ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.295
Committed: Wed Jul 8 04:29:31 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.294: +9 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398 #if EV_MINPRI == EV_MAXPRI
399 # define ABSPRI(w) (((W)w), 0)
400 #else
401 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402 #endif
403
404 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 #define EMPTY2(a,b) /* used to suppress some warnings */
406
407 typedef ev_watcher *W;
408 typedef ev_watcher_list *WL;
409 typedef ev_watcher_time *WT;
410
411 #define ev_active(w) ((W)(w))->active
412 #define ev_at(w) ((WT)(w))->at
413
414 #if EV_USE_REALTIME
415 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416 /* giving it a reasonably high chance of working on typical architetcures */
417 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418 #endif
419
420 #if EV_USE_MONOTONIC
421 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 #endif
423
424 #ifdef _WIN32
425 # include "ev_win32.c"
426 #endif
427
428 /*****************************************************************************/
429
430 static void (*syserr_cb)(const char *msg);
431
432 void
433 ev_set_syserr_cb (void (*cb)(const char *msg))
434 {
435 syserr_cb = cb;
436 }
437
438 static void noinline
439 ev_syserr (const char *msg)
440 {
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451 }
452
453 static void *
454 ev_realloc_emul (void *ptr, long size)
455 {
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466 }
467
468 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470 void
471 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 {
473 alloc = cb;
474 }
475
476 inline_speed void *
477 ev_realloc (void *ptr, long size)
478 {
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488 }
489
490 #define ev_malloc(size) ev_realloc (0, (size))
491 #define ev_free(ptr) ev_realloc ((ptr), 0)
492
493 /*****************************************************************************/
494
495 /* file descriptor info structure */
496 typedef struct
497 {
498 WL head;
499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
502 unsigned char unused;
503 #if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505 #endif
506 #if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508 #endif
509 } ANFD;
510
511 /* stores the pending event set for a given watcher */
512 typedef struct
513 {
514 W w;
515 int events; /* the pending event set for the given watcher */
516 } ANPENDING;
517
518 #if EV_USE_INOTIFY
519 /* hash table entry per inotify-id */
520 typedef struct
521 {
522 WL head;
523 } ANFS;
524 #endif
525
526 /* Heap Entry */
527 #if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537 #else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544 #endif
545
546 #if EV_MULTIPLICITY
547
548 struct ev_loop
549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
552 #define VAR(name,decl) decl;
553 #include "ev_vars.h"
554 #undef VAR
555 };
556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
560
561 #else
562
563 ev_tstamp ev_rt_now;
564 #define VAR(name,decl) static decl;
565 #include "ev_vars.h"
566 #undef VAR
567
568 static int ev_default_loop_ptr;
569
570 #endif
571
572 /*****************************************************************************/
573
574 #ifndef EV_HAVE_EV_TIME
575 ev_tstamp
576 ev_time (void)
577 {
578 #if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
581 struct timespec ts;
582 clock_gettime (CLOCK_REALTIME, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9;
584 }
585 #endif
586
587 struct timeval tv;
588 gettimeofday (&tv, 0);
589 return tv.tv_sec + tv.tv_usec * 1e-6;
590 }
591 #endif
592
593 inline_size ev_tstamp
594 get_clock (void)
595 {
596 #if EV_USE_MONOTONIC
597 if (expect_true (have_monotonic))
598 {
599 struct timespec ts;
600 clock_gettime (CLOCK_MONOTONIC, &ts);
601 return ts.tv_sec + ts.tv_nsec * 1e-9;
602 }
603 #endif
604
605 return ev_time ();
606 }
607
608 #if EV_MULTIPLICITY
609 ev_tstamp
610 ev_now (EV_P)
611 {
612 return ev_rt_now;
613 }
614 #endif
615
616 void
617 ev_sleep (ev_tstamp delay)
618 {
619 if (delay > 0.)
620 {
621 #if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628 #elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630 #else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640 #endif
641 }
642 }
643
644 /*****************************************************************************/
645
646 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648 /* find a suitable new size for the given array, */
649 /* hopefully by rounding to a ncie-to-malloc size */
650 inline_size int
651 array_nextsize (int elem, int cur, int cnt)
652 {
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669 }
670
671 static noinline void *
672 array_realloc (int elem, void *base, int *cur, int cnt)
673 {
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676 }
677
678 #define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
680
681 #define array_needsize(type,base,cur,cnt,init) \
682 if (expect_false ((cnt) > (cur))) \
683 { \
684 int ocur_ = (cur); \
685 (base) = (type *)array_realloc \
686 (sizeof (type), (base), &(cur), (cnt)); \
687 init ((base) + (ocur_), (cur) - ocur_); \
688 }
689
690 #if 0
691 #define array_slim(type,stem) \
692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
693 { \
694 stem ## max = array_roundsize (stem ## cnt >> 1); \
695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
697 }
698 #endif
699
700 #define array_free(stem, idx) \
701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
702
703 /*****************************************************************************/
704
705 /* dummy callback for pending events */
706 static void noinline
707 pendingcb (EV_P_ ev_prepare *w, int revents)
708 {
709 }
710
711 void noinline
712 ev_feed_event (EV_P_ void *w, int revents)
713 {
714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
716
717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
724 pendings [pri][w_->pending - 1].events = revents;
725 }
726 }
727
728 inline_speed void
729 feed_reverse (EV_P_ W w)
730 {
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733 }
734
735 inline_size void
736 feed_reverse_done (EV_P_ int revents)
737 {
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741 }
742
743 inline_speed void
744 queue_events (EV_P_ W *events, int eventcnt, int type)
745 {
746 int i;
747
748 for (i = 0; i < eventcnt; ++i)
749 ev_feed_event (EV_A_ events [i], type);
750 }
751
752 /*****************************************************************************/
753
754 inline_speed void
755 fd_event (EV_P_ int fd, int revents)
756 {
757 ANFD *anfd = anfds + fd;
758 ev_io *w;
759
760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
761 {
762 int ev = w->events & revents;
763
764 if (ev)
765 ev_feed_event (EV_A_ (W)w, ev);
766 }
767 }
768
769 void
770 ev_feed_fd_event (EV_P_ int fd, int revents)
771 {
772 if (fd >= 0 && fd < anfdmax)
773 fd_event (EV_A_ fd, revents);
774 }
775
776 /* make sure the external fd watch events are in-sync */
777 /* with the kernel/libev internal state */
778 inline_size void
779 fd_reify (EV_P)
780 {
781 int i;
782
783 for (i = 0; i < fdchangecnt; ++i)
784 {
785 int fd = fdchanges [i];
786 ANFD *anfd = anfds + fd;
787 ev_io *w;
788
789 unsigned char events = 0;
790
791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
792 events |= (unsigned char)w->events;
793
794 #if EV_SELECT_IS_WINSOCKET
795 if (events)
796 {
797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
801 anfd->handle = _get_osfhandle (fd);
802 #endif
803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
804 }
805 #endif
806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
811 anfd->reify = 0;
812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
817 }
818
819 fdchangecnt = 0;
820 }
821
822 /* something about the given fd changed */
823 inline_size void
824 fd_change (EV_P_ int fd, int flags)
825 {
826 unsigned char reify = anfds [fd].reify;
827 anfds [fd].reify |= flags;
828
829 if (expect_true (!reify))
830 {
831 ++fdchangecnt;
832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
833 fdchanges [fdchangecnt - 1] = fd;
834 }
835 }
836
837 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838 inline_speed void
839 fd_kill (EV_P_ int fd)
840 {
841 ev_io *w;
842
843 while ((w = (ev_io *)anfds [fd].head))
844 {
845 ev_io_stop (EV_A_ w);
846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
847 }
848 }
849
850 /* check whether the given fd is atcually valid, for error recovery */
851 inline_size int
852 fd_valid (int fd)
853 {
854 #ifdef _WIN32
855 return _get_osfhandle (fd) != -1;
856 #else
857 return fcntl (fd, F_GETFD) != -1;
858 #endif
859 }
860
861 /* called on EBADF to verify fds */
862 static void noinline
863 fd_ebadf (EV_P)
864 {
865 int fd;
866
867 for (fd = 0; fd < anfdmax; ++fd)
868 if (anfds [fd].events)
869 if (!fd_valid (fd) && errno == EBADF)
870 fd_kill (EV_A_ fd);
871 }
872
873 /* called on ENOMEM in select/poll to kill some fds and retry */
874 static void noinline
875 fd_enomem (EV_P)
876 {
877 int fd;
878
879 for (fd = anfdmax; fd--; )
880 if (anfds [fd].events)
881 {
882 fd_kill (EV_A_ fd);
883 return;
884 }
885 }
886
887 /* usually called after fork if backend needs to re-arm all fds from scratch */
888 static void noinline
889 fd_rearm_all (EV_P)
890 {
891 int fd;
892
893 for (fd = 0; fd < anfdmax; ++fd)
894 if (anfds [fd].events)
895 {
896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
899 }
900 }
901
902 /*****************************************************************************/
903
904 /*
905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
909
910 /*
911 * at the moment we allow libev the luxury of two heaps,
912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916 #if EV_USE_4HEAP
917
918 #define DHEAP 4
919 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
920 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921 #define UPHEAP_DONE(p,k) ((p) == (k))
922
923 /* away from the root */
924 inline_speed void
925 downheap (ANHE *heap, int N, int k)
926 {
927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
929
930 for (;;)
931 {
932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
935
936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
938 {
939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
952 break;
953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965 }
966
967 #else /* 4HEAP */
968
969 #define HEAP0 1
970 #define HPARENT(k) ((k) >> 1)
971 #define UPHEAP_DONE(p,k) (!(p))
972
973 /* away from the root */
974 inline_speed void
975 downheap (ANHE *heap, int N, int k)
976 {
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000 }
1001 #endif
1002
1003 /* towards the root */
1004 inline_speed void
1005 upheap (ANHE *heap, int k)
1006 {
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023 }
1024
1025 /* move an element suitably so it is in a correct place */
1026 inline_size void
1027 adjustheap (ANHE *heap, int N, int k)
1028 {
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1030 upheap (heap, k);
1031 else
1032 downheap (heap, N, k);
1033 }
1034
1035 /* rebuild the heap: this function is used only once and executed rarely */
1036 inline_size void
1037 reheap (ANHE *heap, int N)
1038 {
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
1045 }
1046
1047 /*****************************************************************************/
1048
1049 /* associate signal watchers to a signal signal */
1050 typedef struct
1051 {
1052 WL head;
1053 EV_ATOMIC_T gotsig;
1054 } ANSIG;
1055
1056 static ANSIG *signals;
1057 static int signalmax;
1058
1059 static EV_ATOMIC_T gotsig;
1060
1061 /*****************************************************************************/
1062
1063 /* used to prepare libev internal fd's */
1064 /* this is not fork-safe */
1065 inline_speed void
1066 fd_intern (int fd)
1067 {
1068 #ifdef _WIN32
1069 unsigned long arg = 1;
1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1071 #else
1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
1073 fcntl (fd, F_SETFL, O_NONBLOCK);
1074 #endif
1075 }
1076
1077 static void noinline
1078 evpipe_init (EV_P)
1079 {
1080 if (!ev_is_active (&pipe_w))
1081 {
1082 #if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090 #endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103 }
1104
1105 inline_size void
1106 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107 {
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114 #if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121 #endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126 }
1127
1128 /* called whenever the libev signal pipe */
1129 /* got some events (signal, async) */
1130 static void
1131 pipecb (EV_P_ ev_io *iow, int revents)
1132 {
1133 #if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140 #endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156 #if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169 #endif
1170 }
1171
1172 /*****************************************************************************/
1173
1174 static void
1175 ev_sighandler (int signum)
1176 {
1177 #if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179 #endif
1180
1181 #if _WIN32
1182 signal (signum, ev_sighandler);
1183 #endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187 }
1188
1189 void noinline
1190 ev_feed_signal_event (EV_P_ int signum)
1191 {
1192 WL w;
1193
1194 #if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196 #endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207 }
1208
1209 /*****************************************************************************/
1210
1211 static WL childs [EV_PID_HASHSIZE];
1212
1213 #ifndef _WIN32
1214
1215 static ev_signal childev;
1216
1217 #ifndef WIFCONTINUED
1218 # define WIFCONTINUED(status) 0
1219 #endif
1220
1221 /* handle a single child status event */
1222 inline_speed void
1223 child_reap (EV_P_ int chain, int pid, int status)
1224 {
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239 }
1240
1241 #ifndef WCONTINUED
1242 # define WCONTINUED 0
1243 #endif
1244
1245 /* called on sigchld etc., calls waitpid */
1246 static void
1247 childcb (EV_P_ ev_signal *sw, int revents)
1248 {
1249 int pid, status;
1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1253 if (!WCONTINUED
1254 || errno != EINVAL
1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1256 return;
1257
1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1261
1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1265 }
1266
1267 #endif
1268
1269 /*****************************************************************************/
1270
1271 #if EV_USE_PORT
1272 # include "ev_port.c"
1273 #endif
1274 #if EV_USE_KQUEUE
1275 # include "ev_kqueue.c"
1276 #endif
1277 #if EV_USE_EPOLL
1278 # include "ev_epoll.c"
1279 #endif
1280 #if EV_USE_POLL
1281 # include "ev_poll.c"
1282 #endif
1283 #if EV_USE_SELECT
1284 # include "ev_select.c"
1285 #endif
1286
1287 int
1288 ev_version_major (void)
1289 {
1290 return EV_VERSION_MAJOR;
1291 }
1292
1293 int
1294 ev_version_minor (void)
1295 {
1296 return EV_VERSION_MINOR;
1297 }
1298
1299 /* return true if we are running with elevated privileges and should ignore env variables */
1300 int inline_size
1301 enable_secure (void)
1302 {
1303 #ifdef _WIN32
1304 return 0;
1305 #else
1306 return getuid () != geteuid ()
1307 || getgid () != getegid ();
1308 #endif
1309 }
1310
1311 unsigned int
1312 ev_supported_backends (void)
1313 {
1314 unsigned int flags = 0;
1315
1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323 }
1324
1325 unsigned int
1326 ev_recommended_backends (void)
1327 {
1328 unsigned int flags = ev_supported_backends ();
1329
1330 #ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334 #endif
1335 #ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339 #endif
1340
1341 return flags;
1342 }
1343
1344 unsigned int
1345 ev_embeddable_backends (void)
1346 {
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354 }
1355
1356 unsigned int
1357 ev_backend (EV_P)
1358 {
1359 return backend;
1360 }
1361
1362 unsigned int
1363 ev_loop_count (EV_P)
1364 {
1365 return loop_count;
1366 }
1367
1368 unsigned int
1369 ev_loop_depth (EV_P)
1370 {
1371 return loop_depth;
1372 }
1373
1374 void
1375 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376 {
1377 io_blocktime = interval;
1378 }
1379
1380 void
1381 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382 {
1383 timeout_blocktime = interval;
1384 }
1385
1386 /* initialise a loop structure, must be zero-initialised */
1387 static void noinline
1388 loop_init (EV_P_ unsigned int flags)
1389 {
1390 if (!backend)
1391 {
1392 #if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400 #endif
1401
1402 #if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410 #endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416
1417 io_blocktime = 0.;
1418 timeout_blocktime = 0.;
1419 backend = 0;
1420 backend_fd = -1;
1421 gotasync = 0;
1422 #if EV_USE_INOTIFY
1423 fs_fd = -2;
1424 #endif
1425
1426 /* pid check not overridable via env */
1427 #ifndef _WIN32
1428 if (flags & EVFLAG_FORKCHECK)
1429 curpid = getpid ();
1430 #endif
1431
1432 if (!(flags & EVFLAG_NOENV)
1433 && !enable_secure ()
1434 && getenv ("LIBEV_FLAGS"))
1435 flags = atoi (getenv ("LIBEV_FLAGS"));
1436
1437 if (!(flags & 0x0000ffffU))
1438 flags |= ev_recommended_backends ();
1439
1440 #if EV_USE_PORT
1441 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1442 #endif
1443 #if EV_USE_KQUEUE
1444 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1445 #endif
1446 #if EV_USE_EPOLL
1447 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1448 #endif
1449 #if EV_USE_POLL
1450 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1451 #endif
1452 #if EV_USE_SELECT
1453 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1454 #endif
1455
1456 ev_prepare_init (&pending_w, pendingcb);
1457
1458 ev_init (&pipe_w, pipecb);
1459 ev_set_priority (&pipe_w, EV_MAXPRI);
1460 }
1461 }
1462
1463 /* free up a loop structure */
1464 static void noinline
1465 loop_destroy (EV_P)
1466 {
1467 int i;
1468
1469 if (ev_is_active (&pipe_w))
1470 {
1471 ev_ref (EV_A); /* signal watcher */
1472 ev_io_stop (EV_A_ &pipe_w);
1473
1474 #if EV_USE_EVENTFD
1475 if (evfd >= 0)
1476 close (evfd);
1477 #endif
1478
1479 if (evpipe [0] >= 0)
1480 {
1481 close (evpipe [0]);
1482 close (evpipe [1]);
1483 }
1484 }
1485
1486 #if EV_USE_INOTIFY
1487 if (fs_fd >= 0)
1488 close (fs_fd);
1489 #endif
1490
1491 if (backend_fd >= 0)
1492 close (backend_fd);
1493
1494 #if EV_USE_PORT
1495 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1496 #endif
1497 #if EV_USE_KQUEUE
1498 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1499 #endif
1500 #if EV_USE_EPOLL
1501 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1502 #endif
1503 #if EV_USE_POLL
1504 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1505 #endif
1506 #if EV_USE_SELECT
1507 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1508 #endif
1509
1510 for (i = NUMPRI; i--; )
1511 {
1512 array_free (pending, [i]);
1513 #if EV_IDLE_ENABLE
1514 array_free (idle, [i]);
1515 #endif
1516 }
1517
1518 ev_free (anfds); anfdmax = 0;
1519
1520 /* have to use the microsoft-never-gets-it-right macro */
1521 array_free (rfeed, EMPTY);
1522 array_free (fdchange, EMPTY);
1523 array_free (timer, EMPTY);
1524 #if EV_PERIODIC_ENABLE
1525 array_free (periodic, EMPTY);
1526 #endif
1527 #if EV_FORK_ENABLE
1528 array_free (fork, EMPTY);
1529 #endif
1530 array_free (prepare, EMPTY);
1531 array_free (check, EMPTY);
1532 #if EV_ASYNC_ENABLE
1533 array_free (async, EMPTY);
1534 #endif
1535
1536 backend = 0;
1537 }
1538
1539 #if EV_USE_INOTIFY
1540 inline_size void infy_fork (EV_P);
1541 #endif
1542
1543 inline_size void
1544 loop_fork (EV_P)
1545 {
1546 #if EV_USE_PORT
1547 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1548 #endif
1549 #if EV_USE_KQUEUE
1550 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1551 #endif
1552 #if EV_USE_EPOLL
1553 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1554 #endif
1555 #if EV_USE_INOTIFY
1556 infy_fork (EV_A);
1557 #endif
1558
1559 if (ev_is_active (&pipe_w))
1560 {
1561 /* this "locks" the handlers against writing to the pipe */
1562 /* while we modify the fd vars */
1563 gotsig = 1;
1564 #if EV_ASYNC_ENABLE
1565 gotasync = 1;
1566 #endif
1567
1568 ev_ref (EV_A);
1569 ev_io_stop (EV_A_ &pipe_w);
1570
1571 #if EV_USE_EVENTFD
1572 if (evfd >= 0)
1573 close (evfd);
1574 #endif
1575
1576 if (evpipe [0] >= 0)
1577 {
1578 close (evpipe [0]);
1579 close (evpipe [1]);
1580 }
1581
1582 evpipe_init (EV_A);
1583 /* now iterate over everything, in case we missed something */
1584 pipecb (EV_A_ &pipe_w, EV_READ);
1585 }
1586
1587 postfork = 0;
1588 }
1589
1590 #if EV_MULTIPLICITY
1591
1592 struct ev_loop *
1593 ev_loop_new (unsigned int flags)
1594 {
1595 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1596
1597 memset (loop, 0, sizeof (struct ev_loop));
1598
1599 loop_init (EV_A_ flags);
1600
1601 if (ev_backend (EV_A))
1602 return loop;
1603
1604 return 0;
1605 }
1606
1607 void
1608 ev_loop_destroy (EV_P)
1609 {
1610 loop_destroy (EV_A);
1611 ev_free (loop);
1612 }
1613
1614 void
1615 ev_loop_fork (EV_P)
1616 {
1617 postfork = 1; /* must be in line with ev_default_fork */
1618 }
1619
1620 #if EV_VERIFY
1621 static void noinline
1622 verify_watcher (EV_P_ W w)
1623 {
1624 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1625
1626 if (w->pending)
1627 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1628 }
1629
1630 static void noinline
1631 verify_heap (EV_P_ ANHE *heap, int N)
1632 {
1633 int i;
1634
1635 for (i = HEAP0; i < N + HEAP0; ++i)
1636 {
1637 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1638 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1639 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1640
1641 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1642 }
1643 }
1644
1645 static void noinline
1646 array_verify (EV_P_ W *ws, int cnt)
1647 {
1648 while (cnt--)
1649 {
1650 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1651 verify_watcher (EV_A_ ws [cnt]);
1652 }
1653 }
1654 #endif
1655
1656 void
1657 ev_loop_verify (EV_P)
1658 {
1659 #if EV_VERIFY
1660 int i;
1661 WL w;
1662
1663 assert (activecnt >= -1);
1664
1665 assert (fdchangemax >= fdchangecnt);
1666 for (i = 0; i < fdchangecnt; ++i)
1667 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1668
1669 assert (anfdmax >= 0);
1670 for (i = 0; i < anfdmax; ++i)
1671 for (w = anfds [i].head; w; w = w->next)
1672 {
1673 verify_watcher (EV_A_ (W)w);
1674 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1675 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1676 }
1677
1678 assert (timermax >= timercnt);
1679 verify_heap (EV_A_ timers, timercnt);
1680
1681 #if EV_PERIODIC_ENABLE
1682 assert (periodicmax >= periodiccnt);
1683 verify_heap (EV_A_ periodics, periodiccnt);
1684 #endif
1685
1686 for (i = NUMPRI; i--; )
1687 {
1688 assert (pendingmax [i] >= pendingcnt [i]);
1689 #if EV_IDLE_ENABLE
1690 assert (idleall >= 0);
1691 assert (idlemax [i] >= idlecnt [i]);
1692 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1693 #endif
1694 }
1695
1696 #if EV_FORK_ENABLE
1697 assert (forkmax >= forkcnt);
1698 array_verify (EV_A_ (W *)forks, forkcnt);
1699 #endif
1700
1701 #if EV_ASYNC_ENABLE
1702 assert (asyncmax >= asynccnt);
1703 array_verify (EV_A_ (W *)asyncs, asynccnt);
1704 #endif
1705
1706 assert (preparemax >= preparecnt);
1707 array_verify (EV_A_ (W *)prepares, preparecnt);
1708
1709 assert (checkmax >= checkcnt);
1710 array_verify (EV_A_ (W *)checks, checkcnt);
1711
1712 # if 0
1713 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1714 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1715 # endif
1716 #endif
1717 }
1718
1719 #endif /* multiplicity */
1720
1721 #if EV_MULTIPLICITY
1722 struct ev_loop *
1723 ev_default_loop_init (unsigned int flags)
1724 #else
1725 int
1726 ev_default_loop (unsigned int flags)
1727 #endif
1728 {
1729 if (!ev_default_loop_ptr)
1730 {
1731 #if EV_MULTIPLICITY
1732 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1733 #else
1734 ev_default_loop_ptr = 1;
1735 #endif
1736
1737 loop_init (EV_A_ flags);
1738
1739 if (ev_backend (EV_A))
1740 {
1741 #ifndef _WIN32
1742 ev_signal_init (&childev, childcb, SIGCHLD);
1743 ev_set_priority (&childev, EV_MAXPRI);
1744 ev_signal_start (EV_A_ &childev);
1745 ev_unref (EV_A); /* child watcher should not keep loop alive */
1746 #endif
1747 }
1748 else
1749 ev_default_loop_ptr = 0;
1750 }
1751
1752 return ev_default_loop_ptr;
1753 }
1754
1755 void
1756 ev_default_destroy (void)
1757 {
1758 #if EV_MULTIPLICITY
1759 struct ev_loop *loop = ev_default_loop_ptr;
1760 #endif
1761
1762 ev_default_loop_ptr = 0;
1763
1764 #ifndef _WIN32
1765 ev_ref (EV_A); /* child watcher */
1766 ev_signal_stop (EV_A_ &childev);
1767 #endif
1768
1769 loop_destroy (EV_A);
1770 }
1771
1772 void
1773 ev_default_fork (void)
1774 {
1775 #if EV_MULTIPLICITY
1776 struct ev_loop *loop = ev_default_loop_ptr;
1777 #endif
1778
1779 postfork = 1; /* must be in line with ev_loop_fork */
1780 }
1781
1782 /*****************************************************************************/
1783
1784 void
1785 ev_invoke (EV_P_ void *w, int revents)
1786 {
1787 EV_CB_INVOKE ((W)w, revents);
1788 }
1789
1790 inline_speed void
1791 call_pending (EV_P)
1792 {
1793 int pri;
1794
1795 for (pri = NUMPRI; pri--; )
1796 while (pendingcnt [pri])
1797 {
1798 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1799
1800 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1801 /* ^ this is no longer true, as pending_w could be here */
1802
1803 p->w->pending = 0;
1804 EV_CB_INVOKE (p->w, p->events);
1805 EV_FREQUENT_CHECK;
1806 }
1807 }
1808
1809 #if EV_IDLE_ENABLE
1810 /* make idle watchers pending. this handles the "call-idle */
1811 /* only when higher priorities are idle" logic */
1812 inline_size void
1813 idle_reify (EV_P)
1814 {
1815 if (expect_false (idleall))
1816 {
1817 int pri;
1818
1819 for (pri = NUMPRI; pri--; )
1820 {
1821 if (pendingcnt [pri])
1822 break;
1823
1824 if (idlecnt [pri])
1825 {
1826 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1827 break;
1828 }
1829 }
1830 }
1831 }
1832 #endif
1833
1834 /* make timers pending */
1835 inline_size void
1836 timers_reify (EV_P)
1837 {
1838 EV_FREQUENT_CHECK;
1839
1840 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1841 {
1842 do
1843 {
1844 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1845
1846 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1847
1848 /* first reschedule or stop timer */
1849 if (w->repeat)
1850 {
1851 ev_at (w) += w->repeat;
1852 if (ev_at (w) < mn_now)
1853 ev_at (w) = mn_now;
1854
1855 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1856
1857 ANHE_at_cache (timers [HEAP0]);
1858 downheap (timers, timercnt, HEAP0);
1859 }
1860 else
1861 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1862
1863 EV_FREQUENT_CHECK;
1864 feed_reverse (EV_A_ (W)w);
1865 }
1866 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1867
1868 feed_reverse_done (EV_A_ EV_TIMEOUT);
1869 }
1870 }
1871
1872 #if EV_PERIODIC_ENABLE
1873 /* make periodics pending */
1874 inline_size void
1875 periodics_reify (EV_P)
1876 {
1877 EV_FREQUENT_CHECK;
1878
1879 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1880 {
1881 int feed_count = 0;
1882
1883 do
1884 {
1885 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1886
1887 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1888
1889 /* first reschedule or stop timer */
1890 if (w->reschedule_cb)
1891 {
1892 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1893
1894 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1895
1896 ANHE_at_cache (periodics [HEAP0]);
1897 downheap (periodics, periodiccnt, HEAP0);
1898 }
1899 else if (w->interval)
1900 {
1901 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1902 /* if next trigger time is not sufficiently in the future, put it there */
1903 /* this might happen because of floating point inexactness */
1904 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1905 {
1906 ev_at (w) += w->interval;
1907
1908 /* if interval is unreasonably low we might still have a time in the past */
1909 /* so correct this. this will make the periodic very inexact, but the user */
1910 /* has effectively asked to get triggered more often than possible */
1911 if (ev_at (w) < ev_rt_now)
1912 ev_at (w) = ev_rt_now;
1913 }
1914
1915 ANHE_at_cache (periodics [HEAP0]);
1916 downheap (periodics, periodiccnt, HEAP0);
1917 }
1918 else
1919 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1920
1921 EV_FREQUENT_CHECK;
1922 feed_reverse (EV_A_ (W)w);
1923 }
1924 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1925
1926 feed_reverse_done (EV_A_ EV_PERIODIC);
1927 }
1928 }
1929
1930 /* simply recalculate all periodics */
1931 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1932 static void noinline
1933 periodics_reschedule (EV_P)
1934 {
1935 int i;
1936
1937 /* adjust periodics after time jump */
1938 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1941
1942 if (w->reschedule_cb)
1943 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1944 else if (w->interval)
1945 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1946
1947 ANHE_at_cache (periodics [i]);
1948 }
1949
1950 reheap (periodics, periodiccnt);
1951 }
1952 #endif
1953
1954 /* adjust all timers by a given offset */
1955 static void noinline
1956 timers_reschedule (EV_P_ ev_tstamp adjust)
1957 {
1958 int i;
1959
1960 for (i = 0; i < timercnt; ++i)
1961 {
1962 ANHE *he = timers + i + HEAP0;
1963 ANHE_w (*he)->at += adjust;
1964 ANHE_at_cache (*he);
1965 }
1966 }
1967
1968 /* fetch new monotonic and realtime times from the kernel */
1969 /* also detetc if there was a timejump, and act accordingly */
1970 inline_speed void
1971 time_update (EV_P_ ev_tstamp max_block)
1972 {
1973 #if EV_USE_MONOTONIC
1974 if (expect_true (have_monotonic))
1975 {
1976 int i;
1977 ev_tstamp odiff = rtmn_diff;
1978
1979 mn_now = get_clock ();
1980
1981 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1982 /* interpolate in the meantime */
1983 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1984 {
1985 ev_rt_now = rtmn_diff + mn_now;
1986 return;
1987 }
1988
1989 now_floor = mn_now;
1990 ev_rt_now = ev_time ();
1991
1992 /* loop a few times, before making important decisions.
1993 * on the choice of "4": one iteration isn't enough,
1994 * in case we get preempted during the calls to
1995 * ev_time and get_clock. a second call is almost guaranteed
1996 * to succeed in that case, though. and looping a few more times
1997 * doesn't hurt either as we only do this on time-jumps or
1998 * in the unlikely event of having been preempted here.
1999 */
2000 for (i = 4; --i; )
2001 {
2002 rtmn_diff = ev_rt_now - mn_now;
2003
2004 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2005 return; /* all is well */
2006
2007 ev_rt_now = ev_time ();
2008 mn_now = get_clock ();
2009 now_floor = mn_now;
2010 }
2011
2012 /* no timer adjustment, as the monotonic clock doesn't jump */
2013 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2014 # if EV_PERIODIC_ENABLE
2015 periodics_reschedule (EV_A);
2016 # endif
2017 }
2018 else
2019 #endif
2020 {
2021 ev_rt_now = ev_time ();
2022
2023 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2024 {
2025 /* adjust timers. this is easy, as the offset is the same for all of them */
2026 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2027 #if EV_PERIODIC_ENABLE
2028 periodics_reschedule (EV_A);
2029 #endif
2030 }
2031
2032 mn_now = ev_rt_now;
2033 }
2034 }
2035
2036 void
2037 ev_loop (EV_P_ int flags)
2038 {
2039 ++loop_depth;
2040
2041 loop_done = EVUNLOOP_CANCEL;
2042
2043 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2044
2045 do
2046 {
2047 #if EV_VERIFY >= 2
2048 ev_loop_verify (EV_A);
2049 #endif
2050
2051 #ifndef _WIN32
2052 if (expect_false (curpid)) /* penalise the forking check even more */
2053 if (expect_false (getpid () != curpid))
2054 {
2055 curpid = getpid ();
2056 postfork = 1;
2057 }
2058 #endif
2059
2060 #if EV_FORK_ENABLE
2061 /* we might have forked, so queue fork handlers */
2062 if (expect_false (postfork))
2063 if (forkcnt)
2064 {
2065 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2066 call_pending (EV_A);
2067 }
2068 #endif
2069
2070 /* queue prepare watchers (and execute them) */
2071 if (expect_false (preparecnt))
2072 {
2073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2074 call_pending (EV_A);
2075 }
2076
2077 /* we might have forked, so reify kernel state if necessary */
2078 if (expect_false (postfork))
2079 loop_fork (EV_A);
2080
2081 /* update fd-related kernel structures */
2082 fd_reify (EV_A);
2083
2084 /* calculate blocking time */
2085 {
2086 ev_tstamp waittime = 0.;
2087 ev_tstamp sleeptime = 0.;
2088
2089 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2090 {
2091 /* remember old timestamp for io_blocktime calculation */
2092 ev_tstamp prev_mn_now = mn_now;
2093
2094 /* update time to cancel out callback processing overhead */
2095 time_update (EV_A_ 1e100);
2096
2097 waittime = MAX_BLOCKTIME;
2098
2099 if (timercnt)
2100 {
2101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2102 if (waittime > to) waittime = to;
2103 }
2104
2105 #if EV_PERIODIC_ENABLE
2106 if (periodiccnt)
2107 {
2108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2109 if (waittime > to) waittime = to;
2110 }
2111 #endif
2112
2113 /* don't let timeouts decrease the waittime below timeout_blocktime */
2114 if (expect_false (waittime < timeout_blocktime))
2115 waittime = timeout_blocktime;
2116
2117 /* extra check because io_blocktime is commonly 0 */
2118 if (expect_false (io_blocktime))
2119 {
2120 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2121
2122 if (sleeptime > waittime - backend_fudge)
2123 sleeptime = waittime - backend_fudge;
2124
2125 if (expect_true (sleeptime > 0.))
2126 {
2127 ev_sleep (sleeptime);
2128 waittime -= sleeptime;
2129 }
2130 }
2131 }
2132
2133 ++loop_count;
2134 backend_poll (EV_A_ waittime);
2135
2136 /* update ev_rt_now, do magic */
2137 time_update (EV_A_ waittime + sleeptime);
2138 }
2139
2140 /* queue pending timers and reschedule them */
2141 timers_reify (EV_A); /* relative timers called last */
2142 #if EV_PERIODIC_ENABLE
2143 periodics_reify (EV_A); /* absolute timers called first */
2144 #endif
2145
2146 #if EV_IDLE_ENABLE
2147 /* queue idle watchers unless other events are pending */
2148 idle_reify (EV_A);
2149 #endif
2150
2151 /* queue check watchers, to be executed first */
2152 if (expect_false (checkcnt))
2153 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2154
2155 call_pending (EV_A);
2156 }
2157 while (expect_true (
2158 activecnt
2159 && !loop_done
2160 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2161 ));
2162
2163 if (loop_done == EVUNLOOP_ONE)
2164 loop_done = EVUNLOOP_CANCEL;
2165
2166 --loop_depth;
2167 }
2168
2169 void
2170 ev_unloop (EV_P_ int how)
2171 {
2172 loop_done = how;
2173 }
2174
2175 void
2176 ev_ref (EV_P)
2177 {
2178 ++activecnt;
2179 }
2180
2181 void
2182 ev_unref (EV_P)
2183 {
2184 --activecnt;
2185 }
2186
2187 void
2188 ev_now_update (EV_P)
2189 {
2190 time_update (EV_A_ 1e100);
2191 }
2192
2193 void
2194 ev_suspend (EV_P)
2195 {
2196 ev_now_update (EV_A);
2197 }
2198
2199 void
2200 ev_resume (EV_P)
2201 {
2202 ev_tstamp mn_prev = mn_now;
2203
2204 ev_now_update (EV_A);
2205 timers_reschedule (EV_A_ mn_now - mn_prev);
2206 #if EV_PERIODIC_ENABLE
2207 /* TODO: really do this? */
2208 periodics_reschedule (EV_A);
2209 #endif
2210 }
2211
2212 /*****************************************************************************/
2213 /* singly-linked list management, used when the expected list length is short */
2214
2215 inline_size void
2216 wlist_add (WL *head, WL elem)
2217 {
2218 elem->next = *head;
2219 *head = elem;
2220 }
2221
2222 inline_size void
2223 wlist_del (WL *head, WL elem)
2224 {
2225 while (*head)
2226 {
2227 if (*head == elem)
2228 {
2229 *head = elem->next;
2230 return;
2231 }
2232
2233 head = &(*head)->next;
2234 }
2235 }
2236
2237 /* internal, faster, version of ev_clear_pending */
2238 inline_speed void
2239 clear_pending (EV_P_ W w)
2240 {
2241 if (w->pending)
2242 {
2243 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2244 w->pending = 0;
2245 }
2246 }
2247
2248 int
2249 ev_clear_pending (EV_P_ void *w)
2250 {
2251 W w_ = (W)w;
2252 int pending = w_->pending;
2253
2254 if (expect_true (pending))
2255 {
2256 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2257 p->w = (W)&pending_w;
2258 w_->pending = 0;
2259 return p->events;
2260 }
2261 else
2262 return 0;
2263 }
2264
2265 inline_size void
2266 pri_adjust (EV_P_ W w)
2267 {
2268 int pri = ev_priority (w);
2269 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2270 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2271 ev_set_priority (w, pri);
2272 }
2273
2274 inline_speed void
2275 ev_start (EV_P_ W w, int active)
2276 {
2277 pri_adjust (EV_A_ w);
2278 w->active = active;
2279 ev_ref (EV_A);
2280 }
2281
2282 inline_size void
2283 ev_stop (EV_P_ W w)
2284 {
2285 ev_unref (EV_A);
2286 w->active = 0;
2287 }
2288
2289 /*****************************************************************************/
2290
2291 void noinline
2292 ev_io_start (EV_P_ ev_io *w)
2293 {
2294 int fd = w->fd;
2295
2296 if (expect_false (ev_is_active (w)))
2297 return;
2298
2299 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2300 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2301
2302 EV_FREQUENT_CHECK;
2303
2304 ev_start (EV_A_ (W)w, 1);
2305 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2306 wlist_add (&anfds[fd].head, (WL)w);
2307
2308 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2309 w->events &= ~EV__IOFDSET;
2310
2311 EV_FREQUENT_CHECK;
2312 }
2313
2314 void noinline
2315 ev_io_stop (EV_P_ ev_io *w)
2316 {
2317 clear_pending (EV_A_ (W)w);
2318 if (expect_false (!ev_is_active (w)))
2319 return;
2320
2321 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2322
2323 EV_FREQUENT_CHECK;
2324
2325 wlist_del (&anfds[w->fd].head, (WL)w);
2326 ev_stop (EV_A_ (W)w);
2327
2328 fd_change (EV_A_ w->fd, 1);
2329
2330 EV_FREQUENT_CHECK;
2331 }
2332
2333 void noinline
2334 ev_timer_start (EV_P_ ev_timer *w)
2335 {
2336 if (expect_false (ev_is_active (w)))
2337 return;
2338
2339 ev_at (w) += mn_now;
2340
2341 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2342
2343 EV_FREQUENT_CHECK;
2344
2345 ++timercnt;
2346 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2347 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2348 ANHE_w (timers [ev_active (w)]) = (WT)w;
2349 ANHE_at_cache (timers [ev_active (w)]);
2350 upheap (timers, ev_active (w));
2351
2352 EV_FREQUENT_CHECK;
2353
2354 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2355 }
2356
2357 void noinline
2358 ev_timer_stop (EV_P_ ev_timer *w)
2359 {
2360 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w)))
2362 return;
2363
2364 EV_FREQUENT_CHECK;
2365
2366 {
2367 int active = ev_active (w);
2368
2369 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2370
2371 --timercnt;
2372
2373 if (expect_true (active < timercnt + HEAP0))
2374 {
2375 timers [active] = timers [timercnt + HEAP0];
2376 adjustheap (timers, timercnt, active);
2377 }
2378 }
2379
2380 EV_FREQUENT_CHECK;
2381
2382 ev_at (w) -= mn_now;
2383
2384 ev_stop (EV_A_ (W)w);
2385 }
2386
2387 void noinline
2388 ev_timer_again (EV_P_ ev_timer *w)
2389 {
2390 EV_FREQUENT_CHECK;
2391
2392 if (ev_is_active (w))
2393 {
2394 if (w->repeat)
2395 {
2396 ev_at (w) = mn_now + w->repeat;
2397 ANHE_at_cache (timers [ev_active (w)]);
2398 adjustheap (timers, timercnt, ev_active (w));
2399 }
2400 else
2401 ev_timer_stop (EV_A_ w);
2402 }
2403 else if (w->repeat)
2404 {
2405 ev_at (w) = w->repeat;
2406 ev_timer_start (EV_A_ w);
2407 }
2408
2409 EV_FREQUENT_CHECK;
2410 }
2411
2412 #if EV_PERIODIC_ENABLE
2413 void noinline
2414 ev_periodic_start (EV_P_ ev_periodic *w)
2415 {
2416 if (expect_false (ev_is_active (w)))
2417 return;
2418
2419 if (w->reschedule_cb)
2420 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2421 else if (w->interval)
2422 {
2423 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2424 /* this formula differs from the one in periodic_reify because we do not always round up */
2425 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2426 }
2427 else
2428 ev_at (w) = w->offset;
2429
2430 EV_FREQUENT_CHECK;
2431
2432 ++periodiccnt;
2433 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2434 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2435 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2436 ANHE_at_cache (periodics [ev_active (w)]);
2437 upheap (periodics, ev_active (w));
2438
2439 EV_FREQUENT_CHECK;
2440
2441 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2442 }
2443
2444 void noinline
2445 ev_periodic_stop (EV_P_ ev_periodic *w)
2446 {
2447 clear_pending (EV_A_ (W)w);
2448 if (expect_false (!ev_is_active (w)))
2449 return;
2450
2451 EV_FREQUENT_CHECK;
2452
2453 {
2454 int active = ev_active (w);
2455
2456 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2457
2458 --periodiccnt;
2459
2460 if (expect_true (active < periodiccnt + HEAP0))
2461 {
2462 periodics [active] = periodics [periodiccnt + HEAP0];
2463 adjustheap (periodics, periodiccnt, active);
2464 }
2465 }
2466
2467 EV_FREQUENT_CHECK;
2468
2469 ev_stop (EV_A_ (W)w);
2470 }
2471
2472 void noinline
2473 ev_periodic_again (EV_P_ ev_periodic *w)
2474 {
2475 /* TODO: use adjustheap and recalculation */
2476 ev_periodic_stop (EV_A_ w);
2477 ev_periodic_start (EV_A_ w);
2478 }
2479 #endif
2480
2481 #ifndef SA_RESTART
2482 # define SA_RESTART 0
2483 #endif
2484
2485 void noinline
2486 ev_signal_start (EV_P_ ev_signal *w)
2487 {
2488 #if EV_MULTIPLICITY
2489 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2490 #endif
2491 if (expect_false (ev_is_active (w)))
2492 return;
2493
2494 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2495
2496 evpipe_init (EV_A);
2497
2498 EV_FREQUENT_CHECK;
2499
2500 {
2501 #ifndef _WIN32
2502 sigset_t full, prev;
2503 sigfillset (&full);
2504 sigprocmask (SIG_SETMASK, &full, &prev);
2505 #endif
2506
2507 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2508
2509 #ifndef _WIN32
2510 sigprocmask (SIG_SETMASK, &prev, 0);
2511 #endif
2512 }
2513
2514 ev_start (EV_A_ (W)w, 1);
2515 wlist_add (&signals [w->signum - 1].head, (WL)w);
2516
2517 if (!((WL)w)->next)
2518 {
2519 #if _WIN32
2520 signal (w->signum, ev_sighandler);
2521 #else
2522 struct sigaction sa;
2523 sa.sa_handler = ev_sighandler;
2524 sigfillset (&sa.sa_mask);
2525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2526 sigaction (w->signum, &sa, 0);
2527 #endif
2528 }
2529
2530 EV_FREQUENT_CHECK;
2531 }
2532
2533 void noinline
2534 ev_signal_stop (EV_P_ ev_signal *w)
2535 {
2536 clear_pending (EV_A_ (W)w);
2537 if (expect_false (!ev_is_active (w)))
2538 return;
2539
2540 EV_FREQUENT_CHECK;
2541
2542 wlist_del (&signals [w->signum - 1].head, (WL)w);
2543 ev_stop (EV_A_ (W)w);
2544
2545 if (!signals [w->signum - 1].head)
2546 signal (w->signum, SIG_DFL);
2547
2548 EV_FREQUENT_CHECK;
2549 }
2550
2551 void
2552 ev_child_start (EV_P_ ev_child *w)
2553 {
2554 #if EV_MULTIPLICITY
2555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2556 #endif
2557 if (expect_false (ev_is_active (w)))
2558 return;
2559
2560 EV_FREQUENT_CHECK;
2561
2562 ev_start (EV_A_ (W)w, 1);
2563 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2564
2565 EV_FREQUENT_CHECK;
2566 }
2567
2568 void
2569 ev_child_stop (EV_P_ ev_child *w)
2570 {
2571 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w)))
2573 return;
2574
2575 EV_FREQUENT_CHECK;
2576
2577 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2578 ev_stop (EV_A_ (W)w);
2579
2580 EV_FREQUENT_CHECK;
2581 }
2582
2583 #if EV_STAT_ENABLE
2584
2585 # ifdef _WIN32
2586 # undef lstat
2587 # define lstat(a,b) _stati64 (a,b)
2588 # endif
2589
2590 #define DEF_STAT_INTERVAL 5.0074891
2591 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2592 #define MIN_STAT_INTERVAL 0.1074891
2593
2594 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2595
2596 #if EV_USE_INOTIFY
2597 # define EV_INOTIFY_BUFSIZE 8192
2598
2599 static void noinline
2600 infy_add (EV_P_ ev_stat *w)
2601 {
2602 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2603
2604 if (w->wd < 0)
2605 {
2606 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2607 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2608
2609 /* monitor some parent directory for speedup hints */
2610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2611 /* but an efficiency issue only */
2612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2613 {
2614 char path [4096];
2615 strcpy (path, w->path);
2616
2617 do
2618 {
2619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2621
2622 char *pend = strrchr (path, '/');
2623
2624 if (!pend || pend == path)
2625 break;
2626
2627 *pend = 0;
2628 w->wd = inotify_add_watch (fs_fd, path, mask);
2629 }
2630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2631 }
2632 }
2633
2634 if (w->wd >= 0)
2635 {
2636 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2637
2638 /* now local changes will be tracked by inotify, but remote changes won't */
2639 /* unless the filesystem it known to be local, we therefore still poll */
2640 /* also do poll on <2.6.25, but with normal frequency */
2641 struct statfs sfs;
2642
2643 if (fs_2625 && !statfs (w->path, &sfs))
2644 if (sfs.f_type == 0x1373 /* devfs */
2645 || sfs.f_type == 0xEF53 /* ext2/3 */
2646 || sfs.f_type == 0x3153464a /* jfs */
2647 || sfs.f_type == 0x52654973 /* reiser3 */
2648 || sfs.f_type == 0x01021994 /* tempfs */
2649 || sfs.f_type == 0x58465342 /* xfs */)
2650 return;
2651
2652 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2653 ev_timer_again (EV_A_ &w->timer);
2654 }
2655 }
2656
2657 static void noinline
2658 infy_del (EV_P_ ev_stat *w)
2659 {
2660 int slot;
2661 int wd = w->wd;
2662
2663 if (wd < 0)
2664 return;
2665
2666 w->wd = -2;
2667 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2668 wlist_del (&fs_hash [slot].head, (WL)w);
2669
2670 /* remove this watcher, if others are watching it, they will rearm */
2671 inotify_rm_watch (fs_fd, wd);
2672 }
2673
2674 static void noinline
2675 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2676 {
2677 if (slot < 0)
2678 /* overflow, need to check for all hash slots */
2679 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2680 infy_wd (EV_A_ slot, wd, ev);
2681 else
2682 {
2683 WL w_;
2684
2685 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2686 {
2687 ev_stat *w = (ev_stat *)w_;
2688 w_ = w_->next; /* lets us remove this watcher and all before it */
2689
2690 if (w->wd == wd || wd == -1)
2691 {
2692 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2693 {
2694 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2695 w->wd = -1;
2696 infy_add (EV_A_ w); /* re-add, no matter what */
2697 }
2698
2699 stat_timer_cb (EV_A_ &w->timer, 0);
2700 }
2701 }
2702 }
2703 }
2704
2705 static void
2706 infy_cb (EV_P_ ev_io *w, int revents)
2707 {
2708 char buf [EV_INOTIFY_BUFSIZE];
2709 struct inotify_event *ev = (struct inotify_event *)buf;
2710 int ofs;
2711 int len = read (fs_fd, buf, sizeof (buf));
2712
2713 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2714 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2715 }
2716
2717 inline_size void
2718 check_2625 (EV_P)
2719 {
2720 /* kernels < 2.6.25 are borked
2721 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2722 */
2723 struct utsname buf;
2724 int major, minor, micro;
2725
2726 if (uname (&buf))
2727 return;
2728
2729 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2730 return;
2731
2732 if (major < 2
2733 || (major == 2 && minor < 6)
2734 || (major == 2 && minor == 6 && micro < 25))
2735 return;
2736
2737 fs_2625 = 1;
2738 }
2739
2740 inline_size void
2741 infy_init (EV_P)
2742 {
2743 if (fs_fd != -2)
2744 return;
2745
2746 fs_fd = -1;
2747
2748 check_2625 (EV_A);
2749
2750 fs_fd = inotify_init ();
2751
2752 if (fs_fd >= 0)
2753 {
2754 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2755 ev_set_priority (&fs_w, EV_MAXPRI);
2756 ev_io_start (EV_A_ &fs_w);
2757 }
2758 }
2759
2760 inline_size void
2761 infy_fork (EV_P)
2762 {
2763 int slot;
2764
2765 if (fs_fd < 0)
2766 return;
2767
2768 close (fs_fd);
2769 fs_fd = inotify_init ();
2770
2771 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2772 {
2773 WL w_ = fs_hash [slot].head;
2774 fs_hash [slot].head = 0;
2775
2776 while (w_)
2777 {
2778 ev_stat *w = (ev_stat *)w_;
2779 w_ = w_->next; /* lets us add this watcher */
2780
2781 w->wd = -1;
2782
2783 if (fs_fd >= 0)
2784 infy_add (EV_A_ w); /* re-add, no matter what */
2785 else
2786 ev_timer_again (EV_A_ &w->timer);
2787 }
2788 }
2789 }
2790
2791 #endif
2792
2793 #ifdef _WIN32
2794 # define EV_LSTAT(p,b) _stati64 (p, b)
2795 #else
2796 # define EV_LSTAT(p,b) lstat (p, b)
2797 #endif
2798
2799 void
2800 ev_stat_stat (EV_P_ ev_stat *w)
2801 {
2802 if (lstat (w->path, &w->attr) < 0)
2803 w->attr.st_nlink = 0;
2804 else if (!w->attr.st_nlink)
2805 w->attr.st_nlink = 1;
2806 }
2807
2808 static void noinline
2809 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2810 {
2811 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2812
2813 /* we copy this here each the time so that */
2814 /* prev has the old value when the callback gets invoked */
2815 w->prev = w->attr;
2816 ev_stat_stat (EV_A_ w);
2817
2818 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2819 if (
2820 w->prev.st_dev != w->attr.st_dev
2821 || w->prev.st_ino != w->attr.st_ino
2822 || w->prev.st_mode != w->attr.st_mode
2823 || w->prev.st_nlink != w->attr.st_nlink
2824 || w->prev.st_uid != w->attr.st_uid
2825 || w->prev.st_gid != w->attr.st_gid
2826 || w->prev.st_rdev != w->attr.st_rdev
2827 || w->prev.st_size != w->attr.st_size
2828 || w->prev.st_atime != w->attr.st_atime
2829 || w->prev.st_mtime != w->attr.st_mtime
2830 || w->prev.st_ctime != w->attr.st_ctime
2831 ) {
2832 #if EV_USE_INOTIFY
2833 if (fs_fd >= 0)
2834 {
2835 infy_del (EV_A_ w);
2836 infy_add (EV_A_ w);
2837 ev_stat_stat (EV_A_ w); /* avoid race... */
2838 }
2839 #endif
2840
2841 ev_feed_event (EV_A_ w, EV_STAT);
2842 }
2843 }
2844
2845 void
2846 ev_stat_start (EV_P_ ev_stat *w)
2847 {
2848 if (expect_false (ev_is_active (w)))
2849 return;
2850
2851 ev_stat_stat (EV_A_ w);
2852
2853 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2854 w->interval = MIN_STAT_INTERVAL;
2855
2856 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2857 ev_set_priority (&w->timer, ev_priority (w));
2858
2859 #if EV_USE_INOTIFY
2860 infy_init (EV_A);
2861
2862 if (fs_fd >= 0)
2863 infy_add (EV_A_ w);
2864 else
2865 #endif
2866 ev_timer_again (EV_A_ &w->timer);
2867
2868 ev_start (EV_A_ (W)w, 1);
2869
2870 EV_FREQUENT_CHECK;
2871 }
2872
2873 void
2874 ev_stat_stop (EV_P_ ev_stat *w)
2875 {
2876 clear_pending (EV_A_ (W)w);
2877 if (expect_false (!ev_is_active (w)))
2878 return;
2879
2880 EV_FREQUENT_CHECK;
2881
2882 #if EV_USE_INOTIFY
2883 infy_del (EV_A_ w);
2884 #endif
2885 ev_timer_stop (EV_A_ &w->timer);
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890 }
2891 #endif
2892
2893 #if EV_IDLE_ENABLE
2894 void
2895 ev_idle_start (EV_P_ ev_idle *w)
2896 {
2897 if (expect_false (ev_is_active (w)))
2898 return;
2899
2900 pri_adjust (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903
2904 {
2905 int active = ++idlecnt [ABSPRI (w)];
2906
2907 ++idleall;
2908 ev_start (EV_A_ (W)w, active);
2909
2910 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2911 idles [ABSPRI (w)][active - 1] = w;
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915 }
2916
2917 void
2918 ev_idle_stop (EV_P_ ev_idle *w)
2919 {
2920 clear_pending (EV_A_ (W)w);
2921 if (expect_false (!ev_is_active (w)))
2922 return;
2923
2924 EV_FREQUENT_CHECK;
2925
2926 {
2927 int active = ev_active (w);
2928
2929 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2930 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2931
2932 ev_stop (EV_A_ (W)w);
2933 --idleall;
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937 }
2938 #endif
2939
2940 void
2941 ev_prepare_start (EV_P_ ev_prepare *w)
2942 {
2943 if (expect_false (ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 ev_start (EV_A_ (W)w, ++preparecnt);
2949 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2950 prepares [preparecnt - 1] = w;
2951
2952 EV_FREQUENT_CHECK;
2953 }
2954
2955 void
2956 ev_prepare_stop (EV_P_ ev_prepare *w)
2957 {
2958 clear_pending (EV_A_ (W)w);
2959 if (expect_false (!ev_is_active (w)))
2960 return;
2961
2962 EV_FREQUENT_CHECK;
2963
2964 {
2965 int active = ev_active (w);
2966
2967 prepares [active - 1] = prepares [--preparecnt];
2968 ev_active (prepares [active - 1]) = active;
2969 }
2970
2971 ev_stop (EV_A_ (W)w);
2972
2973 EV_FREQUENT_CHECK;
2974 }
2975
2976 void
2977 ev_check_start (EV_P_ ev_check *w)
2978 {
2979 if (expect_false (ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 ev_start (EV_A_ (W)w, ++checkcnt);
2985 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2986 checks [checkcnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2989 }
2990
2991 void
2992 ev_check_stop (EV_P_ ev_check *w)
2993 {
2994 clear_pending (EV_A_ (W)w);
2995 if (expect_false (!ev_is_active (w)))
2996 return;
2997
2998 EV_FREQUENT_CHECK;
2999
3000 {
3001 int active = ev_active (w);
3002
3003 checks [active - 1] = checks [--checkcnt];
3004 ev_active (checks [active - 1]) = active;
3005 }
3006
3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
3010 }
3011
3012 #if EV_EMBED_ENABLE
3013 void noinline
3014 ev_embed_sweep (EV_P_ ev_embed *w)
3015 {
3016 ev_loop (w->other, EVLOOP_NONBLOCK);
3017 }
3018
3019 static void
3020 embed_io_cb (EV_P_ ev_io *io, int revents)
3021 {
3022 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3023
3024 if (ev_cb (w))
3025 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3026 else
3027 ev_loop (w->other, EVLOOP_NONBLOCK);
3028 }
3029
3030 static void
3031 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3032 {
3033 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3034
3035 {
3036 struct ev_loop *loop = w->other;
3037
3038 while (fdchangecnt)
3039 {
3040 fd_reify (EV_A);
3041 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3042 }
3043 }
3044 }
3045
3046 static void
3047 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3048 {
3049 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3050
3051 ev_embed_stop (EV_A_ w);
3052
3053 {
3054 struct ev_loop *loop = w->other;
3055
3056 ev_loop_fork (EV_A);
3057 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3058 }
3059
3060 ev_embed_start (EV_A_ w);
3061 }
3062
3063 #if 0
3064 static void
3065 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3066 {
3067 ev_idle_stop (EV_A_ idle);
3068 }
3069 #endif
3070
3071 void
3072 ev_embed_start (EV_P_ ev_embed *w)
3073 {
3074 if (expect_false (ev_is_active (w)))
3075 return;
3076
3077 {
3078 struct ev_loop *loop = w->other;
3079 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3080 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3081 }
3082
3083 EV_FREQUENT_CHECK;
3084
3085 ev_set_priority (&w->io, ev_priority (w));
3086 ev_io_start (EV_A_ &w->io);
3087
3088 ev_prepare_init (&w->prepare, embed_prepare_cb);
3089 ev_set_priority (&w->prepare, EV_MINPRI);
3090 ev_prepare_start (EV_A_ &w->prepare);
3091
3092 ev_fork_init (&w->fork, embed_fork_cb);
3093 ev_fork_start (EV_A_ &w->fork);
3094
3095 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3096
3097 ev_start (EV_A_ (W)w, 1);
3098
3099 EV_FREQUENT_CHECK;
3100 }
3101
3102 void
3103 ev_embed_stop (EV_P_ ev_embed *w)
3104 {
3105 clear_pending (EV_A_ (W)w);
3106 if (expect_false (!ev_is_active (w)))
3107 return;
3108
3109 EV_FREQUENT_CHECK;
3110
3111 ev_io_stop (EV_A_ &w->io);
3112 ev_prepare_stop (EV_A_ &w->prepare);
3113 ev_fork_stop (EV_A_ &w->fork);
3114
3115 EV_FREQUENT_CHECK;
3116 }
3117 #endif
3118
3119 #if EV_FORK_ENABLE
3120 void
3121 ev_fork_start (EV_P_ ev_fork *w)
3122 {
3123 if (expect_false (ev_is_active (w)))
3124 return;
3125
3126 EV_FREQUENT_CHECK;
3127
3128 ev_start (EV_A_ (W)w, ++forkcnt);
3129 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3130 forks [forkcnt - 1] = w;
3131
3132 EV_FREQUENT_CHECK;
3133 }
3134
3135 void
3136 ev_fork_stop (EV_P_ ev_fork *w)
3137 {
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144 {
3145 int active = ev_active (w);
3146
3147 forks [active - 1] = forks [--forkcnt];
3148 ev_active (forks [active - 1]) = active;
3149 }
3150
3151 ev_stop (EV_A_ (W)w);
3152
3153 EV_FREQUENT_CHECK;
3154 }
3155 #endif
3156
3157 #if EV_ASYNC_ENABLE
3158 void
3159 ev_async_start (EV_P_ ev_async *w)
3160 {
3161 if (expect_false (ev_is_active (w)))
3162 return;
3163
3164 evpipe_init (EV_A);
3165
3166 EV_FREQUENT_CHECK;
3167
3168 ev_start (EV_A_ (W)w, ++asynccnt);
3169 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3170 asyncs [asynccnt - 1] = w;
3171
3172 EV_FREQUENT_CHECK;
3173 }
3174
3175 void
3176 ev_async_stop (EV_P_ ev_async *w)
3177 {
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 {
3185 int active = ev_active (w);
3186
3187 asyncs [active - 1] = asyncs [--asynccnt];
3188 ev_active (asyncs [active - 1]) = active;
3189 }
3190
3191 ev_stop (EV_A_ (W)w);
3192
3193 EV_FREQUENT_CHECK;
3194 }
3195
3196 void
3197 ev_async_send (EV_P_ ev_async *w)
3198 {
3199 w->sent = 1;
3200 evpipe_write (EV_A_ &gotasync);
3201 }
3202 #endif
3203
3204 /*****************************************************************************/
3205
3206 struct ev_once
3207 {
3208 ev_io io;
3209 ev_timer to;
3210 void (*cb)(int revents, void *arg);
3211 void *arg;
3212 };
3213
3214 static void
3215 once_cb (EV_P_ struct ev_once *once, int revents)
3216 {
3217 void (*cb)(int revents, void *arg) = once->cb;
3218 void *arg = once->arg;
3219
3220 ev_io_stop (EV_A_ &once->io);
3221 ev_timer_stop (EV_A_ &once->to);
3222 ev_free (once);
3223
3224 cb (revents, arg);
3225 }
3226
3227 static void
3228 once_cb_io (EV_P_ ev_io *w, int revents)
3229 {
3230 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3231
3232 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3233 }
3234
3235 static void
3236 once_cb_to (EV_P_ ev_timer *w, int revents)
3237 {
3238 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3239
3240 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3241 }
3242
3243 void
3244 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3245 {
3246 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3247
3248 if (expect_false (!once))
3249 {
3250 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3251 return;
3252 }
3253
3254 once->cb = cb;
3255 once->arg = arg;
3256
3257 ev_init (&once->io, once_cb_io);
3258 if (fd >= 0)
3259 {
3260 ev_io_set (&once->io, fd, events);
3261 ev_io_start (EV_A_ &once->io);
3262 }
3263
3264 ev_init (&once->to, once_cb_to);
3265 if (timeout >= 0.)
3266 {
3267 ev_timer_set (&once->to, timeout, 0.);
3268 ev_timer_start (EV_A_ &once->to);
3269 }
3270 }
3271
3272 /*****************************************************************************/
3273
3274 #if EV_WALK_ENABLE
3275 void
3276 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3277 {
3278 int i, j;
3279 ev_watcher_list *wl, *wn;
3280
3281 if (types & (EV_IO | EV_EMBED))
3282 for (i = 0; i < anfdmax; ++i)
3283 for (wl = anfds [i].head; wl; )
3284 {
3285 wn = wl->next;
3286
3287 #if EV_EMBED_ENABLE
3288 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3289 {
3290 if (types & EV_EMBED)
3291 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3292 }
3293 else
3294 #endif
3295 #if EV_USE_INOTIFY
3296 if (ev_cb ((ev_io *)wl) == infy_cb)
3297 ;
3298 else
3299 #endif
3300 if ((ev_io *)wl != &pipe_w)
3301 if (types & EV_IO)
3302 cb (EV_A_ EV_IO, wl);
3303
3304 wl = wn;
3305 }
3306
3307 if (types & (EV_TIMER | EV_STAT))
3308 for (i = timercnt + HEAP0; i-- > HEAP0; )
3309 #if EV_STAT_ENABLE
3310 /*TODO: timer is not always active*/
3311 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3312 {
3313 if (types & EV_STAT)
3314 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3315 }
3316 else
3317 #endif
3318 if (types & EV_TIMER)
3319 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3320
3321 #if EV_PERIODIC_ENABLE
3322 if (types & EV_PERIODIC)
3323 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3324 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3325 #endif
3326
3327 #if EV_IDLE_ENABLE
3328 if (types & EV_IDLE)
3329 for (j = NUMPRI; i--; )
3330 for (i = idlecnt [j]; i--; )
3331 cb (EV_A_ EV_IDLE, idles [j][i]);
3332 #endif
3333
3334 #if EV_FORK_ENABLE
3335 if (types & EV_FORK)
3336 for (i = forkcnt; i--; )
3337 if (ev_cb (forks [i]) != embed_fork_cb)
3338 cb (EV_A_ EV_FORK, forks [i]);
3339 #endif
3340
3341 #if EV_ASYNC_ENABLE
3342 if (types & EV_ASYNC)
3343 for (i = asynccnt; i--; )
3344 cb (EV_A_ EV_ASYNC, asyncs [i]);
3345 #endif
3346
3347 if (types & EV_PREPARE)
3348 for (i = preparecnt; i--; )
3349 #if EV_EMBED_ENABLE
3350 if (ev_cb (prepares [i]) != embed_prepare_cb)
3351 #endif
3352 cb (EV_A_ EV_PREPARE, prepares [i]);
3353
3354 if (types & EV_CHECK)
3355 for (i = checkcnt; i--; )
3356 cb (EV_A_ EV_CHECK, checks [i]);
3357
3358 if (types & EV_SIGNAL)
3359 for (i = 0; i < signalmax; ++i)
3360 for (wl = signals [i].head; wl; )
3361 {
3362 wn = wl->next;
3363 cb (EV_A_ EV_SIGNAL, wl);
3364 wl = wn;
3365 }
3366
3367 if (types & EV_CHILD)
3368 for (i = EV_PID_HASHSIZE; i--; )
3369 for (wl = childs [i]; wl; )
3370 {
3371 wn = wl->next;
3372 cb (EV_A_ EV_CHILD, wl);
3373 wl = wn;
3374 }
3375 /* EV_STAT 0x00001000 /* stat data changed */
3376 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3377 }
3378 #endif
3379
3380 #if EV_MULTIPLICITY
3381 #include "ev_wrap.h"
3382 #endif
3383
3384 #ifdef __cplusplus
3385 }
3386 #endif
3387