ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.297
Committed: Fri Jul 10 00:36:21 2009 UTC (15 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.296: +51 -7 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398 #if EV_MINPRI == EV_MAXPRI
399 # define ABSPRI(w) (((W)w), 0)
400 #else
401 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402 #endif
403
404 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 #define EMPTY2(a,b) /* used to suppress some warnings */
406
407 typedef ev_watcher *W;
408 typedef ev_watcher_list *WL;
409 typedef ev_watcher_time *WT;
410
411 #define ev_active(w) ((W)(w))->active
412 #define ev_at(w) ((WT)(w))->at
413
414 #if EV_USE_REALTIME
415 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416 /* giving it a reasonably high chance of working on typical architetcures */
417 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418 #endif
419
420 #if EV_USE_MONOTONIC
421 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 #endif
423
424 #ifdef _WIN32
425 # include "ev_win32.c"
426 #endif
427
428 /*****************************************************************************/
429
430 static void (*syserr_cb)(const char *msg);
431
432 void
433 ev_set_syserr_cb (void (*cb)(const char *msg))
434 {
435 syserr_cb = cb;
436 }
437
438 static void noinline
439 ev_syserr (const char *msg)
440 {
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451 }
452
453 static void *
454 ev_realloc_emul (void *ptr, long size)
455 {
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466 }
467
468 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470 void
471 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 {
473 alloc = cb;
474 }
475
476 inline_speed void *
477 ev_realloc (void *ptr, long size)
478 {
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488 }
489
490 #define ev_malloc(size) ev_realloc (0, (size))
491 #define ev_free(ptr) ev_realloc ((ptr), 0)
492
493 /*****************************************************************************/
494
495 /* file descriptor info structure */
496 typedef struct
497 {
498 WL head;
499 unsigned char events; /* the events watched for */
500 unsigned char reify; /* flag set when this ANFD needs reification */
501 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
502 unsigned char unused;
503 #if EV_USE_EPOLL
504 unsigned int egen; /* generation counter to counter epoll bugs */
505 #endif
506 #if EV_SELECT_IS_WINSOCKET
507 SOCKET handle;
508 #endif
509 } ANFD;
510
511 /* stores the pending event set for a given watcher */
512 typedef struct
513 {
514 W w;
515 int events; /* the pending event set for the given watcher */
516 } ANPENDING;
517
518 #if EV_USE_INOTIFY
519 /* hash table entry per inotify-id */
520 typedef struct
521 {
522 WL head;
523 } ANFS;
524 #endif
525
526 /* Heap Entry */
527 #if EV_HEAP_CACHE_AT
528 /* a heap element */
529 typedef struct {
530 ev_tstamp at;
531 WT w;
532 } ANHE;
533
534 #define ANHE_w(he) (he).w /* access watcher, read-write */
535 #define ANHE_at(he) (he).at /* access cached at, read-only */
536 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
537 #else
538 /* a heap element */
539 typedef WT ANHE;
540
541 #define ANHE_w(he) (he)
542 #define ANHE_at(he) (he)->at
543 #define ANHE_at_cache(he)
544 #endif
545
546 #if EV_MULTIPLICITY
547
548 struct ev_loop
549 {
550 ev_tstamp ev_rt_now;
551 #define ev_rt_now ((loop)->ev_rt_now)
552 #define VAR(name,decl) decl;
553 #include "ev_vars.h"
554 #undef VAR
555 };
556 #include "ev_wrap.h"
557
558 static struct ev_loop default_loop_struct;
559 struct ev_loop *ev_default_loop_ptr;
560
561 #else
562
563 ev_tstamp ev_rt_now;
564 #define VAR(name,decl) static decl;
565 #include "ev_vars.h"
566 #undef VAR
567
568 static int ev_default_loop_ptr;
569
570 #endif
571
572 #if EV_MINIMAL < 2
573 # define EV_SUSPEND_CB if (expect_false (suspend_cb)) suspend_cb (EV_A)
574 # define EV_RESUME_CB if (expect_false (resume_cb )) resume_cb (EV_A)
575 # define EV_INVOKE_PENDING invoke_cb (EV_A)
576 #else
577 # define EV_SUSPEND_CB (void)0
578 # define EV_RESUME_CB (void)0
579 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
580 #endif
581
582 /*****************************************************************************/
583
584 #ifndef EV_HAVE_EV_TIME
585 ev_tstamp
586 ev_time (void)
587 {
588 #if EV_USE_REALTIME
589 if (expect_true (have_realtime))
590 {
591 struct timespec ts;
592 clock_gettime (CLOCK_REALTIME, &ts);
593 return ts.tv_sec + ts.tv_nsec * 1e-9;
594 }
595 #endif
596
597 struct timeval tv;
598 gettimeofday (&tv, 0);
599 return tv.tv_sec + tv.tv_usec * 1e-6;
600 }
601 #endif
602
603 inline_size ev_tstamp
604 get_clock (void)
605 {
606 #if EV_USE_MONOTONIC
607 if (expect_true (have_monotonic))
608 {
609 struct timespec ts;
610 clock_gettime (CLOCK_MONOTONIC, &ts);
611 return ts.tv_sec + ts.tv_nsec * 1e-9;
612 }
613 #endif
614
615 return ev_time ();
616 }
617
618 #if EV_MULTIPLICITY
619 ev_tstamp
620 ev_now (EV_P)
621 {
622 return ev_rt_now;
623 }
624 #endif
625
626 void
627 ev_sleep (ev_tstamp delay)
628 {
629 if (delay > 0.)
630 {
631 #if EV_USE_NANOSLEEP
632 struct timespec ts;
633
634 ts.tv_sec = (time_t)delay;
635 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
636
637 nanosleep (&ts, 0);
638 #elif defined(_WIN32)
639 Sleep ((unsigned long)(delay * 1e3));
640 #else
641 struct timeval tv;
642
643 tv.tv_sec = (time_t)delay;
644 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
645
646 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
647 /* somehting not guaranteed by newer posix versions, but guaranteed */
648 /* by older ones */
649 select (0, 0, 0, 0, &tv);
650 #endif
651 }
652 }
653
654 /*****************************************************************************/
655
656 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
657
658 /* find a suitable new size for the given array, */
659 /* hopefully by rounding to a ncie-to-malloc size */
660 inline_size int
661 array_nextsize (int elem, int cur, int cnt)
662 {
663 int ncur = cur + 1;
664
665 do
666 ncur <<= 1;
667 while (cnt > ncur);
668
669 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
670 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
671 {
672 ncur *= elem;
673 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
674 ncur = ncur - sizeof (void *) * 4;
675 ncur /= elem;
676 }
677
678 return ncur;
679 }
680
681 static noinline void *
682 array_realloc (int elem, void *base, int *cur, int cnt)
683 {
684 *cur = array_nextsize (elem, *cur, cnt);
685 return ev_realloc (base, elem * *cur);
686 }
687
688 #define array_init_zero(base,count) \
689 memset ((void *)(base), 0, sizeof (*(base)) * (count))
690
691 #define array_needsize(type,base,cur,cnt,init) \
692 if (expect_false ((cnt) > (cur))) \
693 { \
694 int ocur_ = (cur); \
695 (base) = (type *)array_realloc \
696 (sizeof (type), (base), &(cur), (cnt)); \
697 init ((base) + (ocur_), (cur) - ocur_); \
698 }
699
700 #if 0
701 #define array_slim(type,stem) \
702 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
703 { \
704 stem ## max = array_roundsize (stem ## cnt >> 1); \
705 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
706 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
707 }
708 #endif
709
710 #define array_free(stem, idx) \
711 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
712
713 /*****************************************************************************/
714
715 /* dummy callback for pending events */
716 static void noinline
717 pendingcb (EV_P_ ev_prepare *w, int revents)
718 {
719 }
720
721 void noinline
722 ev_feed_event (EV_P_ void *w, int revents)
723 {
724 W w_ = (W)w;
725 int pri = ABSPRI (w_);
726
727 if (expect_false (w_->pending))
728 pendings [pri][w_->pending - 1].events |= revents;
729 else
730 {
731 w_->pending = ++pendingcnt [pri];
732 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
733 pendings [pri][w_->pending - 1].w = w_;
734 pendings [pri][w_->pending - 1].events = revents;
735 }
736 }
737
738 inline_speed void
739 feed_reverse (EV_P_ W w)
740 {
741 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
742 rfeeds [rfeedcnt++] = w;
743 }
744
745 inline_size void
746 feed_reverse_done (EV_P_ int revents)
747 {
748 do
749 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
750 while (rfeedcnt);
751 }
752
753 inline_speed void
754 queue_events (EV_P_ W *events, int eventcnt, int type)
755 {
756 int i;
757
758 for (i = 0; i < eventcnt; ++i)
759 ev_feed_event (EV_A_ events [i], type);
760 }
761
762 /*****************************************************************************/
763
764 inline_speed void
765 fd_event (EV_P_ int fd, int revents)
766 {
767 ANFD *anfd = anfds + fd;
768 ev_io *w;
769
770 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
771 {
772 int ev = w->events & revents;
773
774 if (ev)
775 ev_feed_event (EV_A_ (W)w, ev);
776 }
777 }
778
779 void
780 ev_feed_fd_event (EV_P_ int fd, int revents)
781 {
782 if (fd >= 0 && fd < anfdmax)
783 fd_event (EV_A_ fd, revents);
784 }
785
786 /* make sure the external fd watch events are in-sync */
787 /* with the kernel/libev internal state */
788 inline_size void
789 fd_reify (EV_P)
790 {
791 int i;
792
793 for (i = 0; i < fdchangecnt; ++i)
794 {
795 int fd = fdchanges [i];
796 ANFD *anfd = anfds + fd;
797 ev_io *w;
798
799 unsigned char events = 0;
800
801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
802 events |= (unsigned char)w->events;
803
804 #if EV_SELECT_IS_WINSOCKET
805 if (events)
806 {
807 unsigned long arg;
808 #ifdef EV_FD_TO_WIN32_HANDLE
809 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
810 #else
811 anfd->handle = _get_osfhandle (fd);
812 #endif
813 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
814 }
815 #endif
816
817 {
818 unsigned char o_events = anfd->events;
819 unsigned char o_reify = anfd->reify;
820
821 anfd->reify = 0;
822 anfd->events = events;
823
824 if (o_events != events || o_reify & EV__IOFDSET)
825 backend_modify (EV_A_ fd, o_events, events);
826 }
827 }
828
829 fdchangecnt = 0;
830 }
831
832 /* something about the given fd changed */
833 inline_size void
834 fd_change (EV_P_ int fd, int flags)
835 {
836 unsigned char reify = anfds [fd].reify;
837 anfds [fd].reify |= flags;
838
839 if (expect_true (!reify))
840 {
841 ++fdchangecnt;
842 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
843 fdchanges [fdchangecnt - 1] = fd;
844 }
845 }
846
847 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
848 inline_speed void
849 fd_kill (EV_P_ int fd)
850 {
851 ev_io *w;
852
853 while ((w = (ev_io *)anfds [fd].head))
854 {
855 ev_io_stop (EV_A_ w);
856 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
857 }
858 }
859
860 /* check whether the given fd is atcually valid, for error recovery */
861 inline_size int
862 fd_valid (int fd)
863 {
864 #ifdef _WIN32
865 return _get_osfhandle (fd) != -1;
866 #else
867 return fcntl (fd, F_GETFD) != -1;
868 #endif
869 }
870
871 /* called on EBADF to verify fds */
872 static void noinline
873 fd_ebadf (EV_P)
874 {
875 int fd;
876
877 for (fd = 0; fd < anfdmax; ++fd)
878 if (anfds [fd].events)
879 if (!fd_valid (fd) && errno == EBADF)
880 fd_kill (EV_A_ fd);
881 }
882
883 /* called on ENOMEM in select/poll to kill some fds and retry */
884 static void noinline
885 fd_enomem (EV_P)
886 {
887 int fd;
888
889 for (fd = anfdmax; fd--; )
890 if (anfds [fd].events)
891 {
892 fd_kill (EV_A_ fd);
893 return;
894 }
895 }
896
897 /* usually called after fork if backend needs to re-arm all fds from scratch */
898 static void noinline
899 fd_rearm_all (EV_P)
900 {
901 int fd;
902
903 for (fd = 0; fd < anfdmax; ++fd)
904 if (anfds [fd].events)
905 {
906 anfds [fd].events = 0;
907 anfds [fd].emask = 0;
908 fd_change (EV_A_ fd, EV__IOFDSET | 1);
909 }
910 }
911
912 /*****************************************************************************/
913
914 /*
915 * the heap functions want a real array index. array index 0 uis guaranteed to not
916 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
917 * the branching factor of the d-tree.
918 */
919
920 /*
921 * at the moment we allow libev the luxury of two heaps,
922 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
923 * which is more cache-efficient.
924 * the difference is about 5% with 50000+ watchers.
925 */
926 #if EV_USE_4HEAP
927
928 #define DHEAP 4
929 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
930 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
931 #define UPHEAP_DONE(p,k) ((p) == (k))
932
933 /* away from the root */
934 inline_speed void
935 downheap (ANHE *heap, int N, int k)
936 {
937 ANHE he = heap [k];
938 ANHE *E = heap + N + HEAP0;
939
940 for (;;)
941 {
942 ev_tstamp minat;
943 ANHE *minpos;
944 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
945
946 /* find minimum child */
947 if (expect_true (pos + DHEAP - 1 < E))
948 {
949 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
950 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
951 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
952 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
953 }
954 else if (pos < E)
955 {
956 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
957 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
958 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
959 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
960 }
961 else
962 break;
963
964 if (ANHE_at (he) <= minat)
965 break;
966
967 heap [k] = *minpos;
968 ev_active (ANHE_w (*minpos)) = k;
969
970 k = minpos - heap;
971 }
972
973 heap [k] = he;
974 ev_active (ANHE_w (he)) = k;
975 }
976
977 #else /* 4HEAP */
978
979 #define HEAP0 1
980 #define HPARENT(k) ((k) >> 1)
981 #define UPHEAP_DONE(p,k) (!(p))
982
983 /* away from the root */
984 inline_speed void
985 downheap (ANHE *heap, int N, int k)
986 {
987 ANHE he = heap [k];
988
989 for (;;)
990 {
991 int c = k << 1;
992
993 if (c > N + HEAP0 - 1)
994 break;
995
996 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
997 ? 1 : 0;
998
999 if (ANHE_at (he) <= ANHE_at (heap [c]))
1000 break;
1001
1002 heap [k] = heap [c];
1003 ev_active (ANHE_w (heap [k])) = k;
1004
1005 k = c;
1006 }
1007
1008 heap [k] = he;
1009 ev_active (ANHE_w (he)) = k;
1010 }
1011 #endif
1012
1013 /* towards the root */
1014 inline_speed void
1015 upheap (ANHE *heap, int k)
1016 {
1017 ANHE he = heap [k];
1018
1019 for (;;)
1020 {
1021 int p = HPARENT (k);
1022
1023 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1024 break;
1025
1026 heap [k] = heap [p];
1027 ev_active (ANHE_w (heap [k])) = k;
1028 k = p;
1029 }
1030
1031 heap [k] = he;
1032 ev_active (ANHE_w (he)) = k;
1033 }
1034
1035 /* move an element suitably so it is in a correct place */
1036 inline_size void
1037 adjustheap (ANHE *heap, int N, int k)
1038 {
1039 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1040 upheap (heap, k);
1041 else
1042 downheap (heap, N, k);
1043 }
1044
1045 /* rebuild the heap: this function is used only once and executed rarely */
1046 inline_size void
1047 reheap (ANHE *heap, int N)
1048 {
1049 int i;
1050
1051 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1052 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1053 for (i = 0; i < N; ++i)
1054 upheap (heap, i + HEAP0);
1055 }
1056
1057 /*****************************************************************************/
1058
1059 /* associate signal watchers to a signal signal */
1060 typedef struct
1061 {
1062 WL head;
1063 EV_ATOMIC_T gotsig;
1064 } ANSIG;
1065
1066 static ANSIG *signals;
1067 static int signalmax;
1068
1069 static EV_ATOMIC_T gotsig;
1070
1071 /*****************************************************************************/
1072
1073 /* used to prepare libev internal fd's */
1074 /* this is not fork-safe */
1075 inline_speed void
1076 fd_intern (int fd)
1077 {
1078 #ifdef _WIN32
1079 unsigned long arg = 1;
1080 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1081 #else
1082 fcntl (fd, F_SETFD, FD_CLOEXEC);
1083 fcntl (fd, F_SETFL, O_NONBLOCK);
1084 #endif
1085 }
1086
1087 static void noinline
1088 evpipe_init (EV_P)
1089 {
1090 if (!ev_is_active (&pipe_w))
1091 {
1092 #if EV_USE_EVENTFD
1093 if ((evfd = eventfd (0, 0)) >= 0)
1094 {
1095 evpipe [0] = -1;
1096 fd_intern (evfd);
1097 ev_io_set (&pipe_w, evfd, EV_READ);
1098 }
1099 else
1100 #endif
1101 {
1102 while (pipe (evpipe))
1103 ev_syserr ("(libev) error creating signal/async pipe");
1104
1105 fd_intern (evpipe [0]);
1106 fd_intern (evpipe [1]);
1107 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1108 }
1109
1110 ev_io_start (EV_A_ &pipe_w);
1111 ev_unref (EV_A); /* watcher should not keep loop alive */
1112 }
1113 }
1114
1115 inline_size void
1116 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1117 {
1118 if (!*flag)
1119 {
1120 int old_errno = errno; /* save errno because write might clobber it */
1121
1122 *flag = 1;
1123
1124 #if EV_USE_EVENTFD
1125 if (evfd >= 0)
1126 {
1127 uint64_t counter = 1;
1128 write (evfd, &counter, sizeof (uint64_t));
1129 }
1130 else
1131 #endif
1132 write (evpipe [1], &old_errno, 1);
1133
1134 errno = old_errno;
1135 }
1136 }
1137
1138 /* called whenever the libev signal pipe */
1139 /* got some events (signal, async) */
1140 static void
1141 pipecb (EV_P_ ev_io *iow, int revents)
1142 {
1143 #if EV_USE_EVENTFD
1144 if (evfd >= 0)
1145 {
1146 uint64_t counter;
1147 read (evfd, &counter, sizeof (uint64_t));
1148 }
1149 else
1150 #endif
1151 {
1152 char dummy;
1153 read (evpipe [0], &dummy, 1);
1154 }
1155
1156 if (gotsig && ev_is_default_loop (EV_A))
1157 {
1158 int signum;
1159 gotsig = 0;
1160
1161 for (signum = signalmax; signum--; )
1162 if (signals [signum].gotsig)
1163 ev_feed_signal_event (EV_A_ signum + 1);
1164 }
1165
1166 #if EV_ASYNC_ENABLE
1167 if (gotasync)
1168 {
1169 int i;
1170 gotasync = 0;
1171
1172 for (i = asynccnt; i--; )
1173 if (asyncs [i]->sent)
1174 {
1175 asyncs [i]->sent = 0;
1176 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1177 }
1178 }
1179 #endif
1180 }
1181
1182 /*****************************************************************************/
1183
1184 static void
1185 ev_sighandler (int signum)
1186 {
1187 #if EV_MULTIPLICITY
1188 struct ev_loop *loop = &default_loop_struct;
1189 #endif
1190
1191 #if _WIN32
1192 signal (signum, ev_sighandler);
1193 #endif
1194
1195 signals [signum - 1].gotsig = 1;
1196 evpipe_write (EV_A_ &gotsig);
1197 }
1198
1199 void noinline
1200 ev_feed_signal_event (EV_P_ int signum)
1201 {
1202 WL w;
1203
1204 #if EV_MULTIPLICITY
1205 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1206 #endif
1207
1208 --signum;
1209
1210 if (signum < 0 || signum >= signalmax)
1211 return;
1212
1213 signals [signum].gotsig = 0;
1214
1215 for (w = signals [signum].head; w; w = w->next)
1216 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1217 }
1218
1219 /*****************************************************************************/
1220
1221 static WL childs [EV_PID_HASHSIZE];
1222
1223 #ifndef _WIN32
1224
1225 static ev_signal childev;
1226
1227 #ifndef WIFCONTINUED
1228 # define WIFCONTINUED(status) 0
1229 #endif
1230
1231 /* handle a single child status event */
1232 inline_speed void
1233 child_reap (EV_P_ int chain, int pid, int status)
1234 {
1235 ev_child *w;
1236 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1237
1238 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1239 {
1240 if ((w->pid == pid || !w->pid)
1241 && (!traced || (w->flags & 1)))
1242 {
1243 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1244 w->rpid = pid;
1245 w->rstatus = status;
1246 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1247 }
1248 }
1249 }
1250
1251 #ifndef WCONTINUED
1252 # define WCONTINUED 0
1253 #endif
1254
1255 /* called on sigchld etc., calls waitpid */
1256 static void
1257 childcb (EV_P_ ev_signal *sw, int revents)
1258 {
1259 int pid, status;
1260
1261 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1262 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1263 if (!WCONTINUED
1264 || errno != EINVAL
1265 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1266 return;
1267
1268 /* make sure we are called again until all children have been reaped */
1269 /* we need to do it this way so that the callback gets called before we continue */
1270 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1271
1272 child_reap (EV_A_ pid, pid, status);
1273 if (EV_PID_HASHSIZE > 1)
1274 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1275 }
1276
1277 #endif
1278
1279 /*****************************************************************************/
1280
1281 #if EV_USE_PORT
1282 # include "ev_port.c"
1283 #endif
1284 #if EV_USE_KQUEUE
1285 # include "ev_kqueue.c"
1286 #endif
1287 #if EV_USE_EPOLL
1288 # include "ev_epoll.c"
1289 #endif
1290 #if EV_USE_POLL
1291 # include "ev_poll.c"
1292 #endif
1293 #if EV_USE_SELECT
1294 # include "ev_select.c"
1295 #endif
1296
1297 int
1298 ev_version_major (void)
1299 {
1300 return EV_VERSION_MAJOR;
1301 }
1302
1303 int
1304 ev_version_minor (void)
1305 {
1306 return EV_VERSION_MINOR;
1307 }
1308
1309 /* return true if we are running with elevated privileges and should ignore env variables */
1310 int inline_size
1311 enable_secure (void)
1312 {
1313 #ifdef _WIN32
1314 return 0;
1315 #else
1316 return getuid () != geteuid ()
1317 || getgid () != getegid ();
1318 #endif
1319 }
1320
1321 unsigned int
1322 ev_supported_backends (void)
1323 {
1324 unsigned int flags = 0;
1325
1326 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1327 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1328 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1329 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1330 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1331
1332 return flags;
1333 }
1334
1335 unsigned int
1336 ev_recommended_backends (void)
1337 {
1338 unsigned int flags = ev_supported_backends ();
1339
1340 #ifndef __NetBSD__
1341 /* kqueue is borked on everything but netbsd apparently */
1342 /* it usually doesn't work correctly on anything but sockets and pipes */
1343 flags &= ~EVBACKEND_KQUEUE;
1344 #endif
1345 #ifdef __APPLE__
1346 /* only select works correctly on that "unix-certified" platform */
1347 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1348 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1349 #endif
1350
1351 return flags;
1352 }
1353
1354 unsigned int
1355 ev_embeddable_backends (void)
1356 {
1357 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1358
1359 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1360 /* please fix it and tell me how to detect the fix */
1361 flags &= ~EVBACKEND_EPOLL;
1362
1363 return flags;
1364 }
1365
1366 unsigned int
1367 ev_backend (EV_P)
1368 {
1369 return backend;
1370 }
1371
1372 #if EV_MINIMAL < 2
1373 unsigned int
1374 ev_loop_count (EV_P)
1375 {
1376 return loop_count;
1377 }
1378
1379 unsigned int
1380 ev_loop_depth (EV_P)
1381 {
1382 return loop_depth;
1383 }
1384
1385 void
1386 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1387 {
1388 io_blocktime = interval;
1389 }
1390
1391 void
1392 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1393 {
1394 timeout_blocktime = interval;
1395 }
1396
1397 void
1398 ev_set_userdata (EV_P_ void *data)
1399 {
1400 userdata = data;
1401 }
1402
1403 void *
1404 ev_userdata (EV_P)
1405 {
1406 return userdata;
1407 }
1408
1409 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1410 {
1411 invoke_cb = invoke_pending_cb;
1412 }
1413
1414 void ev_set_blocking_cb (EV_P_ void (*suspend_cb_)(EV_P), void (*resume_cb_)(EV_P))
1415 {
1416 suspend_cb = suspend_cb_;
1417 resume_cb = resume_cb_;
1418 }
1419 #endif
1420
1421 /* initialise a loop structure, must be zero-initialised */
1422 static void noinline
1423 loop_init (EV_P_ unsigned int flags)
1424 {
1425 if (!backend)
1426 {
1427 #if EV_USE_REALTIME
1428 if (!have_realtime)
1429 {
1430 struct timespec ts;
1431
1432 if (!clock_gettime (CLOCK_REALTIME, &ts))
1433 have_realtime = 1;
1434 }
1435 #endif
1436
1437 #if EV_USE_MONOTONIC
1438 if (!have_monotonic)
1439 {
1440 struct timespec ts;
1441
1442 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1443 have_monotonic = 1;
1444 }
1445 #endif
1446
1447 ev_rt_now = ev_time ();
1448 mn_now = get_clock ();
1449 now_floor = mn_now;
1450 rtmn_diff = ev_rt_now - mn_now;
1451 #if EV_MINIMAL < 2
1452 invoke_cb = ev_invoke_pending;
1453 #endif
1454
1455 io_blocktime = 0.;
1456 timeout_blocktime = 0.;
1457 backend = 0;
1458 backend_fd = -1;
1459 gotasync = 0;
1460 #if EV_USE_INOTIFY
1461 fs_fd = -2;
1462 #endif
1463
1464 /* pid check not overridable via env */
1465 #ifndef _WIN32
1466 if (flags & EVFLAG_FORKCHECK)
1467 curpid = getpid ();
1468 #endif
1469
1470 if (!(flags & EVFLAG_NOENV)
1471 && !enable_secure ()
1472 && getenv ("LIBEV_FLAGS"))
1473 flags = atoi (getenv ("LIBEV_FLAGS"));
1474
1475 if (!(flags & 0x0000ffffU))
1476 flags |= ev_recommended_backends ();
1477
1478 #if EV_USE_PORT
1479 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1480 #endif
1481 #if EV_USE_KQUEUE
1482 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1483 #endif
1484 #if EV_USE_EPOLL
1485 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1486 #endif
1487 #if EV_USE_POLL
1488 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1489 #endif
1490 #if EV_USE_SELECT
1491 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1492 #endif
1493
1494 ev_prepare_init (&pending_w, pendingcb);
1495
1496 ev_init (&pipe_w, pipecb);
1497 ev_set_priority (&pipe_w, EV_MAXPRI);
1498 }
1499 }
1500
1501 /* free up a loop structure */
1502 static void noinline
1503 loop_destroy (EV_P)
1504 {
1505 int i;
1506
1507 if (ev_is_active (&pipe_w))
1508 {
1509 ev_ref (EV_A); /* signal watcher */
1510 ev_io_stop (EV_A_ &pipe_w);
1511
1512 #if EV_USE_EVENTFD
1513 if (evfd >= 0)
1514 close (evfd);
1515 #endif
1516
1517 if (evpipe [0] >= 0)
1518 {
1519 close (evpipe [0]);
1520 close (evpipe [1]);
1521 }
1522 }
1523
1524 #if EV_USE_INOTIFY
1525 if (fs_fd >= 0)
1526 close (fs_fd);
1527 #endif
1528
1529 if (backend_fd >= 0)
1530 close (backend_fd);
1531
1532 #if EV_USE_PORT
1533 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1534 #endif
1535 #if EV_USE_KQUEUE
1536 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1537 #endif
1538 #if EV_USE_EPOLL
1539 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1540 #endif
1541 #if EV_USE_POLL
1542 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1543 #endif
1544 #if EV_USE_SELECT
1545 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1546 #endif
1547
1548 for (i = NUMPRI; i--; )
1549 {
1550 array_free (pending, [i]);
1551 #if EV_IDLE_ENABLE
1552 array_free (idle, [i]);
1553 #endif
1554 }
1555
1556 ev_free (anfds); anfdmax = 0;
1557
1558 /* have to use the microsoft-never-gets-it-right macro */
1559 array_free (rfeed, EMPTY);
1560 array_free (fdchange, EMPTY);
1561 array_free (timer, EMPTY);
1562 #if EV_PERIODIC_ENABLE
1563 array_free (periodic, EMPTY);
1564 #endif
1565 #if EV_FORK_ENABLE
1566 array_free (fork, EMPTY);
1567 #endif
1568 array_free (prepare, EMPTY);
1569 array_free (check, EMPTY);
1570 #if EV_ASYNC_ENABLE
1571 array_free (async, EMPTY);
1572 #endif
1573
1574 backend = 0;
1575 }
1576
1577 #if EV_USE_INOTIFY
1578 inline_size void infy_fork (EV_P);
1579 #endif
1580
1581 inline_size void
1582 loop_fork (EV_P)
1583 {
1584 #if EV_USE_PORT
1585 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1586 #endif
1587 #if EV_USE_KQUEUE
1588 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1589 #endif
1590 #if EV_USE_EPOLL
1591 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1592 #endif
1593 #if EV_USE_INOTIFY
1594 infy_fork (EV_A);
1595 #endif
1596
1597 if (ev_is_active (&pipe_w))
1598 {
1599 /* this "locks" the handlers against writing to the pipe */
1600 /* while we modify the fd vars */
1601 gotsig = 1;
1602 #if EV_ASYNC_ENABLE
1603 gotasync = 1;
1604 #endif
1605
1606 ev_ref (EV_A);
1607 ev_io_stop (EV_A_ &pipe_w);
1608
1609 #if EV_USE_EVENTFD
1610 if (evfd >= 0)
1611 close (evfd);
1612 #endif
1613
1614 if (evpipe [0] >= 0)
1615 {
1616 close (evpipe [0]);
1617 close (evpipe [1]);
1618 }
1619
1620 evpipe_init (EV_A);
1621 /* now iterate over everything, in case we missed something */
1622 pipecb (EV_A_ &pipe_w, EV_READ);
1623 }
1624
1625 postfork = 0;
1626 }
1627
1628 #if EV_MULTIPLICITY
1629
1630 struct ev_loop *
1631 ev_loop_new (unsigned int flags)
1632 {
1633 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1634
1635 memset (loop, 0, sizeof (struct ev_loop));
1636
1637 loop_init (EV_A_ flags);
1638
1639 if (ev_backend (EV_A))
1640 return loop;
1641
1642 return 0;
1643 }
1644
1645 void
1646 ev_loop_destroy (EV_P)
1647 {
1648 loop_destroy (EV_A);
1649 ev_free (loop);
1650 }
1651
1652 void
1653 ev_loop_fork (EV_P)
1654 {
1655 postfork = 1; /* must be in line with ev_default_fork */
1656 }
1657 #endif /* multiplicity */
1658
1659 #if EV_VERIFY
1660 static void noinline
1661 verify_watcher (EV_P_ W w)
1662 {
1663 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1664
1665 if (w->pending)
1666 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1667 }
1668
1669 static void noinline
1670 verify_heap (EV_P_ ANHE *heap, int N)
1671 {
1672 int i;
1673
1674 for (i = HEAP0; i < N + HEAP0; ++i)
1675 {
1676 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1677 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1678 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1679
1680 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1681 }
1682 }
1683
1684 static void noinline
1685 array_verify (EV_P_ W *ws, int cnt)
1686 {
1687 while (cnt--)
1688 {
1689 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1690 verify_watcher (EV_A_ ws [cnt]);
1691 }
1692 }
1693 #endif
1694
1695 #if EV_MINIMAL < 2
1696 void
1697 ev_loop_verify (EV_P)
1698 {
1699 #if EV_VERIFY
1700 int i;
1701 WL w;
1702
1703 assert (activecnt >= -1);
1704
1705 assert (fdchangemax >= fdchangecnt);
1706 for (i = 0; i < fdchangecnt; ++i)
1707 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1708
1709 assert (anfdmax >= 0);
1710 for (i = 0; i < anfdmax; ++i)
1711 for (w = anfds [i].head; w; w = w->next)
1712 {
1713 verify_watcher (EV_A_ (W)w);
1714 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1715 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1716 }
1717
1718 assert (timermax >= timercnt);
1719 verify_heap (EV_A_ timers, timercnt);
1720
1721 #if EV_PERIODIC_ENABLE
1722 assert (periodicmax >= periodiccnt);
1723 verify_heap (EV_A_ periodics, periodiccnt);
1724 #endif
1725
1726 for (i = NUMPRI; i--; )
1727 {
1728 assert (pendingmax [i] >= pendingcnt [i]);
1729 #if EV_IDLE_ENABLE
1730 assert (idleall >= 0);
1731 assert (idlemax [i] >= idlecnt [i]);
1732 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1733 #endif
1734 }
1735
1736 #if EV_FORK_ENABLE
1737 assert (forkmax >= forkcnt);
1738 array_verify (EV_A_ (W *)forks, forkcnt);
1739 #endif
1740
1741 #if EV_ASYNC_ENABLE
1742 assert (asyncmax >= asynccnt);
1743 array_verify (EV_A_ (W *)asyncs, asynccnt);
1744 #endif
1745
1746 assert (preparemax >= preparecnt);
1747 array_verify (EV_A_ (W *)prepares, preparecnt);
1748
1749 assert (checkmax >= checkcnt);
1750 array_verify (EV_A_ (W *)checks, checkcnt);
1751
1752 # if 0
1753 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1754 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1755 # endif
1756 #endif
1757 }
1758 #endif
1759
1760 #if EV_MULTIPLICITY
1761 struct ev_loop *
1762 ev_default_loop_init (unsigned int flags)
1763 #else
1764 int
1765 ev_default_loop (unsigned int flags)
1766 #endif
1767 {
1768 if (!ev_default_loop_ptr)
1769 {
1770 #if EV_MULTIPLICITY
1771 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1772 #else
1773 ev_default_loop_ptr = 1;
1774 #endif
1775
1776 loop_init (EV_A_ flags);
1777
1778 if (ev_backend (EV_A))
1779 {
1780 #ifndef _WIN32
1781 ev_signal_init (&childev, childcb, SIGCHLD);
1782 ev_set_priority (&childev, EV_MAXPRI);
1783 ev_signal_start (EV_A_ &childev);
1784 ev_unref (EV_A); /* child watcher should not keep loop alive */
1785 #endif
1786 }
1787 else
1788 ev_default_loop_ptr = 0;
1789 }
1790
1791 return ev_default_loop_ptr;
1792 }
1793
1794 void
1795 ev_default_destroy (void)
1796 {
1797 #if EV_MULTIPLICITY
1798 struct ev_loop *loop = ev_default_loop_ptr;
1799 #endif
1800
1801 ev_default_loop_ptr = 0;
1802
1803 #ifndef _WIN32
1804 ev_ref (EV_A); /* child watcher */
1805 ev_signal_stop (EV_A_ &childev);
1806 #endif
1807
1808 loop_destroy (EV_A);
1809 }
1810
1811 void
1812 ev_default_fork (void)
1813 {
1814 #if EV_MULTIPLICITY
1815 struct ev_loop *loop = ev_default_loop_ptr;
1816 #endif
1817
1818 postfork = 1; /* must be in line with ev_loop_fork */
1819 }
1820
1821 /*****************************************************************************/
1822
1823 void
1824 ev_invoke (EV_P_ void *w, int revents)
1825 {
1826 EV_CB_INVOKE ((W)w, revents);
1827 }
1828
1829 void noinline
1830 ev_invoke_pending (EV_P)
1831 {
1832 int pri;
1833
1834 for (pri = NUMPRI; pri--; )
1835 while (pendingcnt [pri])
1836 {
1837 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1838
1839 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1840 /* ^ this is no longer true, as pending_w could be here */
1841
1842 p->w->pending = 0;
1843 EV_CB_INVOKE (p->w, p->events);
1844 EV_FREQUENT_CHECK;
1845 }
1846 }
1847
1848 #if EV_IDLE_ENABLE
1849 /* make idle watchers pending. this handles the "call-idle */
1850 /* only when higher priorities are idle" logic */
1851 inline_size void
1852 idle_reify (EV_P)
1853 {
1854 if (expect_false (idleall))
1855 {
1856 int pri;
1857
1858 for (pri = NUMPRI; pri--; )
1859 {
1860 if (pendingcnt [pri])
1861 break;
1862
1863 if (idlecnt [pri])
1864 {
1865 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1866 break;
1867 }
1868 }
1869 }
1870 }
1871 #endif
1872
1873 /* make timers pending */
1874 inline_size void
1875 timers_reify (EV_P)
1876 {
1877 EV_FREQUENT_CHECK;
1878
1879 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1880 {
1881 do
1882 {
1883 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1884
1885 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1886
1887 /* first reschedule or stop timer */
1888 if (w->repeat)
1889 {
1890 ev_at (w) += w->repeat;
1891 if (ev_at (w) < mn_now)
1892 ev_at (w) = mn_now;
1893
1894 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1895
1896 ANHE_at_cache (timers [HEAP0]);
1897 downheap (timers, timercnt, HEAP0);
1898 }
1899 else
1900 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1901
1902 EV_FREQUENT_CHECK;
1903 feed_reverse (EV_A_ (W)w);
1904 }
1905 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1906
1907 feed_reverse_done (EV_A_ EV_TIMEOUT);
1908 }
1909 }
1910
1911 #if EV_PERIODIC_ENABLE
1912 /* make periodics pending */
1913 inline_size void
1914 periodics_reify (EV_P)
1915 {
1916 EV_FREQUENT_CHECK;
1917
1918 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1919 {
1920 int feed_count = 0;
1921
1922 do
1923 {
1924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1925
1926 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1927
1928 /* first reschedule or stop timer */
1929 if (w->reschedule_cb)
1930 {
1931 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1932
1933 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1934
1935 ANHE_at_cache (periodics [HEAP0]);
1936 downheap (periodics, periodiccnt, HEAP0);
1937 }
1938 else if (w->interval)
1939 {
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941 /* if next trigger time is not sufficiently in the future, put it there */
1942 /* this might happen because of floating point inexactness */
1943 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1944 {
1945 ev_at (w) += w->interval;
1946
1947 /* if interval is unreasonably low we might still have a time in the past */
1948 /* so correct this. this will make the periodic very inexact, but the user */
1949 /* has effectively asked to get triggered more often than possible */
1950 if (ev_at (w) < ev_rt_now)
1951 ev_at (w) = ev_rt_now;
1952 }
1953
1954 ANHE_at_cache (periodics [HEAP0]);
1955 downheap (periodics, periodiccnt, HEAP0);
1956 }
1957 else
1958 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1959
1960 EV_FREQUENT_CHECK;
1961 feed_reverse (EV_A_ (W)w);
1962 }
1963 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1964
1965 feed_reverse_done (EV_A_ EV_PERIODIC);
1966 }
1967 }
1968
1969 /* simply recalculate all periodics */
1970 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1971 static void noinline
1972 periodics_reschedule (EV_P)
1973 {
1974 int i;
1975
1976 /* adjust periodics after time jump */
1977 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1978 {
1979 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1980
1981 if (w->reschedule_cb)
1982 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1983 else if (w->interval)
1984 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1985
1986 ANHE_at_cache (periodics [i]);
1987 }
1988
1989 reheap (periodics, periodiccnt);
1990 }
1991 #endif
1992
1993 /* adjust all timers by a given offset */
1994 static void noinline
1995 timers_reschedule (EV_P_ ev_tstamp adjust)
1996 {
1997 int i;
1998
1999 for (i = 0; i < timercnt; ++i)
2000 {
2001 ANHE *he = timers + i + HEAP0;
2002 ANHE_w (*he)->at += adjust;
2003 ANHE_at_cache (*he);
2004 }
2005 }
2006
2007 /* fetch new monotonic and realtime times from the kernel */
2008 /* also detetc if there was a timejump, and act accordingly */
2009 inline_speed void
2010 time_update (EV_P_ ev_tstamp max_block)
2011 {
2012 #if EV_USE_MONOTONIC
2013 if (expect_true (have_monotonic))
2014 {
2015 int i;
2016 ev_tstamp odiff = rtmn_diff;
2017
2018 mn_now = get_clock ();
2019
2020 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2021 /* interpolate in the meantime */
2022 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2023 {
2024 ev_rt_now = rtmn_diff + mn_now;
2025 return;
2026 }
2027
2028 now_floor = mn_now;
2029 ev_rt_now = ev_time ();
2030
2031 /* loop a few times, before making important decisions.
2032 * on the choice of "4": one iteration isn't enough,
2033 * in case we get preempted during the calls to
2034 * ev_time and get_clock. a second call is almost guaranteed
2035 * to succeed in that case, though. and looping a few more times
2036 * doesn't hurt either as we only do this on time-jumps or
2037 * in the unlikely event of having been preempted here.
2038 */
2039 for (i = 4; --i; )
2040 {
2041 rtmn_diff = ev_rt_now - mn_now;
2042
2043 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2044 return; /* all is well */
2045
2046 ev_rt_now = ev_time ();
2047 mn_now = get_clock ();
2048 now_floor = mn_now;
2049 }
2050
2051 /* no timer adjustment, as the monotonic clock doesn't jump */
2052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2053 # if EV_PERIODIC_ENABLE
2054 periodics_reschedule (EV_A);
2055 # endif
2056 }
2057 else
2058 #endif
2059 {
2060 ev_rt_now = ev_time ();
2061
2062 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2063 {
2064 /* adjust timers. this is easy, as the offset is the same for all of them */
2065 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2066 #if EV_PERIODIC_ENABLE
2067 periodics_reschedule (EV_A);
2068 #endif
2069 }
2070
2071 mn_now = ev_rt_now;
2072 }
2073 }
2074
2075 void
2076 ev_loop (EV_P_ int flags)
2077 {
2078 #if EV_MINIMAL < 2
2079 ++loop_depth;
2080 #endif
2081
2082 loop_done = EVUNLOOP_CANCEL;
2083
2084 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2085
2086 do
2087 {
2088 #if EV_VERIFY >= 2
2089 ev_loop_verify (EV_A);
2090 #endif
2091
2092 #ifndef _WIN32
2093 if (expect_false (curpid)) /* penalise the forking check even more */
2094 if (expect_false (getpid () != curpid))
2095 {
2096 curpid = getpid ();
2097 postfork = 1;
2098 }
2099 #endif
2100
2101 #if EV_FORK_ENABLE
2102 /* we might have forked, so queue fork handlers */
2103 if (expect_false (postfork))
2104 if (forkcnt)
2105 {
2106 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2107 EV_INVOKE_PENDING;
2108 }
2109 #endif
2110
2111 /* queue prepare watchers (and execute them) */
2112 if (expect_false (preparecnt))
2113 {
2114 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2115 EV_INVOKE_PENDING;
2116 }
2117
2118 /* we might have forked, so reify kernel state if necessary */
2119 if (expect_false (postfork))
2120 loop_fork (EV_A);
2121
2122 /* update fd-related kernel structures */
2123 fd_reify (EV_A);
2124
2125 /* calculate blocking time */
2126 {
2127 ev_tstamp waittime = 0.;
2128 ev_tstamp sleeptime = 0.;
2129
2130 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2131 {
2132 /* remember old timestamp for io_blocktime calculation */
2133 ev_tstamp prev_mn_now = mn_now;
2134
2135 /* update time to cancel out callback processing overhead */
2136 time_update (EV_A_ 1e100);
2137
2138 waittime = MAX_BLOCKTIME;
2139
2140 if (timercnt)
2141 {
2142 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2143 if (waittime > to) waittime = to;
2144 }
2145
2146 #if EV_PERIODIC_ENABLE
2147 if (periodiccnt)
2148 {
2149 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2150 if (waittime > to) waittime = to;
2151 }
2152 #endif
2153
2154 /* don't let timeouts decrease the waittime below timeout_blocktime */
2155 if (expect_false (waittime < timeout_blocktime))
2156 waittime = timeout_blocktime;
2157
2158 /* extra check because io_blocktime is commonly 0 */
2159 if (expect_false (io_blocktime))
2160 {
2161 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2162
2163 if (sleeptime > waittime - backend_fudge)
2164 sleeptime = waittime - backend_fudge;
2165
2166 if (expect_true (sleeptime > 0.))
2167 {
2168 ev_sleep (sleeptime);
2169 waittime -= sleeptime;
2170 }
2171 }
2172 }
2173
2174 #if EV_MINIMAL < 2
2175 ++loop_count;
2176 #endif
2177 backend_poll (EV_A_ waittime);
2178
2179 /* update ev_rt_now, do magic */
2180 time_update (EV_A_ waittime + sleeptime);
2181 }
2182
2183 /* queue pending timers and reschedule them */
2184 timers_reify (EV_A); /* relative timers called last */
2185 #if EV_PERIODIC_ENABLE
2186 periodics_reify (EV_A); /* absolute timers called first */
2187 #endif
2188
2189 #if EV_IDLE_ENABLE
2190 /* queue idle watchers unless other events are pending */
2191 idle_reify (EV_A);
2192 #endif
2193
2194 /* queue check watchers, to be executed first */
2195 if (expect_false (checkcnt))
2196 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2197
2198 EV_INVOKE_PENDING;
2199 }
2200 while (expect_true (
2201 activecnt
2202 && !loop_done
2203 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2204 ));
2205
2206 if (loop_done == EVUNLOOP_ONE)
2207 loop_done = EVUNLOOP_CANCEL;
2208
2209 #if EV_MINIMAL < 2
2210 --loop_depth;
2211 #endif
2212 }
2213
2214 void
2215 ev_unloop (EV_P_ int how)
2216 {
2217 loop_done = how;
2218 }
2219
2220 void
2221 ev_ref (EV_P)
2222 {
2223 ++activecnt;
2224 }
2225
2226 void
2227 ev_unref (EV_P)
2228 {
2229 --activecnt;
2230 }
2231
2232 void
2233 ev_now_update (EV_P)
2234 {
2235 time_update (EV_A_ 1e100);
2236 }
2237
2238 void
2239 ev_suspend (EV_P)
2240 {
2241 ev_now_update (EV_A);
2242 }
2243
2244 void
2245 ev_resume (EV_P)
2246 {
2247 ev_tstamp mn_prev = mn_now;
2248
2249 ev_now_update (EV_A);
2250 timers_reschedule (EV_A_ mn_now - mn_prev);
2251 #if EV_PERIODIC_ENABLE
2252 /* TODO: really do this? */
2253 periodics_reschedule (EV_A);
2254 #endif
2255 }
2256
2257 /*****************************************************************************/
2258 /* singly-linked list management, used when the expected list length is short */
2259
2260 inline_size void
2261 wlist_add (WL *head, WL elem)
2262 {
2263 elem->next = *head;
2264 *head = elem;
2265 }
2266
2267 inline_size void
2268 wlist_del (WL *head, WL elem)
2269 {
2270 while (*head)
2271 {
2272 if (*head == elem)
2273 {
2274 *head = elem->next;
2275 return;
2276 }
2277
2278 head = &(*head)->next;
2279 }
2280 }
2281
2282 /* internal, faster, version of ev_clear_pending */
2283 inline_speed void
2284 clear_pending (EV_P_ W w)
2285 {
2286 if (w->pending)
2287 {
2288 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2289 w->pending = 0;
2290 }
2291 }
2292
2293 int
2294 ev_clear_pending (EV_P_ void *w)
2295 {
2296 W w_ = (W)w;
2297 int pending = w_->pending;
2298
2299 if (expect_true (pending))
2300 {
2301 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2302 p->w = (W)&pending_w;
2303 w_->pending = 0;
2304 return p->events;
2305 }
2306 else
2307 return 0;
2308 }
2309
2310 inline_size void
2311 pri_adjust (EV_P_ W w)
2312 {
2313 int pri = ev_priority (w);
2314 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2315 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2316 ev_set_priority (w, pri);
2317 }
2318
2319 inline_speed void
2320 ev_start (EV_P_ W w, int active)
2321 {
2322 pri_adjust (EV_A_ w);
2323 w->active = active;
2324 ev_ref (EV_A);
2325 }
2326
2327 inline_size void
2328 ev_stop (EV_P_ W w)
2329 {
2330 ev_unref (EV_A);
2331 w->active = 0;
2332 }
2333
2334 /*****************************************************************************/
2335
2336 void noinline
2337 ev_io_start (EV_P_ ev_io *w)
2338 {
2339 int fd = w->fd;
2340
2341 if (expect_false (ev_is_active (w)))
2342 return;
2343
2344 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2345 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2346
2347 EV_FREQUENT_CHECK;
2348
2349 ev_start (EV_A_ (W)w, 1);
2350 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2351 wlist_add (&anfds[fd].head, (WL)w);
2352
2353 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2354 w->events &= ~EV__IOFDSET;
2355
2356 EV_FREQUENT_CHECK;
2357 }
2358
2359 void noinline
2360 ev_io_stop (EV_P_ ev_io *w)
2361 {
2362 clear_pending (EV_A_ (W)w);
2363 if (expect_false (!ev_is_active (w)))
2364 return;
2365
2366 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2367
2368 EV_FREQUENT_CHECK;
2369
2370 wlist_del (&anfds[w->fd].head, (WL)w);
2371 ev_stop (EV_A_ (W)w);
2372
2373 fd_change (EV_A_ w->fd, 1);
2374
2375 EV_FREQUENT_CHECK;
2376 }
2377
2378 void noinline
2379 ev_timer_start (EV_P_ ev_timer *w)
2380 {
2381 if (expect_false (ev_is_active (w)))
2382 return;
2383
2384 ev_at (w) += mn_now;
2385
2386 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2387
2388 EV_FREQUENT_CHECK;
2389
2390 ++timercnt;
2391 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2392 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2393 ANHE_w (timers [ev_active (w)]) = (WT)w;
2394 ANHE_at_cache (timers [ev_active (w)]);
2395 upheap (timers, ev_active (w));
2396
2397 EV_FREQUENT_CHECK;
2398
2399 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2400 }
2401
2402 void noinline
2403 ev_timer_stop (EV_P_ ev_timer *w)
2404 {
2405 clear_pending (EV_A_ (W)w);
2406 if (expect_false (!ev_is_active (w)))
2407 return;
2408
2409 EV_FREQUENT_CHECK;
2410
2411 {
2412 int active = ev_active (w);
2413
2414 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2415
2416 --timercnt;
2417
2418 if (expect_true (active < timercnt + HEAP0))
2419 {
2420 timers [active] = timers [timercnt + HEAP0];
2421 adjustheap (timers, timercnt, active);
2422 }
2423 }
2424
2425 EV_FREQUENT_CHECK;
2426
2427 ev_at (w) -= mn_now;
2428
2429 ev_stop (EV_A_ (W)w);
2430 }
2431
2432 void noinline
2433 ev_timer_again (EV_P_ ev_timer *w)
2434 {
2435 EV_FREQUENT_CHECK;
2436
2437 if (ev_is_active (w))
2438 {
2439 if (w->repeat)
2440 {
2441 ev_at (w) = mn_now + w->repeat;
2442 ANHE_at_cache (timers [ev_active (w)]);
2443 adjustheap (timers, timercnt, ev_active (w));
2444 }
2445 else
2446 ev_timer_stop (EV_A_ w);
2447 }
2448 else if (w->repeat)
2449 {
2450 ev_at (w) = w->repeat;
2451 ev_timer_start (EV_A_ w);
2452 }
2453
2454 EV_FREQUENT_CHECK;
2455 }
2456
2457 #if EV_PERIODIC_ENABLE
2458 void noinline
2459 ev_periodic_start (EV_P_ ev_periodic *w)
2460 {
2461 if (expect_false (ev_is_active (w)))
2462 return;
2463
2464 if (w->reschedule_cb)
2465 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2466 else if (w->interval)
2467 {
2468 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2469 /* this formula differs from the one in periodic_reify because we do not always round up */
2470 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2471 }
2472 else
2473 ev_at (w) = w->offset;
2474
2475 EV_FREQUENT_CHECK;
2476
2477 ++periodiccnt;
2478 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2479 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2480 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2481 ANHE_at_cache (periodics [ev_active (w)]);
2482 upheap (periodics, ev_active (w));
2483
2484 EV_FREQUENT_CHECK;
2485
2486 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2487 }
2488
2489 void noinline
2490 ev_periodic_stop (EV_P_ ev_periodic *w)
2491 {
2492 clear_pending (EV_A_ (W)w);
2493 if (expect_false (!ev_is_active (w)))
2494 return;
2495
2496 EV_FREQUENT_CHECK;
2497
2498 {
2499 int active = ev_active (w);
2500
2501 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2502
2503 --periodiccnt;
2504
2505 if (expect_true (active < periodiccnt + HEAP0))
2506 {
2507 periodics [active] = periodics [periodiccnt + HEAP0];
2508 adjustheap (periodics, periodiccnt, active);
2509 }
2510 }
2511
2512 EV_FREQUENT_CHECK;
2513
2514 ev_stop (EV_A_ (W)w);
2515 }
2516
2517 void noinline
2518 ev_periodic_again (EV_P_ ev_periodic *w)
2519 {
2520 /* TODO: use adjustheap and recalculation */
2521 ev_periodic_stop (EV_A_ w);
2522 ev_periodic_start (EV_A_ w);
2523 }
2524 #endif
2525
2526 #ifndef SA_RESTART
2527 # define SA_RESTART 0
2528 #endif
2529
2530 void noinline
2531 ev_signal_start (EV_P_ ev_signal *w)
2532 {
2533 #if EV_MULTIPLICITY
2534 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2535 #endif
2536 if (expect_false (ev_is_active (w)))
2537 return;
2538
2539 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2540
2541 evpipe_init (EV_A);
2542
2543 EV_FREQUENT_CHECK;
2544
2545 {
2546 #ifndef _WIN32
2547 sigset_t full, prev;
2548 sigfillset (&full);
2549 sigprocmask (SIG_SETMASK, &full, &prev);
2550 #endif
2551
2552 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2553
2554 #ifndef _WIN32
2555 sigprocmask (SIG_SETMASK, &prev, 0);
2556 #endif
2557 }
2558
2559 ev_start (EV_A_ (W)w, 1);
2560 wlist_add (&signals [w->signum - 1].head, (WL)w);
2561
2562 if (!((WL)w)->next)
2563 {
2564 #if _WIN32
2565 signal (w->signum, ev_sighandler);
2566 #else
2567 struct sigaction sa;
2568 sa.sa_handler = ev_sighandler;
2569 sigfillset (&sa.sa_mask);
2570 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2571 sigaction (w->signum, &sa, 0);
2572 #endif
2573 }
2574
2575 EV_FREQUENT_CHECK;
2576 }
2577
2578 void noinline
2579 ev_signal_stop (EV_P_ ev_signal *w)
2580 {
2581 clear_pending (EV_A_ (W)w);
2582 if (expect_false (!ev_is_active (w)))
2583 return;
2584
2585 EV_FREQUENT_CHECK;
2586
2587 wlist_del (&signals [w->signum - 1].head, (WL)w);
2588 ev_stop (EV_A_ (W)w);
2589
2590 if (!signals [w->signum - 1].head)
2591 signal (w->signum, SIG_DFL);
2592
2593 EV_FREQUENT_CHECK;
2594 }
2595
2596 void
2597 ev_child_start (EV_P_ ev_child *w)
2598 {
2599 #if EV_MULTIPLICITY
2600 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2601 #endif
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 EV_FREQUENT_CHECK;
2606
2607 ev_start (EV_A_ (W)w, 1);
2608 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2609
2610 EV_FREQUENT_CHECK;
2611 }
2612
2613 void
2614 ev_child_stop (EV_P_ ev_child *w)
2615 {
2616 clear_pending (EV_A_ (W)w);
2617 if (expect_false (!ev_is_active (w)))
2618 return;
2619
2620 EV_FREQUENT_CHECK;
2621
2622 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2623 ev_stop (EV_A_ (W)w);
2624
2625 EV_FREQUENT_CHECK;
2626 }
2627
2628 #if EV_STAT_ENABLE
2629
2630 # ifdef _WIN32
2631 # undef lstat
2632 # define lstat(a,b) _stati64 (a,b)
2633 # endif
2634
2635 #define DEF_STAT_INTERVAL 5.0074891
2636 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2637 #define MIN_STAT_INTERVAL 0.1074891
2638
2639 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2640
2641 #if EV_USE_INOTIFY
2642 # define EV_INOTIFY_BUFSIZE 8192
2643
2644 static void noinline
2645 infy_add (EV_P_ ev_stat *w)
2646 {
2647 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2648
2649 if (w->wd < 0)
2650 {
2651 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2652 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2653
2654 /* monitor some parent directory for speedup hints */
2655 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2656 /* but an efficiency issue only */
2657 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2658 {
2659 char path [4096];
2660 strcpy (path, w->path);
2661
2662 do
2663 {
2664 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2665 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2666
2667 char *pend = strrchr (path, '/');
2668
2669 if (!pend || pend == path)
2670 break;
2671
2672 *pend = 0;
2673 w->wd = inotify_add_watch (fs_fd, path, mask);
2674 }
2675 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2676 }
2677 }
2678
2679 if (w->wd >= 0)
2680 {
2681 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2682
2683 /* now local changes will be tracked by inotify, but remote changes won't */
2684 /* unless the filesystem it known to be local, we therefore still poll */
2685 /* also do poll on <2.6.25, but with normal frequency */
2686 struct statfs sfs;
2687
2688 if (fs_2625 && !statfs (w->path, &sfs))
2689 if (sfs.f_type == 0x1373 /* devfs */
2690 || sfs.f_type == 0xEF53 /* ext2/3 */
2691 || sfs.f_type == 0x3153464a /* jfs */
2692 || sfs.f_type == 0x52654973 /* reiser3 */
2693 || sfs.f_type == 0x01021994 /* tempfs */
2694 || sfs.f_type == 0x58465342 /* xfs */)
2695 return;
2696
2697 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2698 ev_timer_again (EV_A_ &w->timer);
2699 }
2700 }
2701
2702 static void noinline
2703 infy_del (EV_P_ ev_stat *w)
2704 {
2705 int slot;
2706 int wd = w->wd;
2707
2708 if (wd < 0)
2709 return;
2710
2711 w->wd = -2;
2712 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2713 wlist_del (&fs_hash [slot].head, (WL)w);
2714
2715 /* remove this watcher, if others are watching it, they will rearm */
2716 inotify_rm_watch (fs_fd, wd);
2717 }
2718
2719 static void noinline
2720 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2721 {
2722 if (slot < 0)
2723 /* overflow, need to check for all hash slots */
2724 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2725 infy_wd (EV_A_ slot, wd, ev);
2726 else
2727 {
2728 WL w_;
2729
2730 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2731 {
2732 ev_stat *w = (ev_stat *)w_;
2733 w_ = w_->next; /* lets us remove this watcher and all before it */
2734
2735 if (w->wd == wd || wd == -1)
2736 {
2737 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2738 {
2739 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2740 w->wd = -1;
2741 infy_add (EV_A_ w); /* re-add, no matter what */
2742 }
2743
2744 stat_timer_cb (EV_A_ &w->timer, 0);
2745 }
2746 }
2747 }
2748 }
2749
2750 static void
2751 infy_cb (EV_P_ ev_io *w, int revents)
2752 {
2753 char buf [EV_INOTIFY_BUFSIZE];
2754 struct inotify_event *ev = (struct inotify_event *)buf;
2755 int ofs;
2756 int len = read (fs_fd, buf, sizeof (buf));
2757
2758 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2759 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2760 }
2761
2762 inline_size void
2763 check_2625 (EV_P)
2764 {
2765 /* kernels < 2.6.25 are borked
2766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2767 */
2768 struct utsname buf;
2769 int major, minor, micro;
2770
2771 if (uname (&buf))
2772 return;
2773
2774 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2775 return;
2776
2777 if (major < 2
2778 || (major == 2 && minor < 6)
2779 || (major == 2 && minor == 6 && micro < 25))
2780 return;
2781
2782 fs_2625 = 1;
2783 }
2784
2785 inline_size void
2786 infy_init (EV_P)
2787 {
2788 if (fs_fd != -2)
2789 return;
2790
2791 fs_fd = -1;
2792
2793 check_2625 (EV_A);
2794
2795 fs_fd = inotify_init ();
2796
2797 if (fs_fd >= 0)
2798 {
2799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2800 ev_set_priority (&fs_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &fs_w);
2802 }
2803 }
2804
2805 inline_size void
2806 infy_fork (EV_P)
2807 {
2808 int slot;
2809
2810 if (fs_fd < 0)
2811 return;
2812
2813 close (fs_fd);
2814 fs_fd = inotify_init ();
2815
2816 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2817 {
2818 WL w_ = fs_hash [slot].head;
2819 fs_hash [slot].head = 0;
2820
2821 while (w_)
2822 {
2823 ev_stat *w = (ev_stat *)w_;
2824 w_ = w_->next; /* lets us add this watcher */
2825
2826 w->wd = -1;
2827
2828 if (fs_fd >= 0)
2829 infy_add (EV_A_ w); /* re-add, no matter what */
2830 else
2831 ev_timer_again (EV_A_ &w->timer);
2832 }
2833 }
2834 }
2835
2836 #endif
2837
2838 #ifdef _WIN32
2839 # define EV_LSTAT(p,b) _stati64 (p, b)
2840 #else
2841 # define EV_LSTAT(p,b) lstat (p, b)
2842 #endif
2843
2844 void
2845 ev_stat_stat (EV_P_ ev_stat *w)
2846 {
2847 if (lstat (w->path, &w->attr) < 0)
2848 w->attr.st_nlink = 0;
2849 else if (!w->attr.st_nlink)
2850 w->attr.st_nlink = 1;
2851 }
2852
2853 static void noinline
2854 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2855 {
2856 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2857
2858 /* we copy this here each the time so that */
2859 /* prev has the old value when the callback gets invoked */
2860 w->prev = w->attr;
2861 ev_stat_stat (EV_A_ w);
2862
2863 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2864 if (
2865 w->prev.st_dev != w->attr.st_dev
2866 || w->prev.st_ino != w->attr.st_ino
2867 || w->prev.st_mode != w->attr.st_mode
2868 || w->prev.st_nlink != w->attr.st_nlink
2869 || w->prev.st_uid != w->attr.st_uid
2870 || w->prev.st_gid != w->attr.st_gid
2871 || w->prev.st_rdev != w->attr.st_rdev
2872 || w->prev.st_size != w->attr.st_size
2873 || w->prev.st_atime != w->attr.st_atime
2874 || w->prev.st_mtime != w->attr.st_mtime
2875 || w->prev.st_ctime != w->attr.st_ctime
2876 ) {
2877 #if EV_USE_INOTIFY
2878 if (fs_fd >= 0)
2879 {
2880 infy_del (EV_A_ w);
2881 infy_add (EV_A_ w);
2882 ev_stat_stat (EV_A_ w); /* avoid race... */
2883 }
2884 #endif
2885
2886 ev_feed_event (EV_A_ w, EV_STAT);
2887 }
2888 }
2889
2890 void
2891 ev_stat_start (EV_P_ ev_stat *w)
2892 {
2893 if (expect_false (ev_is_active (w)))
2894 return;
2895
2896 ev_stat_stat (EV_A_ w);
2897
2898 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2899 w->interval = MIN_STAT_INTERVAL;
2900
2901 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2902 ev_set_priority (&w->timer, ev_priority (w));
2903
2904 #if EV_USE_INOTIFY
2905 infy_init (EV_A);
2906
2907 if (fs_fd >= 0)
2908 infy_add (EV_A_ w);
2909 else
2910 #endif
2911 ev_timer_again (EV_A_ &w->timer);
2912
2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2916 }
2917
2918 void
2919 ev_stat_stop (EV_P_ ev_stat *w)
2920 {
2921 clear_pending (EV_A_ (W)w);
2922 if (expect_false (!ev_is_active (w)))
2923 return;
2924
2925 EV_FREQUENT_CHECK;
2926
2927 #if EV_USE_INOTIFY
2928 infy_del (EV_A_ w);
2929 #endif
2930 ev_timer_stop (EV_A_ &w->timer);
2931
2932 ev_stop (EV_A_ (W)w);
2933
2934 EV_FREQUENT_CHECK;
2935 }
2936 #endif
2937
2938 #if EV_IDLE_ENABLE
2939 void
2940 ev_idle_start (EV_P_ ev_idle *w)
2941 {
2942 if (expect_false (ev_is_active (w)))
2943 return;
2944
2945 pri_adjust (EV_A_ (W)w);
2946
2947 EV_FREQUENT_CHECK;
2948
2949 {
2950 int active = ++idlecnt [ABSPRI (w)];
2951
2952 ++idleall;
2953 ev_start (EV_A_ (W)w, active);
2954
2955 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2956 idles [ABSPRI (w)][active - 1] = w;
2957 }
2958
2959 EV_FREQUENT_CHECK;
2960 }
2961
2962 void
2963 ev_idle_stop (EV_P_ ev_idle *w)
2964 {
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2975 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2976
2977 ev_stop (EV_A_ (W)w);
2978 --idleall;
2979 }
2980
2981 EV_FREQUENT_CHECK;
2982 }
2983 #endif
2984
2985 void
2986 ev_prepare_start (EV_P_ ev_prepare *w)
2987 {
2988 if (expect_false (ev_is_active (w)))
2989 return;
2990
2991 EV_FREQUENT_CHECK;
2992
2993 ev_start (EV_A_ (W)w, ++preparecnt);
2994 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2995 prepares [preparecnt - 1] = w;
2996
2997 EV_FREQUENT_CHECK;
2998 }
2999
3000 void
3001 ev_prepare_stop (EV_P_ ev_prepare *w)
3002 {
3003 clear_pending (EV_A_ (W)w);
3004 if (expect_false (!ev_is_active (w)))
3005 return;
3006
3007 EV_FREQUENT_CHECK;
3008
3009 {
3010 int active = ev_active (w);
3011
3012 prepares [active - 1] = prepares [--preparecnt];
3013 ev_active (prepares [active - 1]) = active;
3014 }
3015
3016 ev_stop (EV_A_ (W)w);
3017
3018 EV_FREQUENT_CHECK;
3019 }
3020
3021 void
3022 ev_check_start (EV_P_ ev_check *w)
3023 {
3024 if (expect_false (ev_is_active (w)))
3025 return;
3026
3027 EV_FREQUENT_CHECK;
3028
3029 ev_start (EV_A_ (W)w, ++checkcnt);
3030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3031 checks [checkcnt - 1] = w;
3032
3033 EV_FREQUENT_CHECK;
3034 }
3035
3036 void
3037 ev_check_stop (EV_P_ ev_check *w)
3038 {
3039 clear_pending (EV_A_ (W)w);
3040 if (expect_false (!ev_is_active (w)))
3041 return;
3042
3043 EV_FREQUENT_CHECK;
3044
3045 {
3046 int active = ev_active (w);
3047
3048 checks [active - 1] = checks [--checkcnt];
3049 ev_active (checks [active - 1]) = active;
3050 }
3051
3052 ev_stop (EV_A_ (W)w);
3053
3054 EV_FREQUENT_CHECK;
3055 }
3056
3057 #if EV_EMBED_ENABLE
3058 void noinline
3059 ev_embed_sweep (EV_P_ ev_embed *w)
3060 {
3061 ev_loop (w->other, EVLOOP_NONBLOCK);
3062 }
3063
3064 static void
3065 embed_io_cb (EV_P_ ev_io *io, int revents)
3066 {
3067 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3068
3069 if (ev_cb (w))
3070 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3071 else
3072 ev_loop (w->other, EVLOOP_NONBLOCK);
3073 }
3074
3075 static void
3076 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3077 {
3078 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3079
3080 {
3081 struct ev_loop *loop = w->other;
3082
3083 while (fdchangecnt)
3084 {
3085 fd_reify (EV_A);
3086 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3087 }
3088 }
3089 }
3090
3091 static void
3092 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3093 {
3094 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3095
3096 ev_embed_stop (EV_A_ w);
3097
3098 {
3099 struct ev_loop *loop = w->other;
3100
3101 ev_loop_fork (EV_A);
3102 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3103 }
3104
3105 ev_embed_start (EV_A_ w);
3106 }
3107
3108 #if 0
3109 static void
3110 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3111 {
3112 ev_idle_stop (EV_A_ idle);
3113 }
3114 #endif
3115
3116 void
3117 ev_embed_start (EV_P_ ev_embed *w)
3118 {
3119 if (expect_false (ev_is_active (w)))
3120 return;
3121
3122 {
3123 struct ev_loop *loop = w->other;
3124 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3125 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3126 }
3127
3128 EV_FREQUENT_CHECK;
3129
3130 ev_set_priority (&w->io, ev_priority (w));
3131 ev_io_start (EV_A_ &w->io);
3132
3133 ev_prepare_init (&w->prepare, embed_prepare_cb);
3134 ev_set_priority (&w->prepare, EV_MINPRI);
3135 ev_prepare_start (EV_A_ &w->prepare);
3136
3137 ev_fork_init (&w->fork, embed_fork_cb);
3138 ev_fork_start (EV_A_ &w->fork);
3139
3140 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3141
3142 ev_start (EV_A_ (W)w, 1);
3143
3144 EV_FREQUENT_CHECK;
3145 }
3146
3147 void
3148 ev_embed_stop (EV_P_ ev_embed *w)
3149 {
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 ev_io_stop (EV_A_ &w->io);
3157 ev_prepare_stop (EV_A_ &w->prepare);
3158 ev_fork_stop (EV_A_ &w->fork);
3159
3160 EV_FREQUENT_CHECK;
3161 }
3162 #endif
3163
3164 #if EV_FORK_ENABLE
3165 void
3166 ev_fork_start (EV_P_ ev_fork *w)
3167 {
3168 if (expect_false (ev_is_active (w)))
3169 return;
3170
3171 EV_FREQUENT_CHECK;
3172
3173 ev_start (EV_A_ (W)w, ++forkcnt);
3174 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3175 forks [forkcnt - 1] = w;
3176
3177 EV_FREQUENT_CHECK;
3178 }
3179
3180 void
3181 ev_fork_stop (EV_P_ ev_fork *w)
3182 {
3183 clear_pending (EV_A_ (W)w);
3184 if (expect_false (!ev_is_active (w)))
3185 return;
3186
3187 EV_FREQUENT_CHECK;
3188
3189 {
3190 int active = ev_active (w);
3191
3192 forks [active - 1] = forks [--forkcnt];
3193 ev_active (forks [active - 1]) = active;
3194 }
3195
3196 ev_stop (EV_A_ (W)w);
3197
3198 EV_FREQUENT_CHECK;
3199 }
3200 #endif
3201
3202 #if EV_ASYNC_ENABLE
3203 void
3204 ev_async_start (EV_P_ ev_async *w)
3205 {
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 evpipe_init (EV_A);
3210
3211 EV_FREQUENT_CHECK;
3212
3213 ev_start (EV_A_ (W)w, ++asynccnt);
3214 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3215 asyncs [asynccnt - 1] = w;
3216
3217 EV_FREQUENT_CHECK;
3218 }
3219
3220 void
3221 ev_async_stop (EV_P_ ev_async *w)
3222 {
3223 clear_pending (EV_A_ (W)w);
3224 if (expect_false (!ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 {
3230 int active = ev_active (w);
3231
3232 asyncs [active - 1] = asyncs [--asynccnt];
3233 ev_active (asyncs [active - 1]) = active;
3234 }
3235
3236 ev_stop (EV_A_ (W)w);
3237
3238 EV_FREQUENT_CHECK;
3239 }
3240
3241 void
3242 ev_async_send (EV_P_ ev_async *w)
3243 {
3244 w->sent = 1;
3245 evpipe_write (EV_A_ &gotasync);
3246 }
3247 #endif
3248
3249 /*****************************************************************************/
3250
3251 struct ev_once
3252 {
3253 ev_io io;
3254 ev_timer to;
3255 void (*cb)(int revents, void *arg);
3256 void *arg;
3257 };
3258
3259 static void
3260 once_cb (EV_P_ struct ev_once *once, int revents)
3261 {
3262 void (*cb)(int revents, void *arg) = once->cb;
3263 void *arg = once->arg;
3264
3265 ev_io_stop (EV_A_ &once->io);
3266 ev_timer_stop (EV_A_ &once->to);
3267 ev_free (once);
3268
3269 cb (revents, arg);
3270 }
3271
3272 static void
3273 once_cb_io (EV_P_ ev_io *w, int revents)
3274 {
3275 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3276
3277 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3278 }
3279
3280 static void
3281 once_cb_to (EV_P_ ev_timer *w, int revents)
3282 {
3283 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3284
3285 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3286 }
3287
3288 void
3289 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3290 {
3291 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3292
3293 if (expect_false (!once))
3294 {
3295 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3296 return;
3297 }
3298
3299 once->cb = cb;
3300 once->arg = arg;
3301
3302 ev_init (&once->io, once_cb_io);
3303 if (fd >= 0)
3304 {
3305 ev_io_set (&once->io, fd, events);
3306 ev_io_start (EV_A_ &once->io);
3307 }
3308
3309 ev_init (&once->to, once_cb_to);
3310 if (timeout >= 0.)
3311 {
3312 ev_timer_set (&once->to, timeout, 0.);
3313 ev_timer_start (EV_A_ &once->to);
3314 }
3315 }
3316
3317 /*****************************************************************************/
3318
3319 #if EV_WALK_ENABLE
3320 void
3321 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3322 {
3323 int i, j;
3324 ev_watcher_list *wl, *wn;
3325
3326 if (types & (EV_IO | EV_EMBED))
3327 for (i = 0; i < anfdmax; ++i)
3328 for (wl = anfds [i].head; wl; )
3329 {
3330 wn = wl->next;
3331
3332 #if EV_EMBED_ENABLE
3333 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3334 {
3335 if (types & EV_EMBED)
3336 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3337 }
3338 else
3339 #endif
3340 #if EV_USE_INOTIFY
3341 if (ev_cb ((ev_io *)wl) == infy_cb)
3342 ;
3343 else
3344 #endif
3345 if ((ev_io *)wl != &pipe_w)
3346 if (types & EV_IO)
3347 cb (EV_A_ EV_IO, wl);
3348
3349 wl = wn;
3350 }
3351
3352 if (types & (EV_TIMER | EV_STAT))
3353 for (i = timercnt + HEAP0; i-- > HEAP0; )
3354 #if EV_STAT_ENABLE
3355 /*TODO: timer is not always active*/
3356 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3357 {
3358 if (types & EV_STAT)
3359 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3360 }
3361 else
3362 #endif
3363 if (types & EV_TIMER)
3364 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3365
3366 #if EV_PERIODIC_ENABLE
3367 if (types & EV_PERIODIC)
3368 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3369 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3370 #endif
3371
3372 #if EV_IDLE_ENABLE
3373 if (types & EV_IDLE)
3374 for (j = NUMPRI; i--; )
3375 for (i = idlecnt [j]; i--; )
3376 cb (EV_A_ EV_IDLE, idles [j][i]);
3377 #endif
3378
3379 #if EV_FORK_ENABLE
3380 if (types & EV_FORK)
3381 for (i = forkcnt; i--; )
3382 if (ev_cb (forks [i]) != embed_fork_cb)
3383 cb (EV_A_ EV_FORK, forks [i]);
3384 #endif
3385
3386 #if EV_ASYNC_ENABLE
3387 if (types & EV_ASYNC)
3388 for (i = asynccnt; i--; )
3389 cb (EV_A_ EV_ASYNC, asyncs [i]);
3390 #endif
3391
3392 if (types & EV_PREPARE)
3393 for (i = preparecnt; i--; )
3394 #if EV_EMBED_ENABLE
3395 if (ev_cb (prepares [i]) != embed_prepare_cb)
3396 #endif
3397 cb (EV_A_ EV_PREPARE, prepares [i]);
3398
3399 if (types & EV_CHECK)
3400 for (i = checkcnt; i--; )
3401 cb (EV_A_ EV_CHECK, checks [i]);
3402
3403 if (types & EV_SIGNAL)
3404 for (i = 0; i < signalmax; ++i)
3405 for (wl = signals [i].head; wl; )
3406 {
3407 wn = wl->next;
3408 cb (EV_A_ EV_SIGNAL, wl);
3409 wl = wn;
3410 }
3411
3412 if (types & EV_CHILD)
3413 for (i = EV_PID_HASHSIZE; i--; )
3414 for (wl = childs [i]; wl; )
3415 {
3416 wn = wl->next;
3417 cb (EV_A_ EV_CHILD, wl);
3418 wl = wn;
3419 }
3420 /* EV_STAT 0x00001000 /* stat data changed */
3421 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3422 }
3423 #endif
3424
3425 #if EV_MULTIPLICITY
3426 #include "ev_wrap.h"
3427 #endif
3428
3429 #ifdef __cplusplus
3430 }
3431 #endif
3432