ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.296
Committed: Thu Jul 9 09:11:20 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.295: +7 -6 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398 #if EV_MINPRI == EV_MAXPRI
399 # define ABSPRI(w) (((W)w), 0)
400 #else
401 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402 #endif
403
404 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 #define EMPTY2(a,b) /* used to suppress some warnings */
406
407 typedef ev_watcher *W;
408 typedef ev_watcher_list *WL;
409 typedef ev_watcher_time *WT;
410
411 #define ev_active(w) ((W)(w))->active
412 #define ev_at(w) ((WT)(w))->at
413
414 #if EV_USE_REALTIME
415 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416 /* giving it a reasonably high chance of working on typical architetcures */
417 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418 #endif
419
420 #if EV_USE_MONOTONIC
421 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 #endif
423
424 #ifdef _WIN32
425 # include "ev_win32.c"
426 #endif
427
428 /*****************************************************************************/
429
430 static void (*syserr_cb)(const char *msg);
431
432 void
433 ev_set_syserr_cb (void (*cb)(const char *msg))
434 {
435 syserr_cb = cb;
436 }
437
438 static void noinline
439 ev_syserr (const char *msg)
440 {
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451 }
452
453 static void *
454 ev_realloc_emul (void *ptr, long size)
455 {
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466 }
467
468 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470 void
471 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 {
473 alloc = cb;
474 }
475
476 inline_speed void *
477 ev_realloc (void *ptr, long size)
478 {
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488 }
489
490 #define ev_malloc(size) ev_realloc (0, (size))
491 #define ev_free(ptr) ev_realloc ((ptr), 0)
492
493 /*****************************************************************************/
494
495 /* file descriptor info structure */
496 typedef struct
497 {
498 WL head;
499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
502 unsigned char unused;
503 #if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505 #endif
506 #if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508 #endif
509 } ANFD;
510
511 /* stores the pending event set for a given watcher */
512 typedef struct
513 {
514 W w;
515 int events; /* the pending event set for the given watcher */
516 } ANPENDING;
517
518 #if EV_USE_INOTIFY
519 /* hash table entry per inotify-id */
520 typedef struct
521 {
522 WL head;
523 } ANFS;
524 #endif
525
526 /* Heap Entry */
527 #if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537 #else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544 #endif
545
546 #if EV_MULTIPLICITY
547
548 struct ev_loop
549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
552 #define VAR(name,decl) decl;
553 #include "ev_vars.h"
554 #undef VAR
555 };
556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
560
561 #else
562
563 ev_tstamp ev_rt_now;
564 #define VAR(name,decl) static decl;
565 #include "ev_vars.h"
566 #undef VAR
567
568 static int ev_default_loop_ptr;
569
570 #endif
571
572 /*****************************************************************************/
573
574 #ifndef EV_HAVE_EV_TIME
575 ev_tstamp
576 ev_time (void)
577 {
578 #if EV_USE_REALTIME
579 if (expect_true (have_realtime))
580 {
581 struct timespec ts;
582 clock_gettime (CLOCK_REALTIME, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9;
584 }
585 #endif
586
587 struct timeval tv;
588 gettimeofday (&tv, 0);
589 return tv.tv_sec + tv.tv_usec * 1e-6;
590 }
591 #endif
592
593 inline_size ev_tstamp
594 get_clock (void)
595 {
596 #if EV_USE_MONOTONIC
597 if (expect_true (have_monotonic))
598 {
599 struct timespec ts;
600 clock_gettime (CLOCK_MONOTONIC, &ts);
601 return ts.tv_sec + ts.tv_nsec * 1e-9;
602 }
603 #endif
604
605 return ev_time ();
606 }
607
608 #if EV_MULTIPLICITY
609 ev_tstamp
610 ev_now (EV_P)
611 {
612 return ev_rt_now;
613 }
614 #endif
615
616 void
617 ev_sleep (ev_tstamp delay)
618 {
619 if (delay > 0.)
620 {
621 #if EV_USE_NANOSLEEP
622 struct timespec ts;
623
624 ts.tv_sec = (time_t)delay;
625 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
626
627 nanosleep (&ts, 0);
628 #elif defined(_WIN32)
629 Sleep ((unsigned long)(delay * 1e3));
630 #else
631 struct timeval tv;
632
633 tv.tv_sec = (time_t)delay;
634 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
635
636 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
637 /* somehting not guaranteed by newer posix versions, but guaranteed */
638 /* by older ones */
639 select (0, 0, 0, 0, &tv);
640 #endif
641 }
642 }
643
644 /*****************************************************************************/
645
646 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
647
648 /* find a suitable new size for the given array, */
649 /* hopefully by rounding to a ncie-to-malloc size */
650 inline_size int
651 array_nextsize (int elem, int cur, int cnt)
652 {
653 int ncur = cur + 1;
654
655 do
656 ncur <<= 1;
657 while (cnt > ncur);
658
659 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
660 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
661 {
662 ncur *= elem;
663 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
664 ncur = ncur - sizeof (void *) * 4;
665 ncur /= elem;
666 }
667
668 return ncur;
669 }
670
671 static noinline void *
672 array_realloc (int elem, void *base, int *cur, int cnt)
673 {
674 *cur = array_nextsize (elem, *cur, cnt);
675 return ev_realloc (base, elem * *cur);
676 }
677
678 #define array_init_zero(base,count) \
679 memset ((void *)(base), 0, sizeof (*(base)) * (count))
680
681 #define array_needsize(type,base,cur,cnt,init) \
682 if (expect_false ((cnt) > (cur))) \
683 { \
684 int ocur_ = (cur); \
685 (base) = (type *)array_realloc \
686 (sizeof (type), (base), &(cur), (cnt)); \
687 init ((base) + (ocur_), (cur) - ocur_); \
688 }
689
690 #if 0
691 #define array_slim(type,stem) \
692 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
693 { \
694 stem ## max = array_roundsize (stem ## cnt >> 1); \
695 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
696 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
697 }
698 #endif
699
700 #define array_free(stem, idx) \
701 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
702
703 /*****************************************************************************/
704
705 /* dummy callback for pending events */
706 static void noinline
707 pendingcb (EV_P_ ev_prepare *w, int revents)
708 {
709 }
710
711 void noinline
712 ev_feed_event (EV_P_ void *w, int revents)
713 {
714 W w_ = (W)w;
715 int pri = ABSPRI (w_);
716
717 if (expect_false (w_->pending))
718 pendings [pri][w_->pending - 1].events |= revents;
719 else
720 {
721 w_->pending = ++pendingcnt [pri];
722 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
723 pendings [pri][w_->pending - 1].w = w_;
724 pendings [pri][w_->pending - 1].events = revents;
725 }
726 }
727
728 inline_speed void
729 feed_reverse (EV_P_ W w)
730 {
731 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
732 rfeeds [rfeedcnt++] = w;
733 }
734
735 inline_size void
736 feed_reverse_done (EV_P_ int revents)
737 {
738 do
739 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
740 while (rfeedcnt);
741 }
742
743 inline_speed void
744 queue_events (EV_P_ W *events, int eventcnt, int type)
745 {
746 int i;
747
748 for (i = 0; i < eventcnt; ++i)
749 ev_feed_event (EV_A_ events [i], type);
750 }
751
752 /*****************************************************************************/
753
754 inline_speed void
755 fd_event (EV_P_ int fd, int revents)
756 {
757 ANFD *anfd = anfds + fd;
758 ev_io *w;
759
760 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
761 {
762 int ev = w->events & revents;
763
764 if (ev)
765 ev_feed_event (EV_A_ (W)w, ev);
766 }
767 }
768
769 void
770 ev_feed_fd_event (EV_P_ int fd, int revents)
771 {
772 if (fd >= 0 && fd < anfdmax)
773 fd_event (EV_A_ fd, revents);
774 }
775
776 /* make sure the external fd watch events are in-sync */
777 /* with the kernel/libev internal state */
778 inline_size void
779 fd_reify (EV_P)
780 {
781 int i;
782
783 for (i = 0; i < fdchangecnt; ++i)
784 {
785 int fd = fdchanges [i];
786 ANFD *anfd = anfds + fd;
787 ev_io *w;
788
789 unsigned char events = 0;
790
791 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
792 events |= (unsigned char)w->events;
793
794 #if EV_SELECT_IS_WINSOCKET
795 if (events)
796 {
797 unsigned long arg;
798 #ifdef EV_FD_TO_WIN32_HANDLE
799 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
800 #else
801 anfd->handle = _get_osfhandle (fd);
802 #endif
803 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
804 }
805 #endif
806
807 {
808 unsigned char o_events = anfd->events;
809 unsigned char o_reify = anfd->reify;
810
811 anfd->reify = 0;
812 anfd->events = events;
813
814 if (o_events != events || o_reify & EV__IOFDSET)
815 backend_modify (EV_A_ fd, o_events, events);
816 }
817 }
818
819 fdchangecnt = 0;
820 }
821
822 /* something about the given fd changed */
823 inline_size void
824 fd_change (EV_P_ int fd, int flags)
825 {
826 unsigned char reify = anfds [fd].reify;
827 anfds [fd].reify |= flags;
828
829 if (expect_true (!reify))
830 {
831 ++fdchangecnt;
832 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
833 fdchanges [fdchangecnt - 1] = fd;
834 }
835 }
836
837 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
838 inline_speed void
839 fd_kill (EV_P_ int fd)
840 {
841 ev_io *w;
842
843 while ((w = (ev_io *)anfds [fd].head))
844 {
845 ev_io_stop (EV_A_ w);
846 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
847 }
848 }
849
850 /* check whether the given fd is atcually valid, for error recovery */
851 inline_size int
852 fd_valid (int fd)
853 {
854 #ifdef _WIN32
855 return _get_osfhandle (fd) != -1;
856 #else
857 return fcntl (fd, F_GETFD) != -1;
858 #endif
859 }
860
861 /* called on EBADF to verify fds */
862 static void noinline
863 fd_ebadf (EV_P)
864 {
865 int fd;
866
867 for (fd = 0; fd < anfdmax; ++fd)
868 if (anfds [fd].events)
869 if (!fd_valid (fd) && errno == EBADF)
870 fd_kill (EV_A_ fd);
871 }
872
873 /* called on ENOMEM in select/poll to kill some fds and retry */
874 static void noinline
875 fd_enomem (EV_P)
876 {
877 int fd;
878
879 for (fd = anfdmax; fd--; )
880 if (anfds [fd].events)
881 {
882 fd_kill (EV_A_ fd);
883 return;
884 }
885 }
886
887 /* usually called after fork if backend needs to re-arm all fds from scratch */
888 static void noinline
889 fd_rearm_all (EV_P)
890 {
891 int fd;
892
893 for (fd = 0; fd < anfdmax; ++fd)
894 if (anfds [fd].events)
895 {
896 anfds [fd].events = 0;
897 anfds [fd].emask = 0;
898 fd_change (EV_A_ fd, EV__IOFDSET | 1);
899 }
900 }
901
902 /*****************************************************************************/
903
904 /*
905 * the heap functions want a real array index. array index 0 uis guaranteed to not
906 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
907 * the branching factor of the d-tree.
908 */
909
910 /*
911 * at the moment we allow libev the luxury of two heaps,
912 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
913 * which is more cache-efficient.
914 * the difference is about 5% with 50000+ watchers.
915 */
916 #if EV_USE_4HEAP
917
918 #define DHEAP 4
919 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
920 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
921 #define UPHEAP_DONE(p,k) ((p) == (k))
922
923 /* away from the root */
924 inline_speed void
925 downheap (ANHE *heap, int N, int k)
926 {
927 ANHE he = heap [k];
928 ANHE *E = heap + N + HEAP0;
929
930 for (;;)
931 {
932 ev_tstamp minat;
933 ANHE *minpos;
934 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
935
936 /* find minimum child */
937 if (expect_true (pos + DHEAP - 1 < E))
938 {
939 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
940 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
941 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
942 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
943 }
944 else if (pos < E)
945 {
946 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
947 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
948 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
949 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
950 }
951 else
952 break;
953
954 if (ANHE_at (he) <= minat)
955 break;
956
957 heap [k] = *minpos;
958 ev_active (ANHE_w (*minpos)) = k;
959
960 k = minpos - heap;
961 }
962
963 heap [k] = he;
964 ev_active (ANHE_w (he)) = k;
965 }
966
967 #else /* 4HEAP */
968
969 #define HEAP0 1
970 #define HPARENT(k) ((k) >> 1)
971 #define UPHEAP_DONE(p,k) (!(p))
972
973 /* away from the root */
974 inline_speed void
975 downheap (ANHE *heap, int N, int k)
976 {
977 ANHE he = heap [k];
978
979 for (;;)
980 {
981 int c = k << 1;
982
983 if (c > N + HEAP0 - 1)
984 break;
985
986 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
987 ? 1 : 0;
988
989 if (ANHE_at (he) <= ANHE_at (heap [c]))
990 break;
991
992 heap [k] = heap [c];
993 ev_active (ANHE_w (heap [k])) = k;
994
995 k = c;
996 }
997
998 heap [k] = he;
999 ev_active (ANHE_w (he)) = k;
1000 }
1001 #endif
1002
1003 /* towards the root */
1004 inline_speed void
1005 upheap (ANHE *heap, int k)
1006 {
1007 ANHE he = heap [k];
1008
1009 for (;;)
1010 {
1011 int p = HPARENT (k);
1012
1013 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1014 break;
1015
1016 heap [k] = heap [p];
1017 ev_active (ANHE_w (heap [k])) = k;
1018 k = p;
1019 }
1020
1021 heap [k] = he;
1022 ev_active (ANHE_w (he)) = k;
1023 }
1024
1025 /* move an element suitably so it is in a correct place */
1026 inline_size void
1027 adjustheap (ANHE *heap, int N, int k)
1028 {
1029 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1030 upheap (heap, k);
1031 else
1032 downheap (heap, N, k);
1033 }
1034
1035 /* rebuild the heap: this function is used only once and executed rarely */
1036 inline_size void
1037 reheap (ANHE *heap, int N)
1038 {
1039 int i;
1040
1041 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1042 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1043 for (i = 0; i < N; ++i)
1044 upheap (heap, i + HEAP0);
1045 }
1046
1047 /*****************************************************************************/
1048
1049 /* associate signal watchers to a signal signal */
1050 typedef struct
1051 {
1052 WL head;
1053 EV_ATOMIC_T gotsig;
1054 } ANSIG;
1055
1056 static ANSIG *signals;
1057 static int signalmax;
1058
1059 static EV_ATOMIC_T gotsig;
1060
1061 /*****************************************************************************/
1062
1063 /* used to prepare libev internal fd's */
1064 /* this is not fork-safe */
1065 inline_speed void
1066 fd_intern (int fd)
1067 {
1068 #ifdef _WIN32
1069 unsigned long arg = 1;
1070 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1071 #else
1072 fcntl (fd, F_SETFD, FD_CLOEXEC);
1073 fcntl (fd, F_SETFL, O_NONBLOCK);
1074 #endif
1075 }
1076
1077 static void noinline
1078 evpipe_init (EV_P)
1079 {
1080 if (!ev_is_active (&pipe_w))
1081 {
1082 #if EV_USE_EVENTFD
1083 if ((evfd = eventfd (0, 0)) >= 0)
1084 {
1085 evpipe [0] = -1;
1086 fd_intern (evfd);
1087 ev_io_set (&pipe_w, evfd, EV_READ);
1088 }
1089 else
1090 #endif
1091 {
1092 while (pipe (evpipe))
1093 ev_syserr ("(libev) error creating signal/async pipe");
1094
1095 fd_intern (evpipe [0]);
1096 fd_intern (evpipe [1]);
1097 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1098 }
1099
1100 ev_io_start (EV_A_ &pipe_w);
1101 ev_unref (EV_A); /* watcher should not keep loop alive */
1102 }
1103 }
1104
1105 inline_size void
1106 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1107 {
1108 if (!*flag)
1109 {
1110 int old_errno = errno; /* save errno because write might clobber it */
1111
1112 *flag = 1;
1113
1114 #if EV_USE_EVENTFD
1115 if (evfd >= 0)
1116 {
1117 uint64_t counter = 1;
1118 write (evfd, &counter, sizeof (uint64_t));
1119 }
1120 else
1121 #endif
1122 write (evpipe [1], &old_errno, 1);
1123
1124 errno = old_errno;
1125 }
1126 }
1127
1128 /* called whenever the libev signal pipe */
1129 /* got some events (signal, async) */
1130 static void
1131 pipecb (EV_P_ ev_io *iow, int revents)
1132 {
1133 #if EV_USE_EVENTFD
1134 if (evfd >= 0)
1135 {
1136 uint64_t counter;
1137 read (evfd, &counter, sizeof (uint64_t));
1138 }
1139 else
1140 #endif
1141 {
1142 char dummy;
1143 read (evpipe [0], &dummy, 1);
1144 }
1145
1146 if (gotsig && ev_is_default_loop (EV_A))
1147 {
1148 int signum;
1149 gotsig = 0;
1150
1151 for (signum = signalmax; signum--; )
1152 if (signals [signum].gotsig)
1153 ev_feed_signal_event (EV_A_ signum + 1);
1154 }
1155
1156 #if EV_ASYNC_ENABLE
1157 if (gotasync)
1158 {
1159 int i;
1160 gotasync = 0;
1161
1162 for (i = asynccnt; i--; )
1163 if (asyncs [i]->sent)
1164 {
1165 asyncs [i]->sent = 0;
1166 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1167 }
1168 }
1169 #endif
1170 }
1171
1172 /*****************************************************************************/
1173
1174 static void
1175 ev_sighandler (int signum)
1176 {
1177 #if EV_MULTIPLICITY
1178 struct ev_loop *loop = &default_loop_struct;
1179 #endif
1180
1181 #if _WIN32
1182 signal (signum, ev_sighandler);
1183 #endif
1184
1185 signals [signum - 1].gotsig = 1;
1186 evpipe_write (EV_A_ &gotsig);
1187 }
1188
1189 void noinline
1190 ev_feed_signal_event (EV_P_ int signum)
1191 {
1192 WL w;
1193
1194 #if EV_MULTIPLICITY
1195 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1196 #endif
1197
1198 --signum;
1199
1200 if (signum < 0 || signum >= signalmax)
1201 return;
1202
1203 signals [signum].gotsig = 0;
1204
1205 for (w = signals [signum].head; w; w = w->next)
1206 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1207 }
1208
1209 /*****************************************************************************/
1210
1211 static WL childs [EV_PID_HASHSIZE];
1212
1213 #ifndef _WIN32
1214
1215 static ev_signal childev;
1216
1217 #ifndef WIFCONTINUED
1218 # define WIFCONTINUED(status) 0
1219 #endif
1220
1221 /* handle a single child status event */
1222 inline_speed void
1223 child_reap (EV_P_ int chain, int pid, int status)
1224 {
1225 ev_child *w;
1226 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1227
1228 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1229 {
1230 if ((w->pid == pid || !w->pid)
1231 && (!traced || (w->flags & 1)))
1232 {
1233 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1234 w->rpid = pid;
1235 w->rstatus = status;
1236 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1237 }
1238 }
1239 }
1240
1241 #ifndef WCONTINUED
1242 # define WCONTINUED 0
1243 #endif
1244
1245 /* called on sigchld etc., calls waitpid */
1246 static void
1247 childcb (EV_P_ ev_signal *sw, int revents)
1248 {
1249 int pid, status;
1250
1251 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1252 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1253 if (!WCONTINUED
1254 || errno != EINVAL
1255 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1256 return;
1257
1258 /* make sure we are called again until all children have been reaped */
1259 /* we need to do it this way so that the callback gets called before we continue */
1260 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1261
1262 child_reap (EV_A_ pid, pid, status);
1263 if (EV_PID_HASHSIZE > 1)
1264 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1265 }
1266
1267 #endif
1268
1269 /*****************************************************************************/
1270
1271 #if EV_USE_PORT
1272 # include "ev_port.c"
1273 #endif
1274 #if EV_USE_KQUEUE
1275 # include "ev_kqueue.c"
1276 #endif
1277 #if EV_USE_EPOLL
1278 # include "ev_epoll.c"
1279 #endif
1280 #if EV_USE_POLL
1281 # include "ev_poll.c"
1282 #endif
1283 #if EV_USE_SELECT
1284 # include "ev_select.c"
1285 #endif
1286
1287 int
1288 ev_version_major (void)
1289 {
1290 return EV_VERSION_MAJOR;
1291 }
1292
1293 int
1294 ev_version_minor (void)
1295 {
1296 return EV_VERSION_MINOR;
1297 }
1298
1299 /* return true if we are running with elevated privileges and should ignore env variables */
1300 int inline_size
1301 enable_secure (void)
1302 {
1303 #ifdef _WIN32
1304 return 0;
1305 #else
1306 return getuid () != geteuid ()
1307 || getgid () != getegid ();
1308 #endif
1309 }
1310
1311 unsigned int
1312 ev_supported_backends (void)
1313 {
1314 unsigned int flags = 0;
1315
1316 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1317 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1318 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1319 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1320 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1321
1322 return flags;
1323 }
1324
1325 unsigned int
1326 ev_recommended_backends (void)
1327 {
1328 unsigned int flags = ev_supported_backends ();
1329
1330 #ifndef __NetBSD__
1331 /* kqueue is borked on everything but netbsd apparently */
1332 /* it usually doesn't work correctly on anything but sockets and pipes */
1333 flags &= ~EVBACKEND_KQUEUE;
1334 #endif
1335 #ifdef __APPLE__
1336 /* only select works correctly on that "unix-certified" platform */
1337 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1338 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1339 #endif
1340
1341 return flags;
1342 }
1343
1344 unsigned int
1345 ev_embeddable_backends (void)
1346 {
1347 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1348
1349 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1350 /* please fix it and tell me how to detect the fix */
1351 flags &= ~EVBACKEND_EPOLL;
1352
1353 return flags;
1354 }
1355
1356 unsigned int
1357 ev_backend (EV_P)
1358 {
1359 return backend;
1360 }
1361
1362 unsigned int
1363 ev_loop_count (EV_P)
1364 {
1365 return loop_count;
1366 }
1367
1368 unsigned int
1369 ev_loop_depth (EV_P)
1370 {
1371 return loop_depth;
1372 }
1373
1374 void
1375 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1376 {
1377 io_blocktime = interval;
1378 }
1379
1380 void
1381 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1382 {
1383 timeout_blocktime = interval;
1384 }
1385
1386 /* initialise a loop structure, must be zero-initialised */
1387 static void noinline
1388 loop_init (EV_P_ unsigned int flags)
1389 {
1390 if (!backend)
1391 {
1392 #if EV_USE_REALTIME
1393 if (!have_realtime)
1394 {
1395 struct timespec ts;
1396
1397 if (!clock_gettime (CLOCK_REALTIME, &ts))
1398 have_realtime = 1;
1399 }
1400 #endif
1401
1402 #if EV_USE_MONOTONIC
1403 if (!have_monotonic)
1404 {
1405 struct timespec ts;
1406
1407 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1408 have_monotonic = 1;
1409 }
1410 #endif
1411
1412 ev_rt_now = ev_time ();
1413 mn_now = get_clock ();
1414 now_floor = mn_now;
1415 rtmn_diff = ev_rt_now - mn_now;
1416 invoke_cb = ev_invoke_pending;
1417
1418 io_blocktime = 0.;
1419 timeout_blocktime = 0.;
1420 backend = 0;
1421 backend_fd = -1;
1422 gotasync = 0;
1423 #if EV_USE_INOTIFY
1424 fs_fd = -2;
1425 #endif
1426
1427 /* pid check not overridable via env */
1428 #ifndef _WIN32
1429 if (flags & EVFLAG_FORKCHECK)
1430 curpid = getpid ();
1431 #endif
1432
1433 if (!(flags & EVFLAG_NOENV)
1434 && !enable_secure ()
1435 && getenv ("LIBEV_FLAGS"))
1436 flags = atoi (getenv ("LIBEV_FLAGS"));
1437
1438 if (!(flags & 0x0000ffffU))
1439 flags |= ev_recommended_backends ();
1440
1441 #if EV_USE_PORT
1442 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1443 #endif
1444 #if EV_USE_KQUEUE
1445 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1446 #endif
1447 #if EV_USE_EPOLL
1448 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1449 #endif
1450 #if EV_USE_POLL
1451 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1452 #endif
1453 #if EV_USE_SELECT
1454 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1455 #endif
1456
1457 ev_prepare_init (&pending_w, pendingcb);
1458
1459 ev_init (&pipe_w, pipecb);
1460 ev_set_priority (&pipe_w, EV_MAXPRI);
1461 }
1462 }
1463
1464 /* free up a loop structure */
1465 static void noinline
1466 loop_destroy (EV_P)
1467 {
1468 int i;
1469
1470 if (ev_is_active (&pipe_w))
1471 {
1472 ev_ref (EV_A); /* signal watcher */
1473 ev_io_stop (EV_A_ &pipe_w);
1474
1475 #if EV_USE_EVENTFD
1476 if (evfd >= 0)
1477 close (evfd);
1478 #endif
1479
1480 if (evpipe [0] >= 0)
1481 {
1482 close (evpipe [0]);
1483 close (evpipe [1]);
1484 }
1485 }
1486
1487 #if EV_USE_INOTIFY
1488 if (fs_fd >= 0)
1489 close (fs_fd);
1490 #endif
1491
1492 if (backend_fd >= 0)
1493 close (backend_fd);
1494
1495 #if EV_USE_PORT
1496 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1497 #endif
1498 #if EV_USE_KQUEUE
1499 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1500 #endif
1501 #if EV_USE_EPOLL
1502 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1503 #endif
1504 #if EV_USE_POLL
1505 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1506 #endif
1507 #if EV_USE_SELECT
1508 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1509 #endif
1510
1511 for (i = NUMPRI; i--; )
1512 {
1513 array_free (pending, [i]);
1514 #if EV_IDLE_ENABLE
1515 array_free (idle, [i]);
1516 #endif
1517 }
1518
1519 ev_free (anfds); anfdmax = 0;
1520
1521 /* have to use the microsoft-never-gets-it-right macro */
1522 array_free (rfeed, EMPTY);
1523 array_free (fdchange, EMPTY);
1524 array_free (timer, EMPTY);
1525 #if EV_PERIODIC_ENABLE
1526 array_free (periodic, EMPTY);
1527 #endif
1528 #if EV_FORK_ENABLE
1529 array_free (fork, EMPTY);
1530 #endif
1531 array_free (prepare, EMPTY);
1532 array_free (check, EMPTY);
1533 #if EV_ASYNC_ENABLE
1534 array_free (async, EMPTY);
1535 #endif
1536
1537 backend = 0;
1538 }
1539
1540 #if EV_USE_INOTIFY
1541 inline_size void infy_fork (EV_P);
1542 #endif
1543
1544 inline_size void
1545 loop_fork (EV_P)
1546 {
1547 #if EV_USE_PORT
1548 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1549 #endif
1550 #if EV_USE_KQUEUE
1551 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1552 #endif
1553 #if EV_USE_EPOLL
1554 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1555 #endif
1556 #if EV_USE_INOTIFY
1557 infy_fork (EV_A);
1558 #endif
1559
1560 if (ev_is_active (&pipe_w))
1561 {
1562 /* this "locks" the handlers against writing to the pipe */
1563 /* while we modify the fd vars */
1564 gotsig = 1;
1565 #if EV_ASYNC_ENABLE
1566 gotasync = 1;
1567 #endif
1568
1569 ev_ref (EV_A);
1570 ev_io_stop (EV_A_ &pipe_w);
1571
1572 #if EV_USE_EVENTFD
1573 if (evfd >= 0)
1574 close (evfd);
1575 #endif
1576
1577 if (evpipe [0] >= 0)
1578 {
1579 close (evpipe [0]);
1580 close (evpipe [1]);
1581 }
1582
1583 evpipe_init (EV_A);
1584 /* now iterate over everything, in case we missed something */
1585 pipecb (EV_A_ &pipe_w, EV_READ);
1586 }
1587
1588 postfork = 0;
1589 }
1590
1591 #if EV_MULTIPLICITY
1592
1593 struct ev_loop *
1594 ev_loop_new (unsigned int flags)
1595 {
1596 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1597
1598 memset (loop, 0, sizeof (struct ev_loop));
1599
1600 loop_init (EV_A_ flags);
1601
1602 if (ev_backend (EV_A))
1603 return loop;
1604
1605 return 0;
1606 }
1607
1608 void
1609 ev_loop_destroy (EV_P)
1610 {
1611 loop_destroy (EV_A);
1612 ev_free (loop);
1613 }
1614
1615 void
1616 ev_loop_fork (EV_P)
1617 {
1618 postfork = 1; /* must be in line with ev_default_fork */
1619 }
1620
1621 #if EV_VERIFY
1622 static void noinline
1623 verify_watcher (EV_P_ W w)
1624 {
1625 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1626
1627 if (w->pending)
1628 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1629 }
1630
1631 static void noinline
1632 verify_heap (EV_P_ ANHE *heap, int N)
1633 {
1634 int i;
1635
1636 for (i = HEAP0; i < N + HEAP0; ++i)
1637 {
1638 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1639 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1640 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1641
1642 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1643 }
1644 }
1645
1646 static void noinline
1647 array_verify (EV_P_ W *ws, int cnt)
1648 {
1649 while (cnt--)
1650 {
1651 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1652 verify_watcher (EV_A_ ws [cnt]);
1653 }
1654 }
1655 #endif
1656
1657 void
1658 ev_loop_verify (EV_P)
1659 {
1660 #if EV_VERIFY
1661 int i;
1662 WL w;
1663
1664 assert (activecnt >= -1);
1665
1666 assert (fdchangemax >= fdchangecnt);
1667 for (i = 0; i < fdchangecnt; ++i)
1668 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1669
1670 assert (anfdmax >= 0);
1671 for (i = 0; i < anfdmax; ++i)
1672 for (w = anfds [i].head; w; w = w->next)
1673 {
1674 verify_watcher (EV_A_ (W)w);
1675 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1676 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1677 }
1678
1679 assert (timermax >= timercnt);
1680 verify_heap (EV_A_ timers, timercnt);
1681
1682 #if EV_PERIODIC_ENABLE
1683 assert (periodicmax >= periodiccnt);
1684 verify_heap (EV_A_ periodics, periodiccnt);
1685 #endif
1686
1687 for (i = NUMPRI; i--; )
1688 {
1689 assert (pendingmax [i] >= pendingcnt [i]);
1690 #if EV_IDLE_ENABLE
1691 assert (idleall >= 0);
1692 assert (idlemax [i] >= idlecnt [i]);
1693 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1694 #endif
1695 }
1696
1697 #if EV_FORK_ENABLE
1698 assert (forkmax >= forkcnt);
1699 array_verify (EV_A_ (W *)forks, forkcnt);
1700 #endif
1701
1702 #if EV_ASYNC_ENABLE
1703 assert (asyncmax >= asynccnt);
1704 array_verify (EV_A_ (W *)asyncs, asynccnt);
1705 #endif
1706
1707 assert (preparemax >= preparecnt);
1708 array_verify (EV_A_ (W *)prepares, preparecnt);
1709
1710 assert (checkmax >= checkcnt);
1711 array_verify (EV_A_ (W *)checks, checkcnt);
1712
1713 # if 0
1714 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1715 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1716 # endif
1717 #endif
1718 }
1719
1720 #endif /* multiplicity */
1721
1722 #if EV_MULTIPLICITY
1723 struct ev_loop *
1724 ev_default_loop_init (unsigned int flags)
1725 #else
1726 int
1727 ev_default_loop (unsigned int flags)
1728 #endif
1729 {
1730 if (!ev_default_loop_ptr)
1731 {
1732 #if EV_MULTIPLICITY
1733 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1734 #else
1735 ev_default_loop_ptr = 1;
1736 #endif
1737
1738 loop_init (EV_A_ flags);
1739
1740 if (ev_backend (EV_A))
1741 {
1742 #ifndef _WIN32
1743 ev_signal_init (&childev, childcb, SIGCHLD);
1744 ev_set_priority (&childev, EV_MAXPRI);
1745 ev_signal_start (EV_A_ &childev);
1746 ev_unref (EV_A); /* child watcher should not keep loop alive */
1747 #endif
1748 }
1749 else
1750 ev_default_loop_ptr = 0;
1751 }
1752
1753 return ev_default_loop_ptr;
1754 }
1755
1756 void
1757 ev_default_destroy (void)
1758 {
1759 #if EV_MULTIPLICITY
1760 struct ev_loop *loop = ev_default_loop_ptr;
1761 #endif
1762
1763 ev_default_loop_ptr = 0;
1764
1765 #ifndef _WIN32
1766 ev_ref (EV_A); /* child watcher */
1767 ev_signal_stop (EV_A_ &childev);
1768 #endif
1769
1770 loop_destroy (EV_A);
1771 }
1772
1773 void
1774 ev_default_fork (void)
1775 {
1776 #if EV_MULTIPLICITY
1777 struct ev_loop *loop = ev_default_loop_ptr;
1778 #endif
1779
1780 postfork = 1; /* must be in line with ev_loop_fork */
1781 }
1782
1783 /*****************************************************************************/
1784
1785 void
1786 ev_invoke (EV_P_ void *w, int revents)
1787 {
1788 EV_CB_INVOKE ((W)w, revents);
1789 }
1790
1791 void
1792 ev_invoke_pending (EV_P)
1793 {
1794 int pri;
1795
1796 for (pri = NUMPRI; pri--; )
1797 while (pendingcnt [pri])
1798 {
1799 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1800
1801 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1802 /* ^ this is no longer true, as pending_w could be here */
1803
1804 p->w->pending = 0;
1805 EV_CB_INVOKE (p->w, p->events);
1806 EV_FREQUENT_CHECK;
1807 }
1808 }
1809
1810 #if EV_IDLE_ENABLE
1811 /* make idle watchers pending. this handles the "call-idle */
1812 /* only when higher priorities are idle" logic */
1813 inline_size void
1814 idle_reify (EV_P)
1815 {
1816 if (expect_false (idleall))
1817 {
1818 int pri;
1819
1820 for (pri = NUMPRI; pri--; )
1821 {
1822 if (pendingcnt [pri])
1823 break;
1824
1825 if (idlecnt [pri])
1826 {
1827 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1828 break;
1829 }
1830 }
1831 }
1832 }
1833 #endif
1834
1835 /* make timers pending */
1836 inline_size void
1837 timers_reify (EV_P)
1838 {
1839 EV_FREQUENT_CHECK;
1840
1841 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1842 {
1843 do
1844 {
1845 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1846
1847 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1848
1849 /* first reschedule or stop timer */
1850 if (w->repeat)
1851 {
1852 ev_at (w) += w->repeat;
1853 if (ev_at (w) < mn_now)
1854 ev_at (w) = mn_now;
1855
1856 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1857
1858 ANHE_at_cache (timers [HEAP0]);
1859 downheap (timers, timercnt, HEAP0);
1860 }
1861 else
1862 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1863
1864 EV_FREQUENT_CHECK;
1865 feed_reverse (EV_A_ (W)w);
1866 }
1867 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1868
1869 feed_reverse_done (EV_A_ EV_TIMEOUT);
1870 }
1871 }
1872
1873 #if EV_PERIODIC_ENABLE
1874 /* make periodics pending */
1875 inline_size void
1876 periodics_reify (EV_P)
1877 {
1878 EV_FREQUENT_CHECK;
1879
1880 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1881 {
1882 int feed_count = 0;
1883
1884 do
1885 {
1886 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1887
1888 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1889
1890 /* first reschedule or stop timer */
1891 if (w->reschedule_cb)
1892 {
1893 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1894
1895 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1896
1897 ANHE_at_cache (periodics [HEAP0]);
1898 downheap (periodics, periodiccnt, HEAP0);
1899 }
1900 else if (w->interval)
1901 {
1902 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1903 /* if next trigger time is not sufficiently in the future, put it there */
1904 /* this might happen because of floating point inexactness */
1905 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1906 {
1907 ev_at (w) += w->interval;
1908
1909 /* if interval is unreasonably low we might still have a time in the past */
1910 /* so correct this. this will make the periodic very inexact, but the user */
1911 /* has effectively asked to get triggered more often than possible */
1912 if (ev_at (w) < ev_rt_now)
1913 ev_at (w) = ev_rt_now;
1914 }
1915
1916 ANHE_at_cache (periodics [HEAP0]);
1917 downheap (periodics, periodiccnt, HEAP0);
1918 }
1919 else
1920 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1921
1922 EV_FREQUENT_CHECK;
1923 feed_reverse (EV_A_ (W)w);
1924 }
1925 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1926
1927 feed_reverse_done (EV_A_ EV_PERIODIC);
1928 }
1929 }
1930
1931 /* simply recalculate all periodics */
1932 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1933 static void noinline
1934 periodics_reschedule (EV_P)
1935 {
1936 int i;
1937
1938 /* adjust periodics after time jump */
1939 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1940 {
1941 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1942
1943 if (w->reschedule_cb)
1944 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1945 else if (w->interval)
1946 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1947
1948 ANHE_at_cache (periodics [i]);
1949 }
1950
1951 reheap (periodics, periodiccnt);
1952 }
1953 #endif
1954
1955 /* adjust all timers by a given offset */
1956 static void noinline
1957 timers_reschedule (EV_P_ ev_tstamp adjust)
1958 {
1959 int i;
1960
1961 for (i = 0; i < timercnt; ++i)
1962 {
1963 ANHE *he = timers + i + HEAP0;
1964 ANHE_w (*he)->at += adjust;
1965 ANHE_at_cache (*he);
1966 }
1967 }
1968
1969 /* fetch new monotonic and realtime times from the kernel */
1970 /* also detetc if there was a timejump, and act accordingly */
1971 inline_speed void
1972 time_update (EV_P_ ev_tstamp max_block)
1973 {
1974 #if EV_USE_MONOTONIC
1975 if (expect_true (have_monotonic))
1976 {
1977 int i;
1978 ev_tstamp odiff = rtmn_diff;
1979
1980 mn_now = get_clock ();
1981
1982 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1983 /* interpolate in the meantime */
1984 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1985 {
1986 ev_rt_now = rtmn_diff + mn_now;
1987 return;
1988 }
1989
1990 now_floor = mn_now;
1991 ev_rt_now = ev_time ();
1992
1993 /* loop a few times, before making important decisions.
1994 * on the choice of "4": one iteration isn't enough,
1995 * in case we get preempted during the calls to
1996 * ev_time and get_clock. a second call is almost guaranteed
1997 * to succeed in that case, though. and looping a few more times
1998 * doesn't hurt either as we only do this on time-jumps or
1999 * in the unlikely event of having been preempted here.
2000 */
2001 for (i = 4; --i; )
2002 {
2003 rtmn_diff = ev_rt_now - mn_now;
2004
2005 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2006 return; /* all is well */
2007
2008 ev_rt_now = ev_time ();
2009 mn_now = get_clock ();
2010 now_floor = mn_now;
2011 }
2012
2013 /* no timer adjustment, as the monotonic clock doesn't jump */
2014 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2015 # if EV_PERIODIC_ENABLE
2016 periodics_reschedule (EV_A);
2017 # endif
2018 }
2019 else
2020 #endif
2021 {
2022 ev_rt_now = ev_time ();
2023
2024 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2025 {
2026 /* adjust timers. this is easy, as the offset is the same for all of them */
2027 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2028 #if EV_PERIODIC_ENABLE
2029 periodics_reschedule (EV_A);
2030 #endif
2031 }
2032
2033 mn_now = ev_rt_now;
2034 }
2035 }
2036
2037 void
2038 ev_loop (EV_P_ int flags)
2039 {
2040 ++loop_depth;
2041
2042 loop_done = EVUNLOOP_CANCEL;
2043
2044 invoke_cb (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
2045
2046 do
2047 {
2048 #if EV_VERIFY >= 2
2049 ev_loop_verify (EV_A);
2050 #endif
2051
2052 #ifndef _WIN32
2053 if (expect_false (curpid)) /* penalise the forking check even more */
2054 if (expect_false (getpid () != curpid))
2055 {
2056 curpid = getpid ();
2057 postfork = 1;
2058 }
2059 #endif
2060
2061 #if EV_FORK_ENABLE
2062 /* we might have forked, so queue fork handlers */
2063 if (expect_false (postfork))
2064 if (forkcnt)
2065 {
2066 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2067 invoke_cb (EV_A);
2068 }
2069 #endif
2070
2071 /* queue prepare watchers (and execute them) */
2072 if (expect_false (preparecnt))
2073 {
2074 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2075 invoke_cb (EV_A);
2076 }
2077
2078 /* we might have forked, so reify kernel state if necessary */
2079 if (expect_false (postfork))
2080 loop_fork (EV_A);
2081
2082 /* update fd-related kernel structures */
2083 fd_reify (EV_A);
2084
2085 /* calculate blocking time */
2086 {
2087 ev_tstamp waittime = 0.;
2088 ev_tstamp sleeptime = 0.;
2089
2090 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2091 {
2092 /* remember old timestamp for io_blocktime calculation */
2093 ev_tstamp prev_mn_now = mn_now;
2094
2095 /* update time to cancel out callback processing overhead */
2096 time_update (EV_A_ 1e100);
2097
2098 waittime = MAX_BLOCKTIME;
2099
2100 if (timercnt)
2101 {
2102 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2103 if (waittime > to) waittime = to;
2104 }
2105
2106 #if EV_PERIODIC_ENABLE
2107 if (periodiccnt)
2108 {
2109 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2110 if (waittime > to) waittime = to;
2111 }
2112 #endif
2113
2114 /* don't let timeouts decrease the waittime below timeout_blocktime */
2115 if (expect_false (waittime < timeout_blocktime))
2116 waittime = timeout_blocktime;
2117
2118 /* extra check because io_blocktime is commonly 0 */
2119 if (expect_false (io_blocktime))
2120 {
2121 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2122
2123 if (sleeptime > waittime - backend_fudge)
2124 sleeptime = waittime - backend_fudge;
2125
2126 if (expect_true (sleeptime > 0.))
2127 {
2128 ev_sleep (sleeptime);
2129 waittime -= sleeptime;
2130 }
2131 }
2132 }
2133
2134 ++loop_count;
2135 backend_poll (EV_A_ waittime);
2136
2137 /* update ev_rt_now, do magic */
2138 time_update (EV_A_ waittime + sleeptime);
2139 }
2140
2141 /* queue pending timers and reschedule them */
2142 timers_reify (EV_A); /* relative timers called last */
2143 #if EV_PERIODIC_ENABLE
2144 periodics_reify (EV_A); /* absolute timers called first */
2145 #endif
2146
2147 #if EV_IDLE_ENABLE
2148 /* queue idle watchers unless other events are pending */
2149 idle_reify (EV_A);
2150 #endif
2151
2152 /* queue check watchers, to be executed first */
2153 if (expect_false (checkcnt))
2154 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2155
2156 invoke_cb (EV_A);
2157 }
2158 while (expect_true (
2159 activecnt
2160 && !loop_done
2161 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2162 ));
2163
2164 if (loop_done == EVUNLOOP_ONE)
2165 loop_done = EVUNLOOP_CANCEL;
2166
2167 --loop_depth;
2168 }
2169
2170 void
2171 ev_unloop (EV_P_ int how)
2172 {
2173 loop_done = how;
2174 }
2175
2176 void
2177 ev_ref (EV_P)
2178 {
2179 ++activecnt;
2180 }
2181
2182 void
2183 ev_unref (EV_P)
2184 {
2185 --activecnt;
2186 }
2187
2188 void
2189 ev_now_update (EV_P)
2190 {
2191 time_update (EV_A_ 1e100);
2192 }
2193
2194 void
2195 ev_suspend (EV_P)
2196 {
2197 ev_now_update (EV_A);
2198 }
2199
2200 void
2201 ev_resume (EV_P)
2202 {
2203 ev_tstamp mn_prev = mn_now;
2204
2205 ev_now_update (EV_A);
2206 timers_reschedule (EV_A_ mn_now - mn_prev);
2207 #if EV_PERIODIC_ENABLE
2208 /* TODO: really do this? */
2209 periodics_reschedule (EV_A);
2210 #endif
2211 }
2212
2213 /*****************************************************************************/
2214 /* singly-linked list management, used when the expected list length is short */
2215
2216 inline_size void
2217 wlist_add (WL *head, WL elem)
2218 {
2219 elem->next = *head;
2220 *head = elem;
2221 }
2222
2223 inline_size void
2224 wlist_del (WL *head, WL elem)
2225 {
2226 while (*head)
2227 {
2228 if (*head == elem)
2229 {
2230 *head = elem->next;
2231 return;
2232 }
2233
2234 head = &(*head)->next;
2235 }
2236 }
2237
2238 /* internal, faster, version of ev_clear_pending */
2239 inline_speed void
2240 clear_pending (EV_P_ W w)
2241 {
2242 if (w->pending)
2243 {
2244 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2245 w->pending = 0;
2246 }
2247 }
2248
2249 int
2250 ev_clear_pending (EV_P_ void *w)
2251 {
2252 W w_ = (W)w;
2253 int pending = w_->pending;
2254
2255 if (expect_true (pending))
2256 {
2257 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2258 p->w = (W)&pending_w;
2259 w_->pending = 0;
2260 return p->events;
2261 }
2262 else
2263 return 0;
2264 }
2265
2266 inline_size void
2267 pri_adjust (EV_P_ W w)
2268 {
2269 int pri = ev_priority (w);
2270 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2271 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2272 ev_set_priority (w, pri);
2273 }
2274
2275 inline_speed void
2276 ev_start (EV_P_ W w, int active)
2277 {
2278 pri_adjust (EV_A_ w);
2279 w->active = active;
2280 ev_ref (EV_A);
2281 }
2282
2283 inline_size void
2284 ev_stop (EV_P_ W w)
2285 {
2286 ev_unref (EV_A);
2287 w->active = 0;
2288 }
2289
2290 /*****************************************************************************/
2291
2292 void noinline
2293 ev_io_start (EV_P_ ev_io *w)
2294 {
2295 int fd = w->fd;
2296
2297 if (expect_false (ev_is_active (w)))
2298 return;
2299
2300 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2301 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2302
2303 EV_FREQUENT_CHECK;
2304
2305 ev_start (EV_A_ (W)w, 1);
2306 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2307 wlist_add (&anfds[fd].head, (WL)w);
2308
2309 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2310 w->events &= ~EV__IOFDSET;
2311
2312 EV_FREQUENT_CHECK;
2313 }
2314
2315 void noinline
2316 ev_io_stop (EV_P_ ev_io *w)
2317 {
2318 clear_pending (EV_A_ (W)w);
2319 if (expect_false (!ev_is_active (w)))
2320 return;
2321
2322 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2323
2324 EV_FREQUENT_CHECK;
2325
2326 wlist_del (&anfds[w->fd].head, (WL)w);
2327 ev_stop (EV_A_ (W)w);
2328
2329 fd_change (EV_A_ w->fd, 1);
2330
2331 EV_FREQUENT_CHECK;
2332 }
2333
2334 void noinline
2335 ev_timer_start (EV_P_ ev_timer *w)
2336 {
2337 if (expect_false (ev_is_active (w)))
2338 return;
2339
2340 ev_at (w) += mn_now;
2341
2342 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2343
2344 EV_FREQUENT_CHECK;
2345
2346 ++timercnt;
2347 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2348 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2349 ANHE_w (timers [ev_active (w)]) = (WT)w;
2350 ANHE_at_cache (timers [ev_active (w)]);
2351 upheap (timers, ev_active (w));
2352
2353 EV_FREQUENT_CHECK;
2354
2355 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2356 }
2357
2358 void noinline
2359 ev_timer_stop (EV_P_ ev_timer *w)
2360 {
2361 clear_pending (EV_A_ (W)w);
2362 if (expect_false (!ev_is_active (w)))
2363 return;
2364
2365 EV_FREQUENT_CHECK;
2366
2367 {
2368 int active = ev_active (w);
2369
2370 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2371
2372 --timercnt;
2373
2374 if (expect_true (active < timercnt + HEAP0))
2375 {
2376 timers [active] = timers [timercnt + HEAP0];
2377 adjustheap (timers, timercnt, active);
2378 }
2379 }
2380
2381 EV_FREQUENT_CHECK;
2382
2383 ev_at (w) -= mn_now;
2384
2385 ev_stop (EV_A_ (W)w);
2386 }
2387
2388 void noinline
2389 ev_timer_again (EV_P_ ev_timer *w)
2390 {
2391 EV_FREQUENT_CHECK;
2392
2393 if (ev_is_active (w))
2394 {
2395 if (w->repeat)
2396 {
2397 ev_at (w) = mn_now + w->repeat;
2398 ANHE_at_cache (timers [ev_active (w)]);
2399 adjustheap (timers, timercnt, ev_active (w));
2400 }
2401 else
2402 ev_timer_stop (EV_A_ w);
2403 }
2404 else if (w->repeat)
2405 {
2406 ev_at (w) = w->repeat;
2407 ev_timer_start (EV_A_ w);
2408 }
2409
2410 EV_FREQUENT_CHECK;
2411 }
2412
2413 #if EV_PERIODIC_ENABLE
2414 void noinline
2415 ev_periodic_start (EV_P_ ev_periodic *w)
2416 {
2417 if (expect_false (ev_is_active (w)))
2418 return;
2419
2420 if (w->reschedule_cb)
2421 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2422 else if (w->interval)
2423 {
2424 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2425 /* this formula differs from the one in periodic_reify because we do not always round up */
2426 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2427 }
2428 else
2429 ev_at (w) = w->offset;
2430
2431 EV_FREQUENT_CHECK;
2432
2433 ++periodiccnt;
2434 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2435 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2436 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2437 ANHE_at_cache (periodics [ev_active (w)]);
2438 upheap (periodics, ev_active (w));
2439
2440 EV_FREQUENT_CHECK;
2441
2442 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2443 }
2444
2445 void noinline
2446 ev_periodic_stop (EV_P_ ev_periodic *w)
2447 {
2448 clear_pending (EV_A_ (W)w);
2449 if (expect_false (!ev_is_active (w)))
2450 return;
2451
2452 EV_FREQUENT_CHECK;
2453
2454 {
2455 int active = ev_active (w);
2456
2457 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2458
2459 --periodiccnt;
2460
2461 if (expect_true (active < periodiccnt + HEAP0))
2462 {
2463 periodics [active] = periodics [periodiccnt + HEAP0];
2464 adjustheap (periodics, periodiccnt, active);
2465 }
2466 }
2467
2468 EV_FREQUENT_CHECK;
2469
2470 ev_stop (EV_A_ (W)w);
2471 }
2472
2473 void noinline
2474 ev_periodic_again (EV_P_ ev_periodic *w)
2475 {
2476 /* TODO: use adjustheap and recalculation */
2477 ev_periodic_stop (EV_A_ w);
2478 ev_periodic_start (EV_A_ w);
2479 }
2480 #endif
2481
2482 #ifndef SA_RESTART
2483 # define SA_RESTART 0
2484 #endif
2485
2486 void noinline
2487 ev_signal_start (EV_P_ ev_signal *w)
2488 {
2489 #if EV_MULTIPLICITY
2490 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2491 #endif
2492 if (expect_false (ev_is_active (w)))
2493 return;
2494
2495 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2496
2497 evpipe_init (EV_A);
2498
2499 EV_FREQUENT_CHECK;
2500
2501 {
2502 #ifndef _WIN32
2503 sigset_t full, prev;
2504 sigfillset (&full);
2505 sigprocmask (SIG_SETMASK, &full, &prev);
2506 #endif
2507
2508 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2509
2510 #ifndef _WIN32
2511 sigprocmask (SIG_SETMASK, &prev, 0);
2512 #endif
2513 }
2514
2515 ev_start (EV_A_ (W)w, 1);
2516 wlist_add (&signals [w->signum - 1].head, (WL)w);
2517
2518 if (!((WL)w)->next)
2519 {
2520 #if _WIN32
2521 signal (w->signum, ev_sighandler);
2522 #else
2523 struct sigaction sa;
2524 sa.sa_handler = ev_sighandler;
2525 sigfillset (&sa.sa_mask);
2526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2527 sigaction (w->signum, &sa, 0);
2528 #endif
2529 }
2530
2531 EV_FREQUENT_CHECK;
2532 }
2533
2534 void noinline
2535 ev_signal_stop (EV_P_ ev_signal *w)
2536 {
2537 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w)))
2539 return;
2540
2541 EV_FREQUENT_CHECK;
2542
2543 wlist_del (&signals [w->signum - 1].head, (WL)w);
2544 ev_stop (EV_A_ (W)w);
2545
2546 if (!signals [w->signum - 1].head)
2547 signal (w->signum, SIG_DFL);
2548
2549 EV_FREQUENT_CHECK;
2550 }
2551
2552 void
2553 ev_child_start (EV_P_ ev_child *w)
2554 {
2555 #if EV_MULTIPLICITY
2556 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2557 #endif
2558 if (expect_false (ev_is_active (w)))
2559 return;
2560
2561 EV_FREQUENT_CHECK;
2562
2563 ev_start (EV_A_ (W)w, 1);
2564 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2565
2566 EV_FREQUENT_CHECK;
2567 }
2568
2569 void
2570 ev_child_stop (EV_P_ ev_child *w)
2571 {
2572 clear_pending (EV_A_ (W)w);
2573 if (expect_false (!ev_is_active (w)))
2574 return;
2575
2576 EV_FREQUENT_CHECK;
2577
2578 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2579 ev_stop (EV_A_ (W)w);
2580
2581 EV_FREQUENT_CHECK;
2582 }
2583
2584 #if EV_STAT_ENABLE
2585
2586 # ifdef _WIN32
2587 # undef lstat
2588 # define lstat(a,b) _stati64 (a,b)
2589 # endif
2590
2591 #define DEF_STAT_INTERVAL 5.0074891
2592 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2593 #define MIN_STAT_INTERVAL 0.1074891
2594
2595 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2596
2597 #if EV_USE_INOTIFY
2598 # define EV_INOTIFY_BUFSIZE 8192
2599
2600 static void noinline
2601 infy_add (EV_P_ ev_stat *w)
2602 {
2603 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2604
2605 if (w->wd < 0)
2606 {
2607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2608 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2609
2610 /* monitor some parent directory for speedup hints */
2611 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2612 /* but an efficiency issue only */
2613 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2614 {
2615 char path [4096];
2616 strcpy (path, w->path);
2617
2618 do
2619 {
2620 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2621 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2622
2623 char *pend = strrchr (path, '/');
2624
2625 if (!pend || pend == path)
2626 break;
2627
2628 *pend = 0;
2629 w->wd = inotify_add_watch (fs_fd, path, mask);
2630 }
2631 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2632 }
2633 }
2634
2635 if (w->wd >= 0)
2636 {
2637 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2638
2639 /* now local changes will be tracked by inotify, but remote changes won't */
2640 /* unless the filesystem it known to be local, we therefore still poll */
2641 /* also do poll on <2.6.25, but with normal frequency */
2642 struct statfs sfs;
2643
2644 if (fs_2625 && !statfs (w->path, &sfs))
2645 if (sfs.f_type == 0x1373 /* devfs */
2646 || sfs.f_type == 0xEF53 /* ext2/3 */
2647 || sfs.f_type == 0x3153464a /* jfs */
2648 || sfs.f_type == 0x52654973 /* reiser3 */
2649 || sfs.f_type == 0x01021994 /* tempfs */
2650 || sfs.f_type == 0x58465342 /* xfs */)
2651 return;
2652
2653 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2654 ev_timer_again (EV_A_ &w->timer);
2655 }
2656 }
2657
2658 static void noinline
2659 infy_del (EV_P_ ev_stat *w)
2660 {
2661 int slot;
2662 int wd = w->wd;
2663
2664 if (wd < 0)
2665 return;
2666
2667 w->wd = -2;
2668 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2669 wlist_del (&fs_hash [slot].head, (WL)w);
2670
2671 /* remove this watcher, if others are watching it, they will rearm */
2672 inotify_rm_watch (fs_fd, wd);
2673 }
2674
2675 static void noinline
2676 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2677 {
2678 if (slot < 0)
2679 /* overflow, need to check for all hash slots */
2680 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2681 infy_wd (EV_A_ slot, wd, ev);
2682 else
2683 {
2684 WL w_;
2685
2686 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2687 {
2688 ev_stat *w = (ev_stat *)w_;
2689 w_ = w_->next; /* lets us remove this watcher and all before it */
2690
2691 if (w->wd == wd || wd == -1)
2692 {
2693 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2694 {
2695 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2696 w->wd = -1;
2697 infy_add (EV_A_ w); /* re-add, no matter what */
2698 }
2699
2700 stat_timer_cb (EV_A_ &w->timer, 0);
2701 }
2702 }
2703 }
2704 }
2705
2706 static void
2707 infy_cb (EV_P_ ev_io *w, int revents)
2708 {
2709 char buf [EV_INOTIFY_BUFSIZE];
2710 struct inotify_event *ev = (struct inotify_event *)buf;
2711 int ofs;
2712 int len = read (fs_fd, buf, sizeof (buf));
2713
2714 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2715 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2716 }
2717
2718 inline_size void
2719 check_2625 (EV_P)
2720 {
2721 /* kernels < 2.6.25 are borked
2722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2723 */
2724 struct utsname buf;
2725 int major, minor, micro;
2726
2727 if (uname (&buf))
2728 return;
2729
2730 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2731 return;
2732
2733 if (major < 2
2734 || (major == 2 && minor < 6)
2735 || (major == 2 && minor == 6 && micro < 25))
2736 return;
2737
2738 fs_2625 = 1;
2739 }
2740
2741 inline_size void
2742 infy_init (EV_P)
2743 {
2744 if (fs_fd != -2)
2745 return;
2746
2747 fs_fd = -1;
2748
2749 check_2625 (EV_A);
2750
2751 fs_fd = inotify_init ();
2752
2753 if (fs_fd >= 0)
2754 {
2755 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2756 ev_set_priority (&fs_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &fs_w);
2758 }
2759 }
2760
2761 inline_size void
2762 infy_fork (EV_P)
2763 {
2764 int slot;
2765
2766 if (fs_fd < 0)
2767 return;
2768
2769 close (fs_fd);
2770 fs_fd = inotify_init ();
2771
2772 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2773 {
2774 WL w_ = fs_hash [slot].head;
2775 fs_hash [slot].head = 0;
2776
2777 while (w_)
2778 {
2779 ev_stat *w = (ev_stat *)w_;
2780 w_ = w_->next; /* lets us add this watcher */
2781
2782 w->wd = -1;
2783
2784 if (fs_fd >= 0)
2785 infy_add (EV_A_ w); /* re-add, no matter what */
2786 else
2787 ev_timer_again (EV_A_ &w->timer);
2788 }
2789 }
2790 }
2791
2792 #endif
2793
2794 #ifdef _WIN32
2795 # define EV_LSTAT(p,b) _stati64 (p, b)
2796 #else
2797 # define EV_LSTAT(p,b) lstat (p, b)
2798 #endif
2799
2800 void
2801 ev_stat_stat (EV_P_ ev_stat *w)
2802 {
2803 if (lstat (w->path, &w->attr) < 0)
2804 w->attr.st_nlink = 0;
2805 else if (!w->attr.st_nlink)
2806 w->attr.st_nlink = 1;
2807 }
2808
2809 static void noinline
2810 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2811 {
2812 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2813
2814 /* we copy this here each the time so that */
2815 /* prev has the old value when the callback gets invoked */
2816 w->prev = w->attr;
2817 ev_stat_stat (EV_A_ w);
2818
2819 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2820 if (
2821 w->prev.st_dev != w->attr.st_dev
2822 || w->prev.st_ino != w->attr.st_ino
2823 || w->prev.st_mode != w->attr.st_mode
2824 || w->prev.st_nlink != w->attr.st_nlink
2825 || w->prev.st_uid != w->attr.st_uid
2826 || w->prev.st_gid != w->attr.st_gid
2827 || w->prev.st_rdev != w->attr.st_rdev
2828 || w->prev.st_size != w->attr.st_size
2829 || w->prev.st_atime != w->attr.st_atime
2830 || w->prev.st_mtime != w->attr.st_mtime
2831 || w->prev.st_ctime != w->attr.st_ctime
2832 ) {
2833 #if EV_USE_INOTIFY
2834 if (fs_fd >= 0)
2835 {
2836 infy_del (EV_A_ w);
2837 infy_add (EV_A_ w);
2838 ev_stat_stat (EV_A_ w); /* avoid race... */
2839 }
2840 #endif
2841
2842 ev_feed_event (EV_A_ w, EV_STAT);
2843 }
2844 }
2845
2846 void
2847 ev_stat_start (EV_P_ ev_stat *w)
2848 {
2849 if (expect_false (ev_is_active (w)))
2850 return;
2851
2852 ev_stat_stat (EV_A_ w);
2853
2854 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2855 w->interval = MIN_STAT_INTERVAL;
2856
2857 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2858 ev_set_priority (&w->timer, ev_priority (w));
2859
2860 #if EV_USE_INOTIFY
2861 infy_init (EV_A);
2862
2863 if (fs_fd >= 0)
2864 infy_add (EV_A_ w);
2865 else
2866 #endif
2867 ev_timer_again (EV_A_ &w->timer);
2868
2869 ev_start (EV_A_ (W)w, 1);
2870
2871 EV_FREQUENT_CHECK;
2872 }
2873
2874 void
2875 ev_stat_stop (EV_P_ ev_stat *w)
2876 {
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 #if EV_USE_INOTIFY
2884 infy_del (EV_A_ w);
2885 #endif
2886 ev_timer_stop (EV_A_ &w->timer);
2887
2888 ev_stop (EV_A_ (W)w);
2889
2890 EV_FREQUENT_CHECK;
2891 }
2892 #endif
2893
2894 #if EV_IDLE_ENABLE
2895 void
2896 ev_idle_start (EV_P_ ev_idle *w)
2897 {
2898 if (expect_false (ev_is_active (w)))
2899 return;
2900
2901 pri_adjust (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2904
2905 {
2906 int active = ++idlecnt [ABSPRI (w)];
2907
2908 ++idleall;
2909 ev_start (EV_A_ (W)w, active);
2910
2911 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2912 idles [ABSPRI (w)][active - 1] = w;
2913 }
2914
2915 EV_FREQUENT_CHECK;
2916 }
2917
2918 void
2919 ev_idle_stop (EV_P_ ev_idle *w)
2920 {
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 {
2928 int active = ev_active (w);
2929
2930 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2931 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2932
2933 ev_stop (EV_A_ (W)w);
2934 --idleall;
2935 }
2936
2937 EV_FREQUENT_CHECK;
2938 }
2939 #endif
2940
2941 void
2942 ev_prepare_start (EV_P_ ev_prepare *w)
2943 {
2944 if (expect_false (ev_is_active (w)))
2945 return;
2946
2947 EV_FREQUENT_CHECK;
2948
2949 ev_start (EV_A_ (W)w, ++preparecnt);
2950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2951 prepares [preparecnt - 1] = w;
2952
2953 EV_FREQUENT_CHECK;
2954 }
2955
2956 void
2957 ev_prepare_stop (EV_P_ ev_prepare *w)
2958 {
2959 clear_pending (EV_A_ (W)w);
2960 if (expect_false (!ev_is_active (w)))
2961 return;
2962
2963 EV_FREQUENT_CHECK;
2964
2965 {
2966 int active = ev_active (w);
2967
2968 prepares [active - 1] = prepares [--preparecnt];
2969 ev_active (prepares [active - 1]) = active;
2970 }
2971
2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2975 }
2976
2977 void
2978 ev_check_start (EV_P_ ev_check *w)
2979 {
2980 if (expect_false (ev_is_active (w)))
2981 return;
2982
2983 EV_FREQUENT_CHECK;
2984
2985 ev_start (EV_A_ (W)w, ++checkcnt);
2986 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2987 checks [checkcnt - 1] = w;
2988
2989 EV_FREQUENT_CHECK;
2990 }
2991
2992 void
2993 ev_check_stop (EV_P_ ev_check *w)
2994 {
2995 clear_pending (EV_A_ (W)w);
2996 if (expect_false (!ev_is_active (w)))
2997 return;
2998
2999 EV_FREQUENT_CHECK;
3000
3001 {
3002 int active = ev_active (w);
3003
3004 checks [active - 1] = checks [--checkcnt];
3005 ev_active (checks [active - 1]) = active;
3006 }
3007
3008 ev_stop (EV_A_ (W)w);
3009
3010 EV_FREQUENT_CHECK;
3011 }
3012
3013 #if EV_EMBED_ENABLE
3014 void noinline
3015 ev_embed_sweep (EV_P_ ev_embed *w)
3016 {
3017 ev_loop (w->other, EVLOOP_NONBLOCK);
3018 }
3019
3020 static void
3021 embed_io_cb (EV_P_ ev_io *io, int revents)
3022 {
3023 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3024
3025 if (ev_cb (w))
3026 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3027 else
3028 ev_loop (w->other, EVLOOP_NONBLOCK);
3029 }
3030
3031 static void
3032 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3033 {
3034 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3035
3036 {
3037 struct ev_loop *loop = w->other;
3038
3039 while (fdchangecnt)
3040 {
3041 fd_reify (EV_A);
3042 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3043 }
3044 }
3045 }
3046
3047 static void
3048 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3049 {
3050 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3051
3052 ev_embed_stop (EV_A_ w);
3053
3054 {
3055 struct ev_loop *loop = w->other;
3056
3057 ev_loop_fork (EV_A);
3058 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3059 }
3060
3061 ev_embed_start (EV_A_ w);
3062 }
3063
3064 #if 0
3065 static void
3066 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3067 {
3068 ev_idle_stop (EV_A_ idle);
3069 }
3070 #endif
3071
3072 void
3073 ev_embed_start (EV_P_ ev_embed *w)
3074 {
3075 if (expect_false (ev_is_active (w)))
3076 return;
3077
3078 {
3079 struct ev_loop *loop = w->other;
3080 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3081 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3082 }
3083
3084 EV_FREQUENT_CHECK;
3085
3086 ev_set_priority (&w->io, ev_priority (w));
3087 ev_io_start (EV_A_ &w->io);
3088
3089 ev_prepare_init (&w->prepare, embed_prepare_cb);
3090 ev_set_priority (&w->prepare, EV_MINPRI);
3091 ev_prepare_start (EV_A_ &w->prepare);
3092
3093 ev_fork_init (&w->fork, embed_fork_cb);
3094 ev_fork_start (EV_A_ &w->fork);
3095
3096 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101 }
3102
3103 void
3104 ev_embed_stop (EV_P_ ev_embed *w)
3105 {
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112 ev_io_stop (EV_A_ &w->io);
3113 ev_prepare_stop (EV_A_ &w->prepare);
3114 ev_fork_stop (EV_A_ &w->fork);
3115
3116 EV_FREQUENT_CHECK;
3117 }
3118 #endif
3119
3120 #if EV_FORK_ENABLE
3121 void
3122 ev_fork_start (EV_P_ ev_fork *w)
3123 {
3124 if (expect_false (ev_is_active (w)))
3125 return;
3126
3127 EV_FREQUENT_CHECK;
3128
3129 ev_start (EV_A_ (W)w, ++forkcnt);
3130 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3131 forks [forkcnt - 1] = w;
3132
3133 EV_FREQUENT_CHECK;
3134 }
3135
3136 void
3137 ev_fork_stop (EV_P_ ev_fork *w)
3138 {
3139 clear_pending (EV_A_ (W)w);
3140 if (expect_false (!ev_is_active (w)))
3141 return;
3142
3143 EV_FREQUENT_CHECK;
3144
3145 {
3146 int active = ev_active (w);
3147
3148 forks [active - 1] = forks [--forkcnt];
3149 ev_active (forks [active - 1]) = active;
3150 }
3151
3152 ev_stop (EV_A_ (W)w);
3153
3154 EV_FREQUENT_CHECK;
3155 }
3156 #endif
3157
3158 #if EV_ASYNC_ENABLE
3159 void
3160 ev_async_start (EV_P_ ev_async *w)
3161 {
3162 if (expect_false (ev_is_active (w)))
3163 return;
3164
3165 evpipe_init (EV_A);
3166
3167 EV_FREQUENT_CHECK;
3168
3169 ev_start (EV_A_ (W)w, ++asynccnt);
3170 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3171 asyncs [asynccnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
3174 }
3175
3176 void
3177 ev_async_stop (EV_P_ ev_async *w)
3178 {
3179 clear_pending (EV_A_ (W)w);
3180 if (expect_false (!ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ev_active (w);
3187
3188 asyncs [active - 1] = asyncs [--asynccnt];
3189 ev_active (asyncs [active - 1]) = active;
3190 }
3191
3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
3195 }
3196
3197 void
3198 ev_async_send (EV_P_ ev_async *w)
3199 {
3200 w->sent = 1;
3201 evpipe_write (EV_A_ &gotasync);
3202 }
3203 #endif
3204
3205 /*****************************************************************************/
3206
3207 struct ev_once
3208 {
3209 ev_io io;
3210 ev_timer to;
3211 void (*cb)(int revents, void *arg);
3212 void *arg;
3213 };
3214
3215 static void
3216 once_cb (EV_P_ struct ev_once *once, int revents)
3217 {
3218 void (*cb)(int revents, void *arg) = once->cb;
3219 void *arg = once->arg;
3220
3221 ev_io_stop (EV_A_ &once->io);
3222 ev_timer_stop (EV_A_ &once->to);
3223 ev_free (once);
3224
3225 cb (revents, arg);
3226 }
3227
3228 static void
3229 once_cb_io (EV_P_ ev_io *w, int revents)
3230 {
3231 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3232
3233 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3234 }
3235
3236 static void
3237 once_cb_to (EV_P_ ev_timer *w, int revents)
3238 {
3239 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3240
3241 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3242 }
3243
3244 void
3245 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3246 {
3247 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3248
3249 if (expect_false (!once))
3250 {
3251 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3252 return;
3253 }
3254
3255 once->cb = cb;
3256 once->arg = arg;
3257
3258 ev_init (&once->io, once_cb_io);
3259 if (fd >= 0)
3260 {
3261 ev_io_set (&once->io, fd, events);
3262 ev_io_start (EV_A_ &once->io);
3263 }
3264
3265 ev_init (&once->to, once_cb_to);
3266 if (timeout >= 0.)
3267 {
3268 ev_timer_set (&once->to, timeout, 0.);
3269 ev_timer_start (EV_A_ &once->to);
3270 }
3271 }
3272
3273 /*****************************************************************************/
3274
3275 #if EV_WALK_ENABLE
3276 void
3277 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3278 {
3279 int i, j;
3280 ev_watcher_list *wl, *wn;
3281
3282 if (types & (EV_IO | EV_EMBED))
3283 for (i = 0; i < anfdmax; ++i)
3284 for (wl = anfds [i].head; wl; )
3285 {
3286 wn = wl->next;
3287
3288 #if EV_EMBED_ENABLE
3289 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3290 {
3291 if (types & EV_EMBED)
3292 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3293 }
3294 else
3295 #endif
3296 #if EV_USE_INOTIFY
3297 if (ev_cb ((ev_io *)wl) == infy_cb)
3298 ;
3299 else
3300 #endif
3301 if ((ev_io *)wl != &pipe_w)
3302 if (types & EV_IO)
3303 cb (EV_A_ EV_IO, wl);
3304
3305 wl = wn;
3306 }
3307
3308 if (types & (EV_TIMER | EV_STAT))
3309 for (i = timercnt + HEAP0; i-- > HEAP0; )
3310 #if EV_STAT_ENABLE
3311 /*TODO: timer is not always active*/
3312 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3313 {
3314 if (types & EV_STAT)
3315 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3316 }
3317 else
3318 #endif
3319 if (types & EV_TIMER)
3320 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3321
3322 #if EV_PERIODIC_ENABLE
3323 if (types & EV_PERIODIC)
3324 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3325 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3326 #endif
3327
3328 #if EV_IDLE_ENABLE
3329 if (types & EV_IDLE)
3330 for (j = NUMPRI; i--; )
3331 for (i = idlecnt [j]; i--; )
3332 cb (EV_A_ EV_IDLE, idles [j][i]);
3333 #endif
3334
3335 #if EV_FORK_ENABLE
3336 if (types & EV_FORK)
3337 for (i = forkcnt; i--; )
3338 if (ev_cb (forks [i]) != embed_fork_cb)
3339 cb (EV_A_ EV_FORK, forks [i]);
3340 #endif
3341
3342 #if EV_ASYNC_ENABLE
3343 if (types & EV_ASYNC)
3344 for (i = asynccnt; i--; )
3345 cb (EV_A_ EV_ASYNC, asyncs [i]);
3346 #endif
3347
3348 if (types & EV_PREPARE)
3349 for (i = preparecnt; i--; )
3350 #if EV_EMBED_ENABLE
3351 if (ev_cb (prepares [i]) != embed_prepare_cb)
3352 #endif
3353 cb (EV_A_ EV_PREPARE, prepares [i]);
3354
3355 if (types & EV_CHECK)
3356 for (i = checkcnt; i--; )
3357 cb (EV_A_ EV_CHECK, checks [i]);
3358
3359 if (types & EV_SIGNAL)
3360 for (i = 0; i < signalmax; ++i)
3361 for (wl = signals [i].head; wl; )
3362 {
3363 wn = wl->next;
3364 cb (EV_A_ EV_SIGNAL, wl);
3365 wl = wn;
3366 }
3367
3368 if (types & EV_CHILD)
3369 for (i = EV_PID_HASHSIZE; i--; )
3370 for (wl = childs [i]; wl; )
3371 {
3372 wn = wl->next;
3373 cb (EV_A_ EV_CHILD, wl);
3374 wl = wn;
3375 }
3376 /* EV_STAT 0x00001000 /* stat data changed */
3377 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3378 }
3379 #endif
3380
3381 #if EV_MULTIPLICITY
3382 #include "ev_wrap.h"
3383 #endif
3384
3385 #ifdef __cplusplus
3386 }
3387 #endif
3388