ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.294
Committed: Wed Jul 8 02:46:05 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.293: +10 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397 #define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
398
399 #define EMPTY /* required for microsofts broken pseudo-c compiler */
400 #define EMPTY2(a,b) /* used to suppress some warnings */
401
402 typedef ev_watcher *W;
403 typedef ev_watcher_list *WL;
404 typedef ev_watcher_time *WT;
405
406 #define ev_active(w) ((W)(w))->active
407 #define ev_at(w) ((WT)(w))->at
408
409 #if EV_USE_REALTIME
410 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
411 /* giving it a reasonably high chance of working on typical architetcures */
412 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413 #endif
414
415 #if EV_USE_MONOTONIC
416 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417 #endif
418
419 #ifdef _WIN32
420 # include "ev_win32.c"
421 #endif
422
423 /*****************************************************************************/
424
425 static void (*syserr_cb)(const char *msg);
426
427 void
428 ev_set_syserr_cb (void (*cb)(const char *msg))
429 {
430 syserr_cb = cb;
431 }
432
433 static void noinline
434 ev_syserr (const char *msg)
435 {
436 if (!msg)
437 msg = "(libev) system error";
438
439 if (syserr_cb)
440 syserr_cb (msg);
441 else
442 {
443 perror (msg);
444 abort ();
445 }
446 }
447
448 static void *
449 ev_realloc_emul (void *ptr, long size)
450 {
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461 }
462
463 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
464
465 void
466 ev_set_allocator (void *(*cb)(void *ptr, long size))
467 {
468 alloc = cb;
469 }
470
471 inline_speed void *
472 ev_realloc (void *ptr, long size)
473 {
474 ptr = alloc (ptr, size);
475
476 if (!ptr && size)
477 {
478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
479 abort ();
480 }
481
482 return ptr;
483 }
484
485 #define ev_malloc(size) ev_realloc (0, (size))
486 #define ev_free(ptr) ev_realloc ((ptr), 0)
487
488 /*****************************************************************************/
489
490 /* file descriptor info structure */
491 typedef struct
492 {
493 WL head;
494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
497 unsigned char unused;
498 #if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500 #endif
501 #if EV_SELECT_IS_WINSOCKET
502 SOCKET handle;
503 #endif
504 } ANFD;
505
506 /* stores the pending event set for a given watcher */
507 typedef struct
508 {
509 W w;
510 int events; /* the pending event set for the given watcher */
511 } ANPENDING;
512
513 #if EV_USE_INOTIFY
514 /* hash table entry per inotify-id */
515 typedef struct
516 {
517 WL head;
518 } ANFS;
519 #endif
520
521 /* Heap Entry */
522 #if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532 #else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
539 #endif
540
541 #if EV_MULTIPLICITY
542
543 struct ev_loop
544 {
545 ev_tstamp ev_rt_now;
546 #define ev_rt_now ((loop)->ev_rt_now)
547 #define VAR(name,decl) decl;
548 #include "ev_vars.h"
549 #undef VAR
550 };
551 #include "ev_wrap.h"
552
553 static struct ev_loop default_loop_struct;
554 struct ev_loop *ev_default_loop_ptr;
555
556 #else
557
558 ev_tstamp ev_rt_now;
559 #define VAR(name,decl) static decl;
560 #include "ev_vars.h"
561 #undef VAR
562
563 static int ev_default_loop_ptr;
564
565 #endif
566
567 /*****************************************************************************/
568
569 #ifndef EV_HAVE_EV_TIME
570 ev_tstamp
571 ev_time (void)
572 {
573 #if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
576 struct timespec ts;
577 clock_gettime (CLOCK_REALTIME, &ts);
578 return ts.tv_sec + ts.tv_nsec * 1e-9;
579 }
580 #endif
581
582 struct timeval tv;
583 gettimeofday (&tv, 0);
584 return tv.tv_sec + tv.tv_usec * 1e-6;
585 }
586 #endif
587
588 inline_size ev_tstamp
589 get_clock (void)
590 {
591 #if EV_USE_MONOTONIC
592 if (expect_true (have_monotonic))
593 {
594 struct timespec ts;
595 clock_gettime (CLOCK_MONOTONIC, &ts);
596 return ts.tv_sec + ts.tv_nsec * 1e-9;
597 }
598 #endif
599
600 return ev_time ();
601 }
602
603 #if EV_MULTIPLICITY
604 ev_tstamp
605 ev_now (EV_P)
606 {
607 return ev_rt_now;
608 }
609 #endif
610
611 void
612 ev_sleep (ev_tstamp delay)
613 {
614 if (delay > 0.)
615 {
616 #if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623 #elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625 #else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635 #endif
636 }
637 }
638
639 /*****************************************************************************/
640
641 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643 /* find a suitable new size for the given array, */
644 /* hopefully by rounding to a ncie-to-malloc size */
645 inline_size int
646 array_nextsize (int elem, int cur, int cnt)
647 {
648 int ncur = cur + 1;
649
650 do
651 ncur <<= 1;
652 while (cnt > ncur);
653
654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
656 {
657 ncur *= elem;
658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
659 ncur = ncur - sizeof (void *) * 4;
660 ncur /= elem;
661 }
662
663 return ncur;
664 }
665
666 static noinline void *
667 array_realloc (int elem, void *base, int *cur, int cnt)
668 {
669 *cur = array_nextsize (elem, *cur, cnt);
670 return ev_realloc (base, elem * *cur);
671 }
672
673 #define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
675
676 #define array_needsize(type,base,cur,cnt,init) \
677 if (expect_false ((cnt) > (cur))) \
678 { \
679 int ocur_ = (cur); \
680 (base) = (type *)array_realloc \
681 (sizeof (type), (base), &(cur), (cnt)); \
682 init ((base) + (ocur_), (cur) - ocur_); \
683 }
684
685 #if 0
686 #define array_slim(type,stem) \
687 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
688 { \
689 stem ## max = array_roundsize (stem ## cnt >> 1); \
690 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
692 }
693 #endif
694
695 #define array_free(stem, idx) \
696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
697
698 /*****************************************************************************/
699
700 /* dummy callback for pending events */
701 static void noinline
702 pendingcb (EV_P_ ev_prepare *w, int revents)
703 {
704 }
705
706 void noinline
707 ev_feed_event (EV_P_ void *w, int revents)
708 {
709 W w_ = (W)w;
710 int pri = ABSPRI (w_);
711
712 if (expect_false (w_->pending))
713 pendings [pri][w_->pending - 1].events |= revents;
714 else
715 {
716 w_->pending = ++pendingcnt [pri];
717 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
718 pendings [pri][w_->pending - 1].w = w_;
719 pendings [pri][w_->pending - 1].events = revents;
720 }
721 }
722
723 inline_speed void
724 feed_reverse (EV_P_ W w)
725 {
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728 }
729
730 inline_size void
731 feed_reverse_done (EV_P_ int revents)
732 {
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736 }
737
738 inline_speed void
739 queue_events (EV_P_ W *events, int eventcnt, int type)
740 {
741 int i;
742
743 for (i = 0; i < eventcnt; ++i)
744 ev_feed_event (EV_A_ events [i], type);
745 }
746
747 /*****************************************************************************/
748
749 inline_speed void
750 fd_event (EV_P_ int fd, int revents)
751 {
752 ANFD *anfd = anfds + fd;
753 ev_io *w;
754
755 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
756 {
757 int ev = w->events & revents;
758
759 if (ev)
760 ev_feed_event (EV_A_ (W)w, ev);
761 }
762 }
763
764 void
765 ev_feed_fd_event (EV_P_ int fd, int revents)
766 {
767 if (fd >= 0 && fd < anfdmax)
768 fd_event (EV_A_ fd, revents);
769 }
770
771 /* make sure the external fd watch events are in-sync */
772 /* with the kernel/libev internal state */
773 inline_size void
774 fd_reify (EV_P)
775 {
776 int i;
777
778 for (i = 0; i < fdchangecnt; ++i)
779 {
780 int fd = fdchanges [i];
781 ANFD *anfd = anfds + fd;
782 ev_io *w;
783
784 unsigned char events = 0;
785
786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
787 events |= (unsigned char)w->events;
788
789 #if EV_SELECT_IS_WINSOCKET
790 if (events)
791 {
792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
796 anfd->handle = _get_osfhandle (fd);
797 #endif
798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
799 }
800 #endif
801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
806 anfd->reify = 0;
807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
812 }
813
814 fdchangecnt = 0;
815 }
816
817 /* something about the given fd changed */
818 inline_size void
819 fd_change (EV_P_ int fd, int flags)
820 {
821 unsigned char reify = anfds [fd].reify;
822 anfds [fd].reify |= flags;
823
824 if (expect_true (!reify))
825 {
826 ++fdchangecnt;
827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
828 fdchanges [fdchangecnt - 1] = fd;
829 }
830 }
831
832 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833 inline_speed void
834 fd_kill (EV_P_ int fd)
835 {
836 ev_io *w;
837
838 while ((w = (ev_io *)anfds [fd].head))
839 {
840 ev_io_stop (EV_A_ w);
841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
842 }
843 }
844
845 /* check whether the given fd is atcually valid, for error recovery */
846 inline_size int
847 fd_valid (int fd)
848 {
849 #ifdef _WIN32
850 return _get_osfhandle (fd) != -1;
851 #else
852 return fcntl (fd, F_GETFD) != -1;
853 #endif
854 }
855
856 /* called on EBADF to verify fds */
857 static void noinline
858 fd_ebadf (EV_P)
859 {
860 int fd;
861
862 for (fd = 0; fd < anfdmax; ++fd)
863 if (anfds [fd].events)
864 if (!fd_valid (fd) && errno == EBADF)
865 fd_kill (EV_A_ fd);
866 }
867
868 /* called on ENOMEM in select/poll to kill some fds and retry */
869 static void noinline
870 fd_enomem (EV_P)
871 {
872 int fd;
873
874 for (fd = anfdmax; fd--; )
875 if (anfds [fd].events)
876 {
877 fd_kill (EV_A_ fd);
878 return;
879 }
880 }
881
882 /* usually called after fork if backend needs to re-arm all fds from scratch */
883 static void noinline
884 fd_rearm_all (EV_P)
885 {
886 int fd;
887
888 for (fd = 0; fd < anfdmax; ++fd)
889 if (anfds [fd].events)
890 {
891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
894 }
895 }
896
897 /*****************************************************************************/
898
899 /*
900 * the heap functions want a real array index. array index 0 uis guaranteed to not
901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
902 * the branching factor of the d-tree.
903 */
904
905 /*
906 * at the moment we allow libev the luxury of two heaps,
907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911 #if EV_USE_4HEAP
912
913 #define DHEAP 4
914 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
915 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916 #define UPHEAP_DONE(p,k) ((p) == (k))
917
918 /* away from the root */
919 inline_speed void
920 downheap (ANHE *heap, int N, int k)
921 {
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
947 break;
948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960 }
961
962 #else /* 4HEAP */
963
964 #define HEAP0 1
965 #define HPARENT(k) ((k) >> 1)
966 #define UPHEAP_DONE(p,k) (!(p))
967
968 /* away from the root */
969 inline_speed void
970 downheap (ANHE *heap, int N, int k)
971 {
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995 }
996 #endif
997
998 /* towards the root */
999 inline_speed void
1000 upheap (ANHE *heap, int k)
1001 {
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018 }
1019
1020 /* move an element suitably so it is in a correct place */
1021 inline_size void
1022 adjustheap (ANHE *heap, int N, int k)
1023 {
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1025 upheap (heap, k);
1026 else
1027 downheap (heap, N, k);
1028 }
1029
1030 /* rebuild the heap: this function is used only once and executed rarely */
1031 inline_size void
1032 reheap (ANHE *heap, int N)
1033 {
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
1040 }
1041
1042 /*****************************************************************************/
1043
1044 /* associate signal watchers to a signal signal */
1045 typedef struct
1046 {
1047 WL head;
1048 EV_ATOMIC_T gotsig;
1049 } ANSIG;
1050
1051 static ANSIG *signals;
1052 static int signalmax;
1053
1054 static EV_ATOMIC_T gotsig;
1055
1056 /*****************************************************************************/
1057
1058 /* used to prepare libev internal fd's */
1059 /* this is not fork-safe */
1060 inline_speed void
1061 fd_intern (int fd)
1062 {
1063 #ifdef _WIN32
1064 unsigned long arg = 1;
1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1066 #else
1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
1068 fcntl (fd, F_SETFL, O_NONBLOCK);
1069 #endif
1070 }
1071
1072 static void noinline
1073 evpipe_init (EV_P)
1074 {
1075 if (!ev_is_active (&pipe_w))
1076 {
1077 #if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085 #endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
1090 fd_intern (evpipe [0]);
1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
1094
1095 ev_io_start (EV_A_ &pipe_w);
1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098 }
1099
1100 inline_size void
1101 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102 {
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109 #if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116 #endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121 }
1122
1123 /* called whenever the libev signal pipe */
1124 /* got some events (signal, async) */
1125 static void
1126 pipecb (EV_P_ ev_io *iow, int revents)
1127 {
1128 #if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135 #endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151 #if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164 #endif
1165 }
1166
1167 /*****************************************************************************/
1168
1169 static void
1170 ev_sighandler (int signum)
1171 {
1172 #if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174 #endif
1175
1176 #if _WIN32
1177 signal (signum, ev_sighandler);
1178 #endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182 }
1183
1184 void noinline
1185 ev_feed_signal_event (EV_P_ int signum)
1186 {
1187 WL w;
1188
1189 #if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191 #endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202 }
1203
1204 /*****************************************************************************/
1205
1206 static WL childs [EV_PID_HASHSIZE];
1207
1208 #ifndef _WIN32
1209
1210 static ev_signal childev;
1211
1212 #ifndef WIFCONTINUED
1213 # define WIFCONTINUED(status) 0
1214 #endif
1215
1216 /* handle a single child status event */
1217 inline_speed void
1218 child_reap (EV_P_ int chain, int pid, int status)
1219 {
1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1222
1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
1227 {
1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1229 w->rpid = pid;
1230 w->rstatus = status;
1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1232 }
1233 }
1234 }
1235
1236 #ifndef WCONTINUED
1237 # define WCONTINUED 0
1238 #endif
1239
1240 /* called on sigchld etc., calls waitpid */
1241 static void
1242 childcb (EV_P_ ev_signal *sw, int revents)
1243 {
1244 int pid, status;
1245
1246 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1247 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1248 if (!WCONTINUED
1249 || errno != EINVAL
1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1251 return;
1252
1253 /* make sure we are called again until all children have been reaped */
1254 /* we need to do it this way so that the callback gets called before we continue */
1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1256
1257 child_reap (EV_A_ pid, pid, status);
1258 if (EV_PID_HASHSIZE > 1)
1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1260 }
1261
1262 #endif
1263
1264 /*****************************************************************************/
1265
1266 #if EV_USE_PORT
1267 # include "ev_port.c"
1268 #endif
1269 #if EV_USE_KQUEUE
1270 # include "ev_kqueue.c"
1271 #endif
1272 #if EV_USE_EPOLL
1273 # include "ev_epoll.c"
1274 #endif
1275 #if EV_USE_POLL
1276 # include "ev_poll.c"
1277 #endif
1278 #if EV_USE_SELECT
1279 # include "ev_select.c"
1280 #endif
1281
1282 int
1283 ev_version_major (void)
1284 {
1285 return EV_VERSION_MAJOR;
1286 }
1287
1288 int
1289 ev_version_minor (void)
1290 {
1291 return EV_VERSION_MINOR;
1292 }
1293
1294 /* return true if we are running with elevated privileges and should ignore env variables */
1295 int inline_size
1296 enable_secure (void)
1297 {
1298 #ifdef _WIN32
1299 return 0;
1300 #else
1301 return getuid () != geteuid ()
1302 || getgid () != getegid ();
1303 #endif
1304 }
1305
1306 unsigned int
1307 ev_supported_backends (void)
1308 {
1309 unsigned int flags = 0;
1310
1311 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1312 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1313 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1314 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1315 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1316
1317 return flags;
1318 }
1319
1320 unsigned int
1321 ev_recommended_backends (void)
1322 {
1323 unsigned int flags = ev_supported_backends ();
1324
1325 #ifndef __NetBSD__
1326 /* kqueue is borked on everything but netbsd apparently */
1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1328 flags &= ~EVBACKEND_KQUEUE;
1329 #endif
1330 #ifdef __APPLE__
1331 /* only select works correctly on that "unix-certified" platform */
1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1334 #endif
1335
1336 return flags;
1337 }
1338
1339 unsigned int
1340 ev_embeddable_backends (void)
1341 {
1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1343
1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
1349 }
1350
1351 unsigned int
1352 ev_backend (EV_P)
1353 {
1354 return backend;
1355 }
1356
1357 unsigned int
1358 ev_loop_count (EV_P)
1359 {
1360 return loop_count;
1361 }
1362
1363 unsigned int
1364 ev_loop_depth (EV_P)
1365 {
1366 return loop_depth;
1367 }
1368
1369 void
1370 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1371 {
1372 io_blocktime = interval;
1373 }
1374
1375 void
1376 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1377 {
1378 timeout_blocktime = interval;
1379 }
1380
1381 /* initialise a loop structure, must be zero-initialised */
1382 static void noinline
1383 loop_init (EV_P_ unsigned int flags)
1384 {
1385 if (!backend)
1386 {
1387 #if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395 #endif
1396
1397 #if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1399 {
1400 struct timespec ts;
1401
1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1403 have_monotonic = 1;
1404 }
1405 #endif
1406
1407 ev_rt_now = ev_time ();
1408 mn_now = get_clock ();
1409 now_floor = mn_now;
1410 rtmn_diff = ev_rt_now - mn_now;
1411
1412 io_blocktime = 0.;
1413 timeout_blocktime = 0.;
1414 backend = 0;
1415 backend_fd = -1;
1416 gotasync = 0;
1417 #if EV_USE_INOTIFY
1418 fs_fd = -2;
1419 #endif
1420
1421 /* pid check not overridable via env */
1422 #ifndef _WIN32
1423 if (flags & EVFLAG_FORKCHECK)
1424 curpid = getpid ();
1425 #endif
1426
1427 if (!(flags & EVFLAG_NOENV)
1428 && !enable_secure ()
1429 && getenv ("LIBEV_FLAGS"))
1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1431
1432 if (!(flags & 0x0000ffffU))
1433 flags |= ev_recommended_backends ();
1434
1435 #if EV_USE_PORT
1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1437 #endif
1438 #if EV_USE_KQUEUE
1439 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1440 #endif
1441 #if EV_USE_EPOLL
1442 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1443 #endif
1444 #if EV_USE_POLL
1445 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1446 #endif
1447 #if EV_USE_SELECT
1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1449 #endif
1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1453 ev_init (&pipe_w, pipecb);
1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1455 }
1456 }
1457
1458 /* free up a loop structure */
1459 static void noinline
1460 loop_destroy (EV_P)
1461 {
1462 int i;
1463
1464 if (ev_is_active (&pipe_w))
1465 {
1466 ev_ref (EV_A); /* signal watcher */
1467 ev_io_stop (EV_A_ &pipe_w);
1468
1469 #if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472 #endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479 }
1480
1481 #if EV_USE_INOTIFY
1482 if (fs_fd >= 0)
1483 close (fs_fd);
1484 #endif
1485
1486 if (backend_fd >= 0)
1487 close (backend_fd);
1488
1489 #if EV_USE_PORT
1490 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1491 #endif
1492 #if EV_USE_KQUEUE
1493 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1494 #endif
1495 #if EV_USE_EPOLL
1496 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1497 #endif
1498 #if EV_USE_POLL
1499 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1500 #endif
1501 #if EV_USE_SELECT
1502 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1503 #endif
1504
1505 for (i = NUMPRI; i--; )
1506 {
1507 array_free (pending, [i]);
1508 #if EV_IDLE_ENABLE
1509 array_free (idle, [i]);
1510 #endif
1511 }
1512
1513 ev_free (anfds); anfdmax = 0;
1514
1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1517 array_free (fdchange, EMPTY);
1518 array_free (timer, EMPTY);
1519 #if EV_PERIODIC_ENABLE
1520 array_free (periodic, EMPTY);
1521 #endif
1522 #if EV_FORK_ENABLE
1523 array_free (fork, EMPTY);
1524 #endif
1525 array_free (prepare, EMPTY);
1526 array_free (check, EMPTY);
1527 #if EV_ASYNC_ENABLE
1528 array_free (async, EMPTY);
1529 #endif
1530
1531 backend = 0;
1532 }
1533
1534 #if EV_USE_INOTIFY
1535 inline_size void infy_fork (EV_P);
1536 #endif
1537
1538 inline_size void
1539 loop_fork (EV_P)
1540 {
1541 #if EV_USE_PORT
1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1543 #endif
1544 #if EV_USE_KQUEUE
1545 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1546 #endif
1547 #if EV_USE_EPOLL
1548 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1549 #endif
1550 #if EV_USE_INOTIFY
1551 infy_fork (EV_A);
1552 #endif
1553
1554 if (ev_is_active (&pipe_w))
1555 {
1556 /* this "locks" the handlers against writing to the pipe */
1557 /* while we modify the fd vars */
1558 gotsig = 1;
1559 #if EV_ASYNC_ENABLE
1560 gotasync = 1;
1561 #endif
1562
1563 ev_ref (EV_A);
1564 ev_io_stop (EV_A_ &pipe_w);
1565
1566 #if EV_USE_EVENTFD
1567 if (evfd >= 0)
1568 close (evfd);
1569 #endif
1570
1571 if (evpipe [0] >= 0)
1572 {
1573 close (evpipe [0]);
1574 close (evpipe [1]);
1575 }
1576
1577 evpipe_init (EV_A);
1578 /* now iterate over everything, in case we missed something */
1579 pipecb (EV_A_ &pipe_w, EV_READ);
1580 }
1581
1582 postfork = 0;
1583 }
1584
1585 #if EV_MULTIPLICITY
1586
1587 struct ev_loop *
1588 ev_loop_new (unsigned int flags)
1589 {
1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1591
1592 memset (loop, 0, sizeof (struct ev_loop));
1593
1594 loop_init (EV_A_ flags);
1595
1596 if (ev_backend (EV_A))
1597 return loop;
1598
1599 return 0;
1600 }
1601
1602 void
1603 ev_loop_destroy (EV_P)
1604 {
1605 loop_destroy (EV_A);
1606 ev_free (loop);
1607 }
1608
1609 void
1610 ev_loop_fork (EV_P)
1611 {
1612 postfork = 1; /* must be in line with ev_default_fork */
1613 }
1614
1615 #if EV_VERIFY
1616 static void noinline
1617 verify_watcher (EV_P_ W w)
1618 {
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623 }
1624
1625 static void noinline
1626 verify_heap (EV_P_ ANHE *heap, int N)
1627 {
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638 }
1639
1640 static void noinline
1641 array_verify (EV_P_ W *ws, int cnt)
1642 {
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648 }
1649 #endif
1650
1651 void
1652 ev_loop_verify (EV_P)
1653 {
1654 #if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676 #if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679 #endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684 #if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688 #endif
1689 }
1690
1691 #if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694 #endif
1695
1696 #if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699 #endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707 # if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1710 # endif
1711 #endif
1712 }
1713
1714 #endif /* multiplicity */
1715
1716 #if EV_MULTIPLICITY
1717 struct ev_loop *
1718 ev_default_loop_init (unsigned int flags)
1719 #else
1720 int
1721 ev_default_loop (unsigned int flags)
1722 #endif
1723 {
1724 if (!ev_default_loop_ptr)
1725 {
1726 #if EV_MULTIPLICITY
1727 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1728 #else
1729 ev_default_loop_ptr = 1;
1730 #endif
1731
1732 loop_init (EV_A_ flags);
1733
1734 if (ev_backend (EV_A))
1735 {
1736 #ifndef _WIN32
1737 ev_signal_init (&childev, childcb, SIGCHLD);
1738 ev_set_priority (&childev, EV_MAXPRI);
1739 ev_signal_start (EV_A_ &childev);
1740 ev_unref (EV_A); /* child watcher should not keep loop alive */
1741 #endif
1742 }
1743 else
1744 ev_default_loop_ptr = 0;
1745 }
1746
1747 return ev_default_loop_ptr;
1748 }
1749
1750 void
1751 ev_default_destroy (void)
1752 {
1753 #if EV_MULTIPLICITY
1754 struct ev_loop *loop = ev_default_loop_ptr;
1755 #endif
1756
1757 ev_default_loop_ptr = 0;
1758
1759 #ifndef _WIN32
1760 ev_ref (EV_A); /* child watcher */
1761 ev_signal_stop (EV_A_ &childev);
1762 #endif
1763
1764 loop_destroy (EV_A);
1765 }
1766
1767 void
1768 ev_default_fork (void)
1769 {
1770 #if EV_MULTIPLICITY
1771 struct ev_loop *loop = ev_default_loop_ptr;
1772 #endif
1773
1774 postfork = 1; /* must be in line with ev_loop_fork */
1775 }
1776
1777 /*****************************************************************************/
1778
1779 void
1780 ev_invoke (EV_P_ void *w, int revents)
1781 {
1782 EV_CB_INVOKE ((W)w, revents);
1783 }
1784
1785 inline_speed void
1786 call_pending (EV_P)
1787 {
1788 int pri;
1789
1790 for (pri = NUMPRI; pri--; )
1791 while (pendingcnt [pri])
1792 {
1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1794
1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1797
1798 p->w->pending = 0;
1799 EV_CB_INVOKE (p->w, p->events);
1800 EV_FREQUENT_CHECK;
1801 }
1802 }
1803
1804 #if EV_IDLE_ENABLE
1805 /* make idle watchers pending. this handles the "call-idle */
1806 /* only when higher priorities are idle" logic */
1807 inline_size void
1808 idle_reify (EV_P)
1809 {
1810 if (expect_false (idleall))
1811 {
1812 int pri;
1813
1814 for (pri = NUMPRI; pri--; )
1815 {
1816 if (pendingcnt [pri])
1817 break;
1818
1819 if (idlecnt [pri])
1820 {
1821 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1822 break;
1823 }
1824 }
1825 }
1826 }
1827 #endif
1828
1829 /* make timers pending */
1830 inline_size void
1831 timers_reify (EV_P)
1832 {
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865 }
1866
1867 #if EV_PERIODIC_ENABLE
1868 /* make periodics pending */
1869 inline_size void
1870 periodics_reify (EV_P)
1871 {
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923 }
1924
1925 /* simply recalculate all periodics */
1926 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927 static void noinline
1928 periodics_reschedule (EV_P)
1929 {
1930 int i;
1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946 }
1947 #endif
1948
1949 /* adjust all timers by a given offset */
1950 static void noinline
1951 timers_reschedule (EV_P_ ev_tstamp adjust)
1952 {
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961 }
1962
1963 /* fetch new monotonic and realtime times from the kernel */
1964 /* also detetc if there was a timejump, and act accordingly */
1965 inline_speed void
1966 time_update (EV_P_ ev_tstamp max_block)
1967 {
1968 #if EV_USE_MONOTONIC
1969 if (expect_true (have_monotonic))
1970 {
1971 int i;
1972 ev_tstamp odiff = rtmn_diff;
1973
1974 mn_now = get_clock ();
1975
1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1977 /* interpolate in the meantime */
1978 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1979 {
1980 ev_rt_now = rtmn_diff + mn_now;
1981 return;
1982 }
1983
1984 now_floor = mn_now;
1985 ev_rt_now = ev_time ();
1986
1987 /* loop a few times, before making important decisions.
1988 * on the choice of "4": one iteration isn't enough,
1989 * in case we get preempted during the calls to
1990 * ev_time and get_clock. a second call is almost guaranteed
1991 * to succeed in that case, though. and looping a few more times
1992 * doesn't hurt either as we only do this on time-jumps or
1993 * in the unlikely event of having been preempted here.
1994 */
1995 for (i = 4; --i; )
1996 {
1997 rtmn_diff = ev_rt_now - mn_now;
1998
1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2000 return; /* all is well */
2001
2002 ev_rt_now = ev_time ();
2003 mn_now = get_clock ();
2004 now_floor = mn_now;
2005 }
2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2009 # if EV_PERIODIC_ENABLE
2010 periodics_reschedule (EV_A);
2011 # endif
2012 }
2013 else
2014 #endif
2015 {
2016 ev_rt_now = ev_time ();
2017
2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2022 #if EV_PERIODIC_ENABLE
2023 periodics_reschedule (EV_A);
2024 #endif
2025 }
2026
2027 mn_now = ev_rt_now;
2028 }
2029 }
2030
2031 void
2032 ev_loop (EV_P_ int flags)
2033 {
2034 ++loop_depth;
2035
2036 loop_done = EVUNLOOP_CANCEL;
2037
2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2039
2040 do
2041 {
2042 #if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044 #endif
2045
2046 #ifndef _WIN32
2047 if (expect_false (curpid)) /* penalise the forking check even more */
2048 if (expect_false (getpid () != curpid))
2049 {
2050 curpid = getpid ();
2051 postfork = 1;
2052 }
2053 #endif
2054
2055 #if EV_FORK_ENABLE
2056 /* we might have forked, so queue fork handlers */
2057 if (expect_false (postfork))
2058 if (forkcnt)
2059 {
2060 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2061 call_pending (EV_A);
2062 }
2063 #endif
2064
2065 /* queue prepare watchers (and execute them) */
2066 if (expect_false (preparecnt))
2067 {
2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2069 call_pending (EV_A);
2070 }
2071
2072 /* we might have forked, so reify kernel state if necessary */
2073 if (expect_false (postfork))
2074 loop_fork (EV_A);
2075
2076 /* update fd-related kernel structures */
2077 fd_reify (EV_A);
2078
2079 /* calculate blocking time */
2080 {
2081 ev_tstamp waittime = 0.;
2082 ev_tstamp sleeptime = 0.;
2083
2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
2089 /* update time to cancel out callback processing overhead */
2090 time_update (EV_A_ 1e100);
2091
2092 waittime = MAX_BLOCKTIME;
2093
2094 if (timercnt)
2095 {
2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2097 if (waittime > to) waittime = to;
2098 }
2099
2100 #if EV_PERIODIC_ENABLE
2101 if (periodiccnt)
2102 {
2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2104 if (waittime > to) waittime = to;
2105 }
2106 #endif
2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
2109 if (expect_false (waittime < timeout_blocktime))
2110 waittime = timeout_blocktime;
2111
2112 /* extra check because io_blocktime is commonly 0 */
2113 if (expect_false (io_blocktime))
2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
2122 ev_sleep (sleeptime);
2123 waittime -= sleeptime;
2124 }
2125 }
2126 }
2127
2128 ++loop_count;
2129 backend_poll (EV_A_ waittime);
2130
2131 /* update ev_rt_now, do magic */
2132 time_update (EV_A_ waittime + sleeptime);
2133 }
2134
2135 /* queue pending timers and reschedule them */
2136 timers_reify (EV_A); /* relative timers called last */
2137 #if EV_PERIODIC_ENABLE
2138 periodics_reify (EV_A); /* absolute timers called first */
2139 #endif
2140
2141 #if EV_IDLE_ENABLE
2142 /* queue idle watchers unless other events are pending */
2143 idle_reify (EV_A);
2144 #endif
2145
2146 /* queue check watchers, to be executed first */
2147 if (expect_false (checkcnt))
2148 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2149
2150 call_pending (EV_A);
2151 }
2152 while (expect_true (
2153 activecnt
2154 && !loop_done
2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2156 ));
2157
2158 if (loop_done == EVUNLOOP_ONE)
2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
2162 }
2163
2164 void
2165 ev_unloop (EV_P_ int how)
2166 {
2167 loop_done = how;
2168 }
2169
2170 void
2171 ev_ref (EV_P)
2172 {
2173 ++activecnt;
2174 }
2175
2176 void
2177 ev_unref (EV_P)
2178 {
2179 --activecnt;
2180 }
2181
2182 void
2183 ev_now_update (EV_P)
2184 {
2185 time_update (EV_A_ 1e100);
2186 }
2187
2188 void
2189 ev_suspend (EV_P)
2190 {
2191 ev_now_update (EV_A);
2192 }
2193
2194 void
2195 ev_resume (EV_P)
2196 {
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201 #if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204 #endif
2205 }
2206
2207 /*****************************************************************************/
2208 /* singly-linked list management, used when the expected list length is short */
2209
2210 inline_size void
2211 wlist_add (WL *head, WL elem)
2212 {
2213 elem->next = *head;
2214 *head = elem;
2215 }
2216
2217 inline_size void
2218 wlist_del (WL *head, WL elem)
2219 {
2220 while (*head)
2221 {
2222 if (*head == elem)
2223 {
2224 *head = elem->next;
2225 return;
2226 }
2227
2228 head = &(*head)->next;
2229 }
2230 }
2231
2232 /* internal, faster, version of ev_clear_pending */
2233 inline_speed void
2234 clear_pending (EV_P_ W w)
2235 {
2236 if (w->pending)
2237 {
2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2239 w->pending = 0;
2240 }
2241 }
2242
2243 int
2244 ev_clear_pending (EV_P_ void *w)
2245 {
2246 W w_ = (W)w;
2247 int pending = w_->pending;
2248
2249 if (expect_true (pending))
2250 {
2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
2253 w_->pending = 0;
2254 return p->events;
2255 }
2256 else
2257 return 0;
2258 }
2259
2260 inline_size void
2261 pri_adjust (EV_P_ W w)
2262 {
2263 int pri = w->priority;
2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2266 w->priority = pri;
2267 }
2268
2269 inline_speed void
2270 ev_start (EV_P_ W w, int active)
2271 {
2272 pri_adjust (EV_A_ w);
2273 w->active = active;
2274 ev_ref (EV_A);
2275 }
2276
2277 inline_size void
2278 ev_stop (EV_P_ W w)
2279 {
2280 ev_unref (EV_A);
2281 w->active = 0;
2282 }
2283
2284 /*****************************************************************************/
2285
2286 void noinline
2287 ev_io_start (EV_P_ ev_io *w)
2288 {
2289 int fd = w->fd;
2290
2291 if (expect_false (ev_is_active (w)))
2292 return;
2293
2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
2298
2299 ev_start (EV_A_ (W)w, 1);
2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2301 wlist_add (&anfds[fd].head, (WL)w);
2302
2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
2307 }
2308
2309 void noinline
2310 ev_io_stop (EV_P_ ev_io *w)
2311 {
2312 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w)))
2314 return;
2315
2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
2319
2320 wlist_del (&anfds[w->fd].head, (WL)w);
2321 ev_stop (EV_A_ (W)w);
2322
2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
2326 }
2327
2328 void noinline
2329 ev_timer_start (EV_P_ ev_timer *w)
2330 {
2331 if (expect_false (ev_is_active (w)))
2332 return;
2333
2334 ev_at (w) += mn_now;
2335
2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
2346
2347 EV_FREQUENT_CHECK;
2348
2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2350 }
2351
2352 void noinline
2353 ev_timer_stop (EV_P_ ev_timer *w)
2354 {
2355 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w)))
2357 return;
2358
2359 EV_FREQUENT_CHECK;
2360
2361 {
2362 int active = ev_active (w);
2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
2368 if (expect_true (active < timercnt + HEAP0))
2369 {
2370 timers [active] = timers [timercnt + HEAP0];
2371 adjustheap (timers, timercnt, active);
2372 }
2373 }
2374
2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
2378
2379 ev_stop (EV_A_ (W)w);
2380 }
2381
2382 void noinline
2383 ev_timer_again (EV_P_ ev_timer *w)
2384 {
2385 EV_FREQUENT_CHECK;
2386
2387 if (ev_is_active (w))
2388 {
2389 if (w->repeat)
2390 {
2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
2393 adjustheap (timers, timercnt, ev_active (w));
2394 }
2395 else
2396 ev_timer_stop (EV_A_ w);
2397 }
2398 else if (w->repeat)
2399 {
2400 ev_at (w) = w->repeat;
2401 ev_timer_start (EV_A_ w);
2402 }
2403
2404 EV_FREQUENT_CHECK;
2405 }
2406
2407 #if EV_PERIODIC_ENABLE
2408 void noinline
2409 ev_periodic_start (EV_P_ ev_periodic *w)
2410 {
2411 if (expect_false (ev_is_active (w)))
2412 return;
2413
2414 if (w->reschedule_cb)
2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2416 else if (w->interval)
2417 {
2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2419 /* this formula differs from the one in periodic_reify because we do not always round up */
2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2421 }
2422 else
2423 ev_at (w) = w->offset;
2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
2433
2434 EV_FREQUENT_CHECK;
2435
2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2437 }
2438
2439 void noinline
2440 ev_periodic_stop (EV_P_ ev_periodic *w)
2441 {
2442 clear_pending (EV_A_ (W)w);
2443 if (expect_false (!ev_is_active (w)))
2444 return;
2445
2446 EV_FREQUENT_CHECK;
2447
2448 {
2449 int active = ev_active (w);
2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
2455 if (expect_true (active < periodiccnt + HEAP0))
2456 {
2457 periodics [active] = periodics [periodiccnt + HEAP0];
2458 adjustheap (periodics, periodiccnt, active);
2459 }
2460 }
2461
2462 EV_FREQUENT_CHECK;
2463
2464 ev_stop (EV_A_ (W)w);
2465 }
2466
2467 void noinline
2468 ev_periodic_again (EV_P_ ev_periodic *w)
2469 {
2470 /* TODO: use adjustheap and recalculation */
2471 ev_periodic_stop (EV_A_ w);
2472 ev_periodic_start (EV_A_ w);
2473 }
2474 #endif
2475
2476 #ifndef SA_RESTART
2477 # define SA_RESTART 0
2478 #endif
2479
2480 void noinline
2481 ev_signal_start (EV_P_ ev_signal *w)
2482 {
2483 #if EV_MULTIPLICITY
2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2485 #endif
2486 if (expect_false (ev_is_active (w)))
2487 return;
2488
2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2490
2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2494
2495 {
2496 #ifndef _WIN32
2497 sigset_t full, prev;
2498 sigfillset (&full);
2499 sigprocmask (SIG_SETMASK, &full, &prev);
2500 #endif
2501
2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2503
2504 #ifndef _WIN32
2505 sigprocmask (SIG_SETMASK, &prev, 0);
2506 #endif
2507 }
2508
2509 ev_start (EV_A_ (W)w, 1);
2510 wlist_add (&signals [w->signum - 1].head, (WL)w);
2511
2512 if (!((WL)w)->next)
2513 {
2514 #if _WIN32
2515 signal (w->signum, ev_sighandler);
2516 #else
2517 struct sigaction sa;
2518 sa.sa_handler = ev_sighandler;
2519 sigfillset (&sa.sa_mask);
2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2521 sigaction (w->signum, &sa, 0);
2522 #endif
2523 }
2524
2525 EV_FREQUENT_CHECK;
2526 }
2527
2528 void noinline
2529 ev_signal_stop (EV_P_ ev_signal *w)
2530 {
2531 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w)))
2533 return;
2534
2535 EV_FREQUENT_CHECK;
2536
2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
2538 ev_stop (EV_A_ (W)w);
2539
2540 if (!signals [w->signum - 1].head)
2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
2544 }
2545
2546 void
2547 ev_child_start (EV_P_ ev_child *w)
2548 {
2549 #if EV_MULTIPLICITY
2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2551 #endif
2552 if (expect_false (ev_is_active (w)))
2553 return;
2554
2555 EV_FREQUENT_CHECK;
2556
2557 ev_start (EV_A_ (W)w, 1);
2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2561 }
2562
2563 void
2564 ev_child_stop (EV_P_ ev_child *w)
2565 {
2566 clear_pending (EV_A_ (W)w);
2567 if (expect_false (!ev_is_active (w)))
2568 return;
2569
2570 EV_FREQUENT_CHECK;
2571
2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
2576 }
2577
2578 #if EV_STAT_ENABLE
2579
2580 # ifdef _WIN32
2581 # undef lstat
2582 # define lstat(a,b) _stati64 (a,b)
2583 # endif
2584
2585 #define DEF_STAT_INTERVAL 5.0074891
2586 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2587 #define MIN_STAT_INTERVAL 0.1074891
2588
2589 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2590
2591 #if EV_USE_INOTIFY
2592 # define EV_INOTIFY_BUFSIZE 8192
2593
2594 static void noinline
2595 infy_add (EV_P_ ev_stat *w)
2596 {
2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2598
2599 if (w->wd < 0)
2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2603
2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2608 {
2609 char path [4096];
2610 strcpy (path, w->path);
2611
2612 do
2613 {
2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2616
2617 char *pend = strrchr (path, '/');
2618
2619 if (!pend || pend == path)
2620 break;
2621
2622 *pend = 0;
2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2624 }
2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2626 }
2627 }
2628
2629 if (w->wd >= 0)
2630 {
2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2650 }
2651
2652 static void noinline
2653 infy_del (EV_P_ ev_stat *w)
2654 {
2655 int slot;
2656 int wd = w->wd;
2657
2658 if (wd < 0)
2659 return;
2660
2661 w->wd = -2;
2662 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2663 wlist_del (&fs_hash [slot].head, (WL)w);
2664
2665 /* remove this watcher, if others are watching it, they will rearm */
2666 inotify_rm_watch (fs_fd, wd);
2667 }
2668
2669 static void noinline
2670 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2671 {
2672 if (slot < 0)
2673 /* overflow, need to check for all hash slots */
2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2675 infy_wd (EV_A_ slot, wd, ev);
2676 else
2677 {
2678 WL w_;
2679
2680 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2681 {
2682 ev_stat *w = (ev_stat *)w_;
2683 w_ = w_->next; /* lets us remove this watcher and all before it */
2684
2685 if (w->wd == wd || wd == -1)
2686 {
2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2690 w->wd = -1;
2691 infy_add (EV_A_ w); /* re-add, no matter what */
2692 }
2693
2694 stat_timer_cb (EV_A_ &w->timer, 0);
2695 }
2696 }
2697 }
2698 }
2699
2700 static void
2701 infy_cb (EV_P_ ev_io *w, int revents)
2702 {
2703 char buf [EV_INOTIFY_BUFSIZE];
2704 struct inotify_event *ev = (struct inotify_event *)buf;
2705 int ofs;
2706 int len = read (fs_fd, buf, sizeof (buf));
2707
2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2710 }
2711
2712 inline_size void
2713 check_2625 (EV_P)
2714 {
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733 }
2734
2735 inline_size void
2736 infy_init (EV_P)
2737 {
2738 if (fs_fd != -2)
2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2744
2745 fs_fd = inotify_init ();
2746
2747 if (fs_fd >= 0)
2748 {
2749 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2750 ev_set_priority (&fs_w, EV_MAXPRI);
2751 ev_io_start (EV_A_ &fs_w);
2752 }
2753 }
2754
2755 inline_size void
2756 infy_fork (EV_P)
2757 {
2758 int slot;
2759
2760 if (fs_fd < 0)
2761 return;
2762
2763 close (fs_fd);
2764 fs_fd = inotify_init ();
2765
2766 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2767 {
2768 WL w_ = fs_hash [slot].head;
2769 fs_hash [slot].head = 0;
2770
2771 while (w_)
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us add this watcher */
2775
2776 w->wd = -1;
2777
2778 if (fs_fd >= 0)
2779 infy_add (EV_A_ w); /* re-add, no matter what */
2780 else
2781 ev_timer_again (EV_A_ &w->timer);
2782 }
2783 }
2784 }
2785
2786 #endif
2787
2788 #ifdef _WIN32
2789 # define EV_LSTAT(p,b) _stati64 (p, b)
2790 #else
2791 # define EV_LSTAT(p,b) lstat (p, b)
2792 #endif
2793
2794 void
2795 ev_stat_stat (EV_P_ ev_stat *w)
2796 {
2797 if (lstat (w->path, &w->attr) < 0)
2798 w->attr.st_nlink = 0;
2799 else if (!w->attr.st_nlink)
2800 w->attr.st_nlink = 1;
2801 }
2802
2803 static void noinline
2804 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2805 {
2806 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2807
2808 /* we copy this here each the time so that */
2809 /* prev has the old value when the callback gets invoked */
2810 w->prev = w->attr;
2811 ev_stat_stat (EV_A_ w);
2812
2813 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2814 if (
2815 w->prev.st_dev != w->attr.st_dev
2816 || w->prev.st_ino != w->attr.st_ino
2817 || w->prev.st_mode != w->attr.st_mode
2818 || w->prev.st_nlink != w->attr.st_nlink
2819 || w->prev.st_uid != w->attr.st_uid
2820 || w->prev.st_gid != w->attr.st_gid
2821 || w->prev.st_rdev != w->attr.st_rdev
2822 || w->prev.st_size != w->attr.st_size
2823 || w->prev.st_atime != w->attr.st_atime
2824 || w->prev.st_mtime != w->attr.st_mtime
2825 || w->prev.st_ctime != w->attr.st_ctime
2826 ) {
2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2830 infy_del (EV_A_ w);
2831 infy_add (EV_A_ w);
2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2834 #endif
2835
2836 ev_feed_event (EV_A_ w, EV_STAT);
2837 }
2838 }
2839
2840 void
2841 ev_stat_start (EV_P_ ev_stat *w)
2842 {
2843 if (expect_false (ev_is_active (w)))
2844 return;
2845
2846 ev_stat_stat (EV_A_ w);
2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2849 w->interval = MIN_STAT_INTERVAL;
2850
2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2852 ev_set_priority (&w->timer, ev_priority (w));
2853
2854 #if EV_USE_INOTIFY
2855 infy_init (EV_A);
2856
2857 if (fs_fd >= 0)
2858 infy_add (EV_A_ w);
2859 else
2860 #endif
2861 ev_timer_again (EV_A_ &w->timer);
2862
2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2866 }
2867
2868 void
2869 ev_stat_stop (EV_P_ ev_stat *w)
2870 {
2871 clear_pending (EV_A_ (W)w);
2872 if (expect_false (!ev_is_active (w)))
2873 return;
2874
2875 EV_FREQUENT_CHECK;
2876
2877 #if EV_USE_INOTIFY
2878 infy_del (EV_A_ w);
2879 #endif
2880 ev_timer_stop (EV_A_ &w->timer);
2881
2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2885 }
2886 #endif
2887
2888 #if EV_IDLE_ENABLE
2889 void
2890 ev_idle_start (EV_P_ ev_idle *w)
2891 {
2892 if (expect_false (ev_is_active (w)))
2893 return;
2894
2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2898
2899 {
2900 int active = ++idlecnt [ABSPRI (w)];
2901
2902 ++idleall;
2903 ev_start (EV_A_ (W)w, active);
2904
2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2906 idles [ABSPRI (w)][active - 1] = w;
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910 }
2911
2912 void
2913 ev_idle_stop (EV_P_ ev_idle *w)
2914 {
2915 clear_pending (EV_A_ (W)w);
2916 if (expect_false (!ev_is_active (w)))
2917 return;
2918
2919 EV_FREQUENT_CHECK;
2920
2921 {
2922 int active = ev_active (w);
2923
2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2926
2927 ev_stop (EV_A_ (W)w);
2928 --idleall;
2929 }
2930
2931 EV_FREQUENT_CHECK;
2932 }
2933 #endif
2934
2935 void
2936 ev_prepare_start (EV_P_ ev_prepare *w)
2937 {
2938 if (expect_false (ev_is_active (w)))
2939 return;
2940
2941 EV_FREQUENT_CHECK;
2942
2943 ev_start (EV_A_ (W)w, ++preparecnt);
2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2948 }
2949
2950 void
2951 ev_prepare_stop (EV_P_ ev_prepare *w)
2952 {
2953 clear_pending (EV_A_ (W)w);
2954 if (expect_false (!ev_is_active (w)))
2955 return;
2956
2957 EV_FREQUENT_CHECK;
2958
2959 {
2960 int active = ev_active (w);
2961
2962 prepares [active - 1] = prepares [--preparecnt];
2963 ev_active (prepares [active - 1]) = active;
2964 }
2965
2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2969 }
2970
2971 void
2972 ev_check_start (EV_P_ ev_check *w)
2973 {
2974 if (expect_false (ev_is_active (w)))
2975 return;
2976
2977 EV_FREQUENT_CHECK;
2978
2979 ev_start (EV_A_ (W)w, ++checkcnt);
2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2984 }
2985
2986 void
2987 ev_check_stop (EV_P_ ev_check *w)
2988 {
2989 clear_pending (EV_A_ (W)w);
2990 if (expect_false (!ev_is_active (w)))
2991 return;
2992
2993 EV_FREQUENT_CHECK;
2994
2995 {
2996 int active = ev_active (w);
2997
2998 checks [active - 1] = checks [--checkcnt];
2999 ev_active (checks [active - 1]) = active;
3000 }
3001
3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
3005 }
3006
3007 #if EV_EMBED_ENABLE
3008 void noinline
3009 ev_embed_sweep (EV_P_ ev_embed *w)
3010 {
3011 ev_loop (w->other, EVLOOP_NONBLOCK);
3012 }
3013
3014 static void
3015 embed_io_cb (EV_P_ ev_io *io, int revents)
3016 {
3017 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3018
3019 if (ev_cb (w))
3020 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3021 else
3022 ev_loop (w->other, EVLOOP_NONBLOCK);
3023 }
3024
3025 static void
3026 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3027 {
3028 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3029
3030 {
3031 struct ev_loop *loop = w->other;
3032
3033 while (fdchangecnt)
3034 {
3035 fd_reify (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038 }
3039 }
3040
3041 static void
3042 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043 {
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056 }
3057
3058 #if 0
3059 static void
3060 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3061 {
3062 ev_idle_stop (EV_A_ idle);
3063 }
3064 #endif
3065
3066 void
3067 ev_embed_start (EV_P_ ev_embed *w)
3068 {
3069 if (expect_false (ev_is_active (w)))
3070 return;
3071
3072 {
3073 struct ev_loop *loop = w->other;
3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3076 }
3077
3078 EV_FREQUENT_CHECK;
3079
3080 ev_set_priority (&w->io, ev_priority (w));
3081 ev_io_start (EV_A_ &w->io);
3082
3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
3084 ev_set_priority (&w->prepare, EV_MINPRI);
3085 ev_prepare_start (EV_A_ &w->prepare);
3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3091
3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
3095 }
3096
3097 void
3098 ev_embed_stop (EV_P_ ev_embed *w)
3099 {
3100 clear_pending (EV_A_ (W)w);
3101 if (expect_false (!ev_is_active (w)))
3102 return;
3103
3104 EV_FREQUENT_CHECK;
3105
3106 ev_io_stop (EV_A_ &w->io);
3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
3109
3110 EV_FREQUENT_CHECK;
3111 }
3112 #endif
3113
3114 #if EV_FORK_ENABLE
3115 void
3116 ev_fork_start (EV_P_ ev_fork *w)
3117 {
3118 if (expect_false (ev_is_active (w)))
3119 return;
3120
3121 EV_FREQUENT_CHECK;
3122
3123 ev_start (EV_A_ (W)w, ++forkcnt);
3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
3128 }
3129
3130 void
3131 ev_fork_stop (EV_P_ ev_fork *w)
3132 {
3133 clear_pending (EV_A_ (W)w);
3134 if (expect_false (!ev_is_active (w)))
3135 return;
3136
3137 EV_FREQUENT_CHECK;
3138
3139 {
3140 int active = ev_active (w);
3141
3142 forks [active - 1] = forks [--forkcnt];
3143 ev_active (forks [active - 1]) = active;
3144 }
3145
3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
3149 }
3150 #endif
3151
3152 #if EV_ASYNC_ENABLE
3153 void
3154 ev_async_start (EV_P_ ev_async *w)
3155 {
3156 if (expect_false (ev_is_active (w)))
3157 return;
3158
3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, ++asynccnt);
3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
3168 }
3169
3170 void
3171 ev_async_stop (EV_P_ ev_async *w)
3172 {
3173 clear_pending (EV_A_ (W)w);
3174 if (expect_false (!ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 {
3180 int active = ev_active (w);
3181
3182 asyncs [active - 1] = asyncs [--asynccnt];
3183 ev_active (asyncs [active - 1]) = active;
3184 }
3185
3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
3189 }
3190
3191 void
3192 ev_async_send (EV_P_ ev_async *w)
3193 {
3194 w->sent = 1;
3195 evpipe_write (EV_A_ &gotasync);
3196 }
3197 #endif
3198
3199 /*****************************************************************************/
3200
3201 struct ev_once
3202 {
3203 ev_io io;
3204 ev_timer to;
3205 void (*cb)(int revents, void *arg);
3206 void *arg;
3207 };
3208
3209 static void
3210 once_cb (EV_P_ struct ev_once *once, int revents)
3211 {
3212 void (*cb)(int revents, void *arg) = once->cb;
3213 void *arg = once->arg;
3214
3215 ev_io_stop (EV_A_ &once->io);
3216 ev_timer_stop (EV_A_ &once->to);
3217 ev_free (once);
3218
3219 cb (revents, arg);
3220 }
3221
3222 static void
3223 once_cb_io (EV_P_ ev_io *w, int revents)
3224 {
3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3228 }
3229
3230 static void
3231 once_cb_to (EV_P_ ev_timer *w, int revents)
3232 {
3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3236 }
3237
3238 void
3239 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3240 {
3241 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3242
3243 if (expect_false (!once))
3244 {
3245 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3246 return;
3247 }
3248
3249 once->cb = cb;
3250 once->arg = arg;
3251
3252 ev_init (&once->io, once_cb_io);
3253 if (fd >= 0)
3254 {
3255 ev_io_set (&once->io, fd, events);
3256 ev_io_start (EV_A_ &once->io);
3257 }
3258
3259 ev_init (&once->to, once_cb_to);
3260 if (timeout >= 0.)
3261 {
3262 ev_timer_set (&once->to, timeout, 0.);
3263 ev_timer_start (EV_A_ &once->to);
3264 }
3265 }
3266
3267 /*****************************************************************************/
3268
3269 #if EV_WALK_ENABLE
3270 void
3271 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272 {
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282 #if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289 #endif
3290 #if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294 #endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304 #if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312 #endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316 #if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320 #endif
3321
3322 #if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327 #endif
3328
3329 #if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334 #endif
3335
3336 #if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340 #endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344 #if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346 #endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370 /* EV_STAT 0x00001000 /* stat data changed */
3371 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372 }
3373 #endif
3374
3375 #if EV_MULTIPLICITY
3376 #include "ev_wrap.h"
3377 #endif
3378
3379 #ifdef __cplusplus
3380 }
3381 #endif
3382