ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.313
Committed: Wed Aug 19 23:44:51 2009 UTC (14 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.312: +15 -9 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <fcntl.h>
159 #include <stddef.h>
160
161 #include <stdio.h>
162
163 #include <assert.h>
164 #include <errno.h>
165 #include <sys/types.h>
166 #include <time.h>
167
168 #include <signal.h>
169
170 #ifdef EV_H
171 # include EV_H
172 #else
173 # include "ev.h"
174 #endif
175
176 #ifndef _WIN32
177 # include <sys/time.h>
178 # include <sys/wait.h>
179 # include <unistd.h>
180 #else
181 # include <io.h>
182 # define WIN32_LEAN_AND_MEAN
183 # include <windows.h>
184 # ifndef EV_SELECT_IS_WINSOCKET
185 # define EV_SELECT_IS_WINSOCKET 1
186 # endif
187 #endif
188
189 /* this block tries to deduce configuration from header-defined symbols and defaults */
190
191 /* try to deduce the maximum number of signals on this platform */
192 #if defined (EV_NSIG)
193 /* use what's provided */
194 #elif defined (NSIG)
195 # define EV_NSIG (NSIG)
196 #elif defined(_NSIG)
197 # define EV_NSIG (_NSIG)
198 #elif defined (SIGMAX)
199 # define EV_NSIG (SIGMAX+1)
200 #elif defined (SIG_MAX)
201 # define EV_NSIG (SIG_MAX+1)
202 #elif defined (_SIG_MAX)
203 # define EV_NSIG (_SIG_MAX+1)
204 #elif defined (MAXSIG)
205 # define EV_NSIG (MAXSIG+1)
206 #elif defined (MAX_SIG)
207 # define EV_NSIG (MAX_SIG+1)
208 #elif defined (SIGARRAYSIZE)
209 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210 #elif defined (_sys_nsig)
211 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212 #else
213 # error "unable to find value for NSIG, please report"
214 /* to make it compile regardless, just remove the above line */
215 # define EV_NSIG 65
216 #endif
217
218 #ifndef EV_USE_CLOCK_SYSCALL
219 # if __linux && __GLIBC__ >= 2
220 # define EV_USE_CLOCK_SYSCALL 1
221 # else
222 # define EV_USE_CLOCK_SYSCALL 0
223 # endif
224 #endif
225
226 #ifndef EV_USE_MONOTONIC
227 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228 # define EV_USE_MONOTONIC 1
229 # else
230 # define EV_USE_MONOTONIC 0
231 # endif
232 #endif
233
234 #ifndef EV_USE_REALTIME
235 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236 #endif
237
238 #ifndef EV_USE_NANOSLEEP
239 # if _POSIX_C_SOURCE >= 199309L
240 # define EV_USE_NANOSLEEP 1
241 # else
242 # define EV_USE_NANOSLEEP 0
243 # endif
244 #endif
245
246 #ifndef EV_USE_SELECT
247 # define EV_USE_SELECT 1
248 #endif
249
250 #ifndef EV_USE_POLL
251 # ifdef _WIN32
252 # define EV_USE_POLL 0
253 # else
254 # define EV_USE_POLL 1
255 # endif
256 #endif
257
258 #ifndef EV_USE_EPOLL
259 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260 # define EV_USE_EPOLL 1
261 # else
262 # define EV_USE_EPOLL 0
263 # endif
264 #endif
265
266 #ifndef EV_USE_KQUEUE
267 # define EV_USE_KQUEUE 0
268 #endif
269
270 #ifndef EV_USE_PORT
271 # define EV_USE_PORT 0
272 #endif
273
274 #ifndef EV_USE_INOTIFY
275 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276 # define EV_USE_INOTIFY 1
277 # else
278 # define EV_USE_INOTIFY 0
279 # endif
280 #endif
281
282 #ifndef EV_PID_HASHSIZE
283 # if EV_MINIMAL
284 # define EV_PID_HASHSIZE 1
285 # else
286 # define EV_PID_HASHSIZE 16
287 # endif
288 #endif
289
290 #ifndef EV_INOTIFY_HASHSIZE
291 # if EV_MINIMAL
292 # define EV_INOTIFY_HASHSIZE 1
293 # else
294 # define EV_INOTIFY_HASHSIZE 16
295 # endif
296 #endif
297
298 #ifndef EV_USE_EVENTFD
299 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300 # define EV_USE_EVENTFD 1
301 # else
302 # define EV_USE_EVENTFD 0
303 # endif
304 #endif
305
306 #ifndef EV_USE_SIGNALFD
307 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308 # define EV_USE_SIGNALFD 1
309 # else
310 # define EV_USE_SIGNALFD 0
311 # endif
312 #endif
313
314 #if 0 /* debugging */
315 # define EV_VERIFY 3
316 # define EV_USE_4HEAP 1
317 # define EV_HEAP_CACHE_AT 1
318 #endif
319
320 #ifndef EV_VERIFY
321 # define EV_VERIFY !EV_MINIMAL
322 #endif
323
324 #ifndef EV_USE_4HEAP
325 # define EV_USE_4HEAP !EV_MINIMAL
326 #endif
327
328 #ifndef EV_HEAP_CACHE_AT
329 # define EV_HEAP_CACHE_AT !EV_MINIMAL
330 #endif
331
332 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333 /* which makes programs even slower. might work on other unices, too. */
334 #if EV_USE_CLOCK_SYSCALL
335 # include <syscall.h>
336 # ifdef SYS_clock_gettime
337 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338 # undef EV_USE_MONOTONIC
339 # define EV_USE_MONOTONIC 1
340 # else
341 # undef EV_USE_CLOCK_SYSCALL
342 # define EV_USE_CLOCK_SYSCALL 0
343 # endif
344 #endif
345
346 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348 #ifndef CLOCK_MONOTONIC
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 0
351 #endif
352
353 #ifndef CLOCK_REALTIME
354 # undef EV_USE_REALTIME
355 # define EV_USE_REALTIME 0
356 #endif
357
358 #if !EV_STAT_ENABLE
359 # undef EV_USE_INOTIFY
360 # define EV_USE_INOTIFY 0
361 #endif
362
363 #if !EV_USE_NANOSLEEP
364 # ifndef _WIN32
365 # include <sys/select.h>
366 # endif
367 #endif
368
369 #if EV_USE_INOTIFY
370 # include <sys/utsname.h>
371 # include <sys/statfs.h>
372 # include <sys/inotify.h>
373 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374 # ifndef IN_DONT_FOLLOW
375 # undef EV_USE_INOTIFY
376 # define EV_USE_INOTIFY 0
377 # endif
378 #endif
379
380 #if EV_SELECT_IS_WINSOCKET
381 # include <winsock.h>
382 #endif
383
384 #if EV_USE_EVENTFD
385 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386 # include <stdint.h>
387 # ifndef EFD_NONBLOCK
388 # define EFD_NONBLOCK O_NONBLOCK
389 # endif
390 # ifndef EFD_CLOEXEC
391 # ifdef O_CLOEXEC
392 # define EFD_CLOEXEC O_CLOEXEC
393 # else
394 # define EFD_CLOEXEC 02000000
395 # endif
396 # endif
397 # ifdef __cplusplus
398 extern "C" {
399 # endif
400 int eventfd (unsigned int initval, int flags);
401 # ifdef __cplusplus
402 }
403 # endif
404 #endif
405
406 #if EV_USE_SIGNALFD
407 # include <sys/signalfd.h>
408 #endif
409
410 /**/
411
412 #if EV_VERIFY >= 3
413 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414 #else
415 # define EV_FREQUENT_CHECK do { } while (0)
416 #endif
417
418 /*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
428 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
429 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
430 /*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
431
432 #if __GNUC__ >= 4
433 # define expect(expr,value) __builtin_expect ((expr),(value))
434 # define noinline __attribute__ ((noinline))
435 #else
436 # define expect(expr,value) (expr)
437 # define noinline
438 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439 # define inline
440 # endif
441 #endif
442
443 #define expect_false(expr) expect ((expr) != 0, 0)
444 #define expect_true(expr) expect ((expr) != 0, 1)
445 #define inline_size static inline
446
447 #if EV_MINIMAL
448 # define inline_speed static noinline
449 #else
450 # define inline_speed static inline
451 #endif
452
453 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455 #if EV_MINPRI == EV_MAXPRI
456 # define ABSPRI(w) (((W)w), 0)
457 #else
458 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459 #endif
460
461 #define EMPTY /* required for microsofts broken pseudo-c compiler */
462 #define EMPTY2(a,b) /* used to suppress some warnings */
463
464 typedef ev_watcher *W;
465 typedef ev_watcher_list *WL;
466 typedef ev_watcher_time *WT;
467
468 #define ev_active(w) ((W)(w))->active
469 #define ev_at(w) ((WT)(w))->at
470
471 #if EV_USE_REALTIME
472 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
473 /* giving it a reasonably high chance of working on typical architetcures */
474 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475 #endif
476
477 #if EV_USE_MONOTONIC
478 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479 #endif
480
481 #ifndef EV_FD_TO_WIN32_HANDLE
482 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483 #endif
484 #ifndef EV_WIN32_HANDLE_TO_FD
485 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486 #endif
487 #ifndef EV_WIN32_CLOSE_FD
488 # define EV_WIN32_CLOSE_FD(fd) close (fd)
489 #endif
490
491 #ifdef _WIN32
492 # include "ev_win32.c"
493 #endif
494
495 /*****************************************************************************/
496
497 static void (*syserr_cb)(const char *msg);
498
499 void
500 ev_set_syserr_cb (void (*cb)(const char *msg))
501 {
502 syserr_cb = cb;
503 }
504
505 static void noinline
506 ev_syserr (const char *msg)
507 {
508 if (!msg)
509 msg = "(libev) system error";
510
511 if (syserr_cb)
512 syserr_cb (msg);
513 else
514 {
515 perror (msg);
516 abort ();
517 }
518 }
519
520 static void *
521 ev_realloc_emul (void *ptr, long size)
522 {
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533 }
534
535 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
536
537 void
538 ev_set_allocator (void *(*cb)(void *ptr, long size))
539 {
540 alloc = cb;
541 }
542
543 inline_speed void *
544 ev_realloc (void *ptr, long size)
545 {
546 ptr = alloc (ptr, size);
547
548 if (!ptr && size)
549 {
550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
551 abort ();
552 }
553
554 return ptr;
555 }
556
557 #define ev_malloc(size) ev_realloc (0, (size))
558 #define ev_free(ptr) ev_realloc ((ptr), 0)
559
560 /*****************************************************************************/
561
562 /* set in reify when reification needed */
563 #define EV_ANFD_REIFY 1
564
565 /* file descriptor info structure */
566 typedef struct
567 {
568 WL head;
569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
572 unsigned char unused;
573 #if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575 #endif
576 #if EV_SELECT_IS_WINSOCKET
577 SOCKET handle;
578 #endif
579 } ANFD;
580
581 /* stores the pending event set for a given watcher */
582 typedef struct
583 {
584 W w;
585 int events; /* the pending event set for the given watcher */
586 } ANPENDING;
587
588 #if EV_USE_INOTIFY
589 /* hash table entry per inotify-id */
590 typedef struct
591 {
592 WL head;
593 } ANFS;
594 #endif
595
596 /* Heap Entry */
597 #if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607 #else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
614 #endif
615
616 #if EV_MULTIPLICITY
617
618 struct ev_loop
619 {
620 ev_tstamp ev_rt_now;
621 #define ev_rt_now ((loop)->ev_rt_now)
622 #define VAR(name,decl) decl;
623 #include "ev_vars.h"
624 #undef VAR
625 };
626 #include "ev_wrap.h"
627
628 static struct ev_loop default_loop_struct;
629 struct ev_loop *ev_default_loop_ptr;
630
631 #else
632
633 ev_tstamp ev_rt_now;
634 #define VAR(name,decl) static decl;
635 #include "ev_vars.h"
636 #undef VAR
637
638 static int ev_default_loop_ptr;
639
640 #endif
641
642 #if EV_MINIMAL < 2
643 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645 # define EV_INVOKE_PENDING invoke_cb (EV_A)
646 #else
647 # define EV_RELEASE_CB (void)0
648 # define EV_ACQUIRE_CB (void)0
649 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650 #endif
651
652 #define EVUNLOOP_RECURSE 0x80
653
654 /*****************************************************************************/
655
656 #ifndef EV_HAVE_EV_TIME
657 ev_tstamp
658 ev_time (void)
659 {
660 #if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
663 struct timespec ts;
664 clock_gettime (CLOCK_REALTIME, &ts);
665 return ts.tv_sec + ts.tv_nsec * 1e-9;
666 }
667 #endif
668
669 struct timeval tv;
670 gettimeofday (&tv, 0);
671 return tv.tv_sec + tv.tv_usec * 1e-6;
672 }
673 #endif
674
675 inline_size ev_tstamp
676 get_clock (void)
677 {
678 #if EV_USE_MONOTONIC
679 if (expect_true (have_monotonic))
680 {
681 struct timespec ts;
682 clock_gettime (CLOCK_MONOTONIC, &ts);
683 return ts.tv_sec + ts.tv_nsec * 1e-9;
684 }
685 #endif
686
687 return ev_time ();
688 }
689
690 #if EV_MULTIPLICITY
691 ev_tstamp
692 ev_now (EV_P)
693 {
694 return ev_rt_now;
695 }
696 #endif
697
698 void
699 ev_sleep (ev_tstamp delay)
700 {
701 if (delay > 0.)
702 {
703 #if EV_USE_NANOSLEEP
704 struct timespec ts;
705
706 ts.tv_sec = (time_t)delay;
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0);
710 #elif defined(_WIN32)
711 Sleep ((unsigned long)(delay * 1e3));
712 #else
713 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
721 select (0, 0, 0, 0, &tv);
722 #endif
723 }
724 }
725
726 /*****************************************************************************/
727
728 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729
730 /* find a suitable new size for the given array, */
731 /* hopefully by rounding to a ncie-to-malloc size */
732 inline_size int
733 array_nextsize (int elem, int cur, int cnt)
734 {
735 int ncur = cur + 1;
736
737 do
738 ncur <<= 1;
739 while (cnt > ncur);
740
741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
743 {
744 ncur *= elem;
745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
746 ncur = ncur - sizeof (void *) * 4;
747 ncur /= elem;
748 }
749
750 return ncur;
751 }
752
753 static noinline void *
754 array_realloc (int elem, void *base, int *cur, int cnt)
755 {
756 *cur = array_nextsize (elem, *cur, cnt);
757 return ev_realloc (base, elem * *cur);
758 }
759
760 #define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
762
763 #define array_needsize(type,base,cur,cnt,init) \
764 if (expect_false ((cnt) > (cur))) \
765 { \
766 int ocur_ = (cur); \
767 (base) = (type *)array_realloc \
768 (sizeof (type), (base), &(cur), (cnt)); \
769 init ((base) + (ocur_), (cur) - ocur_); \
770 }
771
772 #if 0
773 #define array_slim(type,stem) \
774 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
775 { \
776 stem ## max = array_roundsize (stem ## cnt >> 1); \
777 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
779 }
780 #endif
781
782 #define array_free(stem, idx) \
783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
784
785 /*****************************************************************************/
786
787 /* dummy callback for pending events */
788 static void noinline
789 pendingcb (EV_P_ ev_prepare *w, int revents)
790 {
791 }
792
793 void noinline
794 ev_feed_event (EV_P_ void *w, int revents)
795 {
796 W w_ = (W)w;
797 int pri = ABSPRI (w_);
798
799 if (expect_false (w_->pending))
800 pendings [pri][w_->pending - 1].events |= revents;
801 else
802 {
803 w_->pending = ++pendingcnt [pri];
804 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
805 pendings [pri][w_->pending - 1].w = w_;
806 pendings [pri][w_->pending - 1].events = revents;
807 }
808 }
809
810 inline_speed void
811 feed_reverse (EV_P_ W w)
812 {
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815 }
816
817 inline_size void
818 feed_reverse_done (EV_P_ int revents)
819 {
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823 }
824
825 inline_speed void
826 queue_events (EV_P_ W *events, int eventcnt, int type)
827 {
828 int i;
829
830 for (i = 0; i < eventcnt; ++i)
831 ev_feed_event (EV_A_ events [i], type);
832 }
833
834 /*****************************************************************************/
835
836 inline_speed void
837 fd_event_nc (EV_P_ int fd, int revents)
838 {
839 ANFD *anfd = anfds + fd;
840 ev_io *w;
841
842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
843 {
844 int ev = w->events & revents;
845
846 if (ev)
847 ev_feed_event (EV_A_ (W)w, ev);
848 }
849 }
850
851 /* do not submit kernel events for fds that have reify set */
852 /* because that means they changed while we were polling for new events */
853 inline_speed void
854 fd_event (EV_P_ int fd, int revents)
855 {
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860 }
861
862 void
863 ev_feed_fd_event (EV_P_ int fd, int revents)
864 {
865 if (fd >= 0 && fd < anfdmax)
866 fd_event_nc (EV_A_ fd, revents);
867 }
868
869 /* make sure the external fd watch events are in-sync */
870 /* with the kernel/libev internal state */
871 inline_size void
872 fd_reify (EV_P)
873 {
874 int i;
875
876 for (i = 0; i < fdchangecnt; ++i)
877 {
878 int fd = fdchanges [i];
879 ANFD *anfd = anfds + fd;
880 ev_io *w;
881
882 unsigned char events = 0;
883
884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
885 events |= (unsigned char)w->events;
886
887 #if EV_SELECT_IS_WINSOCKET
888 if (events)
889 {
890 unsigned long arg;
891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
893 }
894 #endif
895
896 {
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
900 anfd->reify = 0;
901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events);
905 }
906 }
907
908 fdchangecnt = 0;
909 }
910
911 /* something about the given fd changed */
912 inline_size void
913 fd_change (EV_P_ int fd, int flags)
914 {
915 unsigned char reify = anfds [fd].reify;
916 anfds [fd].reify |= flags;
917
918 if (expect_true (!reify))
919 {
920 ++fdchangecnt;
921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
922 fdchanges [fdchangecnt - 1] = fd;
923 }
924 }
925
926 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927 inline_speed void
928 fd_kill (EV_P_ int fd)
929 {
930 ev_io *w;
931
932 while ((w = (ev_io *)anfds [fd].head))
933 {
934 ev_io_stop (EV_A_ w);
935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
936 }
937 }
938
939 /* check whether the given fd is atcually valid, for error recovery */
940 inline_size int
941 fd_valid (int fd)
942 {
943 #ifdef _WIN32
944 return _get_osfhandle (fd) != -1;
945 #else
946 return fcntl (fd, F_GETFD) != -1;
947 #endif
948 }
949
950 /* called on EBADF to verify fds */
951 static void noinline
952 fd_ebadf (EV_P)
953 {
954 int fd;
955
956 for (fd = 0; fd < anfdmax; ++fd)
957 if (anfds [fd].events)
958 if (!fd_valid (fd) && errno == EBADF)
959 fd_kill (EV_A_ fd);
960 }
961
962 /* called on ENOMEM in select/poll to kill some fds and retry */
963 static void noinline
964 fd_enomem (EV_P)
965 {
966 int fd;
967
968 for (fd = anfdmax; fd--; )
969 if (anfds [fd].events)
970 {
971 fd_kill (EV_A_ fd);
972 break;
973 }
974 }
975
976 /* usually called after fork if backend needs to re-arm all fds from scratch */
977 static void noinline
978 fd_rearm_all (EV_P)
979 {
980 int fd;
981
982 for (fd = 0; fd < anfdmax; ++fd)
983 if (anfds [fd].events)
984 {
985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
988 }
989 }
990
991 /*****************************************************************************/
992
993 /*
994 * the heap functions want a real array index. array index 0 uis guaranteed to not
995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
996 * the branching factor of the d-tree.
997 */
998
999 /*
1000 * at the moment we allow libev the luxury of two heaps,
1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1002 * which is more cache-efficient.
1003 * the difference is about 5% with 50000+ watchers.
1004 */
1005 #if EV_USE_4HEAP
1006
1007 #define DHEAP 4
1008 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010 #define UPHEAP_DONE(p,k) ((p) == (k))
1011
1012 /* away from the root */
1013 inline_speed void
1014 downheap (ANHE *heap, int N, int k)
1015 {
1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
1018
1019 for (;;)
1020 {
1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024
1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
1027 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
1041 break;
1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054 }
1055
1056 #else /* 4HEAP */
1057
1058 #define HEAP0 1
1059 #define HPARENT(k) ((k) >> 1)
1060 #define UPHEAP_DONE(p,k) (!(p))
1061
1062 /* away from the root */
1063 inline_speed void
1064 downheap (ANHE *heap, int N, int k)
1065 {
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
1081 heap [k] = heap [c];
1082 ev_active (ANHE_w (heap [k])) = k;
1083
1084 k = c;
1085 }
1086
1087 heap [k] = he;
1088 ev_active (ANHE_w (he)) = k;
1089 }
1090 #endif
1091
1092 /* towards the root */
1093 inline_speed void
1094 upheap (ANHE *heap, int k)
1095 {
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112 }
1113
1114 /* move an element suitably so it is in a correct place */
1115 inline_size void
1116 adjustheap (ANHE *heap, int N, int k)
1117 {
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1119 upheap (heap, k);
1120 else
1121 downheap (heap, N, k);
1122 }
1123
1124 /* rebuild the heap: this function is used only once and executed rarely */
1125 inline_size void
1126 reheap (ANHE *heap, int N)
1127 {
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
1134 }
1135
1136 /*****************************************************************************/
1137
1138 /* associate signal watchers to a signal signal */
1139 typedef struct
1140 {
1141 EV_ATOMIC_T pending;
1142 #if EV_MULTIPLICITY
1143 EV_P;
1144 #endif
1145 WL head;
1146 } ANSIG;
1147
1148 static ANSIG signals [EV_NSIG - 1];
1149
1150 /*****************************************************************************/
1151
1152 /* used to prepare libev internal fd's */
1153 /* this is not fork-safe */
1154 inline_speed void
1155 fd_intern (int fd)
1156 {
1157 #ifdef _WIN32
1158 unsigned long arg = 1;
1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1160 #else
1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
1162 fcntl (fd, F_SETFL, O_NONBLOCK);
1163 #endif
1164 }
1165
1166 static void noinline
1167 evpipe_init (EV_P)
1168 {
1169 if (!ev_is_active (&pipe_w))
1170 {
1171 #if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183 #endif
1184 {
1185 while (pipe (evpipe))
1186 ev_syserr ("(libev) error creating signal/async pipe");
1187
1188 fd_intern (evpipe [0]);
1189 fd_intern (evpipe [1]);
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
1192
1193 ev_io_start (EV_A_ &pipe_w);
1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196 }
1197
1198 inline_size void
1199 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200 {
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207 #if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214 #endif
1215 write (evpipe [1], &old_errno, 1);
1216
1217 errno = old_errno;
1218 }
1219 }
1220
1221 /* called whenever the libev signal pipe */
1222 /* got some events (signal, async) */
1223 static void
1224 pipecb (EV_P_ ev_io *iow, int revents)
1225 {
1226 int i;
1227
1228 #if EV_USE_EVENTFD
1229 if (evfd >= 0)
1230 {
1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235 #endif
1236 {
1237 char dummy;
1238 read (evpipe [0], &dummy, 1);
1239 }
1240
1241 if (sig_pending)
1242 {
1243 sig_pending = 0;
1244
1245 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1);
1248 }
1249
1250 #if EV_ASYNC_ENABLE
1251 if (async_pending)
1252 {
1253 async_pending = 0;
1254
1255 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent)
1257 {
1258 asyncs [i]->sent = 0;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 }
1261 }
1262 #endif
1263 }
1264
1265 /*****************************************************************************/
1266
1267 static void
1268 ev_sighandler (int signum)
1269 {
1270 #if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272 #endif
1273
1274 #if _WIN32
1275 signal (signum, ev_sighandler);
1276 #endif
1277
1278 signals [signum - 1].pending = 1;
1279 evpipe_write (EV_A_ &sig_pending);
1280 }
1281
1282 void noinline
1283 ev_feed_signal_event (EV_P_ int signum)
1284 {
1285 WL w;
1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1292 #if EV_MULTIPLICITY
1293 /* it is permissible to try to feed a signal to the wrong loop */
1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1295
1296 if (expect_false (signals [signum].loop != EV_A))
1297 return;
1298 #endif
1299
1300 signals [signum].pending = 0;
1301
1302 for (w = signals [signum].head; w; w = w->next)
1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1304 }
1305
1306 #if EV_USE_SIGNALFD
1307 static void
1308 sigfdcb (EV_P_ ev_io *iow, int revents)
1309 {
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323 }
1324 #endif
1325
1326 /*****************************************************************************/
1327
1328 static WL childs [EV_PID_HASHSIZE];
1329
1330 #ifndef _WIN32
1331
1332 static ev_signal childev;
1333
1334 #ifndef WIFCONTINUED
1335 # define WIFCONTINUED(status) 0
1336 #endif
1337
1338 /* handle a single child status event */
1339 inline_speed void
1340 child_reap (EV_P_ int chain, int pid, int status)
1341 {
1342 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1344
1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 {
1347 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1)))
1349 {
1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1351 w->rpid = pid;
1352 w->rstatus = status;
1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1354 }
1355 }
1356 }
1357
1358 #ifndef WCONTINUED
1359 # define WCONTINUED 0
1360 #endif
1361
1362 /* called on sigchld etc., calls waitpid */
1363 static void
1364 childcb (EV_P_ ev_signal *sw, int revents)
1365 {
1366 int pid, status;
1367
1368 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1369 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1370 if (!WCONTINUED
1371 || errno != EINVAL
1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1373 return;
1374
1375 /* make sure we are called again until all children have been reaped */
1376 /* we need to do it this way so that the callback gets called before we continue */
1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1378
1379 child_reap (EV_A_ pid, pid, status);
1380 if (EV_PID_HASHSIZE > 1)
1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1382 }
1383
1384 #endif
1385
1386 /*****************************************************************************/
1387
1388 #if EV_USE_PORT
1389 # include "ev_port.c"
1390 #endif
1391 #if EV_USE_KQUEUE
1392 # include "ev_kqueue.c"
1393 #endif
1394 #if EV_USE_EPOLL
1395 # include "ev_epoll.c"
1396 #endif
1397 #if EV_USE_POLL
1398 # include "ev_poll.c"
1399 #endif
1400 #if EV_USE_SELECT
1401 # include "ev_select.c"
1402 #endif
1403
1404 int
1405 ev_version_major (void)
1406 {
1407 return EV_VERSION_MAJOR;
1408 }
1409
1410 int
1411 ev_version_minor (void)
1412 {
1413 return EV_VERSION_MINOR;
1414 }
1415
1416 /* return true if we are running with elevated privileges and should ignore env variables */
1417 int inline_size
1418 enable_secure (void)
1419 {
1420 #ifdef _WIN32
1421 return 0;
1422 #else
1423 return getuid () != geteuid ()
1424 || getgid () != getegid ();
1425 #endif
1426 }
1427
1428 unsigned int
1429 ev_supported_backends (void)
1430 {
1431 unsigned int flags = 0;
1432
1433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1438
1439 return flags;
1440 }
1441
1442 unsigned int
1443 ev_recommended_backends (void)
1444 {
1445 unsigned int flags = ev_supported_backends ();
1446
1447 #ifndef __NetBSD__
1448 /* kqueue is borked on everything but netbsd apparently */
1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1450 flags &= ~EVBACKEND_KQUEUE;
1451 #endif
1452 #ifdef __APPLE__
1453 /* only select works correctly on that "unix-certified" platform */
1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1456 #endif
1457
1458 return flags;
1459 }
1460
1461 unsigned int
1462 ev_embeddable_backends (void)
1463 {
1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1465
1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */
1468 flags &= ~EVBACKEND_EPOLL;
1469
1470 return flags;
1471 }
1472
1473 unsigned int
1474 ev_backend (EV_P)
1475 {
1476 return backend;
1477 }
1478
1479 #if EV_MINIMAL < 2
1480 unsigned int
1481 ev_loop_count (EV_P)
1482 {
1483 return loop_count;
1484 }
1485
1486 unsigned int
1487 ev_loop_depth (EV_P)
1488 {
1489 return loop_depth;
1490 }
1491
1492 void
1493 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1494 {
1495 io_blocktime = interval;
1496 }
1497
1498 void
1499 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1500 {
1501 timeout_blocktime = interval;
1502 }
1503
1504 void
1505 ev_set_userdata (EV_P_ void *data)
1506 {
1507 userdata = data;
1508 }
1509
1510 void *
1511 ev_userdata (EV_P)
1512 {
1513 return userdata;
1514 }
1515
1516 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517 {
1518 invoke_cb = invoke_pending_cb;
1519 }
1520
1521 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522 {
1523 release_cb = release;
1524 acquire_cb = acquire;
1525 }
1526 #endif
1527
1528 /* initialise a loop structure, must be zero-initialised */
1529 static void noinline
1530 loop_init (EV_P_ unsigned int flags)
1531 {
1532 if (!backend)
1533 {
1534 #if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542 #endif
1543
1544 #if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1546 {
1547 struct timespec ts;
1548
1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1550 have_monotonic = 1;
1551 }
1552 #endif
1553
1554 /* pid check not overridable via env */
1555 #ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558 #endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1564
1565 ev_rt_now = ev_time ();
1566 mn_now = get_clock ();
1567 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now;
1569 #if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571 #endif
1572
1573 io_blocktime = 0.;
1574 timeout_blocktime = 0.;
1575 backend = 0;
1576 backend_fd = -1;
1577 sig_pending = 0;
1578 #if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580 #endif
1581 #if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583 #endif
1584 #if EV_USE_SIGNALFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1586 #endif
1587
1588 if (!(flags & 0x0000ffffU))
1589 flags |= ev_recommended_backends ();
1590
1591 #if EV_USE_PORT
1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1593 #endif
1594 #if EV_USE_KQUEUE
1595 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1596 #endif
1597 #if EV_USE_EPOLL
1598 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1599 #endif
1600 #if EV_USE_POLL
1601 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1602 #endif
1603 #if EV_USE_SELECT
1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1605 #endif
1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1609 ev_init (&pipe_w, pipecb);
1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1611 }
1612 }
1613
1614 /* free up a loop structure */
1615 static void noinline
1616 loop_destroy (EV_P)
1617 {
1618 int i;
1619
1620 if (ev_is_active (&pipe_w))
1621 {
1622 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1624
1625 #if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628 #endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 }
1636
1637 #if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645 #endif
1646
1647 #if EV_USE_INOTIFY
1648 if (fs_fd >= 0)
1649 close (fs_fd);
1650 #endif
1651
1652 if (backend_fd >= 0)
1653 close (backend_fd);
1654
1655 #if EV_USE_PORT
1656 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1657 #endif
1658 #if EV_USE_KQUEUE
1659 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1660 #endif
1661 #if EV_USE_EPOLL
1662 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1663 #endif
1664 #if EV_USE_POLL
1665 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1666 #endif
1667 #if EV_USE_SELECT
1668 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1669 #endif
1670
1671 for (i = NUMPRI; i--; )
1672 {
1673 array_free (pending, [i]);
1674 #if EV_IDLE_ENABLE
1675 array_free (idle, [i]);
1676 #endif
1677 }
1678
1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1680
1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1683 array_free (fdchange, EMPTY);
1684 array_free (timer, EMPTY);
1685 #if EV_PERIODIC_ENABLE
1686 array_free (periodic, EMPTY);
1687 #endif
1688 #if EV_FORK_ENABLE
1689 array_free (fork, EMPTY);
1690 #endif
1691 array_free (prepare, EMPTY);
1692 array_free (check, EMPTY);
1693 #if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY);
1695 #endif
1696
1697 backend = 0;
1698 }
1699
1700 #if EV_USE_INOTIFY
1701 inline_size void infy_fork (EV_P);
1702 #endif
1703
1704 inline_size void
1705 loop_fork (EV_P)
1706 {
1707 #if EV_USE_PORT
1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1709 #endif
1710 #if EV_USE_KQUEUE
1711 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1712 #endif
1713 #if EV_USE_EPOLL
1714 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1715 #endif
1716 #if EV_USE_INOTIFY
1717 infy_fork (EV_A);
1718 #endif
1719
1720 if (ev_is_active (&pipe_w))
1721 {
1722 /* this "locks" the handlers against writing to the pipe */
1723 /* while we modify the fd vars */
1724 sig_pending = 1;
1725 #if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727 #endif
1728
1729 ev_ref (EV_A);
1730 ev_io_stop (EV_A_ &pipe_w);
1731
1732 #if EV_USE_EVENTFD
1733 if (evfd >= 0)
1734 close (evfd);
1735 #endif
1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1742
1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
1746 }
1747
1748 postfork = 0;
1749 }
1750
1751 #if EV_MULTIPLICITY
1752
1753 struct ev_loop *
1754 ev_loop_new (unsigned int flags)
1755 {
1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1757
1758 memset (EV_A, 0, sizeof (struct ev_loop));
1759 loop_init (EV_A_ flags);
1760
1761 if (ev_backend (EV_A))
1762 return EV_A;
1763
1764 return 0;
1765 }
1766
1767 void
1768 ev_loop_destroy (EV_P)
1769 {
1770 loop_destroy (EV_A);
1771 ev_free (loop);
1772 }
1773
1774 void
1775 ev_loop_fork (EV_P)
1776 {
1777 postfork = 1; /* must be in line with ev_default_fork */
1778 }
1779 #endif /* multiplicity */
1780
1781 #if EV_VERIFY
1782 static void noinline
1783 verify_watcher (EV_P_ W w)
1784 {
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789 }
1790
1791 static void noinline
1792 verify_heap (EV_P_ ANHE *heap, int N)
1793 {
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804 }
1805
1806 static void noinline
1807 array_verify (EV_P_ W *ws, int cnt)
1808 {
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814 }
1815 #endif
1816
1817 #if EV_MINIMAL < 2
1818 void
1819 ev_loop_verify (EV_P)
1820 {
1821 #if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843 #if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846 #endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851 #if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855 #endif
1856 }
1857
1858 #if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861 #endif
1862
1863 #if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866 #endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874 # if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877 # endif
1878 #endif
1879 }
1880 #endif
1881
1882 #if EV_MULTIPLICITY
1883 struct ev_loop *
1884 ev_default_loop_init (unsigned int flags)
1885 #else
1886 int
1887 ev_default_loop (unsigned int flags)
1888 #endif
1889 {
1890 if (!ev_default_loop_ptr)
1891 {
1892 #if EV_MULTIPLICITY
1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1894 #else
1895 ev_default_loop_ptr = 1;
1896 #endif
1897
1898 loop_init (EV_A_ flags);
1899
1900 if (ev_backend (EV_A))
1901 {
1902 #ifndef _WIN32
1903 ev_signal_init (&childev, childcb, SIGCHLD);
1904 ev_set_priority (&childev, EV_MAXPRI);
1905 ev_signal_start (EV_A_ &childev);
1906 ev_unref (EV_A); /* child watcher should not keep loop alive */
1907 #endif
1908 }
1909 else
1910 ev_default_loop_ptr = 0;
1911 }
1912
1913 return ev_default_loop_ptr;
1914 }
1915
1916 void
1917 ev_default_destroy (void)
1918 {
1919 #if EV_MULTIPLICITY
1920 EV_P = ev_default_loop_ptr;
1921 #endif
1922
1923 ev_default_loop_ptr = 0;
1924
1925 #ifndef _WIN32
1926 ev_ref (EV_A); /* child watcher */
1927 ev_signal_stop (EV_A_ &childev);
1928 #endif
1929
1930 loop_destroy (EV_A);
1931 }
1932
1933 void
1934 ev_default_fork (void)
1935 {
1936 #if EV_MULTIPLICITY
1937 EV_P = ev_default_loop_ptr;
1938 #endif
1939
1940 postfork = 1; /* must be in line with ev_loop_fork */
1941 }
1942
1943 /*****************************************************************************/
1944
1945 void
1946 ev_invoke (EV_P_ void *w, int revents)
1947 {
1948 EV_CB_INVOKE ((W)w, revents);
1949 }
1950
1951 unsigned int
1952 ev_pending_count (EV_P)
1953 {
1954 int pri;
1955 unsigned int count = 0;
1956
1957 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri];
1959
1960 return count;
1961 }
1962
1963 void noinline
1964 ev_invoke_pending (EV_P)
1965 {
1966 int pri;
1967
1968 for (pri = NUMPRI; pri--; )
1969 while (pendingcnt [pri])
1970 {
1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1972
1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1975
1976 p->w->pending = 0;
1977 EV_CB_INVOKE (p->w, p->events);
1978 EV_FREQUENT_CHECK;
1979 }
1980 }
1981
1982 #if EV_IDLE_ENABLE
1983 /* make idle watchers pending. this handles the "call-idle */
1984 /* only when higher priorities are idle" logic */
1985 inline_size void
1986 idle_reify (EV_P)
1987 {
1988 if (expect_false (idleall))
1989 {
1990 int pri;
1991
1992 for (pri = NUMPRI; pri--; )
1993 {
1994 if (pendingcnt [pri])
1995 break;
1996
1997 if (idlecnt [pri])
1998 {
1999 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2000 break;
2001 }
2002 }
2003 }
2004 }
2005 #endif
2006
2007 /* make timers pending */
2008 inline_size void
2009 timers_reify (EV_P)
2010 {
2011 EV_FREQUENT_CHECK;
2012
2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2014 {
2015 do
2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2029
2030 ANHE_at_cache (timers [HEAP0]);
2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
2038 }
2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2040
2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
2042 }
2043 }
2044
2045 #if EV_PERIODIC_ENABLE
2046 /* make periodics pending */
2047 inline_size void
2048 periodics_reify (EV_P)
2049 {
2050 EV_FREQUENT_CHECK;
2051
2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2053 {
2054 int feed_count = 0;
2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101 }
2102
2103 /* simply recalculate all periodics */
2104 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105 static void noinline
2106 periodics_reschedule (EV_P)
2107 {
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124 }
2125 #endif
2126
2127 /* adjust all timers by a given offset */
2128 static void noinline
2129 timers_reschedule (EV_P_ ev_tstamp adjust)
2130 {
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139 }
2140
2141 /* fetch new monotonic and realtime times from the kernel */
2142 /* also detetc if there was a timejump, and act accordingly */
2143 inline_speed void
2144 time_update (EV_P_ ev_tstamp max_block)
2145 {
2146 #if EV_USE_MONOTONIC
2147 if (expect_true (have_monotonic))
2148 {
2149 int i;
2150 ev_tstamp odiff = rtmn_diff;
2151
2152 mn_now = get_clock ();
2153
2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2155 /* interpolate in the meantime */
2156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2157 {
2158 ev_rt_now = rtmn_diff + mn_now;
2159 return;
2160 }
2161
2162 now_floor = mn_now;
2163 ev_rt_now = ev_time ();
2164
2165 /* loop a few times, before making important decisions.
2166 * on the choice of "4": one iteration isn't enough,
2167 * in case we get preempted during the calls to
2168 * ev_time and get_clock. a second call is almost guaranteed
2169 * to succeed in that case, though. and looping a few more times
2170 * doesn't hurt either as we only do this on time-jumps or
2171 * in the unlikely event of having been preempted here.
2172 */
2173 for (i = 4; --i; )
2174 {
2175 rtmn_diff = ev_rt_now - mn_now;
2176
2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2178 return; /* all is well */
2179
2180 ev_rt_now = ev_time ();
2181 mn_now = get_clock ();
2182 now_floor = mn_now;
2183 }
2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2187 # if EV_PERIODIC_ENABLE
2188 periodics_reschedule (EV_A);
2189 # endif
2190 }
2191 else
2192 #endif
2193 {
2194 ev_rt_now = ev_time ();
2195
2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2200 #if EV_PERIODIC_ENABLE
2201 periodics_reschedule (EV_A);
2202 #endif
2203 }
2204
2205 mn_now = ev_rt_now;
2206 }
2207 }
2208
2209 void
2210 ev_loop (EV_P_ int flags)
2211 {
2212 #if EV_MINIMAL < 2
2213 ++loop_depth;
2214 #endif
2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2221
2222 do
2223 {
2224 #if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226 #endif
2227
2228 #ifndef _WIN32
2229 if (expect_false (curpid)) /* penalise the forking check even more */
2230 if (expect_false (getpid () != curpid))
2231 {
2232 curpid = getpid ();
2233 postfork = 1;
2234 }
2235 #endif
2236
2237 #if EV_FORK_ENABLE
2238 /* we might have forked, so queue fork handlers */
2239 if (expect_false (postfork))
2240 if (forkcnt)
2241 {
2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2243 EV_INVOKE_PENDING;
2244 }
2245 #endif
2246
2247 /* queue prepare watchers (and execute them) */
2248 if (expect_false (preparecnt))
2249 {
2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2251 EV_INVOKE_PENDING;
2252 }
2253
2254 if (expect_false (loop_done))
2255 break;
2256
2257 /* we might have forked, so reify kernel state if necessary */
2258 if (expect_false (postfork))
2259 loop_fork (EV_A);
2260
2261 /* update fd-related kernel structures */
2262 fd_reify (EV_A);
2263
2264 /* calculate blocking time */
2265 {
2266 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.;
2268
2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
2274 /* update time to cancel out callback processing overhead */
2275 time_update (EV_A_ 1e100);
2276
2277 waittime = MAX_BLOCKTIME;
2278
2279 if (timercnt)
2280 {
2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2282 if (waittime > to) waittime = to;
2283 }
2284
2285 #if EV_PERIODIC_ENABLE
2286 if (periodiccnt)
2287 {
2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2289 if (waittime > to) waittime = to;
2290 }
2291 #endif
2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime;
2296
2297 /* extra check because io_blocktime is commonly 0 */
2298 if (expect_false (io_blocktime))
2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
2307 ev_sleep (sleeptime);
2308 waittime -= sleeptime;
2309 }
2310 }
2311 }
2312
2313 #if EV_MINIMAL < 2
2314 ++loop_count;
2315 #endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2319
2320 /* update ev_rt_now, do magic */
2321 time_update (EV_A_ waittime + sleeptime);
2322 }
2323
2324 /* queue pending timers and reschedule them */
2325 timers_reify (EV_A); /* relative timers called last */
2326 #if EV_PERIODIC_ENABLE
2327 periodics_reify (EV_A); /* absolute timers called first */
2328 #endif
2329
2330 #if EV_IDLE_ENABLE
2331 /* queue idle watchers unless other events are pending */
2332 idle_reify (EV_A);
2333 #endif
2334
2335 /* queue check watchers, to be executed first */
2336 if (expect_false (checkcnt))
2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2338
2339 EV_INVOKE_PENDING;
2340 }
2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
2346
2347 if (loop_done == EVUNLOOP_ONE)
2348 loop_done = EVUNLOOP_CANCEL;
2349
2350 #if EV_MINIMAL < 2
2351 --loop_depth;
2352 #endif
2353 }
2354
2355 void
2356 ev_unloop (EV_P_ int how)
2357 {
2358 loop_done = how;
2359 }
2360
2361 void
2362 ev_ref (EV_P)
2363 {
2364 ++activecnt;
2365 }
2366
2367 void
2368 ev_unref (EV_P)
2369 {
2370 --activecnt;
2371 }
2372
2373 void
2374 ev_now_update (EV_P)
2375 {
2376 time_update (EV_A_ 1e100);
2377 }
2378
2379 void
2380 ev_suspend (EV_P)
2381 {
2382 ev_now_update (EV_A);
2383 }
2384
2385 void
2386 ev_resume (EV_P)
2387 {
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392 #if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395 #endif
2396 }
2397
2398 /*****************************************************************************/
2399 /* singly-linked list management, used when the expected list length is short */
2400
2401 inline_size void
2402 wlist_add (WL *head, WL elem)
2403 {
2404 elem->next = *head;
2405 *head = elem;
2406 }
2407
2408 inline_size void
2409 wlist_del (WL *head, WL elem)
2410 {
2411 while (*head)
2412 {
2413 if (expect_true (*head == elem))
2414 {
2415 *head = elem->next;
2416 break;
2417 }
2418
2419 head = &(*head)->next;
2420 }
2421 }
2422
2423 /* internal, faster, version of ev_clear_pending */
2424 inline_speed void
2425 clear_pending (EV_P_ W w)
2426 {
2427 if (w->pending)
2428 {
2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2430 w->pending = 0;
2431 }
2432 }
2433
2434 int
2435 ev_clear_pending (EV_P_ void *w)
2436 {
2437 W w_ = (W)w;
2438 int pending = w_->pending;
2439
2440 if (expect_true (pending))
2441 {
2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
2444 w_->pending = 0;
2445 return p->events;
2446 }
2447 else
2448 return 0;
2449 }
2450
2451 inline_size void
2452 pri_adjust (EV_P_ W w)
2453 {
2454 int pri = ev_priority (w);
2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2457 ev_set_priority (w, pri);
2458 }
2459
2460 inline_speed void
2461 ev_start (EV_P_ W w, int active)
2462 {
2463 pri_adjust (EV_A_ w);
2464 w->active = active;
2465 ev_ref (EV_A);
2466 }
2467
2468 inline_size void
2469 ev_stop (EV_P_ W w)
2470 {
2471 ev_unref (EV_A);
2472 w->active = 0;
2473 }
2474
2475 /*****************************************************************************/
2476
2477 void noinline
2478 ev_io_start (EV_P_ ev_io *w)
2479 {
2480 int fd = w->fd;
2481
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
2489
2490 ev_start (EV_A_ (W)w, 1);
2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2492 wlist_add (&anfds[fd].head, (WL)w);
2493
2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
2498 }
2499
2500 void noinline
2501 ev_io_stop (EV_P_ ev_io *w)
2502 {
2503 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w)))
2505 return;
2506
2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
2510
2511 wlist_del (&anfds[w->fd].head, (WL)w);
2512 ev_stop (EV_A_ (W)w);
2513
2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
2517 }
2518
2519 void noinline
2520 ev_timer_start (EV_P_ ev_timer *w)
2521 {
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_at (w) += mn_now;
2526
2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
2537
2538 EV_FREQUENT_CHECK;
2539
2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2541 }
2542
2543 void noinline
2544 ev_timer_stop (EV_P_ ev_timer *w)
2545 {
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 EV_FREQUENT_CHECK;
2551
2552 {
2553 int active = ev_active (w);
2554
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556
2557 --timercnt;
2558
2559 if (expect_true (active < timercnt + HEAP0))
2560 {
2561 timers [active] = timers [timercnt + HEAP0];
2562 adjustheap (timers, timercnt, active);
2563 }
2564 }
2565
2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
2569
2570 ev_stop (EV_A_ (W)w);
2571 }
2572
2573 void noinline
2574 ev_timer_again (EV_P_ ev_timer *w)
2575 {
2576 EV_FREQUENT_CHECK;
2577
2578 if (ev_is_active (w))
2579 {
2580 if (w->repeat)
2581 {
2582 ev_at (w) = mn_now + w->repeat;
2583 ANHE_at_cache (timers [ev_active (w)]);
2584 adjustheap (timers, timercnt, ev_active (w));
2585 }
2586 else
2587 ev_timer_stop (EV_A_ w);
2588 }
2589 else if (w->repeat)
2590 {
2591 ev_at (w) = w->repeat;
2592 ev_timer_start (EV_A_ w);
2593 }
2594
2595 EV_FREQUENT_CHECK;
2596 }
2597
2598 ev_tstamp
2599 ev_timer_remaining (EV_P_ ev_timer *w)
2600 {
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2602 }
2603
2604 #if EV_PERIODIC_ENABLE
2605 void noinline
2606 ev_periodic_start (EV_P_ ev_periodic *w)
2607 {
2608 if (expect_false (ev_is_active (w)))
2609 return;
2610
2611 if (w->reschedule_cb)
2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2613 else if (w->interval)
2614 {
2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2616 /* this formula differs from the one in periodic_reify because we do not always round up */
2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2618 }
2619 else
2620 ev_at (w) = w->offset;
2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
2630
2631 EV_FREQUENT_CHECK;
2632
2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2634 }
2635
2636 void noinline
2637 ev_periodic_stop (EV_P_ ev_periodic *w)
2638 {
2639 clear_pending (EV_A_ (W)w);
2640 if (expect_false (!ev_is_active (w)))
2641 return;
2642
2643 EV_FREQUENT_CHECK;
2644
2645 {
2646 int active = ev_active (w);
2647
2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2649
2650 --periodiccnt;
2651
2652 if (expect_true (active < periodiccnt + HEAP0))
2653 {
2654 periodics [active] = periodics [periodiccnt + HEAP0];
2655 adjustheap (periodics, periodiccnt, active);
2656 }
2657 }
2658
2659 EV_FREQUENT_CHECK;
2660
2661 ev_stop (EV_A_ (W)w);
2662 }
2663
2664 void noinline
2665 ev_periodic_again (EV_P_ ev_periodic *w)
2666 {
2667 /* TODO: use adjustheap and recalculation */
2668 ev_periodic_stop (EV_A_ w);
2669 ev_periodic_start (EV_A_ w);
2670 }
2671 #endif
2672
2673 #ifndef SA_RESTART
2674 # define SA_RESTART 0
2675 #endif
2676
2677 void noinline
2678 ev_signal_start (EV_P_ ev_signal *w)
2679 {
2680 if (expect_false (ev_is_active (w)))
2681 return;
2682
2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2684
2685 #if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688
2689 signals [w->signum - 1].loop = EV_A;
2690 #endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694 #if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2696 {
2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2698 if (sigfd < 0 && errno == EINVAL)
2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2700
2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
2704
2705 sigemptyset (&sigfd_set);
2706
2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722 #endif
2723
2724 ev_start (EV_A_ (W)w, 1);
2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
2726
2727 if (!((WL)w)->next)
2728 # if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730 # endif
2731 {
2732 # if _WIN32
2733 signal (w->signum, ev_sighandler);
2734 # else
2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2739 sa.sa_handler = ev_sighandler;
2740 sigfillset (&sa.sa_mask);
2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2747 #endif
2748 }
2749
2750 EV_FREQUENT_CHECK;
2751 }
2752
2753 void noinline
2754 ev_signal_stop (EV_P_ ev_signal *w)
2755 {
2756 clear_pending (EV_A_ (W)w);
2757 if (expect_false (!ev_is_active (w)))
2758 return;
2759
2760 EV_FREQUENT_CHECK;
2761
2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
2763 ev_stop (EV_A_ (W)w);
2764
2765 if (!signals [w->signum - 1].head)
2766 {
2767 #if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769 #endif
2770 #if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780 #endif
2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785 }
2786
2787 void
2788 ev_child_start (EV_P_ ev_child *w)
2789 {
2790 #if EV_MULTIPLICITY
2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2792 #endif
2793 if (expect_false (ev_is_active (w)))
2794 return;
2795
2796 EV_FREQUENT_CHECK;
2797
2798 ev_start (EV_A_ (W)w, 1);
2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
2802 }
2803
2804 void
2805 ev_child_stop (EV_P_ ev_child *w)
2806 {
2807 clear_pending (EV_A_ (W)w);
2808 if (expect_false (!ev_is_active (w)))
2809 return;
2810
2811 EV_FREQUENT_CHECK;
2812
2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2817 }
2818
2819 #if EV_STAT_ENABLE
2820
2821 # ifdef _WIN32
2822 # undef lstat
2823 # define lstat(a,b) _stati64 (a,b)
2824 # endif
2825
2826 #define DEF_STAT_INTERVAL 5.0074891
2827 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2828 #define MIN_STAT_INTERVAL 0.1074891
2829
2830 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2831
2832 #if EV_USE_INOTIFY
2833 # define EV_INOTIFY_BUFSIZE 8192
2834
2835 static void noinline
2836 infy_add (EV_P_ ev_stat *w)
2837 {
2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2839
2840 if (w->wd < 0)
2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2844
2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2849 {
2850 char path [4096];
2851 strcpy (path, w->path);
2852
2853 do
2854 {
2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2857
2858 char *pend = strrchr (path, '/');
2859
2860 if (!pend || pend == path)
2861 break;
2862
2863 *pend = 0;
2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2865 }
2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2867 }
2868 }
2869
2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2892 }
2893
2894 static void noinline
2895 infy_del (EV_P_ ev_stat *w)
2896 {
2897 int slot;
2898 int wd = w->wd;
2899
2900 if (wd < 0)
2901 return;
2902
2903 w->wd = -2;
2904 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2905 wlist_del (&fs_hash [slot].head, (WL)w);
2906
2907 /* remove this watcher, if others are watching it, they will rearm */
2908 inotify_rm_watch (fs_fd, wd);
2909 }
2910
2911 static void noinline
2912 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2913 {
2914 if (slot < 0)
2915 /* overflow, need to check for all hash slots */
2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2917 infy_wd (EV_A_ slot, wd, ev);
2918 else
2919 {
2920 WL w_;
2921
2922 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2923 {
2924 ev_stat *w = (ev_stat *)w_;
2925 w_ = w_->next; /* lets us remove this watcher and all before it */
2926
2927 if (w->wd == wd || wd == -1)
2928 {
2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2932 w->wd = -1;
2933 infy_add (EV_A_ w); /* re-add, no matter what */
2934 }
2935
2936 stat_timer_cb (EV_A_ &w->timer, 0);
2937 }
2938 }
2939 }
2940 }
2941
2942 static void
2943 infy_cb (EV_P_ ev_io *w, int revents)
2944 {
2945 char buf [EV_INOTIFY_BUFSIZE];
2946 struct inotify_event *ev = (struct inotify_event *)buf;
2947 int ofs;
2948 int len = read (fs_fd, buf, sizeof (buf));
2949
2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2952 }
2953
2954 inline_size void
2955 check_2625 (EV_P)
2956 {
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975 }
2976
2977 inline_size void
2978 infy_init (EV_P)
2979 {
2980 if (fs_fd != -2)
2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2986
2987 fs_fd = inotify_init ();
2988
2989 if (fs_fd >= 0)
2990 {
2991 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2992 ev_set_priority (&fs_w, EV_MAXPRI);
2993 ev_io_start (EV_A_ &fs_w);
2994 }
2995 }
2996
2997 inline_size void
2998 infy_fork (EV_P)
2999 {
3000 int slot;
3001
3002 if (fs_fd < 0)
3003 return;
3004
3005 close (fs_fd);
3006 fs_fd = inotify_init ();
3007
3008 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3009 {
3010 WL w_ = fs_hash [slot].head;
3011 fs_hash [slot].head = 0;
3012
3013 while (w_)
3014 {
3015 ev_stat *w = (ev_stat *)w_;
3016 w_ = w_->next; /* lets us add this watcher */
3017
3018 w->wd = -1;
3019
3020 if (fs_fd >= 0)
3021 infy_add (EV_A_ w); /* re-add, no matter what */
3022 else
3023 ev_timer_again (EV_A_ &w->timer);
3024 }
3025 }
3026 }
3027
3028 #endif
3029
3030 #ifdef _WIN32
3031 # define EV_LSTAT(p,b) _stati64 (p, b)
3032 #else
3033 # define EV_LSTAT(p,b) lstat (p, b)
3034 #endif
3035
3036 void
3037 ev_stat_stat (EV_P_ ev_stat *w)
3038 {
3039 if (lstat (w->path, &w->attr) < 0)
3040 w->attr.st_nlink = 0;
3041 else if (!w->attr.st_nlink)
3042 w->attr.st_nlink = 1;
3043 }
3044
3045 static void noinline
3046 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3047 {
3048 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3049
3050 /* we copy this here each the time so that */
3051 /* prev has the old value when the callback gets invoked */
3052 w->prev = w->attr;
3053 ev_stat_stat (EV_A_ w);
3054
3055 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3056 if (
3057 w->prev.st_dev != w->attr.st_dev
3058 || w->prev.st_ino != w->attr.st_ino
3059 || w->prev.st_mode != w->attr.st_mode
3060 || w->prev.st_nlink != w->attr.st_nlink
3061 || w->prev.st_uid != w->attr.st_uid
3062 || w->prev.st_gid != w->attr.st_gid
3063 || w->prev.st_rdev != w->attr.st_rdev
3064 || w->prev.st_size != w->attr.st_size
3065 || w->prev.st_atime != w->attr.st_atime
3066 || w->prev.st_mtime != w->attr.st_mtime
3067 || w->prev.st_ctime != w->attr.st_ctime
3068 ) {
3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
3072 infy_del (EV_A_ w);
3073 infy_add (EV_A_ w);
3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
3076 #endif
3077
3078 ev_feed_event (EV_A_ w, EV_STAT);
3079 }
3080 }
3081
3082 void
3083 ev_stat_start (EV_P_ ev_stat *w)
3084 {
3085 if (expect_false (ev_is_active (w)))
3086 return;
3087
3088 ev_stat_stat (EV_A_ w);
3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3091 w->interval = MIN_STAT_INTERVAL;
3092
3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3094 ev_set_priority (&w->timer, ev_priority (w));
3095
3096 #if EV_USE_INOTIFY
3097 infy_init (EV_A);
3098
3099 if (fs_fd >= 0)
3100 infy_add (EV_A_ w);
3101 else
3102 #endif
3103 ev_timer_again (EV_A_ &w->timer);
3104
3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
3108 }
3109
3110 void
3111 ev_stat_stop (EV_P_ ev_stat *w)
3112 {
3113 clear_pending (EV_A_ (W)w);
3114 if (expect_false (!ev_is_active (w)))
3115 return;
3116
3117 EV_FREQUENT_CHECK;
3118
3119 #if EV_USE_INOTIFY
3120 infy_del (EV_A_ w);
3121 #endif
3122 ev_timer_stop (EV_A_ &w->timer);
3123
3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
3127 }
3128 #endif
3129
3130 #if EV_IDLE_ENABLE
3131 void
3132 ev_idle_start (EV_P_ ev_idle *w)
3133 {
3134 if (expect_false (ev_is_active (w)))
3135 return;
3136
3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
3140
3141 {
3142 int active = ++idlecnt [ABSPRI (w)];
3143
3144 ++idleall;
3145 ev_start (EV_A_ (W)w, active);
3146
3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3148 idles [ABSPRI (w)][active - 1] = w;
3149 }
3150
3151 EV_FREQUENT_CHECK;
3152 }
3153
3154 void
3155 ev_idle_stop (EV_P_ ev_idle *w)
3156 {
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3168
3169 ev_stop (EV_A_ (W)w);
3170 --idleall;
3171 }
3172
3173 EV_FREQUENT_CHECK;
3174 }
3175 #endif
3176
3177 void
3178 ev_prepare_start (EV_P_ ev_prepare *w)
3179 {
3180 if (expect_false (ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 ev_start (EV_A_ (W)w, ++preparecnt);
3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
3190 }
3191
3192 void
3193 ev_prepare_stop (EV_P_ ev_prepare *w)
3194 {
3195 clear_pending (EV_A_ (W)w);
3196 if (expect_false (!ev_is_active (w)))
3197 return;
3198
3199 EV_FREQUENT_CHECK;
3200
3201 {
3202 int active = ev_active (w);
3203
3204 prepares [active - 1] = prepares [--preparecnt];
3205 ev_active (prepares [active - 1]) = active;
3206 }
3207
3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
3211 }
3212
3213 void
3214 ev_check_start (EV_P_ ev_check *w)
3215 {
3216 if (expect_false (ev_is_active (w)))
3217 return;
3218
3219 EV_FREQUENT_CHECK;
3220
3221 ev_start (EV_A_ (W)w, ++checkcnt);
3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
3226 }
3227
3228 void
3229 ev_check_stop (EV_P_ ev_check *w)
3230 {
3231 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w)))
3233 return;
3234
3235 EV_FREQUENT_CHECK;
3236
3237 {
3238 int active = ev_active (w);
3239
3240 checks [active - 1] = checks [--checkcnt];
3241 ev_active (checks [active - 1]) = active;
3242 }
3243
3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
3247 }
3248
3249 #if EV_EMBED_ENABLE
3250 void noinline
3251 ev_embed_sweep (EV_P_ ev_embed *w)
3252 {
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
3254 }
3255
3256 static void
3257 embed_io_cb (EV_P_ ev_io *io, int revents)
3258 {
3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3260
3261 if (ev_cb (w))
3262 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3263 else
3264 ev_loop (w->other, EVLOOP_NONBLOCK);
3265 }
3266
3267 static void
3268 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269 {
3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3271
3272 {
3273 EV_P = w->other;
3274
3275 while (fdchangecnt)
3276 {
3277 fd_reify (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280 }
3281 }
3282
3283 static void
3284 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285 {
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298 }
3299
3300 #if 0
3301 static void
3302 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303 {
3304 ev_idle_stop (EV_A_ idle);
3305 }
3306 #endif
3307
3308 void
3309 ev_embed_start (EV_P_ ev_embed *w)
3310 {
3311 if (expect_false (ev_is_active (w)))
3312 return;
3313
3314 {
3315 EV_P = w->other;
3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3318 }
3319
3320 EV_FREQUENT_CHECK;
3321
3322 ev_set_priority (&w->io, ev_priority (w));
3323 ev_io_start (EV_A_ &w->io);
3324
3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare);
3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333
3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
3337 }
3338
3339 void
3340 ev_embed_stop (EV_P_ ev_embed *w)
3341 {
3342 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w)))
3344 return;
3345
3346 EV_FREQUENT_CHECK;
3347
3348 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
3351
3352 EV_FREQUENT_CHECK;
3353 }
3354 #endif
3355
3356 #if EV_FORK_ENABLE
3357 void
3358 ev_fork_start (EV_P_ ev_fork *w)
3359 {
3360 if (expect_false (ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 ev_start (EV_A_ (W)w, ++forkcnt);
3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
3370 }
3371
3372 void
3373 ev_fork_stop (EV_P_ ev_fork *w)
3374 {
3375 clear_pending (EV_A_ (W)w);
3376 if (expect_false (!ev_is_active (w)))
3377 return;
3378
3379 EV_FREQUENT_CHECK;
3380
3381 {
3382 int active = ev_active (w);
3383
3384 forks [active - 1] = forks [--forkcnt];
3385 ev_active (forks [active - 1]) = active;
3386 }
3387
3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
3391 }
3392 #endif
3393
3394 #if EV_ASYNC_ENABLE
3395 void
3396 ev_async_start (EV_P_ ev_async *w)
3397 {
3398 if (expect_false (ev_is_active (w)))
3399 return;
3400
3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410 }
3411
3412 void
3413 ev_async_stop (EV_P_ ev_async *w)
3414 {
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 asyncs [active - 1] = asyncs [--asynccnt];
3425 ev_active (asyncs [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431 }
3432
3433 void
3434 ev_async_send (EV_P_ ev_async *w)
3435 {
3436 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending);
3438 }
3439 #endif
3440
3441 /*****************************************************************************/
3442
3443 struct ev_once
3444 {
3445 ev_io io;
3446 ev_timer to;
3447 void (*cb)(int revents, void *arg);
3448 void *arg;
3449 };
3450
3451 static void
3452 once_cb (EV_P_ struct ev_once *once, int revents)
3453 {
3454 void (*cb)(int revents, void *arg) = once->cb;
3455 void *arg = once->arg;
3456
3457 ev_io_stop (EV_A_ &once->io);
3458 ev_timer_stop (EV_A_ &once->to);
3459 ev_free (once);
3460
3461 cb (revents, arg);
3462 }
3463
3464 static void
3465 once_cb_io (EV_P_ ev_io *w, int revents)
3466 {
3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3470 }
3471
3472 static void
3473 once_cb_to (EV_P_ ev_timer *w, int revents)
3474 {
3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3478 }
3479
3480 void
3481 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3482 {
3483 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3484
3485 if (expect_false (!once))
3486 {
3487 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3488 return;
3489 }
3490
3491 once->cb = cb;
3492 once->arg = arg;
3493
3494 ev_init (&once->io, once_cb_io);
3495 if (fd >= 0)
3496 {
3497 ev_io_set (&once->io, fd, events);
3498 ev_io_start (EV_A_ &once->io);
3499 }
3500
3501 ev_init (&once->to, once_cb_to);
3502 if (timeout >= 0.)
3503 {
3504 ev_timer_set (&once->to, timeout, 0.);
3505 ev_timer_start (EV_A_ &once->to);
3506 }
3507 }
3508
3509 /*****************************************************************************/
3510
3511 #if EV_WALK_ENABLE
3512 void
3513 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514 {
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524 #if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531 #endif
3532 #if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536 #endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546 #if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554 #endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558 #if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562 #endif
3563
3564 #if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569 #endif
3570
3571 #if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576 #endif
3577
3578 #if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582 #endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586 #if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588 #endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612 /* EV_STAT 0x00001000 /* stat data changed */
3613 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614 }
3615 #endif
3616
3617 #if EV_MULTIPLICITY
3618 #include "ev_wrap.h"
3619 #endif
3620
3621 #ifdef __cplusplus
3622 }
3623 #endif
3624