ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.316
Committed: Fri Sep 18 21:02:12 2009 UTC (14 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.315: +0 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <fcntl.h>
159 #include <stddef.h>
160
161 #include <stdio.h>
162
163 #include <assert.h>
164 #include <errno.h>
165 #include <sys/types.h>
166 #include <time.h>
167
168 #include <signal.h>
169
170 #ifdef EV_H
171 # include EV_H
172 #else
173 # include "ev.h"
174 #endif
175
176 #ifndef _WIN32
177 # include <sys/time.h>
178 # include <sys/wait.h>
179 # include <unistd.h>
180 #else
181 # include <io.h>
182 # define WIN32_LEAN_AND_MEAN
183 # include <windows.h>
184 # ifndef EV_SELECT_IS_WINSOCKET
185 # define EV_SELECT_IS_WINSOCKET 1
186 # endif
187 #endif
188
189 /* this block tries to deduce configuration from header-defined symbols and defaults */
190
191 /* try to deduce the maximum number of signals on this platform */
192 #if defined (EV_NSIG)
193 /* use what's provided */
194 #elif defined (NSIG)
195 # define EV_NSIG (NSIG)
196 #elif defined(_NSIG)
197 # define EV_NSIG (_NSIG)
198 #elif defined (SIGMAX)
199 # define EV_NSIG (SIGMAX+1)
200 #elif defined (SIG_MAX)
201 # define EV_NSIG (SIG_MAX+1)
202 #elif defined (_SIG_MAX)
203 # define EV_NSIG (_SIG_MAX+1)
204 #elif defined (MAXSIG)
205 # define EV_NSIG (MAXSIG+1)
206 #elif defined (MAX_SIG)
207 # define EV_NSIG (MAX_SIG+1)
208 #elif defined (SIGARRAYSIZE)
209 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210 #elif defined (_sys_nsig)
211 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212 #else
213 # error "unable to find value for NSIG, please report"
214 /* to make it compile regardless, just remove the above line */
215 # define EV_NSIG 65
216 #endif
217
218 #ifndef EV_USE_CLOCK_SYSCALL
219 # if __linux && __GLIBC__ >= 2
220 # define EV_USE_CLOCK_SYSCALL 1
221 # else
222 # define EV_USE_CLOCK_SYSCALL 0
223 # endif
224 #endif
225
226 #ifndef EV_USE_MONOTONIC
227 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228 # define EV_USE_MONOTONIC 1
229 # else
230 # define EV_USE_MONOTONIC 0
231 # endif
232 #endif
233
234 #ifndef EV_USE_REALTIME
235 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236 #endif
237
238 #ifndef EV_USE_NANOSLEEP
239 # if _POSIX_C_SOURCE >= 199309L
240 # define EV_USE_NANOSLEEP 1
241 # else
242 # define EV_USE_NANOSLEEP 0
243 # endif
244 #endif
245
246 #ifndef EV_USE_SELECT
247 # define EV_USE_SELECT 1
248 #endif
249
250 #ifndef EV_USE_POLL
251 # ifdef _WIN32
252 # define EV_USE_POLL 0
253 # else
254 # define EV_USE_POLL 1
255 # endif
256 #endif
257
258 #ifndef EV_USE_EPOLL
259 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260 # define EV_USE_EPOLL 1
261 # else
262 # define EV_USE_EPOLL 0
263 # endif
264 #endif
265
266 #ifndef EV_USE_KQUEUE
267 # define EV_USE_KQUEUE 0
268 #endif
269
270 #ifndef EV_USE_PORT
271 # define EV_USE_PORT 0
272 #endif
273
274 #ifndef EV_USE_INOTIFY
275 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276 # define EV_USE_INOTIFY 1
277 # else
278 # define EV_USE_INOTIFY 0
279 # endif
280 #endif
281
282 #ifndef EV_PID_HASHSIZE
283 # if EV_MINIMAL
284 # define EV_PID_HASHSIZE 1
285 # else
286 # define EV_PID_HASHSIZE 16
287 # endif
288 #endif
289
290 #ifndef EV_INOTIFY_HASHSIZE
291 # if EV_MINIMAL
292 # define EV_INOTIFY_HASHSIZE 1
293 # else
294 # define EV_INOTIFY_HASHSIZE 16
295 # endif
296 #endif
297
298 #ifndef EV_USE_EVENTFD
299 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300 # define EV_USE_EVENTFD 1
301 # else
302 # define EV_USE_EVENTFD 0
303 # endif
304 #endif
305
306 #ifndef EV_USE_SIGNALFD
307 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308 # define EV_USE_SIGNALFD 1
309 # else
310 # define EV_USE_SIGNALFD 0
311 # endif
312 #endif
313
314 #if 0 /* debugging */
315 # define EV_VERIFY 3
316 # define EV_USE_4HEAP 1
317 # define EV_HEAP_CACHE_AT 1
318 #endif
319
320 #ifndef EV_VERIFY
321 # define EV_VERIFY !EV_MINIMAL
322 #endif
323
324 #ifndef EV_USE_4HEAP
325 # define EV_USE_4HEAP !EV_MINIMAL
326 #endif
327
328 #ifndef EV_HEAP_CACHE_AT
329 # define EV_HEAP_CACHE_AT !EV_MINIMAL
330 #endif
331
332 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333 /* which makes programs even slower. might work on other unices, too. */
334 #if EV_USE_CLOCK_SYSCALL
335 # include <syscall.h>
336 # ifdef SYS_clock_gettime
337 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338 # undef EV_USE_MONOTONIC
339 # define EV_USE_MONOTONIC 1
340 # else
341 # undef EV_USE_CLOCK_SYSCALL
342 # define EV_USE_CLOCK_SYSCALL 0
343 # endif
344 #endif
345
346 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348 #ifndef CLOCK_MONOTONIC
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 0
351 #endif
352
353 #ifndef CLOCK_REALTIME
354 # undef EV_USE_REALTIME
355 # define EV_USE_REALTIME 0
356 #endif
357
358 #if !EV_STAT_ENABLE
359 # undef EV_USE_INOTIFY
360 # define EV_USE_INOTIFY 0
361 #endif
362
363 #if !EV_USE_NANOSLEEP
364 # ifndef _WIN32
365 # include <sys/select.h>
366 # endif
367 #endif
368
369 #if EV_USE_INOTIFY
370 # include <sys/utsname.h>
371 # include <sys/statfs.h>
372 # include <sys/inotify.h>
373 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374 # ifndef IN_DONT_FOLLOW
375 # undef EV_USE_INOTIFY
376 # define EV_USE_INOTIFY 0
377 # endif
378 #endif
379
380 #if EV_SELECT_IS_WINSOCKET
381 # include <winsock.h>
382 #endif
383
384 #if EV_USE_EVENTFD
385 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386 # include <stdint.h>
387 # ifndef EFD_NONBLOCK
388 # define EFD_NONBLOCK O_NONBLOCK
389 # endif
390 # ifndef EFD_CLOEXEC
391 # ifdef O_CLOEXEC
392 # define EFD_CLOEXEC O_CLOEXEC
393 # else
394 # define EFD_CLOEXEC 02000000
395 # endif
396 # endif
397 # ifdef __cplusplus
398 extern "C" {
399 # endif
400 int eventfd (unsigned int initval, int flags);
401 # ifdef __cplusplus
402 }
403 # endif
404 #endif
405
406 #if EV_USE_SIGNALFD
407 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408 # include <stdint.h>
409 # ifndef SFD_NONBLOCK
410 # define SFD_NONBLOCK O_NONBLOCK
411 # endif
412 # ifndef SFD_CLOEXEC
413 # ifdef O_CLOEXEC
414 # define SFD_CLOEXEC O_CLOEXEC
415 # else
416 # define SFD_CLOEXEC 02000000
417 # endif
418 # endif
419 # ifdef __cplusplus
420 extern "C" {
421 # endif
422 int signalfd (int fd, const sigset_t *mask, int flags);
423
424 struct signalfd_siginfo
425 {
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428 };
429 # ifdef __cplusplus
430 }
431 # endif
432 #endif
433
434
435 /**/
436
437 #if EV_VERIFY >= 3
438 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439 #else
440 # define EV_FREQUENT_CHECK do { } while (0)
441 #endif
442
443 /*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452
453 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
454 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
455
456 #if __GNUC__ >= 4
457 # define expect(expr,value) __builtin_expect ((expr),(value))
458 # define noinline __attribute__ ((noinline))
459 #else
460 # define expect(expr,value) (expr)
461 # define noinline
462 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463 # define inline
464 # endif
465 #endif
466
467 #define expect_false(expr) expect ((expr) != 0, 0)
468 #define expect_true(expr) expect ((expr) != 0, 1)
469 #define inline_size static inline
470
471 #if EV_MINIMAL
472 # define inline_speed static noinline
473 #else
474 # define inline_speed static inline
475 #endif
476
477 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479 #if EV_MINPRI == EV_MAXPRI
480 # define ABSPRI(w) (((W)w), 0)
481 #else
482 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483 #endif
484
485 #define EMPTY /* required for microsofts broken pseudo-c compiler */
486 #define EMPTY2(a,b) /* used to suppress some warnings */
487
488 typedef ev_watcher *W;
489 typedef ev_watcher_list *WL;
490 typedef ev_watcher_time *WT;
491
492 #define ev_active(w) ((W)(w))->active
493 #define ev_at(w) ((WT)(w))->at
494
495 #if EV_USE_REALTIME
496 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
497 /* giving it a reasonably high chance of working on typical architetcures */
498 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499 #endif
500
501 #if EV_USE_MONOTONIC
502 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503 #endif
504
505 #ifndef EV_FD_TO_WIN32_HANDLE
506 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507 #endif
508 #ifndef EV_WIN32_HANDLE_TO_FD
509 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510 #endif
511 #ifndef EV_WIN32_CLOSE_FD
512 # define EV_WIN32_CLOSE_FD(fd) close (fd)
513 #endif
514
515 #ifdef _WIN32
516 # include "ev_win32.c"
517 #endif
518
519 /*****************************************************************************/
520
521 static void (*syserr_cb)(const char *msg);
522
523 void
524 ev_set_syserr_cb (void (*cb)(const char *msg))
525 {
526 syserr_cb = cb;
527 }
528
529 static void noinline
530 ev_syserr (const char *msg)
531 {
532 if (!msg)
533 msg = "(libev) system error";
534
535 if (syserr_cb)
536 syserr_cb (msg);
537 else
538 {
539 perror (msg);
540 abort ();
541 }
542 }
543
544 static void *
545 ev_realloc_emul (void *ptr, long size)
546 {
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557 }
558
559 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
560
561 void
562 ev_set_allocator (void *(*cb)(void *ptr, long size))
563 {
564 alloc = cb;
565 }
566
567 inline_speed void *
568 ev_realloc (void *ptr, long size)
569 {
570 ptr = alloc (ptr, size);
571
572 if (!ptr && size)
573 {
574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
575 abort ();
576 }
577
578 return ptr;
579 }
580
581 #define ev_malloc(size) ev_realloc (0, (size))
582 #define ev_free(ptr) ev_realloc ((ptr), 0)
583
584 /*****************************************************************************/
585
586 /* set in reify when reification needed */
587 #define EV_ANFD_REIFY 1
588
589 /* file descriptor info structure */
590 typedef struct
591 {
592 WL head;
593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
596 unsigned char unused;
597 #if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599 #endif
600 #if EV_SELECT_IS_WINSOCKET
601 SOCKET handle;
602 #endif
603 } ANFD;
604
605 /* stores the pending event set for a given watcher */
606 typedef struct
607 {
608 W w;
609 int events; /* the pending event set for the given watcher */
610 } ANPENDING;
611
612 #if EV_USE_INOTIFY
613 /* hash table entry per inotify-id */
614 typedef struct
615 {
616 WL head;
617 } ANFS;
618 #endif
619
620 /* Heap Entry */
621 #if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631 #else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
638 #endif
639
640 #if EV_MULTIPLICITY
641
642 struct ev_loop
643 {
644 ev_tstamp ev_rt_now;
645 #define ev_rt_now ((loop)->ev_rt_now)
646 #define VAR(name,decl) decl;
647 #include "ev_vars.h"
648 #undef VAR
649 };
650 #include "ev_wrap.h"
651
652 static struct ev_loop default_loop_struct;
653 struct ev_loop *ev_default_loop_ptr;
654
655 #else
656
657 ev_tstamp ev_rt_now;
658 #define VAR(name,decl) static decl;
659 #include "ev_vars.h"
660 #undef VAR
661
662 static int ev_default_loop_ptr;
663
664 #endif
665
666 #if EV_MINIMAL < 2
667 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669 # define EV_INVOKE_PENDING invoke_cb (EV_A)
670 #else
671 # define EV_RELEASE_CB (void)0
672 # define EV_ACQUIRE_CB (void)0
673 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674 #endif
675
676 #define EVUNLOOP_RECURSE 0x80
677
678 /*****************************************************************************/
679
680 #ifndef EV_HAVE_EV_TIME
681 ev_tstamp
682 ev_time (void)
683 {
684 #if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
687 struct timespec ts;
688 clock_gettime (CLOCK_REALTIME, &ts);
689 return ts.tv_sec + ts.tv_nsec * 1e-9;
690 }
691 #endif
692
693 struct timeval tv;
694 gettimeofday (&tv, 0);
695 return tv.tv_sec + tv.tv_usec * 1e-6;
696 }
697 #endif
698
699 inline_size ev_tstamp
700 get_clock (void)
701 {
702 #if EV_USE_MONOTONIC
703 if (expect_true (have_monotonic))
704 {
705 struct timespec ts;
706 clock_gettime (CLOCK_MONOTONIC, &ts);
707 return ts.tv_sec + ts.tv_nsec * 1e-9;
708 }
709 #endif
710
711 return ev_time ();
712 }
713
714 #if EV_MULTIPLICITY
715 ev_tstamp
716 ev_now (EV_P)
717 {
718 return ev_rt_now;
719 }
720 #endif
721
722 void
723 ev_sleep (ev_tstamp delay)
724 {
725 if (delay > 0.)
726 {
727 #if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734 #elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736 #else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746 #endif
747 }
748 }
749
750 /*****************************************************************************/
751
752 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754 /* find a suitable new size for the given array, */
755 /* hopefully by rounding to a ncie-to-malloc size */
756 inline_size int
757 array_nextsize (int elem, int cur, int cnt)
758 {
759 int ncur = cur + 1;
760
761 do
762 ncur <<= 1;
763 while (cnt > ncur);
764
765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
767 {
768 ncur *= elem;
769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
770 ncur = ncur - sizeof (void *) * 4;
771 ncur /= elem;
772 }
773
774 return ncur;
775 }
776
777 static noinline void *
778 array_realloc (int elem, void *base, int *cur, int cnt)
779 {
780 *cur = array_nextsize (elem, *cur, cnt);
781 return ev_realloc (base, elem * *cur);
782 }
783
784 #define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
786
787 #define array_needsize(type,base,cur,cnt,init) \
788 if (expect_false ((cnt) > (cur))) \
789 { \
790 int ocur_ = (cur); \
791 (base) = (type *)array_realloc \
792 (sizeof (type), (base), &(cur), (cnt)); \
793 init ((base) + (ocur_), (cur) - ocur_); \
794 }
795
796 #if 0
797 #define array_slim(type,stem) \
798 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
799 { \
800 stem ## max = array_roundsize (stem ## cnt >> 1); \
801 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
803 }
804 #endif
805
806 #define array_free(stem, idx) \
807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
808
809 /*****************************************************************************/
810
811 /* dummy callback for pending events */
812 static void noinline
813 pendingcb (EV_P_ ev_prepare *w, int revents)
814 {
815 }
816
817 void noinline
818 ev_feed_event (EV_P_ void *w, int revents)
819 {
820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
822
823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
830 pendings [pri][w_->pending - 1].events = revents;
831 }
832 }
833
834 inline_speed void
835 feed_reverse (EV_P_ W w)
836 {
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839 }
840
841 inline_size void
842 feed_reverse_done (EV_P_ int revents)
843 {
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847 }
848
849 inline_speed void
850 queue_events (EV_P_ W *events, int eventcnt, int type)
851 {
852 int i;
853
854 for (i = 0; i < eventcnt; ++i)
855 ev_feed_event (EV_A_ events [i], type);
856 }
857
858 /*****************************************************************************/
859
860 inline_speed void
861 fd_event_nc (EV_P_ int fd, int revents)
862 {
863 ANFD *anfd = anfds + fd;
864 ev_io *w;
865
866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
867 {
868 int ev = w->events & revents;
869
870 if (ev)
871 ev_feed_event (EV_A_ (W)w, ev);
872 }
873 }
874
875 /* do not submit kernel events for fds that have reify set */
876 /* because that means they changed while we were polling for new events */
877 inline_speed void
878 fd_event (EV_P_ int fd, int revents)
879 {
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884 }
885
886 void
887 ev_feed_fd_event (EV_P_ int fd, int revents)
888 {
889 if (fd >= 0 && fd < anfdmax)
890 fd_event_nc (EV_A_ fd, revents);
891 }
892
893 /* make sure the external fd watch events are in-sync */
894 /* with the kernel/libev internal state */
895 inline_size void
896 fd_reify (EV_P)
897 {
898 int i;
899
900 for (i = 0; i < fdchangecnt; ++i)
901 {
902 int fd = fdchanges [i];
903 ANFD *anfd = anfds + fd;
904 ev_io *w;
905
906 unsigned char events = 0;
907
908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
909 events |= (unsigned char)w->events;
910
911 #if EV_SELECT_IS_WINSOCKET
912 if (events)
913 {
914 unsigned long arg;
915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
917 }
918 #endif
919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
924 anfd->reify = 0;
925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
930 }
931
932 fdchangecnt = 0;
933 }
934
935 /* something about the given fd changed */
936 inline_size void
937 fd_change (EV_P_ int fd, int flags)
938 {
939 unsigned char reify = anfds [fd].reify;
940 anfds [fd].reify |= flags;
941
942 if (expect_true (!reify))
943 {
944 ++fdchangecnt;
945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
946 fdchanges [fdchangecnt - 1] = fd;
947 }
948 }
949
950 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951 inline_speed void
952 fd_kill (EV_P_ int fd)
953 {
954 ev_io *w;
955
956 while ((w = (ev_io *)anfds [fd].head))
957 {
958 ev_io_stop (EV_A_ w);
959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
960 }
961 }
962
963 /* check whether the given fd is atcually valid, for error recovery */
964 inline_size int
965 fd_valid (int fd)
966 {
967 #ifdef _WIN32
968 return _get_osfhandle (fd) != -1;
969 #else
970 return fcntl (fd, F_GETFD) != -1;
971 #endif
972 }
973
974 /* called on EBADF to verify fds */
975 static void noinline
976 fd_ebadf (EV_P)
977 {
978 int fd;
979
980 for (fd = 0; fd < anfdmax; ++fd)
981 if (anfds [fd].events)
982 if (!fd_valid (fd) && errno == EBADF)
983 fd_kill (EV_A_ fd);
984 }
985
986 /* called on ENOMEM in select/poll to kill some fds and retry */
987 static void noinline
988 fd_enomem (EV_P)
989 {
990 int fd;
991
992 for (fd = anfdmax; fd--; )
993 if (anfds [fd].events)
994 {
995 fd_kill (EV_A_ fd);
996 break;
997 }
998 }
999
1000 /* usually called after fork if backend needs to re-arm all fds from scratch */
1001 static void noinline
1002 fd_rearm_all (EV_P)
1003 {
1004 int fd;
1005
1006 for (fd = 0; fd < anfdmax; ++fd)
1007 if (anfds [fd].events)
1008 {
1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1012 }
1013 }
1014
1015 /*****************************************************************************/
1016
1017 /*
1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1020 * the branching factor of the d-tree.
1021 */
1022
1023 /*
1024 * at the moment we allow libev the luxury of two heaps,
1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029 #if EV_USE_4HEAP
1030
1031 #define DHEAP 4
1032 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034 #define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036 /* away from the root */
1037 inline_speed void
1038 downheap (ANHE *heap, int N, int k)
1039 {
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
1065 break;
1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078 }
1079
1080 #else /* 4HEAP */
1081
1082 #define HEAP0 1
1083 #define HPARENT(k) ((k) >> 1)
1084 #define UPHEAP_DONE(p,k) (!(p))
1085
1086 /* away from the root */
1087 inline_speed void
1088 downheap (ANHE *heap, int N, int k)
1089 {
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113 }
1114 #endif
1115
1116 /* towards the root */
1117 inline_speed void
1118 upheap (ANHE *heap, int k)
1119 {
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136 }
1137
1138 /* move an element suitably so it is in a correct place */
1139 inline_size void
1140 adjustheap (ANHE *heap, int N, int k)
1141 {
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1143 upheap (heap, k);
1144 else
1145 downheap (heap, N, k);
1146 }
1147
1148 /* rebuild the heap: this function is used only once and executed rarely */
1149 inline_size void
1150 reheap (ANHE *heap, int N)
1151 {
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
1158 }
1159
1160 /*****************************************************************************/
1161
1162 /* associate signal watchers to a signal signal */
1163 typedef struct
1164 {
1165 EV_ATOMIC_T pending;
1166 #if EV_MULTIPLICITY
1167 EV_P;
1168 #endif
1169 WL head;
1170 } ANSIG;
1171
1172 static ANSIG signals [EV_NSIG - 1];
1173
1174 /*****************************************************************************/
1175
1176 /* used to prepare libev internal fd's */
1177 /* this is not fork-safe */
1178 inline_speed void
1179 fd_intern (int fd)
1180 {
1181 #ifdef _WIN32
1182 unsigned long arg = 1;
1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1184 #else
1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
1186 fcntl (fd, F_SETFL, O_NONBLOCK);
1187 #endif
1188 }
1189
1190 static void noinline
1191 evpipe_init (EV_P)
1192 {
1193 if (!ev_is_active (&pipe_w))
1194 {
1195 #if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207 #endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
1212 fd_intern (evpipe [0]);
1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
1217 ev_io_start (EV_A_ &pipe_w);
1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220 }
1221
1222 inline_size void
1223 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224 {
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231 #if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238 #endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243 }
1244
1245 /* called whenever the libev signal pipe */
1246 /* got some events (signal, async) */
1247 static void
1248 pipecb (EV_P_ ev_io *iow, int revents)
1249 {
1250 int i;
1251
1252 #if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259 #endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274 #if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286 #endif
1287 }
1288
1289 /*****************************************************************************/
1290
1291 static void
1292 ev_sighandler (int signum)
1293 {
1294 #if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296 #endif
1297
1298 #if _WIN32
1299 signal (signum, ev_sighandler);
1300 #endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304 }
1305
1306 void noinline
1307 ev_feed_signal_event (EV_P_ int signum)
1308 {
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316 #if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322 #endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328 }
1329
1330 #if EV_USE_SIGNALFD
1331 static void
1332 sigfdcb (EV_P_ ev_io *iow, int revents)
1333 {
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347 }
1348 #endif
1349
1350 /*****************************************************************************/
1351
1352 static WL childs [EV_PID_HASHSIZE];
1353
1354 #ifndef _WIN32
1355
1356 static ev_signal childev;
1357
1358 #ifndef WIFCONTINUED
1359 # define WIFCONTINUED(status) 0
1360 #endif
1361
1362 /* handle a single child status event */
1363 inline_speed void
1364 child_reap (EV_P_ int chain, int pid, int status)
1365 {
1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368
1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
1373 {
1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 w->rpid = pid;
1376 w->rstatus = status;
1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378 }
1379 }
1380 }
1381
1382 #ifndef WCONTINUED
1383 # define WCONTINUED 0
1384 #endif
1385
1386 /* called on sigchld etc., calls waitpid */
1387 static void
1388 childcb (EV_P_ ev_signal *sw, int revents)
1389 {
1390 int pid, status;
1391
1392 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1393 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1394 if (!WCONTINUED
1395 || errno != EINVAL
1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1397 return;
1398
1399 /* make sure we are called again until all children have been reaped */
1400 /* we need to do it this way so that the callback gets called before we continue */
1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1402
1403 child_reap (EV_A_ pid, pid, status);
1404 if (EV_PID_HASHSIZE > 1)
1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1406 }
1407
1408 #endif
1409
1410 /*****************************************************************************/
1411
1412 #if EV_USE_PORT
1413 # include "ev_port.c"
1414 #endif
1415 #if EV_USE_KQUEUE
1416 # include "ev_kqueue.c"
1417 #endif
1418 #if EV_USE_EPOLL
1419 # include "ev_epoll.c"
1420 #endif
1421 #if EV_USE_POLL
1422 # include "ev_poll.c"
1423 #endif
1424 #if EV_USE_SELECT
1425 # include "ev_select.c"
1426 #endif
1427
1428 int
1429 ev_version_major (void)
1430 {
1431 return EV_VERSION_MAJOR;
1432 }
1433
1434 int
1435 ev_version_minor (void)
1436 {
1437 return EV_VERSION_MINOR;
1438 }
1439
1440 /* return true if we are running with elevated privileges and should ignore env variables */
1441 int inline_size
1442 enable_secure (void)
1443 {
1444 #ifdef _WIN32
1445 return 0;
1446 #else
1447 return getuid () != geteuid ()
1448 || getgid () != getegid ();
1449 #endif
1450 }
1451
1452 unsigned int
1453 ev_supported_backends (void)
1454 {
1455 unsigned int flags = 0;
1456
1457 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1458 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1459 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1460 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1461 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1462
1463 return flags;
1464 }
1465
1466 unsigned int
1467 ev_recommended_backends (void)
1468 {
1469 unsigned int flags = ev_supported_backends ();
1470
1471 #ifndef __NetBSD__
1472 /* kqueue is borked on everything but netbsd apparently */
1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1474 flags &= ~EVBACKEND_KQUEUE;
1475 #endif
1476 #ifdef __APPLE__
1477 /* only select works correctly on that "unix-certified" platform */
1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1480 #endif
1481
1482 return flags;
1483 }
1484
1485 unsigned int
1486 ev_embeddable_backends (void)
1487 {
1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1489
1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
1495 }
1496
1497 unsigned int
1498 ev_backend (EV_P)
1499 {
1500 return backend;
1501 }
1502
1503 #if EV_MINIMAL < 2
1504 unsigned int
1505 ev_loop_count (EV_P)
1506 {
1507 return loop_count;
1508 }
1509
1510 unsigned int
1511 ev_loop_depth (EV_P)
1512 {
1513 return loop_depth;
1514 }
1515
1516 void
1517 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518 {
1519 io_blocktime = interval;
1520 }
1521
1522 void
1523 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524 {
1525 timeout_blocktime = interval;
1526 }
1527
1528 void
1529 ev_set_userdata (EV_P_ void *data)
1530 {
1531 userdata = data;
1532 }
1533
1534 void *
1535 ev_userdata (EV_P)
1536 {
1537 return userdata;
1538 }
1539
1540 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541 {
1542 invoke_cb = invoke_pending_cb;
1543 }
1544
1545 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546 {
1547 release_cb = release;
1548 acquire_cb = acquire;
1549 }
1550 #endif
1551
1552 /* initialise a loop structure, must be zero-initialised */
1553 static void noinline
1554 loop_init (EV_P_ unsigned int flags)
1555 {
1556 if (!backend)
1557 {
1558 #if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566 #endif
1567
1568 #if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1570 {
1571 struct timespec ts;
1572
1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1574 have_monotonic = 1;
1575 }
1576 #endif
1577
1578 /* pid check not overridable via env */
1579 #ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582 #endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593 #if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595 #endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602 #if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604 #endif
1605 #if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607 #endif
1608 #if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610 #endif
1611
1612 if (!(flags & 0x0000ffffU))
1613 flags |= ev_recommended_backends ();
1614
1615 #if EV_USE_PORT
1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1617 #endif
1618 #if EV_USE_KQUEUE
1619 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1620 #endif
1621 #if EV_USE_EPOLL
1622 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1623 #endif
1624 #if EV_USE_POLL
1625 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1626 #endif
1627 #if EV_USE_SELECT
1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1629 #endif
1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1633 ev_init (&pipe_w, pipecb);
1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1635 }
1636 }
1637
1638 /* free up a loop structure */
1639 static void noinline
1640 loop_destroy (EV_P)
1641 {
1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649 #if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652 #endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661 #if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669 #endif
1670
1671 #if EV_USE_INOTIFY
1672 if (fs_fd >= 0)
1673 close (fs_fd);
1674 #endif
1675
1676 if (backend_fd >= 0)
1677 close (backend_fd);
1678
1679 #if EV_USE_PORT
1680 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1681 #endif
1682 #if EV_USE_KQUEUE
1683 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1684 #endif
1685 #if EV_USE_EPOLL
1686 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1687 #endif
1688 #if EV_USE_POLL
1689 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1690 #endif
1691 #if EV_USE_SELECT
1692 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1693 #endif
1694
1695 for (i = NUMPRI; i--; )
1696 {
1697 array_free (pending, [i]);
1698 #if EV_IDLE_ENABLE
1699 array_free (idle, [i]);
1700 #endif
1701 }
1702
1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1704
1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1707 array_free (fdchange, EMPTY);
1708 array_free (timer, EMPTY);
1709 #if EV_PERIODIC_ENABLE
1710 array_free (periodic, EMPTY);
1711 #endif
1712 #if EV_FORK_ENABLE
1713 array_free (fork, EMPTY);
1714 #endif
1715 array_free (prepare, EMPTY);
1716 array_free (check, EMPTY);
1717 #if EV_ASYNC_ENABLE
1718 array_free (async, EMPTY);
1719 #endif
1720
1721 backend = 0;
1722 }
1723
1724 #if EV_USE_INOTIFY
1725 inline_size void infy_fork (EV_P);
1726 #endif
1727
1728 inline_size void
1729 loop_fork (EV_P)
1730 {
1731 #if EV_USE_PORT
1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1733 #endif
1734 #if EV_USE_KQUEUE
1735 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1736 #endif
1737 #if EV_USE_EPOLL
1738 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1739 #endif
1740 #if EV_USE_INOTIFY
1741 infy_fork (EV_A);
1742 #endif
1743
1744 if (ev_is_active (&pipe_w))
1745 {
1746 /* this "locks" the handlers against writing to the pipe */
1747 /* while we modify the fd vars */
1748 sig_pending = 1;
1749 #if EV_ASYNC_ENABLE
1750 async_pending = 1;
1751 #endif
1752
1753 ev_ref (EV_A);
1754 ev_io_stop (EV_A_ &pipe_w);
1755
1756 #if EV_USE_EVENTFD
1757 if (evfd >= 0)
1758 close (evfd);
1759 #endif
1760
1761 if (evpipe [0] >= 0)
1762 {
1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1765 }
1766
1767 evpipe_init (EV_A);
1768 /* now iterate over everything, in case we missed something */
1769 pipecb (EV_A_ &pipe_w, EV_READ);
1770 }
1771
1772 postfork = 0;
1773 }
1774
1775 #if EV_MULTIPLICITY
1776
1777 struct ev_loop *
1778 ev_loop_new (unsigned int flags)
1779 {
1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1781
1782 memset (EV_A, 0, sizeof (struct ev_loop));
1783 loop_init (EV_A_ flags);
1784
1785 if (ev_backend (EV_A))
1786 return EV_A;
1787
1788 return 0;
1789 }
1790
1791 void
1792 ev_loop_destroy (EV_P)
1793 {
1794 loop_destroy (EV_A);
1795 ev_free (loop);
1796 }
1797
1798 void
1799 ev_loop_fork (EV_P)
1800 {
1801 postfork = 1; /* must be in line with ev_default_fork */
1802 }
1803 #endif /* multiplicity */
1804
1805 #if EV_VERIFY
1806 static void noinline
1807 verify_watcher (EV_P_ W w)
1808 {
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813 }
1814
1815 static void noinline
1816 verify_heap (EV_P_ ANHE *heap, int N)
1817 {
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828 }
1829
1830 static void noinline
1831 array_verify (EV_P_ W *ws, int cnt)
1832 {
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838 }
1839 #endif
1840
1841 #if EV_MINIMAL < 2
1842 void
1843 ev_loop_verify (EV_P)
1844 {
1845 #if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867 #if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870 #endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875 #if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879 #endif
1880 }
1881
1882 #if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885 #endif
1886
1887 #if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890 #endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898 # if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901 # endif
1902 #endif
1903 }
1904 #endif
1905
1906 #if EV_MULTIPLICITY
1907 struct ev_loop *
1908 ev_default_loop_init (unsigned int flags)
1909 #else
1910 int
1911 ev_default_loop (unsigned int flags)
1912 #endif
1913 {
1914 if (!ev_default_loop_ptr)
1915 {
1916 #if EV_MULTIPLICITY
1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1918 #else
1919 ev_default_loop_ptr = 1;
1920 #endif
1921
1922 loop_init (EV_A_ flags);
1923
1924 if (ev_backend (EV_A))
1925 {
1926 #ifndef _WIN32
1927 ev_signal_init (&childev, childcb, SIGCHLD);
1928 ev_set_priority (&childev, EV_MAXPRI);
1929 ev_signal_start (EV_A_ &childev);
1930 ev_unref (EV_A); /* child watcher should not keep loop alive */
1931 #endif
1932 }
1933 else
1934 ev_default_loop_ptr = 0;
1935 }
1936
1937 return ev_default_loop_ptr;
1938 }
1939
1940 void
1941 ev_default_destroy (void)
1942 {
1943 #if EV_MULTIPLICITY
1944 EV_P = ev_default_loop_ptr;
1945 #endif
1946
1947 ev_default_loop_ptr = 0;
1948
1949 #ifndef _WIN32
1950 ev_ref (EV_A); /* child watcher */
1951 ev_signal_stop (EV_A_ &childev);
1952 #endif
1953
1954 loop_destroy (EV_A);
1955 }
1956
1957 void
1958 ev_default_fork (void)
1959 {
1960 #if EV_MULTIPLICITY
1961 EV_P = ev_default_loop_ptr;
1962 #endif
1963
1964 postfork = 1; /* must be in line with ev_loop_fork */
1965 }
1966
1967 /*****************************************************************************/
1968
1969 void
1970 ev_invoke (EV_P_ void *w, int revents)
1971 {
1972 EV_CB_INVOKE ((W)w, revents);
1973 }
1974
1975 unsigned int
1976 ev_pending_count (EV_P)
1977 {
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985 }
1986
1987 void noinline
1988 ev_invoke_pending (EV_P)
1989 {
1990 int pri;
1991
1992 for (pri = NUMPRI; pri--; )
1993 while (pendingcnt [pri])
1994 {
1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1996
1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1999
2000 p->w->pending = 0;
2001 EV_CB_INVOKE (p->w, p->events);
2002 EV_FREQUENT_CHECK;
2003 }
2004 }
2005
2006 #if EV_IDLE_ENABLE
2007 /* make idle watchers pending. this handles the "call-idle */
2008 /* only when higher priorities are idle" logic */
2009 inline_size void
2010 idle_reify (EV_P)
2011 {
2012 if (expect_false (idleall))
2013 {
2014 int pri;
2015
2016 for (pri = NUMPRI; pri--; )
2017 {
2018 if (pendingcnt [pri])
2019 break;
2020
2021 if (idlecnt [pri])
2022 {
2023 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2024 break;
2025 }
2026 }
2027 }
2028 }
2029 #endif
2030
2031 /* make timers pending */
2032 inline_size void
2033 timers_reify (EV_P)
2034 {
2035 EV_FREQUENT_CHECK;
2036
2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2038 {
2039 do
2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2053
2054 ANHE_at_cache (timers [HEAP0]);
2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
2062 }
2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2064
2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
2066 }
2067 }
2068
2069 #if EV_PERIODIC_ENABLE
2070 /* make periodics pending */
2071 inline_size void
2072 periodics_reify (EV_P)
2073 {
2074 EV_FREQUENT_CHECK;
2075
2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2077 {
2078 int feed_count = 0;
2079
2080 do
2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
2093 ANHE_at_cache (periodics [HEAP0]);
2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
2120 }
2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2122
2123 feed_reverse_done (EV_A_ EV_PERIODIC);
2124 }
2125 }
2126
2127 /* simply recalculate all periodics */
2128 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2129 static void noinline
2130 periodics_reschedule (EV_P)
2131 {
2132 int i;
2133
2134 /* adjust periodics after time jump */
2135 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2136 {
2137 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2138
2139 if (w->reschedule_cb)
2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2141 else if (w->interval)
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143
2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148 }
2149 #endif
2150
2151 /* adjust all timers by a given offset */
2152 static void noinline
2153 timers_reschedule (EV_P_ ev_tstamp adjust)
2154 {
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163 }
2164
2165 /* fetch new monotonic and realtime times from the kernel */
2166 /* also detetc if there was a timejump, and act accordingly */
2167 inline_speed void
2168 time_update (EV_P_ ev_tstamp max_block)
2169 {
2170 #if EV_USE_MONOTONIC
2171 if (expect_true (have_monotonic))
2172 {
2173 int i;
2174 ev_tstamp odiff = rtmn_diff;
2175
2176 mn_now = get_clock ();
2177
2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2179 /* interpolate in the meantime */
2180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2181 {
2182 ev_rt_now = rtmn_diff + mn_now;
2183 return;
2184 }
2185
2186 now_floor = mn_now;
2187 ev_rt_now = ev_time ();
2188
2189 /* loop a few times, before making important decisions.
2190 * on the choice of "4": one iteration isn't enough,
2191 * in case we get preempted during the calls to
2192 * ev_time and get_clock. a second call is almost guaranteed
2193 * to succeed in that case, though. and looping a few more times
2194 * doesn't hurt either as we only do this on time-jumps or
2195 * in the unlikely event of having been preempted here.
2196 */
2197 for (i = 4; --i; )
2198 {
2199 rtmn_diff = ev_rt_now - mn_now;
2200
2201 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2202 return; /* all is well */
2203
2204 ev_rt_now = ev_time ();
2205 mn_now = get_clock ();
2206 now_floor = mn_now;
2207 }
2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2211 # if EV_PERIODIC_ENABLE
2212 periodics_reschedule (EV_A);
2213 # endif
2214 }
2215 else
2216 #endif
2217 {
2218 ev_rt_now = ev_time ();
2219
2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2224 #if EV_PERIODIC_ENABLE
2225 periodics_reschedule (EV_A);
2226 #endif
2227 }
2228
2229 mn_now = ev_rt_now;
2230 }
2231 }
2232
2233 void
2234 ev_loop (EV_P_ int flags)
2235 {
2236 #if EV_MINIMAL < 2
2237 ++loop_depth;
2238 #endif
2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
2242 loop_done = EVUNLOOP_CANCEL;
2243
2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2245
2246 do
2247 {
2248 #if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250 #endif
2251
2252 #ifndef _WIN32
2253 if (expect_false (curpid)) /* penalise the forking check even more */
2254 if (expect_false (getpid () != curpid))
2255 {
2256 curpid = getpid ();
2257 postfork = 1;
2258 }
2259 #endif
2260
2261 #if EV_FORK_ENABLE
2262 /* we might have forked, so queue fork handlers */
2263 if (expect_false (postfork))
2264 if (forkcnt)
2265 {
2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2267 EV_INVOKE_PENDING;
2268 }
2269 #endif
2270
2271 /* queue prepare watchers (and execute them) */
2272 if (expect_false (preparecnt))
2273 {
2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2275 EV_INVOKE_PENDING;
2276 }
2277
2278 if (expect_false (loop_done))
2279 break;
2280
2281 /* we might have forked, so reify kernel state if necessary */
2282 if (expect_false (postfork))
2283 loop_fork (EV_A);
2284
2285 /* update fd-related kernel structures */
2286 fd_reify (EV_A);
2287
2288 /* calculate blocking time */
2289 {
2290 ev_tstamp waittime = 0.;
2291 ev_tstamp sleeptime = 0.;
2292
2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
2298 /* update time to cancel out callback processing overhead */
2299 time_update (EV_A_ 1e100);
2300
2301 waittime = MAX_BLOCKTIME;
2302
2303 if (timercnt)
2304 {
2305 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2306 if (waittime > to) waittime = to;
2307 }
2308
2309 #if EV_PERIODIC_ENABLE
2310 if (periodiccnt)
2311 {
2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2313 if (waittime > to) waittime = to;
2314 }
2315 #endif
2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
2318 if (expect_false (waittime < timeout_blocktime))
2319 waittime = timeout_blocktime;
2320
2321 /* extra check because io_blocktime is commonly 0 */
2322 if (expect_false (io_blocktime))
2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
2331 ev_sleep (sleeptime);
2332 waittime -= sleeptime;
2333 }
2334 }
2335 }
2336
2337 #if EV_MINIMAL < 2
2338 ++loop_count;
2339 #endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2343
2344 /* update ev_rt_now, do magic */
2345 time_update (EV_A_ waittime + sleeptime);
2346 }
2347
2348 /* queue pending timers and reschedule them */
2349 timers_reify (EV_A); /* relative timers called last */
2350 #if EV_PERIODIC_ENABLE
2351 periodics_reify (EV_A); /* absolute timers called first */
2352 #endif
2353
2354 #if EV_IDLE_ENABLE
2355 /* queue idle watchers unless other events are pending */
2356 idle_reify (EV_A);
2357 #endif
2358
2359 /* queue check watchers, to be executed first */
2360 if (expect_false (checkcnt))
2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2362
2363 EV_INVOKE_PENDING;
2364 }
2365 while (expect_true (
2366 activecnt
2367 && !loop_done
2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2369 ));
2370
2371 if (loop_done == EVUNLOOP_ONE)
2372 loop_done = EVUNLOOP_CANCEL;
2373
2374 #if EV_MINIMAL < 2
2375 --loop_depth;
2376 #endif
2377 }
2378
2379 void
2380 ev_unloop (EV_P_ int how)
2381 {
2382 loop_done = how;
2383 }
2384
2385 void
2386 ev_ref (EV_P)
2387 {
2388 ++activecnt;
2389 }
2390
2391 void
2392 ev_unref (EV_P)
2393 {
2394 --activecnt;
2395 }
2396
2397 void
2398 ev_now_update (EV_P)
2399 {
2400 time_update (EV_A_ 1e100);
2401 }
2402
2403 void
2404 ev_suspend (EV_P)
2405 {
2406 ev_now_update (EV_A);
2407 }
2408
2409 void
2410 ev_resume (EV_P)
2411 {
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416 #if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419 #endif
2420 }
2421
2422 /*****************************************************************************/
2423 /* singly-linked list management, used when the expected list length is short */
2424
2425 inline_size void
2426 wlist_add (WL *head, WL elem)
2427 {
2428 elem->next = *head;
2429 *head = elem;
2430 }
2431
2432 inline_size void
2433 wlist_del (WL *head, WL elem)
2434 {
2435 while (*head)
2436 {
2437 if (expect_true (*head == elem))
2438 {
2439 *head = elem->next;
2440 break;
2441 }
2442
2443 head = &(*head)->next;
2444 }
2445 }
2446
2447 /* internal, faster, version of ev_clear_pending */
2448 inline_speed void
2449 clear_pending (EV_P_ W w)
2450 {
2451 if (w->pending)
2452 {
2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2454 w->pending = 0;
2455 }
2456 }
2457
2458 int
2459 ev_clear_pending (EV_P_ void *w)
2460 {
2461 W w_ = (W)w;
2462 int pending = w_->pending;
2463
2464 if (expect_true (pending))
2465 {
2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
2468 w_->pending = 0;
2469 return p->events;
2470 }
2471 else
2472 return 0;
2473 }
2474
2475 inline_size void
2476 pri_adjust (EV_P_ W w)
2477 {
2478 int pri = ev_priority (w);
2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2481 ev_set_priority (w, pri);
2482 }
2483
2484 inline_speed void
2485 ev_start (EV_P_ W w, int active)
2486 {
2487 pri_adjust (EV_A_ w);
2488 w->active = active;
2489 ev_ref (EV_A);
2490 }
2491
2492 inline_size void
2493 ev_stop (EV_P_ W w)
2494 {
2495 ev_unref (EV_A);
2496 w->active = 0;
2497 }
2498
2499 /*****************************************************************************/
2500
2501 void noinline
2502 ev_io_start (EV_P_ ev_io *w)
2503 {
2504 int fd = w->fd;
2505
2506 if (expect_false (ev_is_active (w)))
2507 return;
2508
2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
2513
2514 ev_start (EV_A_ (W)w, 1);
2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2516 wlist_add (&anfds[fd].head, (WL)w);
2517
2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
2522 }
2523
2524 void noinline
2525 ev_io_stop (EV_P_ ev_io *w)
2526 {
2527 clear_pending (EV_A_ (W)w);
2528 if (expect_false (!ev_is_active (w)))
2529 return;
2530
2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2532
2533 EV_FREQUENT_CHECK;
2534
2535 wlist_del (&anfds[w->fd].head, (WL)w);
2536 ev_stop (EV_A_ (W)w);
2537
2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
2541 }
2542
2543 void noinline
2544 ev_timer_start (EV_P_ ev_timer *w)
2545 {
2546 if (expect_false (ev_is_active (w)))
2547 return;
2548
2549 ev_at (w) += mn_now;
2550
2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
2559 ANHE_at_cache (timers [ev_active (w)]);
2560 upheap (timers, ev_active (w));
2561
2562 EV_FREQUENT_CHECK;
2563
2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2565 }
2566
2567 void noinline
2568 ev_timer_stop (EV_P_ ev_timer *w)
2569 {
2570 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w)))
2572 return;
2573
2574 EV_FREQUENT_CHECK;
2575
2576 {
2577 int active = ev_active (w);
2578
2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2580
2581 --timercnt;
2582
2583 if (expect_true (active < timercnt + HEAP0))
2584 {
2585 timers [active] = timers [timercnt + HEAP0];
2586 adjustheap (timers, timercnt, active);
2587 }
2588 }
2589
2590 EV_FREQUENT_CHECK;
2591
2592 ev_at (w) -= mn_now;
2593
2594 ev_stop (EV_A_ (W)w);
2595 }
2596
2597 void noinline
2598 ev_timer_again (EV_P_ ev_timer *w)
2599 {
2600 EV_FREQUENT_CHECK;
2601
2602 if (ev_is_active (w))
2603 {
2604 if (w->repeat)
2605 {
2606 ev_at (w) = mn_now + w->repeat;
2607 ANHE_at_cache (timers [ev_active (w)]);
2608 adjustheap (timers, timercnt, ev_active (w));
2609 }
2610 else
2611 ev_timer_stop (EV_A_ w);
2612 }
2613 else if (w->repeat)
2614 {
2615 ev_at (w) = w->repeat;
2616 ev_timer_start (EV_A_ w);
2617 }
2618
2619 EV_FREQUENT_CHECK;
2620 }
2621
2622 ev_tstamp
2623 ev_timer_remaining (EV_P_ ev_timer *w)
2624 {
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2626 }
2627
2628 #if EV_PERIODIC_ENABLE
2629 void noinline
2630 ev_periodic_start (EV_P_ ev_periodic *w)
2631 {
2632 if (expect_false (ev_is_active (w)))
2633 return;
2634
2635 if (w->reschedule_cb)
2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2637 else if (w->interval)
2638 {
2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2640 /* this formula differs from the one in periodic_reify because we do not always round up */
2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2642 }
2643 else
2644 ev_at (w) = w->offset;
2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2652 ANHE_at_cache (periodics [ev_active (w)]);
2653 upheap (periodics, ev_active (w));
2654
2655 EV_FREQUENT_CHECK;
2656
2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2658 }
2659
2660 void noinline
2661 ev_periodic_stop (EV_P_ ev_periodic *w)
2662 {
2663 clear_pending (EV_A_ (W)w);
2664 if (expect_false (!ev_is_active (w)))
2665 return;
2666
2667 EV_FREQUENT_CHECK;
2668
2669 {
2670 int active = ev_active (w);
2671
2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2673
2674 --periodiccnt;
2675
2676 if (expect_true (active < periodiccnt + HEAP0))
2677 {
2678 periodics [active] = periodics [periodiccnt + HEAP0];
2679 adjustheap (periodics, periodiccnt, active);
2680 }
2681 }
2682
2683 EV_FREQUENT_CHECK;
2684
2685 ev_stop (EV_A_ (W)w);
2686 }
2687
2688 void noinline
2689 ev_periodic_again (EV_P_ ev_periodic *w)
2690 {
2691 /* TODO: use adjustheap and recalculation */
2692 ev_periodic_stop (EV_A_ w);
2693 ev_periodic_start (EV_A_ w);
2694 }
2695 #endif
2696
2697 #ifndef SA_RESTART
2698 # define SA_RESTART 0
2699 #endif
2700
2701 void noinline
2702 ev_signal_start (EV_P_ ev_signal *w)
2703 {
2704 if (expect_false (ev_is_active (w)))
2705 return;
2706
2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2708
2709 #if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2712
2713 signals [w->signum - 1].loop = EV_A;
2714 #endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718 #if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2720 {
2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2722 if (sigfd < 0 && errno == EINVAL)
2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2724
2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2728
2729 sigemptyset (&sigfd_set);
2730
2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746 #endif
2747
2748 ev_start (EV_A_ (W)w, 1);
2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
2750
2751 if (!((WL)w)->next)
2752 # if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754 # endif
2755 {
2756 # if _WIN32
2757 signal (w->signum, ev_sighandler);
2758 # else
2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
2763 sa.sa_handler = ev_sighandler;
2764 sigfillset (&sa.sa_mask);
2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2771 #endif
2772 }
2773
2774 EV_FREQUENT_CHECK;
2775 }
2776
2777 void noinline
2778 ev_signal_stop (EV_P_ ev_signal *w)
2779 {
2780 clear_pending (EV_A_ (W)w);
2781 if (expect_false (!ev_is_active (w)))
2782 return;
2783
2784 EV_FREQUENT_CHECK;
2785
2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
2787 ev_stop (EV_A_ (W)w);
2788
2789 if (!signals [w->signum - 1].head)
2790 {
2791 #if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793 #endif
2794 #if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804 #endif
2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
2809 }
2810
2811 void
2812 ev_child_start (EV_P_ ev_child *w)
2813 {
2814 #if EV_MULTIPLICITY
2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2816 #endif
2817 if (expect_false (ev_is_active (w)))
2818 return;
2819
2820 EV_FREQUENT_CHECK;
2821
2822 ev_start (EV_A_ (W)w, 1);
2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
2826 }
2827
2828 void
2829 ev_child_stop (EV_P_ ev_child *w)
2830 {
2831 clear_pending (EV_A_ (W)w);
2832 if (expect_false (!ev_is_active (w)))
2833 return;
2834
2835 EV_FREQUENT_CHECK;
2836
2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2841 }
2842
2843 #if EV_STAT_ENABLE
2844
2845 # ifdef _WIN32
2846 # undef lstat
2847 # define lstat(a,b) _stati64 (a,b)
2848 # endif
2849
2850 #define DEF_STAT_INTERVAL 5.0074891
2851 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2852 #define MIN_STAT_INTERVAL 0.1074891
2853
2854 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2855
2856 #if EV_USE_INOTIFY
2857 # define EV_INOTIFY_BUFSIZE 8192
2858
2859 static void noinline
2860 infy_add (EV_P_ ev_stat *w)
2861 {
2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2863
2864 if (w->wd < 0)
2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2868
2869 /* monitor some parent directory for speedup hints */
2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2871 /* but an efficiency issue only */
2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2873 {
2874 char path [4096];
2875 strcpy (path, w->path);
2876
2877 do
2878 {
2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2881
2882 char *pend = strrchr (path, '/');
2883
2884 if (!pend || pend == path)
2885 break;
2886
2887 *pend = 0;
2888 w->wd = inotify_add_watch (fs_fd, path, mask);
2889 }
2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2891 }
2892 }
2893
2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
2916 }
2917
2918 static void noinline
2919 infy_del (EV_P_ ev_stat *w)
2920 {
2921 int slot;
2922 int wd = w->wd;
2923
2924 if (wd < 0)
2925 return;
2926
2927 w->wd = -2;
2928 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2929 wlist_del (&fs_hash [slot].head, (WL)w);
2930
2931 /* remove this watcher, if others are watching it, they will rearm */
2932 inotify_rm_watch (fs_fd, wd);
2933 }
2934
2935 static void noinline
2936 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2937 {
2938 if (slot < 0)
2939 /* overflow, need to check for all hash slots */
2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2941 infy_wd (EV_A_ slot, wd, ev);
2942 else
2943 {
2944 WL w_;
2945
2946 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2947 {
2948 ev_stat *w = (ev_stat *)w_;
2949 w_ = w_->next; /* lets us remove this watcher and all before it */
2950
2951 if (w->wd == wd || wd == -1)
2952 {
2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2956 w->wd = -1;
2957 infy_add (EV_A_ w); /* re-add, no matter what */
2958 }
2959
2960 stat_timer_cb (EV_A_ &w->timer, 0);
2961 }
2962 }
2963 }
2964 }
2965
2966 static void
2967 infy_cb (EV_P_ ev_io *w, int revents)
2968 {
2969 char buf [EV_INOTIFY_BUFSIZE];
2970 struct inotify_event *ev = (struct inotify_event *)buf;
2971 int ofs;
2972 int len = read (fs_fd, buf, sizeof (buf));
2973
2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2976 }
2977
2978 inline_size void
2979 check_2625 (EV_P)
2980 {
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999 }
3000
3001 inline_size int
3002 infy_newfd (void)
3003 {
3004 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008 #endif
3009 return inotify_init ();
3010 }
3011
3012 inline_size void
3013 infy_init (EV_P)
3014 {
3015 if (fs_fd != -2)
3016 return;
3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
3022 fs_fd = infy_newfd ();
3023
3024 if (fs_fd >= 0)
3025 {
3026 fd_intern (fs_fd);
3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3028 ev_set_priority (&fs_w, EV_MAXPRI);
3029 ev_io_start (EV_A_ &fs_w);
3030 }
3031 }
3032
3033 inline_size void
3034 infy_fork (EV_P)
3035 {
3036 int slot;
3037
3038 if (fs_fd < 0)
3039 return;
3040
3041 ev_io_stop (EV_A_ &fs_w);
3042 close (fs_fd);
3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
3051
3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3053 {
3054 WL w_ = fs_hash [slot].head;
3055 fs_hash [slot].head = 0;
3056
3057 while (w_)
3058 {
3059 ev_stat *w = (ev_stat *)w_;
3060 w_ = w_->next; /* lets us add this watcher */
3061
3062 w->wd = -1;
3063
3064 if (fs_fd >= 0)
3065 infy_add (EV_A_ w); /* re-add, no matter what */
3066 else
3067 ev_timer_again (EV_A_ &w->timer);
3068 }
3069 }
3070 }
3071
3072 #endif
3073
3074 #ifdef _WIN32
3075 # define EV_LSTAT(p,b) _stati64 (p, b)
3076 #else
3077 # define EV_LSTAT(p,b) lstat (p, b)
3078 #endif
3079
3080 void
3081 ev_stat_stat (EV_P_ ev_stat *w)
3082 {
3083 if (lstat (w->path, &w->attr) < 0)
3084 w->attr.st_nlink = 0;
3085 else if (!w->attr.st_nlink)
3086 w->attr.st_nlink = 1;
3087 }
3088
3089 static void noinline
3090 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3091 {
3092 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3093
3094 /* we copy this here each the time so that */
3095 /* prev has the old value when the callback gets invoked */
3096 w->prev = w->attr;
3097 ev_stat_stat (EV_A_ w);
3098
3099 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3100 if (
3101 w->prev.st_dev != w->attr.st_dev
3102 || w->prev.st_ino != w->attr.st_ino
3103 || w->prev.st_mode != w->attr.st_mode
3104 || w->prev.st_nlink != w->attr.st_nlink
3105 || w->prev.st_uid != w->attr.st_uid
3106 || w->prev.st_gid != w->attr.st_gid
3107 || w->prev.st_rdev != w->attr.st_rdev
3108 || w->prev.st_size != w->attr.st_size
3109 || w->prev.st_atime != w->attr.st_atime
3110 || w->prev.st_mtime != w->attr.st_mtime
3111 || w->prev.st_ctime != w->attr.st_ctime
3112 ) {
3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
3116 infy_del (EV_A_ w);
3117 infy_add (EV_A_ w);
3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
3120 #endif
3121
3122 ev_feed_event (EV_A_ w, EV_STAT);
3123 }
3124 }
3125
3126 void
3127 ev_stat_start (EV_P_ ev_stat *w)
3128 {
3129 if (expect_false (ev_is_active (w)))
3130 return;
3131
3132 ev_stat_stat (EV_A_ w);
3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3135 w->interval = MIN_STAT_INTERVAL;
3136
3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3138 ev_set_priority (&w->timer, ev_priority (w));
3139
3140 #if EV_USE_INOTIFY
3141 infy_init (EV_A);
3142
3143 if (fs_fd >= 0)
3144 infy_add (EV_A_ w);
3145 else
3146 #endif
3147 ev_timer_again (EV_A_ &w->timer);
3148
3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
3152 }
3153
3154 void
3155 ev_stat_stop (EV_P_ ev_stat *w)
3156 {
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 #if EV_USE_INOTIFY
3164 infy_del (EV_A_ w);
3165 #endif
3166 ev_timer_stop (EV_A_ &w->timer);
3167
3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
3171 }
3172 #endif
3173
3174 #if EV_IDLE_ENABLE
3175 void
3176 ev_idle_start (EV_P_ ev_idle *w)
3177 {
3178 if (expect_false (ev_is_active (w)))
3179 return;
3180
3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
3184
3185 {
3186 int active = ++idlecnt [ABSPRI (w)];
3187
3188 ++idleall;
3189 ev_start (EV_A_ (W)w, active);
3190
3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3192 idles [ABSPRI (w)][active - 1] = w;
3193 }
3194
3195 EV_FREQUENT_CHECK;
3196 }
3197
3198 void
3199 ev_idle_stop (EV_P_ ev_idle *w)
3200 {
3201 clear_pending (EV_A_ (W)w);
3202 if (expect_false (!ev_is_active (w)))
3203 return;
3204
3205 EV_FREQUENT_CHECK;
3206
3207 {
3208 int active = ev_active (w);
3209
3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3212
3213 ev_stop (EV_A_ (W)w);
3214 --idleall;
3215 }
3216
3217 EV_FREQUENT_CHECK;
3218 }
3219 #endif
3220
3221 void
3222 ev_prepare_start (EV_P_ ev_prepare *w)
3223 {
3224 if (expect_false (ev_is_active (w)))
3225 return;
3226
3227 EV_FREQUENT_CHECK;
3228
3229 ev_start (EV_A_ (W)w, ++preparecnt);
3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
3234 }
3235
3236 void
3237 ev_prepare_stop (EV_P_ ev_prepare *w)
3238 {
3239 clear_pending (EV_A_ (W)w);
3240 if (expect_false (!ev_is_active (w)))
3241 return;
3242
3243 EV_FREQUENT_CHECK;
3244
3245 {
3246 int active = ev_active (w);
3247
3248 prepares [active - 1] = prepares [--preparecnt];
3249 ev_active (prepares [active - 1]) = active;
3250 }
3251
3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
3255 }
3256
3257 void
3258 ev_check_start (EV_P_ ev_check *w)
3259 {
3260 if (expect_false (ev_is_active (w)))
3261 return;
3262
3263 EV_FREQUENT_CHECK;
3264
3265 ev_start (EV_A_ (W)w, ++checkcnt);
3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
3270 }
3271
3272 void
3273 ev_check_stop (EV_P_ ev_check *w)
3274 {
3275 clear_pending (EV_A_ (W)w);
3276 if (expect_false (!ev_is_active (w)))
3277 return;
3278
3279 EV_FREQUENT_CHECK;
3280
3281 {
3282 int active = ev_active (w);
3283
3284 checks [active - 1] = checks [--checkcnt];
3285 ev_active (checks [active - 1]) = active;
3286 }
3287
3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
3291 }
3292
3293 #if EV_EMBED_ENABLE
3294 void noinline
3295 ev_embed_sweep (EV_P_ ev_embed *w)
3296 {
3297 ev_loop (w->other, EVLOOP_NONBLOCK);
3298 }
3299
3300 static void
3301 embed_io_cb (EV_P_ ev_io *io, int revents)
3302 {
3303 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3304
3305 if (ev_cb (w))
3306 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3307 else
3308 ev_loop (w->other, EVLOOP_NONBLOCK);
3309 }
3310
3311 static void
3312 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313 {
3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315
3316 {
3317 EV_P = w->other;
3318
3319 while (fdchangecnt)
3320 {
3321 fd_reify (EV_A);
3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323 }
3324 }
3325 }
3326
3327 static void
3328 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329 {
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342 }
3343
3344 #if 0
3345 static void
3346 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347 {
3348 ev_idle_stop (EV_A_ idle);
3349 }
3350 #endif
3351
3352 void
3353 ev_embed_start (EV_P_ ev_embed *w)
3354 {
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 {
3359 EV_P = w->other;
3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3362 }
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_set_priority (&w->io, ev_priority (w));
3367 ev_io_start (EV_A_ &w->io);
3368
3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370 ev_set_priority (&w->prepare, EV_MINPRI);
3371 ev_prepare_start (EV_A_ &w->prepare);
3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377
3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
3381 }
3382
3383 void
3384 ev_embed_stop (EV_P_ ev_embed *w)
3385 {
3386 clear_pending (EV_A_ (W)w);
3387 if (expect_false (!ev_is_active (w)))
3388 return;
3389
3390 EV_FREQUENT_CHECK;
3391
3392 ev_io_stop (EV_A_ &w->io);
3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
3395
3396 EV_FREQUENT_CHECK;
3397 }
3398 #endif
3399
3400 #if EV_FORK_ENABLE
3401 void
3402 ev_fork_start (EV_P_ ev_fork *w)
3403 {
3404 if (expect_false (ev_is_active (w)))
3405 return;
3406
3407 EV_FREQUENT_CHECK;
3408
3409 ev_start (EV_A_ (W)w, ++forkcnt);
3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
3414 }
3415
3416 void
3417 ev_fork_stop (EV_P_ ev_fork *w)
3418 {
3419 clear_pending (EV_A_ (W)w);
3420 if (expect_false (!ev_is_active (w)))
3421 return;
3422
3423 EV_FREQUENT_CHECK;
3424
3425 {
3426 int active = ev_active (w);
3427
3428 forks [active - 1] = forks [--forkcnt];
3429 ev_active (forks [active - 1]) = active;
3430 }
3431
3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
3435 }
3436 #endif
3437
3438 #if EV_ASYNC_ENABLE
3439 void
3440 ev_async_start (EV_P_ ev_async *w)
3441 {
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++asynccnt);
3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454 }
3455
3456 void
3457 ev_async_stop (EV_P_ ev_async *w)
3458 {
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 asyncs [active - 1] = asyncs [--asynccnt];
3469 ev_active (asyncs [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475 }
3476
3477 void
3478 ev_async_send (EV_P_ ev_async *w)
3479 {
3480 w->sent = 1;
3481 evpipe_write (EV_A_ &async_pending);
3482 }
3483 #endif
3484
3485 /*****************************************************************************/
3486
3487 struct ev_once
3488 {
3489 ev_io io;
3490 ev_timer to;
3491 void (*cb)(int revents, void *arg);
3492 void *arg;
3493 };
3494
3495 static void
3496 once_cb (EV_P_ struct ev_once *once, int revents)
3497 {
3498 void (*cb)(int revents, void *arg) = once->cb;
3499 void *arg = once->arg;
3500
3501 ev_io_stop (EV_A_ &once->io);
3502 ev_timer_stop (EV_A_ &once->to);
3503 ev_free (once);
3504
3505 cb (revents, arg);
3506 }
3507
3508 static void
3509 once_cb_io (EV_P_ ev_io *w, int revents)
3510 {
3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3514 }
3515
3516 static void
3517 once_cb_to (EV_P_ ev_timer *w, int revents)
3518 {
3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3522 }
3523
3524 void
3525 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3526 {
3527 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3528
3529 if (expect_false (!once))
3530 {
3531 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3532 return;
3533 }
3534
3535 once->cb = cb;
3536 once->arg = arg;
3537
3538 ev_init (&once->io, once_cb_io);
3539 if (fd >= 0)
3540 {
3541 ev_io_set (&once->io, fd, events);
3542 ev_io_start (EV_A_ &once->io);
3543 }
3544
3545 ev_init (&once->to, once_cb_to);
3546 if (timeout >= 0.)
3547 {
3548 ev_timer_set (&once->to, timeout, 0.);
3549 ev_timer_start (EV_A_ &once->to);
3550 }
3551 }
3552
3553 /*****************************************************************************/
3554
3555 #if EV_WALK_ENABLE
3556 void
3557 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558 {
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568 #if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575 #endif
3576 #if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580 #endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590 #if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598 #endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602 #if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606 #endif
3607
3608 #if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613 #endif
3614
3615 #if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620 #endif
3621
3622 #if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626 #endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630 #if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632 #endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656 /* EV_STAT 0x00001000 /* stat data changed */
3657 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658 }
3659 #endif
3660
3661 #if EV_MULTIPLICITY
3662 #include "ev_wrap.h"
3663 #endif
3664
3665 #ifdef __cplusplus
3666 }
3667 #endif
3668