ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.301
Committed: Wed Jul 15 16:58:53 2009 UTC (14 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.300: +6 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_EVENTFD
139 # if HAVE_EVENTFD
140 # define EV_USE_EVENTFD 1
141 # else
142 # define EV_USE_EVENTFD 0
143 # endif
144 # endif
145
146 #endif
147
148 #include <math.h>
149 #include <stdlib.h>
150 #include <fcntl.h>
151 #include <stddef.h>
152
153 #include <stdio.h>
154
155 #include <assert.h>
156 #include <errno.h>
157 #include <sys/types.h>
158 #include <time.h>
159
160 #include <signal.h>
161
162 #ifdef EV_H
163 # include EV_H
164 #else
165 # include "ev.h"
166 #endif
167
168 #ifndef _WIN32
169 # include <sys/time.h>
170 # include <sys/wait.h>
171 # include <unistd.h>
172 #else
173 # include <io.h>
174 # define WIN32_LEAN_AND_MEAN
175 # include <windows.h>
176 # ifndef EV_SELECT_IS_WINSOCKET
177 # define EV_SELECT_IS_WINSOCKET 1
178 # endif
179 #endif
180
181 /* this block tries to deduce configuration from header-defined symbols and defaults */
182
183 #ifndef EV_USE_CLOCK_SYSCALL
184 # if __linux && __GLIBC__ >= 2
185 # define EV_USE_CLOCK_SYSCALL 1
186 # else
187 # define EV_USE_CLOCK_SYSCALL 0
188 # endif
189 #endif
190
191 #ifndef EV_USE_MONOTONIC
192 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193 # define EV_USE_MONOTONIC 1
194 # else
195 # define EV_USE_MONOTONIC 0
196 # endif
197 #endif
198
199 #ifndef EV_USE_REALTIME
200 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201 #endif
202
203 #ifndef EV_USE_NANOSLEEP
204 # if _POSIX_C_SOURCE >= 199309L
205 # define EV_USE_NANOSLEEP 1
206 # else
207 # define EV_USE_NANOSLEEP 0
208 # endif
209 #endif
210
211 #ifndef EV_USE_SELECT
212 # define EV_USE_SELECT 1
213 #endif
214
215 #ifndef EV_USE_POLL
216 # ifdef _WIN32
217 # define EV_USE_POLL 0
218 # else
219 # define EV_USE_POLL 1
220 # endif
221 #endif
222
223 #ifndef EV_USE_EPOLL
224 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225 # define EV_USE_EPOLL 1
226 # else
227 # define EV_USE_EPOLL 0
228 # endif
229 #endif
230
231 #ifndef EV_USE_KQUEUE
232 # define EV_USE_KQUEUE 0
233 #endif
234
235 #ifndef EV_USE_PORT
236 # define EV_USE_PORT 0
237 #endif
238
239 #ifndef EV_USE_INOTIFY
240 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241 # define EV_USE_INOTIFY 1
242 # else
243 # define EV_USE_INOTIFY 0
244 # endif
245 #endif
246
247 #ifndef EV_PID_HASHSIZE
248 # if EV_MINIMAL
249 # define EV_PID_HASHSIZE 1
250 # else
251 # define EV_PID_HASHSIZE 16
252 # endif
253 #endif
254
255 #ifndef EV_INOTIFY_HASHSIZE
256 # if EV_MINIMAL
257 # define EV_INOTIFY_HASHSIZE 1
258 # else
259 # define EV_INOTIFY_HASHSIZE 16
260 # endif
261 #endif
262
263 #ifndef EV_USE_EVENTFD
264 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265 # define EV_USE_EVENTFD 1
266 # else
267 # define EV_USE_EVENTFD 0
268 # endif
269 #endif
270
271 #if 0 /* debugging */
272 # define EV_VERIFY 3
273 # define EV_USE_4HEAP 1
274 # define EV_HEAP_CACHE_AT 1
275 #endif
276
277 #ifndef EV_VERIFY
278 # define EV_VERIFY !EV_MINIMAL
279 #endif
280
281 #ifndef EV_USE_4HEAP
282 # define EV_USE_4HEAP !EV_MINIMAL
283 #endif
284
285 #ifndef EV_HEAP_CACHE_AT
286 # define EV_HEAP_CACHE_AT !EV_MINIMAL
287 #endif
288
289 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290 /* which makes programs even slower. might work on other unices, too. */
291 #if EV_USE_CLOCK_SYSCALL
292 # include <syscall.h>
293 # ifdef SYS_clock_gettime
294 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295 # undef EV_USE_MONOTONIC
296 # define EV_USE_MONOTONIC 1
297 # else
298 # undef EV_USE_CLOCK_SYSCALL
299 # define EV_USE_CLOCK_SYSCALL 0
300 # endif
301 #endif
302
303 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
304
305 #ifndef CLOCK_MONOTONIC
306 # undef EV_USE_MONOTONIC
307 # define EV_USE_MONOTONIC 0
308 #endif
309
310 #ifndef CLOCK_REALTIME
311 # undef EV_USE_REALTIME
312 # define EV_USE_REALTIME 0
313 #endif
314
315 #if !EV_STAT_ENABLE
316 # undef EV_USE_INOTIFY
317 # define EV_USE_INOTIFY 0
318 #endif
319
320 #if !EV_USE_NANOSLEEP
321 # ifndef _WIN32
322 # include <sys/select.h>
323 # endif
324 #endif
325
326 #if EV_USE_INOTIFY
327 # include <sys/utsname.h>
328 # include <sys/statfs.h>
329 # include <sys/inotify.h>
330 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331 # ifndef IN_DONT_FOLLOW
332 # undef EV_USE_INOTIFY
333 # define EV_USE_INOTIFY 0
334 # endif
335 #endif
336
337 #if EV_SELECT_IS_WINSOCKET
338 # include <winsock.h>
339 #endif
340
341 #if EV_USE_EVENTFD
342 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343 # include <stdint.h>
344 # ifdef __cplusplus
345 extern "C" {
346 # endif
347 int eventfd (unsigned int initval, int flags);
348 # ifdef __cplusplus
349 }
350 # endif
351 #endif
352
353 /**/
354
355 #if EV_VERIFY >= 3
356 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357 #else
358 # define EV_FREQUENT_CHECK do { } while (0)
359 #endif
360
361 /*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
371 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
372 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
373 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
374
375 #if __GNUC__ >= 4
376 # define expect(expr,value) __builtin_expect ((expr),(value))
377 # define noinline __attribute__ ((noinline))
378 #else
379 # define expect(expr,value) (expr)
380 # define noinline
381 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382 # define inline
383 # endif
384 #endif
385
386 #define expect_false(expr) expect ((expr) != 0, 0)
387 #define expect_true(expr) expect ((expr) != 0, 1)
388 #define inline_size static inline
389
390 #if EV_MINIMAL
391 # define inline_speed static noinline
392 #else
393 # define inline_speed static inline
394 #endif
395
396 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398 #if EV_MINPRI == EV_MAXPRI
399 # define ABSPRI(w) (((W)w), 0)
400 #else
401 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402 #endif
403
404 #define EMPTY /* required for microsofts broken pseudo-c compiler */
405 #define EMPTY2(a,b) /* used to suppress some warnings */
406
407 typedef ev_watcher *W;
408 typedef ev_watcher_list *WL;
409 typedef ev_watcher_time *WT;
410
411 #define ev_active(w) ((W)(w))->active
412 #define ev_at(w) ((WT)(w))->at
413
414 #if EV_USE_REALTIME
415 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
416 /* giving it a reasonably high chance of working on typical architetcures */
417 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418 #endif
419
420 #if EV_USE_MONOTONIC
421 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422 #endif
423
424 #ifdef _WIN32
425 # include "ev_win32.c"
426 #endif
427
428 /*****************************************************************************/
429
430 static void (*syserr_cb)(const char *msg);
431
432 void
433 ev_set_syserr_cb (void (*cb)(const char *msg))
434 {
435 syserr_cb = cb;
436 }
437
438 static void noinline
439 ev_syserr (const char *msg)
440 {
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451 }
452
453 static void *
454 ev_realloc_emul (void *ptr, long size)
455 {
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466 }
467
468 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470 void
471 ev_set_allocator (void *(*cb)(void *ptr, long size))
472 {
473 alloc = cb;
474 }
475
476 inline_speed void *
477 ev_realloc (void *ptr, long size)
478 {
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488 }
489
490 #define ev_malloc(size) ev_realloc (0, (size))
491 #define ev_free(ptr) ev_realloc ((ptr), 0)
492
493 /*****************************************************************************/
494
495 /* set in reify when reification needed */
496 #define EV_ANFD_REIFY 1
497
498 /* file descriptor info structure */
499 typedef struct
500 {
501 WL head;
502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 unsigned char unused;
506 #if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508 #endif
509 #if EV_SELECT_IS_WINSOCKET
510 SOCKET handle;
511 #endif
512 } ANFD;
513
514 /* stores the pending event set for a given watcher */
515 typedef struct
516 {
517 W w;
518 int events; /* the pending event set for the given watcher */
519 } ANPENDING;
520
521 #if EV_USE_INOTIFY
522 /* hash table entry per inotify-id */
523 typedef struct
524 {
525 WL head;
526 } ANFS;
527 #endif
528
529 /* Heap Entry */
530 #if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540 #else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547 #endif
548
549 #if EV_MULTIPLICITY
550
551 struct ev_loop
552 {
553 ev_tstamp ev_rt_now;
554 #define ev_rt_now ((loop)->ev_rt_now)
555 #define VAR(name,decl) decl;
556 #include "ev_vars.h"
557 #undef VAR
558 };
559 #include "ev_wrap.h"
560
561 static struct ev_loop default_loop_struct;
562 struct ev_loop *ev_default_loop_ptr;
563
564 #else
565
566 ev_tstamp ev_rt_now;
567 #define VAR(name,decl) static decl;
568 #include "ev_vars.h"
569 #undef VAR
570
571 static int ev_default_loop_ptr;
572
573 #endif
574
575 #if EV_MINIMAL < 2
576 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578 # define EV_INVOKE_PENDING invoke_cb (EV_A)
579 #else
580 # define EV_RELEASE_CB (void)0
581 # define EV_ACQUIRE_CB (void)0
582 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583 #endif
584
585 #define EVUNLOOP_RECURSE 0x80
586
587 /*****************************************************************************/
588
589 #ifndef EV_HAVE_EV_TIME
590 ev_tstamp
591 ev_time (void)
592 {
593 #if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
596 struct timespec ts;
597 clock_gettime (CLOCK_REALTIME, &ts);
598 return ts.tv_sec + ts.tv_nsec * 1e-9;
599 }
600 #endif
601
602 struct timeval tv;
603 gettimeofday (&tv, 0);
604 return tv.tv_sec + tv.tv_usec * 1e-6;
605 }
606 #endif
607
608 inline_size ev_tstamp
609 get_clock (void)
610 {
611 #if EV_USE_MONOTONIC
612 if (expect_true (have_monotonic))
613 {
614 struct timespec ts;
615 clock_gettime (CLOCK_MONOTONIC, &ts);
616 return ts.tv_sec + ts.tv_nsec * 1e-9;
617 }
618 #endif
619
620 return ev_time ();
621 }
622
623 #if EV_MULTIPLICITY
624 ev_tstamp
625 ev_now (EV_P)
626 {
627 return ev_rt_now;
628 }
629 #endif
630
631 void
632 ev_sleep (ev_tstamp delay)
633 {
634 if (delay > 0.)
635 {
636 #if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643 #elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645 #else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655 #endif
656 }
657 }
658
659 /*****************************************************************************/
660
661 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663 /* find a suitable new size for the given array, */
664 /* hopefully by rounding to a ncie-to-malloc size */
665 inline_size int
666 array_nextsize (int elem, int cur, int cnt)
667 {
668 int ncur = cur + 1;
669
670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 {
677 ncur *= elem;
678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 ncur = ncur - sizeof (void *) * 4;
680 ncur /= elem;
681 }
682
683 return ncur;
684 }
685
686 static noinline void *
687 array_realloc (int elem, void *base, int *cur, int cnt)
688 {
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691 }
692
693 #define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
695
696 #define array_needsize(type,base,cur,cnt,init) \
697 if (expect_false ((cnt) > (cur))) \
698 { \
699 int ocur_ = (cur); \
700 (base) = (type *)array_realloc \
701 (sizeof (type), (base), &(cur), (cnt)); \
702 init ((base) + (ocur_), (cur) - ocur_); \
703 }
704
705 #if 0
706 #define array_slim(type,stem) \
707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708 { \
709 stem ## max = array_roundsize (stem ## cnt >> 1); \
710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712 }
713 #endif
714
715 #define array_free(stem, idx) \
716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717
718 /*****************************************************************************/
719
720 /* dummy callback for pending events */
721 static void noinline
722 pendingcb (EV_P_ ev_prepare *w, int revents)
723 {
724 }
725
726 void noinline
727 ev_feed_event (EV_P_ void *w, int revents)
728 {
729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
731
732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
739 pendings [pri][w_->pending - 1].events = revents;
740 }
741 }
742
743 inline_speed void
744 feed_reverse (EV_P_ W w)
745 {
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748 }
749
750 inline_size void
751 feed_reverse_done (EV_P_ int revents)
752 {
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756 }
757
758 inline_speed void
759 queue_events (EV_P_ W *events, int eventcnt, int type)
760 {
761 int i;
762
763 for (i = 0; i < eventcnt; ++i)
764 ev_feed_event (EV_A_ events [i], type);
765 }
766
767 /*****************************************************************************/
768
769 inline_speed void
770 fd_event_nc (EV_P_ int fd, int revents)
771 {
772 ANFD *anfd = anfds + fd;
773 ev_io *w;
774
775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
776 {
777 int ev = w->events & revents;
778
779 if (ev)
780 ev_feed_event (EV_A_ (W)w, ev);
781 }
782 }
783
784 /* do not submit kernel events for fds that have reify set */
785 /* because that means they changed while we were polling for new events */
786 inline_speed void
787 fd_event (EV_P_ int fd, int revents)
788 {
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793 }
794
795 void
796 ev_feed_fd_event (EV_P_ int fd, int revents)
797 {
798 if (fd >= 0 && fd < anfdmax)
799 fd_event_nc (EV_A_ fd, revents);
800 }
801
802 /* make sure the external fd watch events are in-sync */
803 /* with the kernel/libev internal state */
804 inline_size void
805 fd_reify (EV_P)
806 {
807 int i;
808
809 for (i = 0; i < fdchangecnt; ++i)
810 {
811 int fd = fdchanges [i];
812 ANFD *anfd = anfds + fd;
813 ev_io *w;
814
815 unsigned char events = 0;
816
817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
818 events |= (unsigned char)w->events;
819
820 #if EV_SELECT_IS_WINSOCKET
821 if (events)
822 {
823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
827 anfd->handle = _get_osfhandle (fd);
828 #endif
829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
830 }
831 #endif
832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
837 anfd->reify = 0;
838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
843 }
844
845 fdchangecnt = 0;
846 }
847
848 /* something about the given fd changed */
849 inline_size void
850 fd_change (EV_P_ int fd, int flags)
851 {
852 unsigned char reify = anfds [fd].reify;
853 anfds [fd].reify |= flags;
854
855 if (expect_true (!reify))
856 {
857 ++fdchangecnt;
858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
859 fdchanges [fdchangecnt - 1] = fd;
860 }
861 }
862
863 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864 inline_speed void
865 fd_kill (EV_P_ int fd)
866 {
867 ev_io *w;
868
869 while ((w = (ev_io *)anfds [fd].head))
870 {
871 ev_io_stop (EV_A_ w);
872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
873 }
874 }
875
876 /* check whether the given fd is atcually valid, for error recovery */
877 inline_size int
878 fd_valid (int fd)
879 {
880 #ifdef _WIN32
881 return _get_osfhandle (fd) != -1;
882 #else
883 return fcntl (fd, F_GETFD) != -1;
884 #endif
885 }
886
887 /* called on EBADF to verify fds */
888 static void noinline
889 fd_ebadf (EV_P)
890 {
891 int fd;
892
893 for (fd = 0; fd < anfdmax; ++fd)
894 if (anfds [fd].events)
895 if (!fd_valid (fd) && errno == EBADF)
896 fd_kill (EV_A_ fd);
897 }
898
899 /* called on ENOMEM in select/poll to kill some fds and retry */
900 static void noinline
901 fd_enomem (EV_P)
902 {
903 int fd;
904
905 for (fd = anfdmax; fd--; )
906 if (anfds [fd].events)
907 {
908 fd_kill (EV_A_ fd);
909 return;
910 }
911 }
912
913 /* usually called after fork if backend needs to re-arm all fds from scratch */
914 static void noinline
915 fd_rearm_all (EV_P)
916 {
917 int fd;
918
919 for (fd = 0; fd < anfdmax; ++fd)
920 if (anfds [fd].events)
921 {
922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
925 }
926 }
927
928 /*****************************************************************************/
929
930 /*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
935
936 /*
937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942 #if EV_USE_4HEAP
943
944 #define DHEAP 4
945 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
946 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947 #define UPHEAP_DONE(p,k) ((p) == (k))
948
949 /* away from the root */
950 inline_speed void
951 downheap (ANHE *heap, int N, int k)
952 {
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
978 break;
979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991 }
992
993 #else /* 4HEAP */
994
995 #define HEAP0 1
996 #define HPARENT(k) ((k) >> 1)
997 #define UPHEAP_DONE(p,k) (!(p))
998
999 /* away from the root */
1000 inline_speed void
1001 downheap (ANHE *heap, int N, int k)
1002 {
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026 }
1027 #endif
1028
1029 /* towards the root */
1030 inline_speed void
1031 upheap (ANHE *heap, int k)
1032 {
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049 }
1050
1051 /* move an element suitably so it is in a correct place */
1052 inline_size void
1053 adjustheap (ANHE *heap, int N, int k)
1054 {
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056 upheap (heap, k);
1057 else
1058 downheap (heap, N, k);
1059 }
1060
1061 /* rebuild the heap: this function is used only once and executed rarely */
1062 inline_size void
1063 reheap (ANHE *heap, int N)
1064 {
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
1071 }
1072
1073 /*****************************************************************************/
1074
1075 /* associate signal watchers to a signal signal */
1076 typedef struct
1077 {
1078 WL head;
1079 EV_ATOMIC_T gotsig;
1080 } ANSIG;
1081
1082 static ANSIG *signals;
1083 static int signalmax;
1084
1085 static EV_ATOMIC_T gotsig;
1086
1087 /*****************************************************************************/
1088
1089 /* used to prepare libev internal fd's */
1090 /* this is not fork-safe */
1091 inline_speed void
1092 fd_intern (int fd)
1093 {
1094 #ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097 #else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100 #endif
1101 }
1102
1103 static void noinline
1104 evpipe_init (EV_P)
1105 {
1106 if (!ev_is_active (&pipe_w))
1107 {
1108 #if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116 #endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129 }
1130
1131 inline_size void
1132 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133 {
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140 #if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147 #endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152 }
1153
1154 /* called whenever the libev signal pipe */
1155 /* got some events (signal, async) */
1156 static void
1157 pipecb (EV_P_ ev_io *iow, int revents)
1158 {
1159 #if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166 #endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182 #if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195 #endif
1196 }
1197
1198 /*****************************************************************************/
1199
1200 static void
1201 ev_sighandler (int signum)
1202 {
1203 #if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205 #endif
1206
1207 #if _WIN32
1208 signal (signum, ev_sighandler);
1209 #endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213 }
1214
1215 void noinline
1216 ev_feed_signal_event (EV_P_ int signum)
1217 {
1218 WL w;
1219
1220 #if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222 #endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233 }
1234
1235 /*****************************************************************************/
1236
1237 static WL childs [EV_PID_HASHSIZE];
1238
1239 #ifndef _WIN32
1240
1241 static ev_signal childev;
1242
1243 #ifndef WIFCONTINUED
1244 # define WIFCONTINUED(status) 0
1245 #endif
1246
1247 /* handle a single child status event */
1248 inline_speed void
1249 child_reap (EV_P_ int chain, int pid, int status)
1250 {
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265 }
1266
1267 #ifndef WCONTINUED
1268 # define WCONTINUED 0
1269 #endif
1270
1271 /* called on sigchld etc., calls waitpid */
1272 static void
1273 childcb (EV_P_ ev_signal *sw, int revents)
1274 {
1275 int pid, status;
1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1287
1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1291 }
1292
1293 #endif
1294
1295 /*****************************************************************************/
1296
1297 #if EV_USE_PORT
1298 # include "ev_port.c"
1299 #endif
1300 #if EV_USE_KQUEUE
1301 # include "ev_kqueue.c"
1302 #endif
1303 #if EV_USE_EPOLL
1304 # include "ev_epoll.c"
1305 #endif
1306 #if EV_USE_POLL
1307 # include "ev_poll.c"
1308 #endif
1309 #if EV_USE_SELECT
1310 # include "ev_select.c"
1311 #endif
1312
1313 int
1314 ev_version_major (void)
1315 {
1316 return EV_VERSION_MAJOR;
1317 }
1318
1319 int
1320 ev_version_minor (void)
1321 {
1322 return EV_VERSION_MINOR;
1323 }
1324
1325 /* return true if we are running with elevated privileges and should ignore env variables */
1326 int inline_size
1327 enable_secure (void)
1328 {
1329 #ifdef _WIN32
1330 return 0;
1331 #else
1332 return getuid () != geteuid ()
1333 || getgid () != getegid ();
1334 #endif
1335 }
1336
1337 unsigned int
1338 ev_supported_backends (void)
1339 {
1340 unsigned int flags = 0;
1341
1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349 }
1350
1351 unsigned int
1352 ev_recommended_backends (void)
1353 {
1354 unsigned int flags = ev_supported_backends ();
1355
1356 #ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360 #endif
1361 #ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365 #endif
1366
1367 return flags;
1368 }
1369
1370 unsigned int
1371 ev_embeddable_backends (void)
1372 {
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380 }
1381
1382 unsigned int
1383 ev_backend (EV_P)
1384 {
1385 return backend;
1386 }
1387
1388 #if EV_MINIMAL < 2
1389 unsigned int
1390 ev_loop_count (EV_P)
1391 {
1392 return loop_count;
1393 }
1394
1395 unsigned int
1396 ev_loop_depth (EV_P)
1397 {
1398 return loop_depth;
1399 }
1400
1401 void
1402 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403 {
1404 io_blocktime = interval;
1405 }
1406
1407 void
1408 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409 {
1410 timeout_blocktime = interval;
1411 }
1412
1413 void
1414 ev_set_userdata (EV_P_ void *data)
1415 {
1416 userdata = data;
1417 }
1418
1419 void *
1420 ev_userdata (EV_P)
1421 {
1422 return userdata;
1423 }
1424
1425 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426 {
1427 invoke_cb = invoke_pending_cb;
1428 }
1429
1430 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431 {
1432 release_cb = release;
1433 acquire_cb = acquire;
1434 }
1435 #endif
1436
1437 /* initialise a loop structure, must be zero-initialised */
1438 static void noinline
1439 loop_init (EV_P_ unsigned int flags)
1440 {
1441 if (!backend)
1442 {
1443 #if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451 #endif
1452
1453 #if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1455 {
1456 struct timespec ts;
1457
1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459 have_monotonic = 1;
1460 }
1461 #endif
1462
1463 ev_rt_now = ev_time ();
1464 mn_now = get_clock ();
1465 now_floor = mn_now;
1466 rtmn_diff = ev_rt_now - mn_now;
1467 #if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469 #endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476 #if EV_USE_INOTIFY
1477 fs_fd = -2;
1478 #endif
1479
1480 /* pid check not overridable via env */
1481 #ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484 #endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1490
1491 if (!(flags & 0x0000ffffU))
1492 flags |= ev_recommended_backends ();
1493
1494 #if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496 #endif
1497 #if EV_USE_KQUEUE
1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499 #endif
1500 #if EV_USE_EPOLL
1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502 #endif
1503 #if EV_USE_POLL
1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505 #endif
1506 #if EV_USE_SELECT
1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508 #endif
1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1512 ev_init (&pipe_w, pipecb);
1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1514 }
1515 }
1516
1517 /* free up a loop structure */
1518 static void noinline
1519 loop_destroy (EV_P)
1520 {
1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528 #if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531 #endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540 #if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543 #endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548 #if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550 #endif
1551 #if EV_USE_KQUEUE
1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553 #endif
1554 #if EV_USE_EPOLL
1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556 #endif
1557 #if EV_USE_POLL
1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559 #endif
1560 #if EV_USE_SELECT
1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562 #endif
1563
1564 for (i = NUMPRI; i--; )
1565 {
1566 array_free (pending, [i]);
1567 #if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569 #endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
1573
1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1576 array_free (fdchange, EMPTY);
1577 array_free (timer, EMPTY);
1578 #if EV_PERIODIC_ENABLE
1579 array_free (periodic, EMPTY);
1580 #endif
1581 #if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583 #endif
1584 array_free (prepare, EMPTY);
1585 array_free (check, EMPTY);
1586 #if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588 #endif
1589
1590 backend = 0;
1591 }
1592
1593 #if EV_USE_INOTIFY
1594 inline_size void infy_fork (EV_P);
1595 #endif
1596
1597 inline_size void
1598 loop_fork (EV_P)
1599 {
1600 #if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602 #endif
1603 #if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605 #endif
1606 #if EV_USE_EPOLL
1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608 #endif
1609 #if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611 #endif
1612
1613 if (ev_is_active (&pipe_w))
1614 {
1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618 #if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620 #endif
1621
1622 ev_ref (EV_A);
1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625 #if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628 #endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 close (evpipe [0]);
1633 close (evpipe [1]);
1634 }
1635
1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1639 }
1640
1641 postfork = 0;
1642 }
1643
1644 #if EV_MULTIPLICITY
1645
1646 struct ev_loop *
1647 ev_loop_new (unsigned int flags)
1648 {
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659 }
1660
1661 void
1662 ev_loop_destroy (EV_P)
1663 {
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666 }
1667
1668 void
1669 ev_loop_fork (EV_P)
1670 {
1671 postfork = 1; /* must be in line with ev_default_fork */
1672 }
1673 #endif /* multiplicity */
1674
1675 #if EV_VERIFY
1676 static void noinline
1677 verify_watcher (EV_P_ W w)
1678 {
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683 }
1684
1685 static void noinline
1686 verify_heap (EV_P_ ANHE *heap, int N)
1687 {
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698 }
1699
1700 static void noinline
1701 array_verify (EV_P_ W *ws, int cnt)
1702 {
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708 }
1709 #endif
1710
1711 #if EV_MINIMAL < 2
1712 void
1713 ev_loop_verify (EV_P)
1714 {
1715 #if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737 #if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740 #endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745 #if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749 #endif
1750 }
1751
1752 #if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755 #endif
1756
1757 #if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760 #endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768 # if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771 # endif
1772 #endif
1773 }
1774 #endif
1775
1776 #if EV_MULTIPLICITY
1777 struct ev_loop *
1778 ev_default_loop_init (unsigned int flags)
1779 #else
1780 int
1781 ev_default_loop (unsigned int flags)
1782 #endif
1783 {
1784 if (!ev_default_loop_ptr)
1785 {
1786 #if EV_MULTIPLICITY
1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1788 #else
1789 ev_default_loop_ptr = 1;
1790 #endif
1791
1792 loop_init (EV_A_ flags);
1793
1794 if (ev_backend (EV_A))
1795 {
1796 #ifndef _WIN32
1797 ev_signal_init (&childev, childcb, SIGCHLD);
1798 ev_set_priority (&childev, EV_MAXPRI);
1799 ev_signal_start (EV_A_ &childev);
1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1801 #endif
1802 }
1803 else
1804 ev_default_loop_ptr = 0;
1805 }
1806
1807 return ev_default_loop_ptr;
1808 }
1809
1810 void
1811 ev_default_destroy (void)
1812 {
1813 #if EV_MULTIPLICITY
1814 struct ev_loop *loop = ev_default_loop_ptr;
1815 #endif
1816
1817 ev_default_loop_ptr = 0;
1818
1819 #ifndef _WIN32
1820 ev_ref (EV_A); /* child watcher */
1821 ev_signal_stop (EV_A_ &childev);
1822 #endif
1823
1824 loop_destroy (EV_A);
1825 }
1826
1827 void
1828 ev_default_fork (void)
1829 {
1830 #if EV_MULTIPLICITY
1831 struct ev_loop *loop = ev_default_loop_ptr;
1832 #endif
1833
1834 postfork = 1; /* must be in line with ev_loop_fork */
1835 }
1836
1837 /*****************************************************************************/
1838
1839 void
1840 ev_invoke (EV_P_ void *w, int revents)
1841 {
1842 EV_CB_INVOKE ((W)w, revents);
1843 }
1844
1845 unsigned int
1846 ev_pending_count (EV_P)
1847 {
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855 }
1856
1857 void noinline
1858 ev_invoke_pending (EV_P)
1859 {
1860 int pri;
1861
1862 for (pri = NUMPRI; pri--; )
1863 while (pendingcnt [pri])
1864 {
1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1866
1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1869
1870 p->w->pending = 0;
1871 EV_CB_INVOKE (p->w, p->events);
1872 EV_FREQUENT_CHECK;
1873 }
1874 }
1875
1876 #if EV_IDLE_ENABLE
1877 /* make idle watchers pending. this handles the "call-idle */
1878 /* only when higher priorities are idle" logic */
1879 inline_size void
1880 idle_reify (EV_P)
1881 {
1882 if (expect_false (idleall))
1883 {
1884 int pri;
1885
1886 for (pri = NUMPRI; pri--; )
1887 {
1888 if (pendingcnt [pri])
1889 break;
1890
1891 if (idlecnt [pri])
1892 {
1893 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1894 break;
1895 }
1896 }
1897 }
1898 }
1899 #endif
1900
1901 /* make timers pending */
1902 inline_size void
1903 timers_reify (EV_P)
1904 {
1905 EV_FREQUENT_CHECK;
1906
1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 {
1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 }
1937 }
1938
1939 #if EV_PERIODIC_ENABLE
1940 /* make periodics pending */
1941 inline_size void
1942 periodics_reify (EV_P)
1943 {
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 {
1948 int feed_count = 0;
1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995 }
1996
1997 /* simply recalculate all periodics */
1998 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999 static void noinline
2000 periodics_reschedule (EV_P)
2001 {
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018 }
2019 #endif
2020
2021 /* adjust all timers by a given offset */
2022 static void noinline
2023 timers_reschedule (EV_P_ ev_tstamp adjust)
2024 {
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033 }
2034
2035 /* fetch new monotonic and realtime times from the kernel */
2036 /* also detetc if there was a timejump, and act accordingly */
2037 inline_speed void
2038 time_update (EV_P_ ev_tstamp max_block)
2039 {
2040 #if EV_USE_MONOTONIC
2041 if (expect_true (have_monotonic))
2042 {
2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
2046 mn_now = get_clock ();
2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2051 {
2052 ev_rt_now = rtmn_diff + mn_now;
2053 return;
2054 }
2055
2056 now_floor = mn_now;
2057 ev_rt_now = ev_time ();
2058
2059 /* loop a few times, before making important decisions.
2060 * on the choice of "4": one iteration isn't enough,
2061 * in case we get preempted during the calls to
2062 * ev_time and get_clock. a second call is almost guaranteed
2063 * to succeed in that case, though. and looping a few more times
2064 * doesn't hurt either as we only do this on time-jumps or
2065 * in the unlikely event of having been preempted here.
2066 */
2067 for (i = 4; --i; )
2068 {
2069 rtmn_diff = ev_rt_now - mn_now;
2070
2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2072 return; /* all is well */
2073
2074 ev_rt_now = ev_time ();
2075 mn_now = get_clock ();
2076 now_floor = mn_now;
2077 }
2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2081 # if EV_PERIODIC_ENABLE
2082 periodics_reschedule (EV_A);
2083 # endif
2084 }
2085 else
2086 #endif
2087 {
2088 ev_rt_now = ev_time ();
2089
2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2094 #if EV_PERIODIC_ENABLE
2095 periodics_reschedule (EV_A);
2096 #endif
2097 }
2098
2099 mn_now = ev_rt_now;
2100 }
2101 }
2102
2103 void
2104 ev_loop (EV_P_ int flags)
2105 {
2106 #if EV_MINIMAL < 2
2107 ++loop_depth;
2108 #endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2115
2116 do
2117 {
2118 #if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120 #endif
2121
2122 #ifndef _WIN32
2123 if (expect_false (curpid)) /* penalise the forking check even more */
2124 if (expect_false (getpid () != curpid))
2125 {
2126 curpid = getpid ();
2127 postfork = 1;
2128 }
2129 #endif
2130
2131 #if EV_FORK_ENABLE
2132 /* we might have forked, so queue fork handlers */
2133 if (expect_false (postfork))
2134 if (forkcnt)
2135 {
2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 EV_INVOKE_PENDING;
2138 }
2139 #endif
2140
2141 /* queue prepare watchers (and execute them) */
2142 if (expect_false (preparecnt))
2143 {
2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2145 EV_INVOKE_PENDING;
2146 }
2147
2148 if (expect_false (loop_done))
2149 break;
2150
2151 /* we might have forked, so reify kernel state if necessary */
2152 if (expect_false (postfork))
2153 loop_fork (EV_A);
2154
2155 /* update fd-related kernel structures */
2156 fd_reify (EV_A);
2157
2158 /* calculate blocking time */
2159 {
2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
2162
2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
2168 /* update time to cancel out callback processing overhead */
2169 time_update (EV_A_ 1e100);
2170
2171 waittime = MAX_BLOCKTIME;
2172
2173 if (timercnt)
2174 {
2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2176 if (waittime > to) waittime = to;
2177 }
2178
2179 #if EV_PERIODIC_ENABLE
2180 if (periodiccnt)
2181 {
2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2183 if (waittime > to) waittime = to;
2184 }
2185 #endif
2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
2205 }
2206
2207 #if EV_MINIMAL < 2
2208 ++loop_count;
2209 #endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2213
2214 /* update ev_rt_now, do magic */
2215 time_update (EV_A_ waittime + sleeptime);
2216 }
2217
2218 /* queue pending timers and reschedule them */
2219 timers_reify (EV_A); /* relative timers called last */
2220 #if EV_PERIODIC_ENABLE
2221 periodics_reify (EV_A); /* absolute timers called first */
2222 #endif
2223
2224 #if EV_IDLE_ENABLE
2225 /* queue idle watchers unless other events are pending */
2226 idle_reify (EV_A);
2227 #endif
2228
2229 /* queue check watchers, to be executed first */
2230 if (expect_false (checkcnt))
2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2232
2233 EV_INVOKE_PENDING;
2234 }
2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
2240
2241 if (loop_done == EVUNLOOP_ONE)
2242 loop_done = EVUNLOOP_CANCEL;
2243
2244 #if EV_MINIMAL < 2
2245 --loop_depth;
2246 #endif
2247 }
2248
2249 void
2250 ev_unloop (EV_P_ int how)
2251 {
2252 loop_done = how;
2253 }
2254
2255 void
2256 ev_ref (EV_P)
2257 {
2258 ++activecnt;
2259 }
2260
2261 void
2262 ev_unref (EV_P)
2263 {
2264 --activecnt;
2265 }
2266
2267 void
2268 ev_now_update (EV_P)
2269 {
2270 time_update (EV_A_ 1e100);
2271 }
2272
2273 void
2274 ev_suspend (EV_P)
2275 {
2276 ev_now_update (EV_A);
2277 }
2278
2279 void
2280 ev_resume (EV_P)
2281 {
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286 #if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289 #endif
2290 }
2291
2292 /*****************************************************************************/
2293 /* singly-linked list management, used when the expected list length is short */
2294
2295 inline_size void
2296 wlist_add (WL *head, WL elem)
2297 {
2298 elem->next = *head;
2299 *head = elem;
2300 }
2301
2302 inline_size void
2303 wlist_del (WL *head, WL elem)
2304 {
2305 while (*head)
2306 {
2307 if (*head == elem)
2308 {
2309 *head = elem->next;
2310 return;
2311 }
2312
2313 head = &(*head)->next;
2314 }
2315 }
2316
2317 /* internal, faster, version of ev_clear_pending */
2318 inline_speed void
2319 clear_pending (EV_P_ W w)
2320 {
2321 if (w->pending)
2322 {
2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2324 w->pending = 0;
2325 }
2326 }
2327
2328 int
2329 ev_clear_pending (EV_P_ void *w)
2330 {
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343 }
2344
2345 inline_size void
2346 pri_adjust (EV_P_ W w)
2347 {
2348 int pri = ev_priority (w);
2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 ev_set_priority (w, pri);
2352 }
2353
2354 inline_speed void
2355 ev_start (EV_P_ W w, int active)
2356 {
2357 pri_adjust (EV_A_ w);
2358 w->active = active;
2359 ev_ref (EV_A);
2360 }
2361
2362 inline_size void
2363 ev_stop (EV_P_ W w)
2364 {
2365 ev_unref (EV_A);
2366 w->active = 0;
2367 }
2368
2369 /*****************************************************************************/
2370
2371 void noinline
2372 ev_io_start (EV_P_ ev_io *w)
2373 {
2374 int fd = w->fd;
2375
2376 if (expect_false (ev_is_active (w)))
2377 return;
2378
2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
2383
2384 ev_start (EV_A_ (W)w, 1);
2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2386 wlist_add (&anfds[fd].head, (WL)w);
2387
2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
2392 }
2393
2394 void noinline
2395 ev_io_stop (EV_P_ ev_io *w)
2396 {
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
2404
2405 wlist_del (&anfds[w->fd].head, (WL)w);
2406 ev_stop (EV_A_ (W)w);
2407
2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
2411 }
2412
2413 void noinline
2414 ev_timer_start (EV_P_ ev_timer *w)
2415 {
2416 if (expect_false (ev_is_active (w)))
2417 return;
2418
2419 ev_at (w) += mn_now;
2420
2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
2431
2432 EV_FREQUENT_CHECK;
2433
2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2435 }
2436
2437 void noinline
2438 ev_timer_stop (EV_P_ ev_timer *w)
2439 {
2440 clear_pending (EV_A_ (W)w);
2441 if (expect_false (!ev_is_active (w)))
2442 return;
2443
2444 EV_FREQUENT_CHECK;
2445
2446 {
2447 int active = ev_active (w);
2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
2453 if (expect_true (active < timercnt + HEAP0))
2454 {
2455 timers [active] = timers [timercnt + HEAP0];
2456 adjustheap (timers, timercnt, active);
2457 }
2458 }
2459
2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
2463
2464 ev_stop (EV_A_ (W)w);
2465 }
2466
2467 void noinline
2468 ev_timer_again (EV_P_ ev_timer *w)
2469 {
2470 EV_FREQUENT_CHECK;
2471
2472 if (ev_is_active (w))
2473 {
2474 if (w->repeat)
2475 {
2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
2478 adjustheap (timers, timercnt, ev_active (w));
2479 }
2480 else
2481 ev_timer_stop (EV_A_ w);
2482 }
2483 else if (w->repeat)
2484 {
2485 ev_at (w) = w->repeat;
2486 ev_timer_start (EV_A_ w);
2487 }
2488
2489 EV_FREQUENT_CHECK;
2490 }
2491
2492 ev_tstamp
2493 ev_timer_remaining (EV_P_ ev_timer *w)
2494 {
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2496 }
2497
2498 #if EV_PERIODIC_ENABLE
2499 void noinline
2500 ev_periodic_start (EV_P_ ev_periodic *w)
2501 {
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 if (w->reschedule_cb)
2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2507 else if (w->interval)
2508 {
2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2510 /* this formula differs from the one in periodic_reify because we do not always round up */
2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2512 }
2513 else
2514 ev_at (w) = w->offset;
2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2522 ANHE_at_cache (periodics [ev_active (w)]);
2523 upheap (periodics, ev_active (w));
2524
2525 EV_FREQUENT_CHECK;
2526
2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2528 }
2529
2530 void noinline
2531 ev_periodic_stop (EV_P_ ev_periodic *w)
2532 {
2533 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w)))
2535 return;
2536
2537 EV_FREQUENT_CHECK;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2543
2544 --periodiccnt;
2545
2546 if (expect_true (active < periodiccnt + HEAP0))
2547 {
2548 periodics [active] = periodics [periodiccnt + HEAP0];
2549 adjustheap (periodics, periodiccnt, active);
2550 }
2551 }
2552
2553 EV_FREQUENT_CHECK;
2554
2555 ev_stop (EV_A_ (W)w);
2556 }
2557
2558 void noinline
2559 ev_periodic_again (EV_P_ ev_periodic *w)
2560 {
2561 /* TODO: use adjustheap and recalculation */
2562 ev_periodic_stop (EV_A_ w);
2563 ev_periodic_start (EV_A_ w);
2564 }
2565 #endif
2566
2567 #ifndef SA_RESTART
2568 # define SA_RESTART 0
2569 #endif
2570
2571 void noinline
2572 ev_signal_start (EV_P_ ev_signal *w)
2573 {
2574 #if EV_MULTIPLICITY
2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2576 #endif
2577 if (expect_false (ev_is_active (w)))
2578 return;
2579
2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2581
2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2585
2586 {
2587 #ifndef _WIN32
2588 sigset_t full, prev;
2589 sigfillset (&full);
2590 sigprocmask (SIG_SETMASK, &full, &prev);
2591 #endif
2592
2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2594
2595 #ifndef _WIN32
2596 sigprocmask (SIG_SETMASK, &prev, 0);
2597 #endif
2598 }
2599
2600 ev_start (EV_A_ (W)w, 1);
2601 wlist_add (&signals [w->signum - 1].head, (WL)w);
2602
2603 if (!((WL)w)->next)
2604 {
2605 #if _WIN32
2606 signal (w->signum, ev_sighandler);
2607 #else
2608 struct sigaction sa = { };
2609 sa.sa_handler = ev_sighandler;
2610 sigfillset (&sa.sa_mask);
2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2612 sigaction (w->signum, &sa, 0);
2613 #endif
2614 }
2615
2616 EV_FREQUENT_CHECK;
2617 }
2618
2619 void noinline
2620 ev_signal_stop (EV_P_ ev_signal *w)
2621 {
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 EV_FREQUENT_CHECK;
2627
2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
2629 ev_stop (EV_A_ (W)w);
2630
2631 if (!signals [w->signum - 1].head)
2632 signal (w->signum, SIG_DFL);
2633
2634 EV_FREQUENT_CHECK;
2635 }
2636
2637 void
2638 ev_child_start (EV_P_ ev_child *w)
2639 {
2640 #if EV_MULTIPLICITY
2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2642 #endif
2643 if (expect_false (ev_is_active (w)))
2644 return;
2645
2646 EV_FREQUENT_CHECK;
2647
2648 ev_start (EV_A_ (W)w, 1);
2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
2652 }
2653
2654 void
2655 ev_child_stop (EV_P_ ev_child *w)
2656 {
2657 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w)))
2659 return;
2660
2661 EV_FREQUENT_CHECK;
2662
2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
2667 }
2668
2669 #if EV_STAT_ENABLE
2670
2671 # ifdef _WIN32
2672 # undef lstat
2673 # define lstat(a,b) _stati64 (a,b)
2674 # endif
2675
2676 #define DEF_STAT_INTERVAL 5.0074891
2677 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2678 #define MIN_STAT_INTERVAL 0.1074891
2679
2680 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2681
2682 #if EV_USE_INOTIFY
2683 # define EV_INOTIFY_BUFSIZE 8192
2684
2685 static void noinline
2686 infy_add (EV_P_ ev_stat *w)
2687 {
2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2689
2690 if (w->wd < 0)
2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2694
2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2699 {
2700 char path [4096];
2701 strcpy (path, w->path);
2702
2703 do
2704 {
2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2707
2708 char *pend = strrchr (path, '/');
2709
2710 if (!pend || pend == path)
2711 break;
2712
2713 *pend = 0;
2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2715 }
2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2717 }
2718 }
2719
2720 if (w->wd >= 0)
2721 {
2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2741 }
2742
2743 static void noinline
2744 infy_del (EV_P_ ev_stat *w)
2745 {
2746 int slot;
2747 int wd = w->wd;
2748
2749 if (wd < 0)
2750 return;
2751
2752 w->wd = -2;
2753 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2754 wlist_del (&fs_hash [slot].head, (WL)w);
2755
2756 /* remove this watcher, if others are watching it, they will rearm */
2757 inotify_rm_watch (fs_fd, wd);
2758 }
2759
2760 static void noinline
2761 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2762 {
2763 if (slot < 0)
2764 /* overflow, need to check for all hash slots */
2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2766 infy_wd (EV_A_ slot, wd, ev);
2767 else
2768 {
2769 WL w_;
2770
2771 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us remove this watcher and all before it */
2775
2776 if (w->wd == wd || wd == -1)
2777 {
2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2781 w->wd = -1;
2782 infy_add (EV_A_ w); /* re-add, no matter what */
2783 }
2784
2785 stat_timer_cb (EV_A_ &w->timer, 0);
2786 }
2787 }
2788 }
2789 }
2790
2791 static void
2792 infy_cb (EV_P_ ev_io *w, int revents)
2793 {
2794 char buf [EV_INOTIFY_BUFSIZE];
2795 struct inotify_event *ev = (struct inotify_event *)buf;
2796 int ofs;
2797 int len = read (fs_fd, buf, sizeof (buf));
2798
2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2801 }
2802
2803 inline_size void
2804 check_2625 (EV_P)
2805 {
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824 }
2825
2826 inline_size void
2827 infy_init (EV_P)
2828 {
2829 if (fs_fd != -2)
2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2835
2836 fs_fd = inotify_init ();
2837
2838 if (fs_fd >= 0)
2839 {
2840 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2841 ev_set_priority (&fs_w, EV_MAXPRI);
2842 ev_io_start (EV_A_ &fs_w);
2843 }
2844 }
2845
2846 inline_size void
2847 infy_fork (EV_P)
2848 {
2849 int slot;
2850
2851 if (fs_fd < 0)
2852 return;
2853
2854 close (fs_fd);
2855 fs_fd = inotify_init ();
2856
2857 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2858 {
2859 WL w_ = fs_hash [slot].head;
2860 fs_hash [slot].head = 0;
2861
2862 while (w_)
2863 {
2864 ev_stat *w = (ev_stat *)w_;
2865 w_ = w_->next; /* lets us add this watcher */
2866
2867 w->wd = -1;
2868
2869 if (fs_fd >= 0)
2870 infy_add (EV_A_ w); /* re-add, no matter what */
2871 else
2872 ev_timer_again (EV_A_ &w->timer);
2873 }
2874 }
2875 }
2876
2877 #endif
2878
2879 #ifdef _WIN32
2880 # define EV_LSTAT(p,b) _stati64 (p, b)
2881 #else
2882 # define EV_LSTAT(p,b) lstat (p, b)
2883 #endif
2884
2885 void
2886 ev_stat_stat (EV_P_ ev_stat *w)
2887 {
2888 if (lstat (w->path, &w->attr) < 0)
2889 w->attr.st_nlink = 0;
2890 else if (!w->attr.st_nlink)
2891 w->attr.st_nlink = 1;
2892 }
2893
2894 static void noinline
2895 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2896 {
2897 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2898
2899 /* we copy this here each the time so that */
2900 /* prev has the old value when the callback gets invoked */
2901 w->prev = w->attr;
2902 ev_stat_stat (EV_A_ w);
2903
2904 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2905 if (
2906 w->prev.st_dev != w->attr.st_dev
2907 || w->prev.st_ino != w->attr.st_ino
2908 || w->prev.st_mode != w->attr.st_mode
2909 || w->prev.st_nlink != w->attr.st_nlink
2910 || w->prev.st_uid != w->attr.st_uid
2911 || w->prev.st_gid != w->attr.st_gid
2912 || w->prev.st_rdev != w->attr.st_rdev
2913 || w->prev.st_size != w->attr.st_size
2914 || w->prev.st_atime != w->attr.st_atime
2915 || w->prev.st_mtime != w->attr.st_mtime
2916 || w->prev.st_ctime != w->attr.st_ctime
2917 ) {
2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2921 infy_del (EV_A_ w);
2922 infy_add (EV_A_ w);
2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2925 #endif
2926
2927 ev_feed_event (EV_A_ w, EV_STAT);
2928 }
2929 }
2930
2931 void
2932 ev_stat_start (EV_P_ ev_stat *w)
2933 {
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 ev_stat_stat (EV_A_ w);
2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2940 w->interval = MIN_STAT_INTERVAL;
2941
2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2943 ev_set_priority (&w->timer, ev_priority (w));
2944
2945 #if EV_USE_INOTIFY
2946 infy_init (EV_A);
2947
2948 if (fs_fd >= 0)
2949 infy_add (EV_A_ w);
2950 else
2951 #endif
2952 ev_timer_again (EV_A_ &w->timer);
2953
2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2957 }
2958
2959 void
2960 ev_stat_stop (EV_P_ ev_stat *w)
2961 {
2962 clear_pending (EV_A_ (W)w);
2963 if (expect_false (!ev_is_active (w)))
2964 return;
2965
2966 EV_FREQUENT_CHECK;
2967
2968 #if EV_USE_INOTIFY
2969 infy_del (EV_A_ w);
2970 #endif
2971 ev_timer_stop (EV_A_ &w->timer);
2972
2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2976 }
2977 #endif
2978
2979 #if EV_IDLE_ENABLE
2980 void
2981 ev_idle_start (EV_P_ ev_idle *w)
2982 {
2983 if (expect_false (ev_is_active (w)))
2984 return;
2985
2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989
2990 {
2991 int active = ++idlecnt [ABSPRI (w)];
2992
2993 ++idleall;
2994 ev_start (EV_A_ (W)w, active);
2995
2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2997 idles [ABSPRI (w)][active - 1] = w;
2998 }
2999
3000 EV_FREQUENT_CHECK;
3001 }
3002
3003 void
3004 ev_idle_stop (EV_P_ ev_idle *w)
3005 {
3006 clear_pending (EV_A_ (W)w);
3007 if (expect_false (!ev_is_active (w)))
3008 return;
3009
3010 EV_FREQUENT_CHECK;
3011
3012 {
3013 int active = ev_active (w);
3014
3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3017
3018 ev_stop (EV_A_ (W)w);
3019 --idleall;
3020 }
3021
3022 EV_FREQUENT_CHECK;
3023 }
3024 #endif
3025
3026 void
3027 ev_prepare_start (EV_P_ ev_prepare *w)
3028 {
3029 if (expect_false (ev_is_active (w)))
3030 return;
3031
3032 EV_FREQUENT_CHECK;
3033
3034 ev_start (EV_A_ (W)w, ++preparecnt);
3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
3039 }
3040
3041 void
3042 ev_prepare_stop (EV_P_ ev_prepare *w)
3043 {
3044 clear_pending (EV_A_ (W)w);
3045 if (expect_false (!ev_is_active (w)))
3046 return;
3047
3048 EV_FREQUENT_CHECK;
3049
3050 {
3051 int active = ev_active (w);
3052
3053 prepares [active - 1] = prepares [--preparecnt];
3054 ev_active (prepares [active - 1]) = active;
3055 }
3056
3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
3060 }
3061
3062 void
3063 ev_check_start (EV_P_ ev_check *w)
3064 {
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 EV_FREQUENT_CHECK;
3069
3070 ev_start (EV_A_ (W)w, ++checkcnt);
3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
3075 }
3076
3077 void
3078 ev_check_stop (EV_P_ ev_check *w)
3079 {
3080 clear_pending (EV_A_ (W)w);
3081 if (expect_false (!ev_is_active (w)))
3082 return;
3083
3084 EV_FREQUENT_CHECK;
3085
3086 {
3087 int active = ev_active (w);
3088
3089 checks [active - 1] = checks [--checkcnt];
3090 ev_active (checks [active - 1]) = active;
3091 }
3092
3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
3096 }
3097
3098 #if EV_EMBED_ENABLE
3099 void noinline
3100 ev_embed_sweep (EV_P_ ev_embed *w)
3101 {
3102 ev_loop (w->other, EVLOOP_NONBLOCK);
3103 }
3104
3105 static void
3106 embed_io_cb (EV_P_ ev_io *io, int revents)
3107 {
3108 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3109
3110 if (ev_cb (w))
3111 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3112 else
3113 ev_loop (w->other, EVLOOP_NONBLOCK);
3114 }
3115
3116 static void
3117 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3118 {
3119 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 while (fdchangecnt)
3125 {
3126 fd_reify (EV_A);
3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3128 }
3129 }
3130 }
3131
3132 static void
3133 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134 {
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147 }
3148
3149 #if 0
3150 static void
3151 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3152 {
3153 ev_idle_stop (EV_A_ idle);
3154 }
3155 #endif
3156
3157 void
3158 ev_embed_start (EV_P_ ev_embed *w)
3159 {
3160 if (expect_false (ev_is_active (w)))
3161 return;
3162
3163 {
3164 struct ev_loop *loop = w->other;
3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3167 }
3168
3169 EV_FREQUENT_CHECK;
3170
3171 ev_set_priority (&w->io, ev_priority (w));
3172 ev_io_start (EV_A_ &w->io);
3173
3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
3175 ev_set_priority (&w->prepare, EV_MINPRI);
3176 ev_prepare_start (EV_A_ &w->prepare);
3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3182
3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
3186 }
3187
3188 void
3189 ev_embed_stop (EV_P_ ev_embed *w)
3190 {
3191 clear_pending (EV_A_ (W)w);
3192 if (expect_false (!ev_is_active (w)))
3193 return;
3194
3195 EV_FREQUENT_CHECK;
3196
3197 ev_io_stop (EV_A_ &w->io);
3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
3200
3201 EV_FREQUENT_CHECK;
3202 }
3203 #endif
3204
3205 #if EV_FORK_ENABLE
3206 void
3207 ev_fork_start (EV_P_ ev_fork *w)
3208 {
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++forkcnt);
3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219 }
3220
3221 void
3222 ev_fork_stop (EV_P_ ev_fork *w)
3223 {
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 forks [active - 1] = forks [--forkcnt];
3234 ev_active (forks [active - 1]) = active;
3235 }
3236
3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240 }
3241 #endif
3242
3243 #if EV_ASYNC_ENABLE
3244 void
3245 ev_async_start (EV_P_ ev_async *w)
3246 {
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
3253
3254 ev_start (EV_A_ (W)w, ++asynccnt);
3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
3259 }
3260
3261 void
3262 ev_async_stop (EV_P_ ev_async *w)
3263 {
3264 clear_pending (EV_A_ (W)w);
3265 if (expect_false (!ev_is_active (w)))
3266 return;
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ev_active (w);
3272
3273 asyncs [active - 1] = asyncs [--asynccnt];
3274 ev_active (asyncs [active - 1]) = active;
3275 }
3276
3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
3280 }
3281
3282 void
3283 ev_async_send (EV_P_ ev_async *w)
3284 {
3285 w->sent = 1;
3286 evpipe_write (EV_A_ &gotasync);
3287 }
3288 #endif
3289
3290 /*****************************************************************************/
3291
3292 struct ev_once
3293 {
3294 ev_io io;
3295 ev_timer to;
3296 void (*cb)(int revents, void *arg);
3297 void *arg;
3298 };
3299
3300 static void
3301 once_cb (EV_P_ struct ev_once *once, int revents)
3302 {
3303 void (*cb)(int revents, void *arg) = once->cb;
3304 void *arg = once->arg;
3305
3306 ev_io_stop (EV_A_ &once->io);
3307 ev_timer_stop (EV_A_ &once->to);
3308 ev_free (once);
3309
3310 cb (revents, arg);
3311 }
3312
3313 static void
3314 once_cb_io (EV_P_ ev_io *w, int revents)
3315 {
3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3319 }
3320
3321 static void
3322 once_cb_to (EV_P_ ev_timer *w, int revents)
3323 {
3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3327 }
3328
3329 void
3330 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3331 {
3332 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3333
3334 if (expect_false (!once))
3335 {
3336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3337 return;
3338 }
3339
3340 once->cb = cb;
3341 once->arg = arg;
3342
3343 ev_init (&once->io, once_cb_io);
3344 if (fd >= 0)
3345 {
3346 ev_io_set (&once->io, fd, events);
3347 ev_io_start (EV_A_ &once->io);
3348 }
3349
3350 ev_init (&once->to, once_cb_to);
3351 if (timeout >= 0.)
3352 {
3353 ev_timer_set (&once->to, timeout, 0.);
3354 ev_timer_start (EV_A_ &once->to);
3355 }
3356 }
3357
3358 /*****************************************************************************/
3359
3360 #if EV_WALK_ENABLE
3361 void
3362 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363 {
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373 #if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380 #endif
3381 #if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385 #endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395 #if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403 #endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407 #if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411 #endif
3412
3413 #if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418 #endif
3419
3420 #if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425 #endif
3426
3427 #if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431 #endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435 #if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437 #endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461 /* EV_STAT 0x00001000 /* stat data changed */
3462 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463 }
3464 #endif
3465
3466 #if EV_MULTIPLICITY
3467 #include "ev_wrap.h"
3468 #endif
3469
3470 #ifdef __cplusplus
3471 }
3472 #endif
3473