_adjust (EV_A_ w);
2210 w->active = active;
2211 ev_ref (EV_A);
2212 }
2213
2214 inline_size void
2215 ev_stop (EV_P_ W w)
2216 {
2217 ev_unref (EV_A);
2218 w->active = 0;
2219 }
2220
2221 /*****************************************************************************/
2222
2223 void noinline
2224 ev_io_start (EV_P_ ev_io *w)
2225 {
2226 int fd = w->fd;
2227
2228 if (expect_false (ev_is_active (w)))
2229 return;
2230
2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
2235
2236 ev_start (EV_A_ (W)w, 1);
2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2238 wlist_add (&anfds[fd].head, (WL)w);
2239
2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2241 w->events &= ~EV__IOFDSET;
2242
2243 EV_FREQUENT_CHECK;
2244 }
2245
2246 void noinline
2247 ev_io_stop (EV_P_ ev_io *w)
2248 {
2249 clear_pending (EV_A_ (W)w);
2250 if (expect_false (!ev_is_active (w)))
2251 return;
2252
2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2254
2255 EV_FREQUENT_CHECK;
2256
2257 wlist_del (&anfds[w->fd].head, (WL)w);
2258 ev_stop (EV_A_ (W)w);
2259
2260 fd_change (EV_A_ w->fd, 1);
2261
2262 EV_FREQUENT_CHECK;
2263 }
2264
2265 void noinline
2266 ev_timer_start (EV_P_ ev_timer *w)
2267 {
2268 if (expect_false (ev_is_active (w)))
2269 return;
2270
2271 ev_at (w) += mn_now;
2272
2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
2283
2284 EV_FREQUENT_CHECK;
2285
2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2287 }
2288
2289 void noinline
2290 ev_timer_stop (EV_P_ ev_timer *w)
2291 {
2292 clear_pending (EV_A_ (W)w);
2293 if (expect_false (!ev_is_active (w)))
2294 return;
2295
2296 EV_FREQUENT_CHECK;
2297
2298 {
2299 int active = ev_active (w);
2300
2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2302
2303 --timercnt;
2304
2305 if (expect_true (active < timercnt + HEAP0))
2306 {
2307 timers [active] = timers [timercnt + HEAP0];
2308 adjustheap (timers, timercnt, active);
2309 }
2310 }
2311
2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
2315
2316 ev_stop (EV_A_ (W)w);
2317 }
2318
2319 void noinline
2320 ev_timer_again (EV_P_ ev_timer *w)
2321 {
2322 EV_FREQUENT_CHECK;
2323
2324 if (ev_is_active (w))
2325 {
2326 if (w->repeat)
2327 {
2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
2330 adjustheap (timers, timercnt, ev_active (w));
2331 }
2332 else
2333 ev_timer_stop (EV_A_ w);
2334 }
2335 else if (w->repeat)
2336 {
2337 ev_at (w) = w->repeat;
2338 ev_timer_start (EV_A_ w);
2339 }
2340
2341 EV_FREQUENT_CHECK;
2342 }
2343
2344 #if EV_PERIODIC_ENABLE
2345 void noinline
2346 ev_periodic_start (EV_P_ ev_periodic *w)
2347 {
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 if (w->reschedule_cb)
2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2353 else if (w->interval)
2354 {
2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2356 /* this formula differs from the one in periodic_reify because we do not always round up */
2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2358 }
2359 else
2360 ev_at (w) = w->offset;
2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
2370
2371 EV_FREQUENT_CHECK;
2372
2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2374 }
2375
2376 void noinline
2377 ev_periodic_stop (EV_P_ ev_periodic *w)
2378 {
2379 clear_pending (EV_A_ (W)w);
2380 if (expect_false (!ev_is_active (w)))
2381 return;
2382
2383 EV_FREQUENT_CHECK;
2384
2385 {
2386 int active = ev_active (w);
2387
2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2389
2390 --periodiccnt;
2391
2392 if (expect_true (active < periodiccnt + HEAP0))
2393 {
2394 periodics [active] = periodics [periodiccnt + HEAP0];
2395 adjustheap (periodics, periodiccnt, active);
2396 }
2397 }
2398
2399 EV_FREQUENT_CHECK;
2400
2401 ev_stop (EV_A_ (W)w);
2402 }
2403
2404 void noinline
2405 ev_periodic_again (EV_P_ ev_periodic *w)
2406 {
2407 /* TODO: use adjustheap and recalculation */
2408 ev_periodic_stop (EV_A_ w);
2409 ev_periodic_start (EV_A_ w);
2410 }
2411 #endif
2412
2413 #ifndef SA_RESTART
2414 # define SA_RESTART 0
2415 #endif
2416
2417 void noinline
2418 ev_signal_start (EV_P_ ev_signal *w)
2419 {
2420 #if EV_MULTIPLICITY
2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2422 #endif
2423 if (expect_false (ev_is_active (w)))
2424 return;
2425
2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2427
2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
2431
2432 {
2433 #ifndef _WIN32
2434 sigset_t full, prev;
2435 sigfillset (&full);
2436 sigprocmask (SIG_SETMASK, &full, &prev);
2437 #endif
2438
2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2440
2441 #ifndef _WIN32
2442 sigprocmask (SIG_SETMASK, &prev, 0);
2443 #endif
2444 }
2445
2446 ev_start (EV_A_ (W)w, 1);
2447 wlist_add (&signals [w->signum - 1].head, (WL)w);
2448
2449 if (!((WL)w)->next)
2450 {
2451 #if _WIN32
2452 signal (w->signum, ev_sighandler);
2453 #else
2454 struct sigaction sa;
2455 sa.sa_handler = ev_sighandler;
2456 sigfillset (&sa.sa_mask);
2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2458 sigaction (w->signum, &sa, 0);
2459 #endif
2460 }
2461
2462 EV_FREQUENT_CHECK;
2463 }
2464
2465 void noinline
2466 ev_signal_stop (EV_P_ ev_signal *w)
2467 {
2468 clear_pending (EV_A_ (W)w);
2469 if (expect_false (!ev_is_active (w)))
2470 return;
2471
2472 EV_FREQUENT_CHECK;
2473
2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
2475 ev_stop (EV_A_ (W)w);
2476
2477 if (!signals [w->signum - 1].head)
2478 signal (w->signum, SIG_DFL);
2479
2480 EV_FREQUENT_CHECK;
2481 }
2482
2483 void
2484 ev_child_start (EV_P_ ev_child *w)
2485 {
2486 #if EV_MULTIPLICITY
2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2488 #endif
2489 if (expect_false (ev_is_active (w)))
2490 return;
2491
2492 EV_FREQUENT_CHECK;
2493
2494 ev_start (EV_A_ (W)w, 1);
2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2496
2497 EV_FREQUENT_CHECK;
2498 }
2499
2500 void
2501 ev_child_stop (EV_P_ ev_child *w)
2502 {
2503 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w)))
2505 return;
2506
2507 EV_FREQUENT_CHECK;
2508
2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
2513 }
2514
2515 #if EV_STAT_ENABLE
2516
2517 # ifdef _WIN32
2518 # undef lstat
2519 # define lstat(a,b) _stati64 (a,b)
2520 # endif
2521
2522 #define DEF_STAT_INTERVAL 5.0074891
2523 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2524 #define MIN_STAT_INTERVAL 0.1074891
2525
2526 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2527
2528 #if EV_USE_INOTIFY
2529 # define EV_INOTIFY_BUFSIZE 8192
2530
2531 static void noinline
2532 infy_add (EV_P_ ev_stat *w)
2533 {
2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2535
2536 if (w->wd < 0)
2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2540
2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2545 {
2546 char path [4096];
2547 strcpy (path, w->path);
2548
2549 do
2550 {
2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2553
2554 char *pend = strrchr (path, '/');
2555
2556 if (!pend || pend == path)
2557 break;
2558
2559 *pend = 0;
2560 w->wd = inotify_add_watch (fs_fd, path, mask);
2561 }
2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2563 }
2564 }
2565
2566 if (w->wd >= 0)
2567 {
2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
2587 }
2588
2589 static void noinline
2590 infy_del (EV_P_ ev_stat *w)
2591 {
2592 int slot;
2593 int wd = w->wd;
2594
2595 if (wd < 0)
2596 return;
2597
2598 w->wd = -2;
2599 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2600 wlist_del (&fs_hash [slot].head, (WL)w);
2601
2602 /* remove this watcher, if others are watching it, they will rearm */
2603 inotify_rm_watch (fs_fd, wd);
2604 }
2605
2606 static void noinline
2607 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2608 {
2609 if (slot < 0)
2610 /* overflow, need to check for all hash slots */
2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2612 infy_wd (EV_A_ slot, wd, ev);
2613 else
2614 {
2615 WL w_;
2616
2617 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2618 {
2619 ev_stat *w = (ev_stat *)w_;
2620 w_ = w_->next; /* lets us remove this watcher and all before it */
2621
2622 if (w->wd == wd || wd == -1)
2623 {
2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2627 w->wd = -1;
2628 infy_add (EV_A_ w); /* re-add, no matter what */
2629 }
2630
2631 stat_timer_cb (EV_A_ &w->timer, 0);
2632 }
2633 }
2634 }
2635 }
2636
2637 static void
2638 infy_cb (EV_P_ ev_io *w, int revents)
2639 {
2640 char buf [EV_INOTIFY_BUFSIZE];
2641 struct inotify_event *ev = (struct inotify_event *)buf;
2642 int ofs;
2643 int len = read (fs_fd, buf, sizeof (buf));
2644
2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2647 }
2648
2649 inline_size void
2650 check_2625 (EV_P)
2651 {
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670 }
2671
2672 inline_size void
2673 infy_init (EV_P)
2674 {
2675 if (fs_fd != -2)
2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2681
2682 fs_fd = inotify_init ();
2683
2684 if (fs_fd >= 0)
2685 {
2686 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2687 ev_set_priority (&fs_w, EV_MAXPRI);
2688 ev_io_start (EV_A_ &fs_w);
2689 }
2690 }
2691
2692 inline_size void
2693 infy_fork (EV_P)
2694 {
2695 int slot;
2696
2697 if (fs_fd < 0)
2698 return;
2699
2700 close (fs_fd);
2701 fs_fd = inotify_init ();
2702
2703 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2704 {
2705 WL w_ = fs_hash [slot].head;
2706 fs_hash [slot].head = 0;
2707
2708 while (w_)
2709 {
2710 ev_stat *w = (ev_stat *)w_;
2711 w_ = w_->next; /* lets us add this watcher */
2712
2713 w->wd = -1;
2714
2715 if (fs_fd >= 0)
2716 infy_add (EV_A_ w); /* re-add, no matter what */
2717 else
2718 ev_timer_again (EV_A_ &w->timer);
2719 }
2720 }
2721 }
2722
2723 #endif
2724
2725 #ifdef _WIN32
2726 # define EV_LSTAT(p,b) _stati64 (p, b)
2727 #else
2728 # define EV_LSTAT(p,b) lstat (p, b)
2729 #endif
2730
2731 void
2732 ev_stat_stat (EV_P_ ev_stat *w)
2733 {
2734 if (lstat (w->path, &w->attr) < 0)
2735 w->attr.st_nlink = 0;
2736 else if (!w->attr.st_nlink)
2737 w->attr.st_nlink = 1;
2738 }
2739
2740 static void noinline
2741 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2742 {
2743 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2744
2745 /* we copy this here each the time so that */
2746 /* prev has the old value when the callback gets invoked */
2747 w->prev = w->attr;
2748 ev_stat_stat (EV_A_ w);
2749
2750 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2751 if (
2752 w->prev.st_dev != w->attr.st_dev
2753 || w->prev.st_ino != w->attr.st_ino
2754 || w->prev.st_mode != w->attr.st_mode
2755 || w->prev.st_nlink != w->attr.st_nlink
2756 || w->prev.st_uid != w->attr.st_uid
2757 || w->prev.st_gid != w->attr.st_gid
2758 || w->prev.st_rdev != w->attr.st_rdev
2759 || w->prev.st_size != w->attr.st_size
2760 || w->prev.st_atime != w->attr.st_atime
2761 || w->prev.st_mtime != w->attr.st_mtime
2762 || w->prev.st_ctime != w->attr.st_ctime
2763 ) {
2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2767 infy_del (EV_A_ w);
2768 infy_add (EV_A_ w);
2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2771 #endif
2772
2773 ev_feed_event (EV_A_ w, EV_STAT);
2774 }
2775 }
2776
2777 void
2778 ev_stat_start (EV_P_ ev_stat *w)
2779 {
2780 if (expect_false (ev_is_active (w)))
2781 return;
2782
2783 ev_stat_stat (EV_A_ w);
2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2786 w->interval = MIN_STAT_INTERVAL;
2787
2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2789 ev_set_priority (&w->timer, ev_priority (w));
2790
2791 #if EV_USE_INOTIFY
2792 infy_init (EV_A);
2793
2794 if (fs_fd >= 0)
2795 infy_add (EV_A_ w);
2796 else
2797 #endif
2798 ev_timer_again (EV_A_ &w->timer);
2799
2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2803 }
2804
2805 void
2806 ev_stat_stop (EV_P_ ev_stat *w)
2807 {
2808 clear_pending (EV_A_ (W)w);
2809 if (expect_false (!ev_is_active (w)))
2810 return;
2811
2812 EV_FREQUENT_CHECK;
2813
2814 #if EV_USE_INOTIFY
2815 infy_del (EV_A_ w);
2816 #endif
2817 ev_timer_stop (EV_A_ &w->timer);
2818
2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2822 }
2823 #endif
2824
2825 #if EV_IDLE_ENABLE
2826 void
2827 ev_idle_start (EV_P_ ev_idle *w)
2828 {
2829 if (expect_false (ev_is_active (w)))
2830 return;
2831
2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2835
2836 {
2837 int active = ++idlecnt [ABSPRI (w)];
2838
2839 ++idleall;
2840 ev_start (EV_A_ (W)w, active);
2841
2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2843 idles [ABSPRI (w)][active - 1] = w;
2844 }
2845
2846 EV_FREQUENT_CHECK;
2847 }
2848
2849 void
2850 ev_idle_stop (EV_P_ ev_idle *w)
2851 {
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 {
2859 int active = ev_active (w);
2860
2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2863
2864 ev_stop (EV_A_ (W)w);
2865 --idleall;
2866 }
2867
2868 EV_FREQUENT_CHECK;
2869 }
2870 #endif
2871
2872 void
2873 ev_prepare_start (EV_P_ ev_prepare *w)
2874 {
2875 if (expect_false (ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 ev_start (EV_A_ (W)w, ++preparecnt);
2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2885 }
2886
2887 void
2888 ev_prepare_stop (EV_P_ ev_prepare *w)
2889 {
2890 clear_pending (EV_A_ (W)w);
2891 if (expect_false (!ev_is_active (w)))
2892 return;
2893
2894 EV_FREQUENT_CHECK;
2895
2896 {
2897 int active = ev_active (w);
2898
2899 prepares [active - 1] = prepares [--preparecnt];
2900 ev_active (prepares [active - 1]) = active;
2901 }
2902
2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2906 }
2907
2908 void
2909 ev_check_start (EV_P_ ev_check *w)
2910 {
2911 if (expect_false (ev_is_active (w)))
2912 return;
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++checkcnt);
2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921 }
2922
2923 void
2924 ev_check_stop (EV_P_ ev_check *w)
2925 {
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 checks [active - 1] = checks [--checkcnt];
2936 ev_active (checks [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942 }
2943
2944 #if EV_EMBED_ENABLE
2945 void noinline
2946 ev_embed_sweep (EV_P_ ev_embed *w)
2947 {
2948 ev_loop (w->other, EVLOOP_NONBLOCK);
2949 }
2950
2951 static void
2952 embed_io_cb (EV_P_ ev_io *io, int revents)
2953 {
2954 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2955
2956 if (ev_cb (w))
2957 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2958 else
2959 ev_loop (w->other, EVLOOP_NONBLOCK);
2960 }
2961
2962 static void
2963 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2964 {
2965 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2966
2967 {
2968 struct ev_loop *loop = w->other;
2969
2970 while (fdchangecnt)
2971 {
2972 fd_reify (EV_A);
2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2974 }
2975 }
2976 }
2977
2978 static void
2979 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980 {
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993 }
2994
2995 #if 0
2996 static void
2997 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2998 {
2999 ev_idle_stop (EV_A_ idle);
3000 }
3001 #endif
3002
3003 void
3004 ev_embed_start (EV_P_ ev_embed *w)
3005 {
3006 if (expect_false (ev_is_active (w)))
3007 return;
3008
3009 {
3010 struct ev_loop *loop = w->other;
3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3013 }
3014
3015 EV_FREQUENT_CHECK;
3016
3017 ev_set_priority (&w->io, ev_priority (w));
3018 ev_io_start (EV_A_ &w->io);
3019
3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
3021 ev_set_priority (&w->prepare, EV_MINPRI);
3022 ev_prepare_start (EV_A_ &w->prepare);
3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3028
3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
3032 }
3033
3034 void
3035 ev_embed_stop (EV_P_ ev_embed *w)
3036 {
3037 clear_pending (EV_A_ (W)w);
3038 if (expect_false (!ev_is_active (w)))
3039 return;
3040
3041 EV_FREQUENT_CHECK;
3042
3043 ev_io_stop (EV_A_ &w->io);
3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
3046
3047 EV_FREQUENT_CHECK;
3048 }
3049 #endif
3050
3051 #if EV_FORK_ENABLE
3052 void
3053 ev_fork_start (EV_P_ ev_fork *w)
3054 {
3055 if (expect_false (ev_is_active (w)))
3056 return;
3057
3058 EV_FREQUENT_CHECK;
3059
3060 ev_start (EV_A_ (W)w, ++forkcnt);
3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
3065 }
3066
3067 void
3068 ev_fork_stop (EV_P_ ev_fork *w)
3069 {
3070 clear_pending (EV_A_ (W)w);
3071 if (expect_false (!ev_is_active (w)))
3072 return;
3073
3074 EV_FREQUENT_CHECK;
3075
3076 {
3077 int active = ev_active (w);
3078
3079 forks [active - 1] = forks [--forkcnt];
3080 ev_active (forks [active - 1]) = active;
3081 }
3082
3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
3086 }
3087 #endif
3088
3089 #if EV_ASYNC_ENABLE
3090 void
3091 ev_async_start (EV_P_ ev_async *w)
3092 {
3093 if (expect_false (ev_is_active (w)))
3094 return;
3095
3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
3099
3100 ev_start (EV_A_ (W)w, ++asynccnt);
3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
3105 }
3106
3107 void
3108 ev_async_stop (EV_P_ ev_async *w)
3109 {
3110 clear_pending (EV_A_ (W)w);
3111 if (expect_false (!ev_is_active (w)))
3112 return;
3113
3114 EV_FREQUENT_CHECK;
3115
3116 {
3117 int active = ev_active (w);
3118
3119 asyncs [active - 1] = asyncs [--asynccnt];
3120 ev_active (asyncs [active - 1]) = active;
3121 }
3122
3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
3126 }
3127
3128 void
3129 ev_async_send (EV_P_ ev_async *w)
3130 {
3131 w->sent = 1;
3132 evpipe_write (EV_A_ &gotasync);
3133 }
3134 #endif
3135
3136 /*****************************************************************************/
3137
3138 struct ev_once
3139 {
3140 ev_io io;
3141 ev_timer to;
3142 void (*cb)(int revents, void *arg);
3143 void *arg;
3144 };
3145
3146 static void
3147 once_cb (EV_P_ struct ev_once *once, int revents)
3148 {
3149 void (*cb)(int revents, void *arg) = once->cb;
3150 void *arg = once->arg;
3151
3152 ev_io_stop (EV_A_ &once->io);
3153 ev_timer_stop (EV_A_ &once->to);
3154 ev_free (once);
3155
3156 cb (revents, arg);
3157 }
3158
3159 static void
3160 once_cb_io (EV_P_ ev_io *w, int revents)
3161 {
3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3165 }
3166
3167 static void
3168 once_cb_to (EV_P_ ev_timer *w, int revents)
3169 {
3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3173 }
3174
3175 void
3176 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3177 {
3178 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3179
3180 if (expect_false (!once))
3181 {
3182 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3183 return;
3184 }
3185
3186 once->cb = cb;
3187 once->arg = arg;
3188
3189 ev_init (&once->io, once_cb_io);
3190 if (fd >= 0)
3191 {
3192 ev_io_set (&once->io, fd, events);
3193 ev_io_start (EV_A_ &once->io);
3194 }
3195
3196 ev_init (&once->to, once_cb_to);
3197 if (timeout >= 0.)
3198 {
3199 ev_timer_set (&once->to, timeout, 0.);
3200 ev_timer_start (EV_A_ &once->to);
3201 }
3202 }
3203
3204 /*****************************************************************************/
3205
3206 #if 0
3207 void
3208 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209 {
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
3216 {
3217 wn = wl->next;
3218
3219 #if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226 #endif
3227 #if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231 #endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
3237 }
3238
3239 if (types & (EV_TIMER | EV_STAT))
3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241 #if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3244 {
3245 if (types & EV_STAT)
3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3247 }
3248 else
3249 #endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253 #if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257 #endif
3258
3259 #if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264 #endif
3265
3266 #if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271 #endif
3272
3273 #if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277 #endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281 #if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283 #endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307 /* EV_STAT 0x00001000 /* stat data changed */
3308 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309 }
3310 #endif
3311
3312 #if EV_MULTIPLICITY
3313 #include "ev_wrap.h"
3314 #endif
3315
3316 #ifdef __cplusplus
3317 }
3318 #endif
3319