ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.311
Committed: Wed Jul 29 09:36:05 2009 UTC (14 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-3_8
Changes since 1.310: +5 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <fcntl.h>
159 #include <stddef.h>
160
161 #include <stdio.h>
162
163 #include <assert.h>
164 #include <errno.h>
165 #include <sys/types.h>
166 #include <time.h>
167
168 #include <signal.h>
169
170 #ifdef EV_H
171 # include EV_H
172 #else
173 # include "ev.h"
174 #endif
175
176 #ifndef _WIN32
177 # include <sys/time.h>
178 # include <sys/wait.h>
179 # include <unistd.h>
180 #else
181 # include <io.h>
182 # define WIN32_LEAN_AND_MEAN
183 # include <windows.h>
184 # ifndef EV_SELECT_IS_WINSOCKET
185 # define EV_SELECT_IS_WINSOCKET 1
186 # endif
187 #endif
188
189 /* this block tries to deduce configuration from header-defined symbols and defaults */
190
191 /* try to deduce the maximum number of signals on this platform */
192 #if defined (EV_NSIG)
193 /* use what's provided */
194 #elif defined (NSIG)
195 # define EV_NSIG (NSIG)
196 #elif defined(_NSIG)
197 # define EV_NSIG (_NSIG)
198 #elif defined (SIGMAX)
199 # define EV_NSIG (SIGMAX+1)
200 #elif defined (SIG_MAX)
201 # define EV_NSIG (SIG_MAX+1)
202 #elif defined (_SIG_MAX)
203 # define EV_NSIG (_SIG_MAX+1)
204 #elif defined (MAXSIG)
205 # define EV_NSIG (MAXSIG+1)
206 #elif defined (MAX_SIG)
207 # define EV_NSIG (MAX_SIG+1)
208 #elif defined (SIGARRAYSIZE)
209 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210 #elif defined (_sys_nsig)
211 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212 #else
213 # error "unable to find value for NSIG, please report"
214 /* to make it compile regardless, just remove the above line */
215 # define EV_NSIG 65
216 #endif
217
218 #ifndef EV_USE_CLOCK_SYSCALL
219 # if __linux && __GLIBC__ >= 2
220 # define EV_USE_CLOCK_SYSCALL 1
221 # else
222 # define EV_USE_CLOCK_SYSCALL 0
223 # endif
224 #endif
225
226 #ifndef EV_USE_MONOTONIC
227 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228 # define EV_USE_MONOTONIC 1
229 # else
230 # define EV_USE_MONOTONIC 0
231 # endif
232 #endif
233
234 #ifndef EV_USE_REALTIME
235 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236 #endif
237
238 #ifndef EV_USE_NANOSLEEP
239 # if _POSIX_C_SOURCE >= 199309L
240 # define EV_USE_NANOSLEEP 1
241 # else
242 # define EV_USE_NANOSLEEP 0
243 # endif
244 #endif
245
246 #ifndef EV_USE_SELECT
247 # define EV_USE_SELECT 1
248 #endif
249
250 #ifndef EV_USE_POLL
251 # ifdef _WIN32
252 # define EV_USE_POLL 0
253 # else
254 # define EV_USE_POLL 1
255 # endif
256 #endif
257
258 #ifndef EV_USE_EPOLL
259 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260 # define EV_USE_EPOLL 1
261 # else
262 # define EV_USE_EPOLL 0
263 # endif
264 #endif
265
266 #ifndef EV_USE_KQUEUE
267 # define EV_USE_KQUEUE 0
268 #endif
269
270 #ifndef EV_USE_PORT
271 # define EV_USE_PORT 0
272 #endif
273
274 #ifndef EV_USE_INOTIFY
275 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276 # define EV_USE_INOTIFY 1
277 # else
278 # define EV_USE_INOTIFY 0
279 # endif
280 #endif
281
282 #ifndef EV_PID_HASHSIZE
283 # if EV_MINIMAL
284 # define EV_PID_HASHSIZE 1
285 # else
286 # define EV_PID_HASHSIZE 16
287 # endif
288 #endif
289
290 #ifndef EV_INOTIFY_HASHSIZE
291 # if EV_MINIMAL
292 # define EV_INOTIFY_HASHSIZE 1
293 # else
294 # define EV_INOTIFY_HASHSIZE 16
295 # endif
296 #endif
297
298 #ifndef EV_USE_EVENTFD
299 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300 # define EV_USE_EVENTFD 1
301 # else
302 # define EV_USE_EVENTFD 0
303 # endif
304 #endif
305
306 #ifndef EV_USE_SIGNALFD
307 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308 # define EV_USE_SIGNALFD 1
309 # else
310 # define EV_USE_SIGNALFD 0
311 # endif
312 #endif
313
314 #if 0 /* debugging */
315 # define EV_VERIFY 3
316 # define EV_USE_4HEAP 1
317 # define EV_HEAP_CACHE_AT 1
318 #endif
319
320 #ifndef EV_VERIFY
321 # define EV_VERIFY !EV_MINIMAL
322 #endif
323
324 #ifndef EV_USE_4HEAP
325 # define EV_USE_4HEAP !EV_MINIMAL
326 #endif
327
328 #ifndef EV_HEAP_CACHE_AT
329 # define EV_HEAP_CACHE_AT !EV_MINIMAL
330 #endif
331
332 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333 /* which makes programs even slower. might work on other unices, too. */
334 #if EV_USE_CLOCK_SYSCALL
335 # include <syscall.h>
336 # ifdef SYS_clock_gettime
337 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338 # undef EV_USE_MONOTONIC
339 # define EV_USE_MONOTONIC 1
340 # else
341 # undef EV_USE_CLOCK_SYSCALL
342 # define EV_USE_CLOCK_SYSCALL 0
343 # endif
344 #endif
345
346 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348 #ifndef CLOCK_MONOTONIC
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 0
351 #endif
352
353 #ifndef CLOCK_REALTIME
354 # undef EV_USE_REALTIME
355 # define EV_USE_REALTIME 0
356 #endif
357
358 #if !EV_STAT_ENABLE
359 # undef EV_USE_INOTIFY
360 # define EV_USE_INOTIFY 0
361 #endif
362
363 #if !EV_USE_NANOSLEEP
364 # ifndef _WIN32
365 # include <sys/select.h>
366 # endif
367 #endif
368
369 #if EV_USE_INOTIFY
370 # include <sys/utsname.h>
371 # include <sys/statfs.h>
372 # include <sys/inotify.h>
373 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374 # ifndef IN_DONT_FOLLOW
375 # undef EV_USE_INOTIFY
376 # define EV_USE_INOTIFY 0
377 # endif
378 #endif
379
380 #if EV_SELECT_IS_WINSOCKET
381 # include <winsock.h>
382 #endif
383
384 #if EV_USE_EVENTFD
385 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386 # include <stdint.h>
387 # ifndef EFD_NONBLOCK
388 # define EFD_NONBLOCK O_NONBLOCK
389 # endif
390 # ifndef EFD_CLOEXEC
391 # ifdef O_CLOEXEC
392 # define EFD_CLOEXEC O_CLOEXEC
393 # else
394 # define EFD_CLOEXEC 02000000
395 # endif
396 # endif
397 # ifdef __cplusplus
398 extern "C" {
399 # endif
400 int eventfd (unsigned int initval, int flags);
401 # ifdef __cplusplus
402 }
403 # endif
404 #endif
405
406 #if EV_USE_SIGNALFD
407 # include <sys/signalfd.h>
408 #endif
409
410 /**/
411
412 #if EV_VERIFY >= 3
413 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414 #else
415 # define EV_FREQUENT_CHECK do { } while (0)
416 #endif
417
418 /*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
428 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
429 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
430 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
431
432 #if __GNUC__ >= 4
433 # define expect(expr,value) __builtin_expect ((expr),(value))
434 # define noinline __attribute__ ((noinline))
435 #else
436 # define expect(expr,value) (expr)
437 # define noinline
438 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439 # define inline
440 # endif
441 #endif
442
443 #define expect_false(expr) expect ((expr) != 0, 0)
444 #define expect_true(expr) expect ((expr) != 0, 1)
445 #define inline_size static inline
446
447 #if EV_MINIMAL
448 # define inline_speed static noinline
449 #else
450 # define inline_speed static inline
451 #endif
452
453 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455 #if EV_MINPRI == EV_MAXPRI
456 # define ABSPRI(w) (((W)w), 0)
457 #else
458 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459 #endif
460
461 #define EMPTY /* required for microsofts broken pseudo-c compiler */
462 #define EMPTY2(a,b) /* used to suppress some warnings */
463
464 typedef ev_watcher *W;
465 typedef ev_watcher_list *WL;
466 typedef ev_watcher_time *WT;
467
468 #define ev_active(w) ((W)(w))->active
469 #define ev_at(w) ((WT)(w))->at
470
471 #if EV_USE_REALTIME
472 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
473 /* giving it a reasonably high chance of working on typical architetcures */
474 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475 #endif
476
477 #if EV_USE_MONOTONIC
478 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479 #endif
480
481 #ifdef _WIN32
482 # include "ev_win32.c"
483 #endif
484
485 /*****************************************************************************/
486
487 static void (*syserr_cb)(const char *msg);
488
489 void
490 ev_set_syserr_cb (void (*cb)(const char *msg))
491 {
492 syserr_cb = cb;
493 }
494
495 static void noinline
496 ev_syserr (const char *msg)
497 {
498 if (!msg)
499 msg = "(libev) system error";
500
501 if (syserr_cb)
502 syserr_cb (msg);
503 else
504 {
505 perror (msg);
506 abort ();
507 }
508 }
509
510 static void *
511 ev_realloc_emul (void *ptr, long size)
512 {
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523 }
524
525 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
526
527 void
528 ev_set_allocator (void *(*cb)(void *ptr, long size))
529 {
530 alloc = cb;
531 }
532
533 inline_speed void *
534 ev_realloc (void *ptr, long size)
535 {
536 ptr = alloc (ptr, size);
537
538 if (!ptr && size)
539 {
540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
541 abort ();
542 }
543
544 return ptr;
545 }
546
547 #define ev_malloc(size) ev_realloc (0, (size))
548 #define ev_free(ptr) ev_realloc ((ptr), 0)
549
550 /*****************************************************************************/
551
552 /* set in reify when reification needed */
553 #define EV_ANFD_REIFY 1
554
555 /* file descriptor info structure */
556 typedef struct
557 {
558 WL head;
559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
562 unsigned char unused;
563 #if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565 #endif
566 #if EV_SELECT_IS_WINSOCKET
567 SOCKET handle;
568 #endif
569 } ANFD;
570
571 /* stores the pending event set for a given watcher */
572 typedef struct
573 {
574 W w;
575 int events; /* the pending event set for the given watcher */
576 } ANPENDING;
577
578 #if EV_USE_INOTIFY
579 /* hash table entry per inotify-id */
580 typedef struct
581 {
582 WL head;
583 } ANFS;
584 #endif
585
586 /* Heap Entry */
587 #if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597 #else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604 #endif
605
606 #if EV_MULTIPLICITY
607
608 struct ev_loop
609 {
610 ev_tstamp ev_rt_now;
611 #define ev_rt_now ((loop)->ev_rt_now)
612 #define VAR(name,decl) decl;
613 #include "ev_vars.h"
614 #undef VAR
615 };
616 #include "ev_wrap.h"
617
618 static struct ev_loop default_loop_struct;
619 struct ev_loop *ev_default_loop_ptr;
620
621 #else
622
623 ev_tstamp ev_rt_now;
624 #define VAR(name,decl) static decl;
625 #include "ev_vars.h"
626 #undef VAR
627
628 static int ev_default_loop_ptr;
629
630 #endif
631
632 #if EV_MINIMAL < 2
633 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635 # define EV_INVOKE_PENDING invoke_cb (EV_A)
636 #else
637 # define EV_RELEASE_CB (void)0
638 # define EV_ACQUIRE_CB (void)0
639 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640 #endif
641
642 #define EVUNLOOP_RECURSE 0x80
643
644 /*****************************************************************************/
645
646 #ifndef EV_HAVE_EV_TIME
647 ev_tstamp
648 ev_time (void)
649 {
650 #if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
653 struct timespec ts;
654 clock_gettime (CLOCK_REALTIME, &ts);
655 return ts.tv_sec + ts.tv_nsec * 1e-9;
656 }
657 #endif
658
659 struct timeval tv;
660 gettimeofday (&tv, 0);
661 return tv.tv_sec + tv.tv_usec * 1e-6;
662 }
663 #endif
664
665 inline_size ev_tstamp
666 get_clock (void)
667 {
668 #if EV_USE_MONOTONIC
669 if (expect_true (have_monotonic))
670 {
671 struct timespec ts;
672 clock_gettime (CLOCK_MONOTONIC, &ts);
673 return ts.tv_sec + ts.tv_nsec * 1e-9;
674 }
675 #endif
676
677 return ev_time ();
678 }
679
680 #if EV_MULTIPLICITY
681 ev_tstamp
682 ev_now (EV_P)
683 {
684 return ev_rt_now;
685 }
686 #endif
687
688 void
689 ev_sleep (ev_tstamp delay)
690 {
691 if (delay > 0.)
692 {
693 #if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700 #elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702 #else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712 #endif
713 }
714 }
715
716 /*****************************************************************************/
717
718 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720 /* find a suitable new size for the given array, */
721 /* hopefully by rounding to a ncie-to-malloc size */
722 inline_size int
723 array_nextsize (int elem, int cur, int cnt)
724 {
725 int ncur = cur + 1;
726
727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
733 {
734 ncur *= elem;
735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
736 ncur = ncur - sizeof (void *) * 4;
737 ncur /= elem;
738 }
739
740 return ncur;
741 }
742
743 static noinline void *
744 array_realloc (int elem, void *base, int *cur, int cnt)
745 {
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748 }
749
750 #define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
752
753 #define array_needsize(type,base,cur,cnt,init) \
754 if (expect_false ((cnt) > (cur))) \
755 { \
756 int ocur_ = (cur); \
757 (base) = (type *)array_realloc \
758 (sizeof (type), (base), &(cur), (cnt)); \
759 init ((base) + (ocur_), (cur) - ocur_); \
760 }
761
762 #if 0
763 #define array_slim(type,stem) \
764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
765 { \
766 stem ## max = array_roundsize (stem ## cnt >> 1); \
767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
769 }
770 #endif
771
772 #define array_free(stem, idx) \
773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
774
775 /*****************************************************************************/
776
777 /* dummy callback for pending events */
778 static void noinline
779 pendingcb (EV_P_ ev_prepare *w, int revents)
780 {
781 }
782
783 void noinline
784 ev_feed_event (EV_P_ void *w, int revents)
785 {
786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
788
789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
796 pendings [pri][w_->pending - 1].events = revents;
797 }
798 }
799
800 inline_speed void
801 feed_reverse (EV_P_ W w)
802 {
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805 }
806
807 inline_size void
808 feed_reverse_done (EV_P_ int revents)
809 {
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813 }
814
815 inline_speed void
816 queue_events (EV_P_ W *events, int eventcnt, int type)
817 {
818 int i;
819
820 for (i = 0; i < eventcnt; ++i)
821 ev_feed_event (EV_A_ events [i], type);
822 }
823
824 /*****************************************************************************/
825
826 inline_speed void
827 fd_event_nc (EV_P_ int fd, int revents)
828 {
829 ANFD *anfd = anfds + fd;
830 ev_io *w;
831
832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
833 {
834 int ev = w->events & revents;
835
836 if (ev)
837 ev_feed_event (EV_A_ (W)w, ev);
838 }
839 }
840
841 /* do not submit kernel events for fds that have reify set */
842 /* because that means they changed while we were polling for new events */
843 inline_speed void
844 fd_event (EV_P_ int fd, int revents)
845 {
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850 }
851
852 void
853 ev_feed_fd_event (EV_P_ int fd, int revents)
854 {
855 if (fd >= 0 && fd < anfdmax)
856 fd_event_nc (EV_A_ fd, revents);
857 }
858
859 /* make sure the external fd watch events are in-sync */
860 /* with the kernel/libev internal state */
861 inline_size void
862 fd_reify (EV_P)
863 {
864 int i;
865
866 for (i = 0; i < fdchangecnt; ++i)
867 {
868 int fd = fdchanges [i];
869 ANFD *anfd = anfds + fd;
870 ev_io *w;
871
872 unsigned char events = 0;
873
874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
875 events |= (unsigned char)w->events;
876
877 #if EV_SELECT_IS_WINSOCKET
878 if (events)
879 {
880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
884 anfd->handle = _get_osfhandle (fd);
885 #endif
886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
887 }
888 #endif
889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
894 anfd->reify = 0;
895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
900 }
901
902 fdchangecnt = 0;
903 }
904
905 /* something about the given fd changed */
906 inline_size void
907 fd_change (EV_P_ int fd, int flags)
908 {
909 unsigned char reify = anfds [fd].reify;
910 anfds [fd].reify |= flags;
911
912 if (expect_true (!reify))
913 {
914 ++fdchangecnt;
915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
916 fdchanges [fdchangecnt - 1] = fd;
917 }
918 }
919
920 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921 inline_speed void
922 fd_kill (EV_P_ int fd)
923 {
924 ev_io *w;
925
926 while ((w = (ev_io *)anfds [fd].head))
927 {
928 ev_io_stop (EV_A_ w);
929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
930 }
931 }
932
933 /* check whether the given fd is atcually valid, for error recovery */
934 inline_size int
935 fd_valid (int fd)
936 {
937 #ifdef _WIN32
938 return _get_osfhandle (fd) != -1;
939 #else
940 return fcntl (fd, F_GETFD) != -1;
941 #endif
942 }
943
944 /* called on EBADF to verify fds */
945 static void noinline
946 fd_ebadf (EV_P)
947 {
948 int fd;
949
950 for (fd = 0; fd < anfdmax; ++fd)
951 if (anfds [fd].events)
952 if (!fd_valid (fd) && errno == EBADF)
953 fd_kill (EV_A_ fd);
954 }
955
956 /* called on ENOMEM in select/poll to kill some fds and retry */
957 static void noinline
958 fd_enomem (EV_P)
959 {
960 int fd;
961
962 for (fd = anfdmax; fd--; )
963 if (anfds [fd].events)
964 {
965 fd_kill (EV_A_ fd);
966 break;
967 }
968 }
969
970 /* usually called after fork if backend needs to re-arm all fds from scratch */
971 static void noinline
972 fd_rearm_all (EV_P)
973 {
974 int fd;
975
976 for (fd = 0; fd < anfdmax; ++fd)
977 if (anfds [fd].events)
978 {
979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
982 }
983 }
984
985 /*****************************************************************************/
986
987 /*
988 * the heap functions want a real array index. array index 0 uis guaranteed to not
989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
990 * the branching factor of the d-tree.
991 */
992
993 /*
994 * at the moment we allow libev the luxury of two heaps,
995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999 #if EV_USE_4HEAP
1000
1001 #define DHEAP 4
1002 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004 #define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006 /* away from the root */
1007 inline_speed void
1008 downheap (ANHE *heap, int N, int k)
1009 {
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
1035 break;
1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048 }
1049
1050 #else /* 4HEAP */
1051
1052 #define HEAP0 1
1053 #define HPARENT(k) ((k) >> 1)
1054 #define UPHEAP_DONE(p,k) (!(p))
1055
1056 /* away from the root */
1057 inline_speed void
1058 downheap (ANHE *heap, int N, int k)
1059 {
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083 }
1084 #endif
1085
1086 /* towards the root */
1087 inline_speed void
1088 upheap (ANHE *heap, int k)
1089 {
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106 }
1107
1108 /* move an element suitably so it is in a correct place */
1109 inline_size void
1110 adjustheap (ANHE *heap, int N, int k)
1111 {
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1113 upheap (heap, k);
1114 else
1115 downheap (heap, N, k);
1116 }
1117
1118 /* rebuild the heap: this function is used only once and executed rarely */
1119 inline_size void
1120 reheap (ANHE *heap, int N)
1121 {
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
1128 }
1129
1130 /*****************************************************************************/
1131
1132 /* associate signal watchers to a signal signal */
1133 typedef struct
1134 {
1135 EV_ATOMIC_T pending;
1136 #if EV_MULTIPLICITY
1137 EV_P;
1138 #endif
1139 WL head;
1140 } ANSIG;
1141
1142 static ANSIG signals [EV_NSIG - 1];
1143
1144 /*****************************************************************************/
1145
1146 /* used to prepare libev internal fd's */
1147 /* this is not fork-safe */
1148 inline_speed void
1149 fd_intern (int fd)
1150 {
1151 #ifdef _WIN32
1152 unsigned long arg = 1;
1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1154 #else
1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
1156 fcntl (fd, F_SETFL, O_NONBLOCK);
1157 #endif
1158 }
1159
1160 static void noinline
1161 evpipe_init (EV_P)
1162 {
1163 if (!ev_is_active (&pipe_w))
1164 {
1165 #if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177 #endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
1182 fd_intern (evpipe [0]);
1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
1186
1187 ev_io_start (EV_A_ &pipe_w);
1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190 }
1191
1192 inline_size void
1193 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194 {
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201 #if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208 #endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213 }
1214
1215 /* called whenever the libev signal pipe */
1216 /* got some events (signal, async) */
1217 static void
1218 pipecb (EV_P_ ev_io *iow, int revents)
1219 {
1220 int i;
1221
1222 #if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229 #endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244 #if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256 #endif
1257 }
1258
1259 /*****************************************************************************/
1260
1261 static void
1262 ev_sighandler (int signum)
1263 {
1264 #if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266 #endif
1267
1268 #if _WIN32
1269 signal (signum, ev_sighandler);
1270 #endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274 }
1275
1276 void noinline
1277 ev_feed_signal_event (EV_P_ int signum)
1278 {
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286 #if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292 #endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298 }
1299
1300 #if EV_USE_SIGNALFD
1301 static void
1302 sigfdcb (EV_P_ ev_io *iow, int revents)
1303 {
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317 }
1318 #endif
1319
1320 /*****************************************************************************/
1321
1322 static WL childs [EV_PID_HASHSIZE];
1323
1324 #ifndef _WIN32
1325
1326 static ev_signal childev;
1327
1328 #ifndef WIFCONTINUED
1329 # define WIFCONTINUED(status) 0
1330 #endif
1331
1332 /* handle a single child status event */
1333 inline_speed void
1334 child_reap (EV_P_ int chain, int pid, int status)
1335 {
1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1338
1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
1343 {
1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1345 w->rpid = pid;
1346 w->rstatus = status;
1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1348 }
1349 }
1350 }
1351
1352 #ifndef WCONTINUED
1353 # define WCONTINUED 0
1354 #endif
1355
1356 /* called on sigchld etc., calls waitpid */
1357 static void
1358 childcb (EV_P_ ev_signal *sw, int revents)
1359 {
1360 int pid, status;
1361
1362 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1363 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1364 if (!WCONTINUED
1365 || errno != EINVAL
1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1367 return;
1368
1369 /* make sure we are called again until all children have been reaped */
1370 /* we need to do it this way so that the callback gets called before we continue */
1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1372
1373 child_reap (EV_A_ pid, pid, status);
1374 if (EV_PID_HASHSIZE > 1)
1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1376 }
1377
1378 #endif
1379
1380 /*****************************************************************************/
1381
1382 #if EV_USE_PORT
1383 # include "ev_port.c"
1384 #endif
1385 #if EV_USE_KQUEUE
1386 # include "ev_kqueue.c"
1387 #endif
1388 #if EV_USE_EPOLL
1389 # include "ev_epoll.c"
1390 #endif
1391 #if EV_USE_POLL
1392 # include "ev_poll.c"
1393 #endif
1394 #if EV_USE_SELECT
1395 # include "ev_select.c"
1396 #endif
1397
1398 int
1399 ev_version_major (void)
1400 {
1401 return EV_VERSION_MAJOR;
1402 }
1403
1404 int
1405 ev_version_minor (void)
1406 {
1407 return EV_VERSION_MINOR;
1408 }
1409
1410 /* return true if we are running with elevated privileges and should ignore env variables */
1411 int inline_size
1412 enable_secure (void)
1413 {
1414 #ifdef _WIN32
1415 return 0;
1416 #else
1417 return getuid () != geteuid ()
1418 || getgid () != getegid ();
1419 #endif
1420 }
1421
1422 unsigned int
1423 ev_supported_backends (void)
1424 {
1425 unsigned int flags = 0;
1426
1427 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1428 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1429 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1430 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1431 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1432
1433 return flags;
1434 }
1435
1436 unsigned int
1437 ev_recommended_backends (void)
1438 {
1439 unsigned int flags = ev_supported_backends ();
1440
1441 #ifndef __NetBSD__
1442 /* kqueue is borked on everything but netbsd apparently */
1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1444 flags &= ~EVBACKEND_KQUEUE;
1445 #endif
1446 #ifdef __APPLE__
1447 /* only select works correctly on that "unix-certified" platform */
1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1450 #endif
1451
1452 return flags;
1453 }
1454
1455 unsigned int
1456 ev_embeddable_backends (void)
1457 {
1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1459
1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
1465 }
1466
1467 unsigned int
1468 ev_backend (EV_P)
1469 {
1470 return backend;
1471 }
1472
1473 #if EV_MINIMAL < 2
1474 unsigned int
1475 ev_loop_count (EV_P)
1476 {
1477 return loop_count;
1478 }
1479
1480 unsigned int
1481 ev_loop_depth (EV_P)
1482 {
1483 return loop_depth;
1484 }
1485
1486 void
1487 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488 {
1489 io_blocktime = interval;
1490 }
1491
1492 void
1493 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494 {
1495 timeout_blocktime = interval;
1496 }
1497
1498 void
1499 ev_set_userdata (EV_P_ void *data)
1500 {
1501 userdata = data;
1502 }
1503
1504 void *
1505 ev_userdata (EV_P)
1506 {
1507 return userdata;
1508 }
1509
1510 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511 {
1512 invoke_cb = invoke_pending_cb;
1513 }
1514
1515 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516 {
1517 release_cb = release;
1518 acquire_cb = acquire;
1519 }
1520 #endif
1521
1522 /* initialise a loop structure, must be zero-initialised */
1523 static void noinline
1524 loop_init (EV_P_ unsigned int flags)
1525 {
1526 if (!backend)
1527 {
1528 #if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536 #endif
1537
1538 #if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1540 {
1541 struct timespec ts;
1542
1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1544 have_monotonic = 1;
1545 }
1546 #endif
1547
1548 /* pid check not overridable via env */
1549 #ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552 #endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563 #if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565 #endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572 #if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574 #endif
1575 #if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577 #endif
1578 #if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580 #endif
1581
1582 if (!(flags & 0x0000ffffU))
1583 flags |= ev_recommended_backends ();
1584
1585 #if EV_USE_PORT
1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1587 #endif
1588 #if EV_USE_KQUEUE
1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1590 #endif
1591 #if EV_USE_EPOLL
1592 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1593 #endif
1594 #if EV_USE_POLL
1595 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1596 #endif
1597 #if EV_USE_SELECT
1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1599 #endif
1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1603 ev_init (&pipe_w, pipecb);
1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1605 }
1606 }
1607
1608 /* free up a loop structure */
1609 static void noinline
1610 loop_destroy (EV_P)
1611 {
1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619 #if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622 #endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631 #if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639 #endif
1640
1641 #if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644 #endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
1648
1649 #if EV_USE_PORT
1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1651 #endif
1652 #if EV_USE_KQUEUE
1653 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1654 #endif
1655 #if EV_USE_EPOLL
1656 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1657 #endif
1658 #if EV_USE_POLL
1659 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1660 #endif
1661 #if EV_USE_SELECT
1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1663 #endif
1664
1665 for (i = NUMPRI; i--; )
1666 {
1667 array_free (pending, [i]);
1668 #if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670 #endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1674
1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1677 array_free (fdchange, EMPTY);
1678 array_free (timer, EMPTY);
1679 #if EV_PERIODIC_ENABLE
1680 array_free (periodic, EMPTY);
1681 #endif
1682 #if EV_FORK_ENABLE
1683 array_free (fork, EMPTY);
1684 #endif
1685 array_free (prepare, EMPTY);
1686 array_free (check, EMPTY);
1687 #if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689 #endif
1690
1691 backend = 0;
1692 }
1693
1694 #if EV_USE_INOTIFY
1695 inline_size void infy_fork (EV_P);
1696 #endif
1697
1698 inline_size void
1699 loop_fork (EV_P)
1700 {
1701 #if EV_USE_PORT
1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1703 #endif
1704 #if EV_USE_KQUEUE
1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1706 #endif
1707 #if EV_USE_EPOLL
1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1709 #endif
1710 #if EV_USE_INOTIFY
1711 infy_fork (EV_A);
1712 #endif
1713
1714 if (ev_is_active (&pipe_w))
1715 {
1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719 #if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721 #endif
1722
1723 ev_ref (EV_A);
1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726 #if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729 #endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1733 close (evpipe [0]);
1734 close (evpipe [1]);
1735 }
1736
1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
1740 }
1741
1742 postfork = 0;
1743 }
1744
1745 #if EV_MULTIPLICITY
1746
1747 struct ev_loop *
1748 ev_loop_new (unsigned int flags)
1749 {
1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1751
1752 memset (EV_A, 0, sizeof (struct ev_loop));
1753 loop_init (EV_A_ flags);
1754
1755 if (ev_backend (EV_A))
1756 return EV_A;
1757
1758 return 0;
1759 }
1760
1761 void
1762 ev_loop_destroy (EV_P)
1763 {
1764 loop_destroy (EV_A);
1765 ev_free (loop);
1766 }
1767
1768 void
1769 ev_loop_fork (EV_P)
1770 {
1771 postfork = 1; /* must be in line with ev_default_fork */
1772 }
1773 #endif /* multiplicity */
1774
1775 #if EV_VERIFY
1776 static void noinline
1777 verify_watcher (EV_P_ W w)
1778 {
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783 }
1784
1785 static void noinline
1786 verify_heap (EV_P_ ANHE *heap, int N)
1787 {
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798 }
1799
1800 static void noinline
1801 array_verify (EV_P_ W *ws, int cnt)
1802 {
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808 }
1809 #endif
1810
1811 #if EV_MINIMAL < 2
1812 void
1813 ev_loop_verify (EV_P)
1814 {
1815 #if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837 #if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840 #endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845 #if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849 #endif
1850 }
1851
1852 #if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855 #endif
1856
1857 #if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860 #endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868 # if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871 # endif
1872 #endif
1873 }
1874 #endif
1875
1876 #if EV_MULTIPLICITY
1877 struct ev_loop *
1878 ev_default_loop_init (unsigned int flags)
1879 #else
1880 int
1881 ev_default_loop (unsigned int flags)
1882 #endif
1883 {
1884 if (!ev_default_loop_ptr)
1885 {
1886 #if EV_MULTIPLICITY
1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1888 #else
1889 ev_default_loop_ptr = 1;
1890 #endif
1891
1892 loop_init (EV_A_ flags);
1893
1894 if (ev_backend (EV_A))
1895 {
1896 #ifndef _WIN32
1897 ev_signal_init (&childev, childcb, SIGCHLD);
1898 ev_set_priority (&childev, EV_MAXPRI);
1899 ev_signal_start (EV_A_ &childev);
1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1901 #endif
1902 }
1903 else
1904 ev_default_loop_ptr = 0;
1905 }
1906
1907 return ev_default_loop_ptr;
1908 }
1909
1910 void
1911 ev_default_destroy (void)
1912 {
1913 #if EV_MULTIPLICITY
1914 EV_P = ev_default_loop_ptr;
1915 #endif
1916
1917 ev_default_loop_ptr = 0;
1918
1919 #ifndef _WIN32
1920 ev_ref (EV_A); /* child watcher */
1921 ev_signal_stop (EV_A_ &childev);
1922 #endif
1923
1924 loop_destroy (EV_A);
1925 }
1926
1927 void
1928 ev_default_fork (void)
1929 {
1930 #if EV_MULTIPLICITY
1931 EV_P = ev_default_loop_ptr;
1932 #endif
1933
1934 postfork = 1; /* must be in line with ev_loop_fork */
1935 }
1936
1937 /*****************************************************************************/
1938
1939 void
1940 ev_invoke (EV_P_ void *w, int revents)
1941 {
1942 EV_CB_INVOKE ((W)w, revents);
1943 }
1944
1945 unsigned int
1946 ev_pending_count (EV_P)
1947 {
1948 int pri;
1949 unsigned int count = 0;
1950
1951 for (pri = NUMPRI; pri--; )
1952 count += pendingcnt [pri];
1953
1954 return count;
1955 }
1956
1957 void noinline
1958 ev_invoke_pending (EV_P)
1959 {
1960 int pri;
1961
1962 for (pri = NUMPRI; pri--; )
1963 while (pendingcnt [pri])
1964 {
1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1966
1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1969
1970 p->w->pending = 0;
1971 EV_CB_INVOKE (p->w, p->events);
1972 EV_FREQUENT_CHECK;
1973 }
1974 }
1975
1976 #if EV_IDLE_ENABLE
1977 /* make idle watchers pending. this handles the "call-idle */
1978 /* only when higher priorities are idle" logic */
1979 inline_size void
1980 idle_reify (EV_P)
1981 {
1982 if (expect_false (idleall))
1983 {
1984 int pri;
1985
1986 for (pri = NUMPRI; pri--; )
1987 {
1988 if (pendingcnt [pri])
1989 break;
1990
1991 if (idlecnt [pri])
1992 {
1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1994 break;
1995 }
1996 }
1997 }
1998 }
1999 #endif
2000
2001 /* make timers pending */
2002 inline_size void
2003 timers_reify (EV_P)
2004 {
2005 EV_FREQUENT_CHECK;
2006
2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2008 {
2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
2036 }
2037 }
2038
2039 #if EV_PERIODIC_ENABLE
2040 /* make periodics pending */
2041 inline_size void
2042 periodics_reify (EV_P)
2043 {
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2047 {
2048 int feed_count = 0;
2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095 }
2096
2097 /* simply recalculate all periodics */
2098 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099 static void noinline
2100 periodics_reschedule (EV_P)
2101 {
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118 }
2119 #endif
2120
2121 /* adjust all timers by a given offset */
2122 static void noinline
2123 timers_reschedule (EV_P_ ev_tstamp adjust)
2124 {
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133 }
2134
2135 /* fetch new monotonic and realtime times from the kernel */
2136 /* also detetc if there was a timejump, and act accordingly */
2137 inline_speed void
2138 time_update (EV_P_ ev_tstamp max_block)
2139 {
2140 #if EV_USE_MONOTONIC
2141 if (expect_true (have_monotonic))
2142 {
2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
2146 mn_now = get_clock ();
2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2151 {
2152 ev_rt_now = rtmn_diff + mn_now;
2153 return;
2154 }
2155
2156 now_floor = mn_now;
2157 ev_rt_now = ev_time ();
2158
2159 /* loop a few times, before making important decisions.
2160 * on the choice of "4": one iteration isn't enough,
2161 * in case we get preempted during the calls to
2162 * ev_time and get_clock. a second call is almost guaranteed
2163 * to succeed in that case, though. and looping a few more times
2164 * doesn't hurt either as we only do this on time-jumps or
2165 * in the unlikely event of having been preempted here.
2166 */
2167 for (i = 4; --i; )
2168 {
2169 rtmn_diff = ev_rt_now - mn_now;
2170
2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2172 return; /* all is well */
2173
2174 ev_rt_now = ev_time ();
2175 mn_now = get_clock ();
2176 now_floor = mn_now;
2177 }
2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2181 # if EV_PERIODIC_ENABLE
2182 periodics_reschedule (EV_A);
2183 # endif
2184 }
2185 else
2186 #endif
2187 {
2188 ev_rt_now = ev_time ();
2189
2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2194 #if EV_PERIODIC_ENABLE
2195 periodics_reschedule (EV_A);
2196 #endif
2197 }
2198
2199 mn_now = ev_rt_now;
2200 }
2201 }
2202
2203 void
2204 ev_loop (EV_P_ int flags)
2205 {
2206 #if EV_MINIMAL < 2
2207 ++loop_depth;
2208 #endif
2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2215
2216 do
2217 {
2218 #if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220 #endif
2221
2222 #ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229 #endif
2230
2231 #if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
2233 if (expect_false (postfork))
2234 if (forkcnt)
2235 {
2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2237 EV_INVOKE_PENDING;
2238 }
2239 #endif
2240
2241 /* queue prepare watchers (and execute them) */
2242 if (expect_false (preparecnt))
2243 {
2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2245 EV_INVOKE_PENDING;
2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
2250
2251 /* we might have forked, so reify kernel state if necessary */
2252 if (expect_false (postfork))
2253 loop_fork (EV_A);
2254
2255 /* update fd-related kernel structures */
2256 fd_reify (EV_A);
2257
2258 /* calculate blocking time */
2259 {
2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
2262
2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
2268 /* update time to cancel out callback processing overhead */
2269 time_update (EV_A_ 1e100);
2270
2271 waittime = MAX_BLOCKTIME;
2272
2273 if (timercnt)
2274 {
2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2276 if (waittime > to) waittime = to;
2277 }
2278
2279 #if EV_PERIODIC_ENABLE
2280 if (periodiccnt)
2281 {
2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2283 if (waittime > to) waittime = to;
2284 }
2285 #endif
2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
2305 }
2306
2307 #if EV_MINIMAL < 2
2308 ++loop_count;
2309 #endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2313
2314 /* update ev_rt_now, do magic */
2315 time_update (EV_A_ waittime + sleeptime);
2316 }
2317
2318 /* queue pending timers and reschedule them */
2319 timers_reify (EV_A); /* relative timers called last */
2320 #if EV_PERIODIC_ENABLE
2321 periodics_reify (EV_A); /* absolute timers called first */
2322 #endif
2323
2324 #if EV_IDLE_ENABLE
2325 /* queue idle watchers unless other events are pending */
2326 idle_reify (EV_A);
2327 #endif
2328
2329 /* queue check watchers, to be executed first */
2330 if (expect_false (checkcnt))
2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2332
2333 EV_INVOKE_PENDING;
2334 }
2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
2340
2341 if (loop_done == EVUNLOOP_ONE)
2342 loop_done = EVUNLOOP_CANCEL;
2343
2344 #if EV_MINIMAL < 2
2345 --loop_depth;
2346 #endif
2347 }
2348
2349 void
2350 ev_unloop (EV_P_ int how)
2351 {
2352 loop_done = how;
2353 }
2354
2355 void
2356 ev_ref (EV_P)
2357 {
2358 ++activecnt;
2359 }
2360
2361 void
2362 ev_unref (EV_P)
2363 {
2364 --activecnt;
2365 }
2366
2367 void
2368 ev_now_update (EV_P)
2369 {
2370 time_update (EV_A_ 1e100);
2371 }
2372
2373 void
2374 ev_suspend (EV_P)
2375 {
2376 ev_now_update (EV_A);
2377 }
2378
2379 void
2380 ev_resume (EV_P)
2381 {
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386 #if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389 #endif
2390 }
2391
2392 /*****************************************************************************/
2393 /* singly-linked list management, used when the expected list length is short */
2394
2395 inline_size void
2396 wlist_add (WL *head, WL elem)
2397 {
2398 elem->next = *head;
2399 *head = elem;
2400 }
2401
2402 inline_size void
2403 wlist_del (WL *head, WL elem)
2404 {
2405 while (*head)
2406 {
2407 if (expect_true (*head == elem))
2408 {
2409 *head = elem->next;
2410 break;
2411 }
2412
2413 head = &(*head)->next;
2414 }
2415 }
2416
2417 /* internal, faster, version of ev_clear_pending */
2418 inline_speed void
2419 clear_pending (EV_P_ W w)
2420 {
2421 if (w->pending)
2422 {
2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2424 w->pending = 0;
2425 }
2426 }
2427
2428 int
2429 ev_clear_pending (EV_P_ void *w)
2430 {
2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443 }
2444
2445 inline_size void
2446 pri_adjust (EV_P_ W w)
2447 {
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452 }
2453
2454 inline_speed void
2455 ev_start (EV_P_ W w, int active)
2456 {
2457 pri_adjust (EV_A_ w);
2458 w->active = active;
2459 ev_ref (EV_A);
2460 }
2461
2462 inline_size void
2463 ev_stop (EV_P_ W w)
2464 {
2465 ev_unref (EV_A);
2466 w->active = 0;
2467 }
2468
2469 /*****************************************************************************/
2470
2471 void noinline
2472 ev_io_start (EV_P_ ev_io *w)
2473 {
2474 int fd = w->fd;
2475
2476 if (expect_false (ev_is_active (w)))
2477 return;
2478
2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
2483
2484 ev_start (EV_A_ (W)w, 1);
2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2486 wlist_add (&anfds[fd].head, (WL)w);
2487
2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
2492 }
2493
2494 void noinline
2495 ev_io_stop (EV_P_ ev_io *w)
2496 {
2497 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w)))
2499 return;
2500
2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
2504
2505 wlist_del (&anfds[w->fd].head, (WL)w);
2506 ev_stop (EV_A_ (W)w);
2507
2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
2511 }
2512
2513 void noinline
2514 ev_timer_start (EV_P_ ev_timer *w)
2515 {
2516 if (expect_false (ev_is_active (w)))
2517 return;
2518
2519 ev_at (w) += mn_now;
2520
2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
2531
2532 EV_FREQUENT_CHECK;
2533
2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2535 }
2536
2537 void noinline
2538 ev_timer_stop (EV_P_ ev_timer *w)
2539 {
2540 clear_pending (EV_A_ (W)w);
2541 if (expect_false (!ev_is_active (w)))
2542 return;
2543
2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
2553 if (expect_true (active < timercnt + HEAP0))
2554 {
2555 timers [active] = timers [timercnt + HEAP0];
2556 adjustheap (timers, timercnt, active);
2557 }
2558 }
2559
2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
2563
2564 ev_stop (EV_A_ (W)w);
2565 }
2566
2567 void noinline
2568 ev_timer_again (EV_P_ ev_timer *w)
2569 {
2570 EV_FREQUENT_CHECK;
2571
2572 if (ev_is_active (w))
2573 {
2574 if (w->repeat)
2575 {
2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
2578 adjustheap (timers, timercnt, ev_active (w));
2579 }
2580 else
2581 ev_timer_stop (EV_A_ w);
2582 }
2583 else if (w->repeat)
2584 {
2585 ev_at (w) = w->repeat;
2586 ev_timer_start (EV_A_ w);
2587 }
2588
2589 EV_FREQUENT_CHECK;
2590 }
2591
2592 ev_tstamp
2593 ev_timer_remaining (EV_P_ ev_timer *w)
2594 {
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2596 }
2597
2598 #if EV_PERIODIC_ENABLE
2599 void noinline
2600 ev_periodic_start (EV_P_ ev_periodic *w)
2601 {
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 if (w->reschedule_cb)
2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2607 else if (w->interval)
2608 {
2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2610 /* this formula differs from the one in periodic_reify because we do not always round up */
2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2612 }
2613 else
2614 ev_at (w) = w->offset;
2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
2624
2625 EV_FREQUENT_CHECK;
2626
2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2628 }
2629
2630 void noinline
2631 ev_periodic_stop (EV_P_ ev_periodic *w)
2632 {
2633 clear_pending (EV_A_ (W)w);
2634 if (expect_false (!ev_is_active (w)))
2635 return;
2636
2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
2646 if (expect_true (active < periodiccnt + HEAP0))
2647 {
2648 periodics [active] = periodics [periodiccnt + HEAP0];
2649 adjustheap (periodics, periodiccnt, active);
2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
2654
2655 ev_stop (EV_A_ (W)w);
2656 }
2657
2658 void noinline
2659 ev_periodic_again (EV_P_ ev_periodic *w)
2660 {
2661 /* TODO: use adjustheap and recalculation */
2662 ev_periodic_stop (EV_A_ w);
2663 ev_periodic_start (EV_A_ w);
2664 }
2665 #endif
2666
2667 #ifndef SA_RESTART
2668 # define SA_RESTART 0
2669 #endif
2670
2671 void noinline
2672 ev_signal_start (EV_P_ ev_signal *w)
2673 {
2674 if (expect_false (ev_is_active (w)))
2675 return;
2676
2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
2679 #if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684 #endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688 #if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2698
2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716 #endif
2717
2718 ev_start (EV_A_ (W)w, 1);
2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
2720
2721 if (!((WL)w)->next)
2722 # if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724 # endif
2725 {
2726 # if _WIN32
2727 signal (w->signum, ev_sighandler);
2728 # else
2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
2733 sa.sa_handler = ev_sighandler;
2734 sigfillset (&sa.sa_mask);
2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2741 #endif
2742 }
2743
2744 EV_FREQUENT_CHECK;
2745 }
2746
2747 void noinline
2748 ev_signal_stop (EV_P_ ev_signal *w)
2749 {
2750 clear_pending (EV_A_ (W)w);
2751 if (expect_false (!ev_is_active (w)))
2752 return;
2753
2754 EV_FREQUENT_CHECK;
2755
2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
2757 ev_stop (EV_A_ (W)w);
2758
2759 if (!signals [w->signum - 1].head)
2760 {
2761 #if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763 #endif
2764 #if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774 #endif
2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
2779 }
2780
2781 void
2782 ev_child_start (EV_P_ ev_child *w)
2783 {
2784 #if EV_MULTIPLICITY
2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2786 #endif
2787 if (expect_false (ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
2791
2792 ev_start (EV_A_ (W)w, 1);
2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
2796 }
2797
2798 void
2799 ev_child_stop (EV_P_ ev_child *w)
2800 {
2801 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
2811 }
2812
2813 #if EV_STAT_ENABLE
2814
2815 # ifdef _WIN32
2816 # undef lstat
2817 # define lstat(a,b) _stati64 (a,b)
2818 # endif
2819
2820 #define DEF_STAT_INTERVAL 5.0074891
2821 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2822 #define MIN_STAT_INTERVAL 0.1074891
2823
2824 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826 #if EV_USE_INOTIFY
2827 # define EV_INOTIFY_BUFSIZE 8192
2828
2829 static void noinline
2830 infy_add (EV_P_ ev_stat *w)
2831 {
2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2843 {
2844 char path [4096];
2845 strcpy (path, w->path);
2846
2847 do
2848 {
2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2851
2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2885 }
2886
2887 static void noinline
2888 infy_del (EV_P_ ev_stat *w)
2889 {
2890 int slot;
2891 int wd = w->wd;
2892
2893 if (wd < 0)
2894 return;
2895
2896 w->wd = -2;
2897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2898 wlist_del (&fs_hash [slot].head, (WL)w);
2899
2900 /* remove this watcher, if others are watching it, they will rearm */
2901 inotify_rm_watch (fs_fd, wd);
2902 }
2903
2904 static void noinline
2905 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2906 {
2907 if (slot < 0)
2908 /* overflow, need to check for all hash slots */
2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2910 infy_wd (EV_A_ slot, wd, ev);
2911 else
2912 {
2913 WL w_;
2914
2915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2916 {
2917 ev_stat *w = (ev_stat *)w_;
2918 w_ = w_->next; /* lets us remove this watcher and all before it */
2919
2920 if (w->wd == wd || wd == -1)
2921 {
2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2925 w->wd = -1;
2926 infy_add (EV_A_ w); /* re-add, no matter what */
2927 }
2928
2929 stat_timer_cb (EV_A_ &w->timer, 0);
2930 }
2931 }
2932 }
2933 }
2934
2935 static void
2936 infy_cb (EV_P_ ev_io *w, int revents)
2937 {
2938 char buf [EV_INOTIFY_BUFSIZE];
2939 struct inotify_event *ev = (struct inotify_event *)buf;
2940 int ofs;
2941 int len = read (fs_fd, buf, sizeof (buf));
2942
2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2945 }
2946
2947 inline_size void
2948 check_2625 (EV_P)
2949 {
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968 }
2969
2970 inline_size void
2971 infy_init (EV_P)
2972 {
2973 if (fs_fd != -2)
2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2979
2980 fs_fd = inotify_init ();
2981
2982 if (fs_fd >= 0)
2983 {
2984 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2985 ev_set_priority (&fs_w, EV_MAXPRI);
2986 ev_io_start (EV_A_ &fs_w);
2987 }
2988 }
2989
2990 inline_size void
2991 infy_fork (EV_P)
2992 {
2993 int slot;
2994
2995 if (fs_fd < 0)
2996 return;
2997
2998 close (fs_fd);
2999 fs_fd = inotify_init ();
3000
3001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3002 {
3003 WL w_ = fs_hash [slot].head;
3004 fs_hash [slot].head = 0;
3005
3006 while (w_)
3007 {
3008 ev_stat *w = (ev_stat *)w_;
3009 w_ = w_->next; /* lets us add this watcher */
3010
3011 w->wd = -1;
3012
3013 if (fs_fd >= 0)
3014 infy_add (EV_A_ w); /* re-add, no matter what */
3015 else
3016 ev_timer_again (EV_A_ &w->timer);
3017 }
3018 }
3019 }
3020
3021 #endif
3022
3023 #ifdef _WIN32
3024 # define EV_LSTAT(p,b) _stati64 (p, b)
3025 #else
3026 # define EV_LSTAT(p,b) lstat (p, b)
3027 #endif
3028
3029 void
3030 ev_stat_stat (EV_P_ ev_stat *w)
3031 {
3032 if (lstat (w->path, &w->attr) < 0)
3033 w->attr.st_nlink = 0;
3034 else if (!w->attr.st_nlink)
3035 w->attr.st_nlink = 1;
3036 }
3037
3038 static void noinline
3039 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3040 {
3041 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3042
3043 /* we copy this here each the time so that */
3044 /* prev has the old value when the callback gets invoked */
3045 w->prev = w->attr;
3046 ev_stat_stat (EV_A_ w);
3047
3048 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3049 if (
3050 w->prev.st_dev != w->attr.st_dev
3051 || w->prev.st_ino != w->attr.st_ino
3052 || w->prev.st_mode != w->attr.st_mode
3053 || w->prev.st_nlink != w->attr.st_nlink
3054 || w->prev.st_uid != w->attr.st_uid
3055 || w->prev.st_gid != w->attr.st_gid
3056 || w->prev.st_rdev != w->attr.st_rdev
3057 || w->prev.st_size != w->attr.st_size
3058 || w->prev.st_atime != w->attr.st_atime
3059 || w->prev.st_mtime != w->attr.st_mtime
3060 || w->prev.st_ctime != w->attr.st_ctime
3061 ) {
3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
3065 infy_del (EV_A_ w);
3066 infy_add (EV_A_ w);
3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
3069 #endif
3070
3071 ev_feed_event (EV_A_ w, EV_STAT);
3072 }
3073 }
3074
3075 void
3076 ev_stat_start (EV_P_ ev_stat *w)
3077 {
3078 if (expect_false (ev_is_active (w)))
3079 return;
3080
3081 ev_stat_stat (EV_A_ w);
3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3084 w->interval = MIN_STAT_INTERVAL;
3085
3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3087 ev_set_priority (&w->timer, ev_priority (w));
3088
3089 #if EV_USE_INOTIFY
3090 infy_init (EV_A);
3091
3092 if (fs_fd >= 0)
3093 infy_add (EV_A_ w);
3094 else
3095 #endif
3096 ev_timer_again (EV_A_ &w->timer);
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101 }
3102
3103 void
3104 ev_stat_stop (EV_P_ ev_stat *w)
3105 {
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112 #if EV_USE_INOTIFY
3113 infy_del (EV_A_ w);
3114 #endif
3115 ev_timer_stop (EV_A_ &w->timer);
3116
3117 ev_stop (EV_A_ (W)w);
3118
3119 EV_FREQUENT_CHECK;
3120 }
3121 #endif
3122
3123 #if EV_IDLE_ENABLE
3124 void
3125 ev_idle_start (EV_P_ ev_idle *w)
3126 {
3127 if (expect_false (ev_is_active (w)))
3128 return;
3129
3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133
3134 {
3135 int active = ++idlecnt [ABSPRI (w)];
3136
3137 ++idleall;
3138 ev_start (EV_A_ (W)w, active);
3139
3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3141 idles [ABSPRI (w)][active - 1] = w;
3142 }
3143
3144 EV_FREQUENT_CHECK;
3145 }
3146
3147 void
3148 ev_idle_stop (EV_P_ ev_idle *w)
3149 {
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 {
3157 int active = ev_active (w);
3158
3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3161
3162 ev_stop (EV_A_ (W)w);
3163 --idleall;
3164 }
3165
3166 EV_FREQUENT_CHECK;
3167 }
3168 #endif
3169
3170 void
3171 ev_prepare_start (EV_P_ ev_prepare *w)
3172 {
3173 if (expect_false (ev_is_active (w)))
3174 return;
3175
3176 EV_FREQUENT_CHECK;
3177
3178 ev_start (EV_A_ (W)w, ++preparecnt);
3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3180 prepares [preparecnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
3183 }
3184
3185 void
3186 ev_prepare_stop (EV_P_ ev_prepare *w)
3187 {
3188 clear_pending (EV_A_ (W)w);
3189 if (expect_false (!ev_is_active (w)))
3190 return;
3191
3192 EV_FREQUENT_CHECK;
3193
3194 {
3195 int active = ev_active (w);
3196
3197 prepares [active - 1] = prepares [--preparecnt];
3198 ev_active (prepares [active - 1]) = active;
3199 }
3200
3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
3204 }
3205
3206 void
3207 ev_check_start (EV_P_ ev_check *w)
3208 {
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++checkcnt);
3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3216 checks [checkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219 }
3220
3221 void
3222 ev_check_stop (EV_P_ ev_check *w)
3223 {
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 checks [active - 1] = checks [--checkcnt];
3234 ev_active (checks [active - 1]) = active;
3235 }
3236
3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240 }
3241
3242 #if EV_EMBED_ENABLE
3243 void noinline
3244 ev_embed_sweep (EV_P_ ev_embed *w)
3245 {
3246 ev_loop (w->other, EVLOOP_NONBLOCK);
3247 }
3248
3249 static void
3250 embed_io_cb (EV_P_ ev_io *io, int revents)
3251 {
3252 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3253
3254 if (ev_cb (w))
3255 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3256 else
3257 ev_loop (w->other, EVLOOP_NONBLOCK);
3258 }
3259
3260 static void
3261 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3262 {
3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3264
3265 {
3266 EV_P = w->other;
3267
3268 while (fdchangecnt)
3269 {
3270 fd_reify (EV_A);
3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3272 }
3273 }
3274 }
3275
3276 static void
3277 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3278 {
3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3280
3281 ev_embed_stop (EV_A_ w);
3282
3283 {
3284 EV_P = w->other;
3285
3286 ev_loop_fork (EV_A);
3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3288 }
3289
3290 ev_embed_start (EV_A_ w);
3291 }
3292
3293 #if 0
3294 static void
3295 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3296 {
3297 ev_idle_stop (EV_A_ idle);
3298 }
3299 #endif
3300
3301 void
3302 ev_embed_start (EV_P_ ev_embed *w)
3303 {
3304 if (expect_false (ev_is_active (w)))
3305 return;
3306
3307 {
3308 EV_P = w->other;
3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3311 }
3312
3313 EV_FREQUENT_CHECK;
3314
3315 ev_set_priority (&w->io, ev_priority (w));
3316 ev_io_start (EV_A_ &w->io);
3317
3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
3319 ev_set_priority (&w->prepare, EV_MINPRI);
3320 ev_prepare_start (EV_A_ &w->prepare);
3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3326
3327 ev_start (EV_A_ (W)w, 1);
3328
3329 EV_FREQUENT_CHECK;
3330 }
3331
3332 void
3333 ev_embed_stop (EV_P_ ev_embed *w)
3334 {
3335 clear_pending (EV_A_ (W)w);
3336 if (expect_false (!ev_is_active (w)))
3337 return;
3338
3339 EV_FREQUENT_CHECK;
3340
3341 ev_io_stop (EV_A_ &w->io);
3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
3344
3345 EV_FREQUENT_CHECK;
3346 }
3347 #endif
3348
3349 #if EV_FORK_ENABLE
3350 void
3351 ev_fork_start (EV_P_ ev_fork *w)
3352 {
3353 if (expect_false (ev_is_active (w)))
3354 return;
3355
3356 EV_FREQUENT_CHECK;
3357
3358 ev_start (EV_A_ (W)w, ++forkcnt);
3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
3363 }
3364
3365 void
3366 ev_fork_stop (EV_P_ ev_fork *w)
3367 {
3368 clear_pending (EV_A_ (W)w);
3369 if (expect_false (!ev_is_active (w)))
3370 return;
3371
3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
3377 forks [active - 1] = forks [--forkcnt];
3378 ev_active (forks [active - 1]) = active;
3379 }
3380
3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
3384 }
3385 #endif
3386
3387 #if EV_ASYNC_ENABLE
3388 void
3389 ev_async_start (EV_P_ ev_async *w)
3390 {
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_start (EV_A_ (W)w, ++asynccnt);
3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
3403 }
3404
3405 void
3406 ev_async_stop (EV_P_ ev_async *w)
3407 {
3408 clear_pending (EV_A_ (W)w);
3409 if (expect_false (!ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 {
3415 int active = ev_active (w);
3416
3417 asyncs [active - 1] = asyncs [--asynccnt];
3418 ev_active (asyncs [active - 1]) = active;
3419 }
3420
3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
3424 }
3425
3426 void
3427 ev_async_send (EV_P_ ev_async *w)
3428 {
3429 w->sent = 1;
3430 evpipe_write (EV_A_ &async_pending);
3431 }
3432 #endif
3433
3434 /*****************************************************************************/
3435
3436 struct ev_once
3437 {
3438 ev_io io;
3439 ev_timer to;
3440 void (*cb)(int revents, void *arg);
3441 void *arg;
3442 };
3443
3444 static void
3445 once_cb (EV_P_ struct ev_once *once, int revents)
3446 {
3447 void (*cb)(int revents, void *arg) = once->cb;
3448 void *arg = once->arg;
3449
3450 ev_io_stop (EV_A_ &once->io);
3451 ev_timer_stop (EV_A_ &once->to);
3452 ev_free (once);
3453
3454 cb (revents, arg);
3455 }
3456
3457 static void
3458 once_cb_io (EV_P_ ev_io *w, int revents)
3459 {
3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3463 }
3464
3465 static void
3466 once_cb_to (EV_P_ ev_timer *w, int revents)
3467 {
3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3471 }
3472
3473 void
3474 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3475 {
3476 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3477
3478 if (expect_false (!once))
3479 {
3480 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3481 return;
3482 }
3483
3484 once->cb = cb;
3485 once->arg = arg;
3486
3487 ev_init (&once->io, once_cb_io);
3488 if (fd >= 0)
3489 {
3490 ev_io_set (&once->io, fd, events);
3491 ev_io_start (EV_A_ &once->io);
3492 }
3493
3494 ev_init (&once->to, once_cb_to);
3495 if (timeout >= 0.)
3496 {
3497 ev_timer_set (&once->to, timeout, 0.);
3498 ev_timer_start (EV_A_ &once->to);
3499 }
3500 }
3501
3502 /*****************************************************************************/
3503
3504 #if EV_WALK_ENABLE
3505 void
3506 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507 {
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
3514 {
3515 wn = wl->next;
3516
3517 #if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524 #endif
3525 #if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529 #endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
3535 }
3536
3537 if (types & (EV_TIMER | EV_STAT))
3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539 #if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3542 {
3543 if (types & EV_STAT)
3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3545 }
3546 else
3547 #endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3550
3551 #if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555 #endif
3556
3557 #if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562 #endif
3563
3564 #if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569 #endif
3570
3571 #if EV_ASYNC_ENABLE
3572 if (types & EV_ASYNC)
3573 for (i = asynccnt; i--; )
3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
3575 #endif
3576
3577 if (types & EV_PREPARE)
3578 for (i = preparecnt; i--; )
3579 #if EV_EMBED_ENABLE
3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
3581 #endif
3582 cb (EV_A_ EV_PREPARE, prepares [i]);
3583
3584 if (types & EV_CHECK)
3585 for (i = checkcnt; i--; )
3586 cb (EV_A_ EV_CHECK, checks [i]);
3587
3588 if (types & EV_SIGNAL)
3589 for (i = 0; i < EV_NSIG - 1; ++i)
3590 for (wl = signals [i].head; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_SIGNAL, wl);
3594 wl = wn;
3595 }
3596
3597 if (types & EV_CHILD)
3598 for (i = EV_PID_HASHSIZE; i--; )
3599 for (wl = childs [i]; wl; )
3600 {
3601 wn = wl->next;
3602 cb (EV_A_ EV_CHILD, wl);
3603 wl = wn;
3604 }
3605 /* EV_STAT 0x00001000 /* stat data changed */
3606 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3607 }
3608 #endif
3609
3610 #if EV_MULTIPLICITY
3611 #include "ev_wrap.h"
3612 #endif
3613
3614 #ifdef __cplusplus
3615 }
3616 #endif
3617