ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.318
Committed: Tue Nov 17 00:22:28 2009 UTC (14 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.317: +45 -26 lines
Log Message:
ev_stat_bug2

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <fcntl.h>
159 #include <stddef.h>
160
161 #include <stdio.h>
162
163 #include <assert.h>
164 #include <errno.h>
165 #include <sys/types.h>
166 #include <time.h>
167
168 #include <signal.h>
169
170 #ifdef EV_H
171 # include EV_H
172 #else
173 # include "ev.h"
174 #endif
175
176 #ifndef _WIN32
177 # include <sys/time.h>
178 # include <sys/wait.h>
179 # include <unistd.h>
180 #else
181 # include <io.h>
182 # define WIN32_LEAN_AND_MEAN
183 # include <windows.h>
184 # ifndef EV_SELECT_IS_WINSOCKET
185 # define EV_SELECT_IS_WINSOCKET 1
186 # endif
187 #endif
188
189 /* this block tries to deduce configuration from header-defined symbols and defaults */
190
191 /* try to deduce the maximum number of signals on this platform */
192 #if defined (EV_NSIG)
193 /* use what's provided */
194 #elif defined (NSIG)
195 # define EV_NSIG (NSIG)
196 #elif defined(_NSIG)
197 # define EV_NSIG (_NSIG)
198 #elif defined (SIGMAX)
199 # define EV_NSIG (SIGMAX+1)
200 #elif defined (SIG_MAX)
201 # define EV_NSIG (SIG_MAX+1)
202 #elif defined (_SIG_MAX)
203 # define EV_NSIG (_SIG_MAX+1)
204 #elif defined (MAXSIG)
205 # define EV_NSIG (MAXSIG+1)
206 #elif defined (MAX_SIG)
207 # define EV_NSIG (MAX_SIG+1)
208 #elif defined (SIGARRAYSIZE)
209 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210 #elif defined (_sys_nsig)
211 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212 #else
213 # error "unable to find value for NSIG, please report"
214 /* to make it compile regardless, just remove the above line */
215 # define EV_NSIG 65
216 #endif
217
218 #ifndef EV_USE_CLOCK_SYSCALL
219 # if __linux && __GLIBC__ >= 2
220 # define EV_USE_CLOCK_SYSCALL 1
221 # else
222 # define EV_USE_CLOCK_SYSCALL 0
223 # endif
224 #endif
225
226 #ifndef EV_USE_MONOTONIC
227 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228 # define EV_USE_MONOTONIC 1
229 # else
230 # define EV_USE_MONOTONIC 0
231 # endif
232 #endif
233
234 #ifndef EV_USE_REALTIME
235 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236 #endif
237
238 #ifndef EV_USE_NANOSLEEP
239 # if _POSIX_C_SOURCE >= 199309L
240 # define EV_USE_NANOSLEEP 1
241 # else
242 # define EV_USE_NANOSLEEP 0
243 # endif
244 #endif
245
246 #ifndef EV_USE_SELECT
247 # define EV_USE_SELECT 1
248 #endif
249
250 #ifndef EV_USE_POLL
251 # ifdef _WIN32
252 # define EV_USE_POLL 0
253 # else
254 # define EV_USE_POLL 1
255 # endif
256 #endif
257
258 #ifndef EV_USE_EPOLL
259 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260 # define EV_USE_EPOLL 1
261 # else
262 # define EV_USE_EPOLL 0
263 # endif
264 #endif
265
266 #ifndef EV_USE_KQUEUE
267 # define EV_USE_KQUEUE 0
268 #endif
269
270 #ifndef EV_USE_PORT
271 # define EV_USE_PORT 0
272 #endif
273
274 #ifndef EV_USE_INOTIFY
275 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276 # define EV_USE_INOTIFY 1
277 # else
278 # define EV_USE_INOTIFY 0
279 # endif
280 #endif
281
282 #ifndef EV_PID_HASHSIZE
283 # if EV_MINIMAL
284 # define EV_PID_HASHSIZE 1
285 # else
286 # define EV_PID_HASHSIZE 16
287 # endif
288 #endif
289
290 #ifndef EV_INOTIFY_HASHSIZE
291 # if EV_MINIMAL
292 # define EV_INOTIFY_HASHSIZE 1
293 # else
294 # define EV_INOTIFY_HASHSIZE 16
295 # endif
296 #endif
297
298 #ifndef EV_USE_EVENTFD
299 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300 # define EV_USE_EVENTFD 1
301 # else
302 # define EV_USE_EVENTFD 0
303 # endif
304 #endif
305
306 #ifndef EV_USE_SIGNALFD
307 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308 # define EV_USE_SIGNALFD 1
309 # else
310 # define EV_USE_SIGNALFD 0
311 # endif
312 #endif
313
314 #if 0 /* debugging */
315 # define EV_VERIFY 3
316 # define EV_USE_4HEAP 1
317 # define EV_HEAP_CACHE_AT 1
318 #endif
319
320 #ifndef EV_VERIFY
321 # define EV_VERIFY !EV_MINIMAL
322 #endif
323
324 #ifndef EV_USE_4HEAP
325 # define EV_USE_4HEAP !EV_MINIMAL
326 #endif
327
328 #ifndef EV_HEAP_CACHE_AT
329 # define EV_HEAP_CACHE_AT !EV_MINIMAL
330 #endif
331
332 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333 /* which makes programs even slower. might work on other unices, too. */
334 #if EV_USE_CLOCK_SYSCALL
335 # include <syscall.h>
336 # ifdef SYS_clock_gettime
337 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338 # undef EV_USE_MONOTONIC
339 # define EV_USE_MONOTONIC 1
340 # else
341 # undef EV_USE_CLOCK_SYSCALL
342 # define EV_USE_CLOCK_SYSCALL 0
343 # endif
344 #endif
345
346 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348 #ifndef CLOCK_MONOTONIC
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 0
351 #endif
352
353 #ifndef CLOCK_REALTIME
354 # undef EV_USE_REALTIME
355 # define EV_USE_REALTIME 0
356 #endif
357
358 #if !EV_STAT_ENABLE
359 # undef EV_USE_INOTIFY
360 # define EV_USE_INOTIFY 0
361 #endif
362
363 #if !EV_USE_NANOSLEEP
364 # ifndef _WIN32
365 # include <sys/select.h>
366 # endif
367 #endif
368
369 #if EV_USE_INOTIFY
370 # include <sys/utsname.h>
371 # include <sys/statfs.h>
372 # include <sys/inotify.h>
373 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374 # ifndef IN_DONT_FOLLOW
375 # undef EV_USE_INOTIFY
376 # define EV_USE_INOTIFY 0
377 # endif
378 #endif
379
380 #if EV_SELECT_IS_WINSOCKET
381 # include <winsock.h>
382 #endif
383
384 #if EV_USE_EVENTFD
385 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386 # include <stdint.h>
387 # ifndef EFD_NONBLOCK
388 # define EFD_NONBLOCK O_NONBLOCK
389 # endif
390 # ifndef EFD_CLOEXEC
391 # ifdef O_CLOEXEC
392 # define EFD_CLOEXEC O_CLOEXEC
393 # else
394 # define EFD_CLOEXEC 02000000
395 # endif
396 # endif
397 # ifdef __cplusplus
398 extern "C" {
399 # endif
400 int eventfd (unsigned int initval, int flags);
401 # ifdef __cplusplus
402 }
403 # endif
404 #endif
405
406 #if EV_USE_SIGNALFD
407 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408 # include <stdint.h>
409 # ifndef SFD_NONBLOCK
410 # define SFD_NONBLOCK O_NONBLOCK
411 # endif
412 # ifndef SFD_CLOEXEC
413 # ifdef O_CLOEXEC
414 # define SFD_CLOEXEC O_CLOEXEC
415 # else
416 # define SFD_CLOEXEC 02000000
417 # endif
418 # endif
419 # ifdef __cplusplus
420 extern "C" {
421 # endif
422 int signalfd (int fd, const sigset_t *mask, int flags);
423
424 struct signalfd_siginfo
425 {
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428 };
429 # ifdef __cplusplus
430 }
431 # endif
432 #endif
433
434
435 /**/
436
437 #if EV_VERIFY >= 3
438 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439 #else
440 # define EV_FREQUENT_CHECK do { } while (0)
441 #endif
442
443 /*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452
453 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
454 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
455
456 #if __GNUC__ >= 4
457 # define expect(expr,value) __builtin_expect ((expr),(value))
458 # define noinline __attribute__ ((noinline))
459 #else
460 # define expect(expr,value) (expr)
461 # define noinline
462 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463 # define inline
464 # endif
465 #endif
466
467 #define expect_false(expr) expect ((expr) != 0, 0)
468 #define expect_true(expr) expect ((expr) != 0, 1)
469 #define inline_size static inline
470
471 #if EV_MINIMAL
472 # define inline_speed static noinline
473 #else
474 # define inline_speed static inline
475 #endif
476
477 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479 #if EV_MINPRI == EV_MAXPRI
480 # define ABSPRI(w) (((W)w), 0)
481 #else
482 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483 #endif
484
485 #define EMPTY /* required for microsofts broken pseudo-c compiler */
486 #define EMPTY2(a,b) /* used to suppress some warnings */
487
488 typedef ev_watcher *W;
489 typedef ev_watcher_list *WL;
490 typedef ev_watcher_time *WT;
491
492 #define ev_active(w) ((W)(w))->active
493 #define ev_at(w) ((WT)(w))->at
494
495 #if EV_USE_REALTIME
496 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
497 /* giving it a reasonably high chance of working on typical architetcures */
498 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499 #endif
500
501 #if EV_USE_MONOTONIC
502 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503 #endif
504
505 #ifndef EV_FD_TO_WIN32_HANDLE
506 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507 #endif
508 #ifndef EV_WIN32_HANDLE_TO_FD
509 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510 #endif
511 #ifndef EV_WIN32_CLOSE_FD
512 # define EV_WIN32_CLOSE_FD(fd) close (fd)
513 #endif
514
515 #ifdef _WIN32
516 # include "ev_win32.c"
517 #endif
518
519 /*****************************************************************************/
520
521 static void (*syserr_cb)(const char *msg);
522
523 void
524 ev_set_syserr_cb (void (*cb)(const char *msg))
525 {
526 syserr_cb = cb;
527 }
528
529 static void noinline
530 ev_syserr (const char *msg)
531 {
532 if (!msg)
533 msg = "(libev) system error";
534
535 if (syserr_cb)
536 syserr_cb (msg);
537 else
538 {
539 perror (msg);
540 abort ();
541 }
542 }
543
544 static void *
545 ev_realloc_emul (void *ptr, long size)
546 {
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557 }
558
559 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
560
561 void
562 ev_set_allocator (void *(*cb)(void *ptr, long size))
563 {
564 alloc = cb;
565 }
566
567 inline_speed void *
568 ev_realloc (void *ptr, long size)
569 {
570 ptr = alloc (ptr, size);
571
572 if (!ptr && size)
573 {
574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
575 abort ();
576 }
577
578 return ptr;
579 }
580
581 #define ev_malloc(size) ev_realloc (0, (size))
582 #define ev_free(ptr) ev_realloc ((ptr), 0)
583
584 /*****************************************************************************/
585
586 /* set in reify when reification needed */
587 #define EV_ANFD_REIFY 1
588
589 /* file descriptor info structure */
590 typedef struct
591 {
592 WL head;
593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
596 unsigned char unused;
597 #if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599 #endif
600 #if EV_SELECT_IS_WINSOCKET
601 SOCKET handle;
602 #endif
603 } ANFD;
604
605 /* stores the pending event set for a given watcher */
606 typedef struct
607 {
608 W w;
609 int events; /* the pending event set for the given watcher */
610 } ANPENDING;
611
612 #if EV_USE_INOTIFY
613 /* hash table entry per inotify-id */
614 typedef struct
615 {
616 WL head;
617 } ANFS;
618 #endif
619
620 /* Heap Entry */
621 #if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631 #else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
638 #endif
639
640 #if EV_MULTIPLICITY
641
642 struct ev_loop
643 {
644 ev_tstamp ev_rt_now;
645 #define ev_rt_now ((loop)->ev_rt_now)
646 #define VAR(name,decl) decl;
647 #include "ev_vars.h"
648 #undef VAR
649 };
650 #include "ev_wrap.h"
651
652 static struct ev_loop default_loop_struct;
653 struct ev_loop *ev_default_loop_ptr;
654
655 #else
656
657 ev_tstamp ev_rt_now;
658 #define VAR(name,decl) static decl;
659 #include "ev_vars.h"
660 #undef VAR
661
662 static int ev_default_loop_ptr;
663
664 #endif
665
666 #if EV_MINIMAL < 2
667 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669 # define EV_INVOKE_PENDING invoke_cb (EV_A)
670 #else
671 # define EV_RELEASE_CB (void)0
672 # define EV_ACQUIRE_CB (void)0
673 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674 #endif
675
676 #define EVUNLOOP_RECURSE 0x80
677
678 /*****************************************************************************/
679
680 #ifndef EV_HAVE_EV_TIME
681 ev_tstamp
682 ev_time (void)
683 {
684 #if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
687 struct timespec ts;
688 clock_gettime (CLOCK_REALTIME, &ts);
689 return ts.tv_sec + ts.tv_nsec * 1e-9;
690 }
691 #endif
692
693 struct timeval tv;
694 gettimeofday (&tv, 0);
695 return tv.tv_sec + tv.tv_usec * 1e-6;
696 }
697 #endif
698
699 inline_size ev_tstamp
700 get_clock (void)
701 {
702 #if EV_USE_MONOTONIC
703 if (expect_true (have_monotonic))
704 {
705 struct timespec ts;
706 clock_gettime (CLOCK_MONOTONIC, &ts);
707 return ts.tv_sec + ts.tv_nsec * 1e-9;
708 }
709 #endif
710
711 return ev_time ();
712 }
713
714 #if EV_MULTIPLICITY
715 ev_tstamp
716 ev_now (EV_P)
717 {
718 return ev_rt_now;
719 }
720 #endif
721
722 void
723 ev_sleep (ev_tstamp delay)
724 {
725 if (delay > 0.)
726 {
727 #if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734 #elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736 #else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746 #endif
747 }
748 }
749
750 /*****************************************************************************/
751
752 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754 /* find a suitable new size for the given array, */
755 /* hopefully by rounding to a ncie-to-malloc size */
756 inline_size int
757 array_nextsize (int elem, int cur, int cnt)
758 {
759 int ncur = cur + 1;
760
761 do
762 ncur <<= 1;
763 while (cnt > ncur);
764
765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
767 {
768 ncur *= elem;
769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
770 ncur = ncur - sizeof (void *) * 4;
771 ncur /= elem;
772 }
773
774 return ncur;
775 }
776
777 static noinline void *
778 array_realloc (int elem, void *base, int *cur, int cnt)
779 {
780 *cur = array_nextsize (elem, *cur, cnt);
781 return ev_realloc (base, elem * *cur);
782 }
783
784 #define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
786
787 #define array_needsize(type,base,cur,cnt,init) \
788 if (expect_false ((cnt) > (cur))) \
789 { \
790 int ocur_ = (cur); \
791 (base) = (type *)array_realloc \
792 (sizeof (type), (base), &(cur), (cnt)); \
793 init ((base) + (ocur_), (cur) - ocur_); \
794 }
795
796 #if 0
797 #define array_slim(type,stem) \
798 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
799 { \
800 stem ## max = array_roundsize (stem ## cnt >> 1); \
801 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
803 }
804 #endif
805
806 #define array_free(stem, idx) \
807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
808
809 /*****************************************************************************/
810
811 /* dummy callback for pending events */
812 static void noinline
813 pendingcb (EV_P_ ev_prepare *w, int revents)
814 {
815 }
816
817 void noinline
818 ev_feed_event (EV_P_ void *w, int revents)
819 {
820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
822
823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
830 pendings [pri][w_->pending - 1].events = revents;
831 }
832 }
833
834 inline_speed void
835 feed_reverse (EV_P_ W w)
836 {
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839 }
840
841 inline_size void
842 feed_reverse_done (EV_P_ int revents)
843 {
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847 }
848
849 inline_speed void
850 queue_events (EV_P_ W *events, int eventcnt, int type)
851 {
852 int i;
853
854 for (i = 0; i < eventcnt; ++i)
855 ev_feed_event (EV_A_ events [i], type);
856 }
857
858 /*****************************************************************************/
859
860 inline_speed void
861 fd_event_nc (EV_P_ int fd, int revents)
862 {
863 ANFD *anfd = anfds + fd;
864 ev_io *w;
865
866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
867 {
868 int ev = w->events & revents;
869
870 if (ev)
871 ev_feed_event (EV_A_ (W)w, ev);
872 }
873 }
874
875 /* do not submit kernel events for fds that have reify set */
876 /* because that means they changed while we were polling for new events */
877 inline_speed void
878 fd_event (EV_P_ int fd, int revents)
879 {
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884 }
885
886 void
887 ev_feed_fd_event (EV_P_ int fd, int revents)
888 {
889 if (fd >= 0 && fd < anfdmax)
890 fd_event_nc (EV_A_ fd, revents);
891 }
892
893 /* make sure the external fd watch events are in-sync */
894 /* with the kernel/libev internal state */
895 inline_size void
896 fd_reify (EV_P)
897 {
898 int i;
899
900 for (i = 0; i < fdchangecnt; ++i)
901 {
902 int fd = fdchanges [i];
903 ANFD *anfd = anfds + fd;
904 ev_io *w;
905
906 unsigned char events = 0;
907
908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
909 events |= (unsigned char)w->events;
910
911 #if EV_SELECT_IS_WINSOCKET
912 if (events)
913 {
914 unsigned long arg;
915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
917 }
918 #endif
919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
924 anfd->reify = 0;
925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
930 }
931
932 fdchangecnt = 0;
933 }
934
935 /* something about the given fd changed */
936 inline_size void
937 fd_change (EV_P_ int fd, int flags)
938 {
939 unsigned char reify = anfds [fd].reify;
940 anfds [fd].reify |= flags;
941
942 if (expect_true (!reify))
943 {
944 ++fdchangecnt;
945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
946 fdchanges [fdchangecnt - 1] = fd;
947 }
948 }
949
950 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951 inline_speed void
952 fd_kill (EV_P_ int fd)
953 {
954 ev_io *w;
955
956 while ((w = (ev_io *)anfds [fd].head))
957 {
958 ev_io_stop (EV_A_ w);
959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
960 }
961 }
962
963 /* check whether the given fd is atcually valid, for error recovery */
964 inline_size int
965 fd_valid (int fd)
966 {
967 #ifdef _WIN32
968 return _get_osfhandle (fd) != -1;
969 #else
970 return fcntl (fd, F_GETFD) != -1;
971 #endif
972 }
973
974 /* called on EBADF to verify fds */
975 static void noinline
976 fd_ebadf (EV_P)
977 {
978 int fd;
979
980 for (fd = 0; fd < anfdmax; ++fd)
981 if (anfds [fd].events)
982 if (!fd_valid (fd) && errno == EBADF)
983 fd_kill (EV_A_ fd);
984 }
985
986 /* called on ENOMEM in select/poll to kill some fds and retry */
987 static void noinline
988 fd_enomem (EV_P)
989 {
990 int fd;
991
992 for (fd = anfdmax; fd--; )
993 if (anfds [fd].events)
994 {
995 fd_kill (EV_A_ fd);
996 break;
997 }
998 }
999
1000 /* usually called after fork if backend needs to re-arm all fds from scratch */
1001 static void noinline
1002 fd_rearm_all (EV_P)
1003 {
1004 int fd;
1005
1006 for (fd = 0; fd < anfdmax; ++fd)
1007 if (anfds [fd].events)
1008 {
1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1012 }
1013 }
1014
1015 /*****************************************************************************/
1016
1017 /*
1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1020 * the branching factor of the d-tree.
1021 */
1022
1023 /*
1024 * at the moment we allow libev the luxury of two heaps,
1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029 #if EV_USE_4HEAP
1030
1031 #define DHEAP 4
1032 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034 #define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036 /* away from the root */
1037 inline_speed void
1038 downheap (ANHE *heap, int N, int k)
1039 {
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
1065 break;
1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078 }
1079
1080 #else /* 4HEAP */
1081
1082 #define HEAP0 1
1083 #define HPARENT(k) ((k) >> 1)
1084 #define UPHEAP_DONE(p,k) (!(p))
1085
1086 /* away from the root */
1087 inline_speed void
1088 downheap (ANHE *heap, int N, int k)
1089 {
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113 }
1114 #endif
1115
1116 /* towards the root */
1117 inline_speed void
1118 upheap (ANHE *heap, int k)
1119 {
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136 }
1137
1138 /* move an element suitably so it is in a correct place */
1139 inline_size void
1140 adjustheap (ANHE *heap, int N, int k)
1141 {
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1143 upheap (heap, k);
1144 else
1145 downheap (heap, N, k);
1146 }
1147
1148 /* rebuild the heap: this function is used only once and executed rarely */
1149 inline_size void
1150 reheap (ANHE *heap, int N)
1151 {
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
1158 }
1159
1160 /*****************************************************************************/
1161
1162 /* associate signal watchers to a signal signal */
1163 typedef struct
1164 {
1165 EV_ATOMIC_T pending;
1166 #if EV_MULTIPLICITY
1167 EV_P;
1168 #endif
1169 WL head;
1170 } ANSIG;
1171
1172 static ANSIG signals [EV_NSIG - 1];
1173
1174 /*****************************************************************************/
1175
1176 /* used to prepare libev internal fd's */
1177 /* this is not fork-safe */
1178 inline_speed void
1179 fd_intern (int fd)
1180 {
1181 #ifdef _WIN32
1182 unsigned long arg = 1;
1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1184 #else
1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
1186 fcntl (fd, F_SETFL, O_NONBLOCK);
1187 #endif
1188 }
1189
1190 static void noinline
1191 evpipe_init (EV_P)
1192 {
1193 if (!ev_is_active (&pipe_w))
1194 {
1195 #if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207 #endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
1212 fd_intern (evpipe [0]);
1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
1217 ev_io_start (EV_A_ &pipe_w);
1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220 }
1221
1222 inline_size void
1223 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224 {
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231 #if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238 #endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243 }
1244
1245 /* called whenever the libev signal pipe */
1246 /* got some events (signal, async) */
1247 static void
1248 pipecb (EV_P_ ev_io *iow, int revents)
1249 {
1250 int i;
1251
1252 #if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259 #endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274 #if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286 #endif
1287 }
1288
1289 /*****************************************************************************/
1290
1291 static void
1292 ev_sighandler (int signum)
1293 {
1294 #if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296 #endif
1297
1298 #if _WIN32
1299 signal (signum, ev_sighandler);
1300 #endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304 }
1305
1306 void noinline
1307 ev_feed_signal_event (EV_P_ int signum)
1308 {
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316 #if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322 #endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328 }
1329
1330 #if EV_USE_SIGNALFD
1331 static void
1332 sigfdcb (EV_P_ ev_io *iow, int revents)
1333 {
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347 }
1348 #endif
1349
1350 /*****************************************************************************/
1351
1352 static WL childs [EV_PID_HASHSIZE];
1353
1354 #ifndef _WIN32
1355
1356 static ev_signal childev;
1357
1358 #ifndef WIFCONTINUED
1359 # define WIFCONTINUED(status) 0
1360 #endif
1361
1362 /* handle a single child status event */
1363 inline_speed void
1364 child_reap (EV_P_ int chain, int pid, int status)
1365 {
1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368
1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
1373 {
1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 w->rpid = pid;
1376 w->rstatus = status;
1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378 }
1379 }
1380 }
1381
1382 #ifndef WCONTINUED
1383 # define WCONTINUED 0
1384 #endif
1385
1386 /* called on sigchld etc., calls waitpid */
1387 static void
1388 childcb (EV_P_ ev_signal *sw, int revents)
1389 {
1390 int pid, status;
1391
1392 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1393 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1394 if (!WCONTINUED
1395 || errno != EINVAL
1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1397 return;
1398
1399 /* make sure we are called again until all children have been reaped */
1400 /* we need to do it this way so that the callback gets called before we continue */
1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1402
1403 child_reap (EV_A_ pid, pid, status);
1404 if (EV_PID_HASHSIZE > 1)
1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1406 }
1407
1408 #endif
1409
1410 /*****************************************************************************/
1411
1412 #if EV_USE_PORT
1413 # include "ev_port.c"
1414 #endif
1415 #if EV_USE_KQUEUE
1416 # include "ev_kqueue.c"
1417 #endif
1418 #if EV_USE_EPOLL
1419 # include "ev_epoll.c"
1420 #endif
1421 #if EV_USE_POLL
1422 # include "ev_poll.c"
1423 #endif
1424 #if EV_USE_SELECT
1425 # include "ev_select.c"
1426 #endif
1427
1428 int
1429 ev_version_major (void)
1430 {
1431 return EV_VERSION_MAJOR;
1432 }
1433
1434 int
1435 ev_version_minor (void)
1436 {
1437 return EV_VERSION_MINOR;
1438 }
1439
1440 /* return true if we are running with elevated privileges and should ignore env variables */
1441 int inline_size
1442 enable_secure (void)
1443 {
1444 #ifdef _WIN32
1445 return 0;
1446 #else
1447 return getuid () != geteuid ()
1448 || getgid () != getegid ();
1449 #endif
1450 }
1451
1452 unsigned int
1453 ev_supported_backends (void)
1454 {
1455 unsigned int flags = 0;
1456
1457 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1458 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1459 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1460 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1461 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1462
1463 return flags;
1464 }
1465
1466 unsigned int
1467 ev_recommended_backends (void)
1468 {
1469 unsigned int flags = ev_supported_backends ();
1470
1471 #ifndef __NetBSD__
1472 /* kqueue is borked on everything but netbsd apparently */
1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1474 flags &= ~EVBACKEND_KQUEUE;
1475 #endif
1476 #ifdef __APPLE__
1477 /* only select works correctly on that "unix-certified" platform */
1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1480 #endif
1481
1482 return flags;
1483 }
1484
1485 unsigned int
1486 ev_embeddable_backends (void)
1487 {
1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1489
1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
1495 }
1496
1497 unsigned int
1498 ev_backend (EV_P)
1499 {
1500 return backend;
1501 }
1502
1503 #if EV_MINIMAL < 2
1504 unsigned int
1505 ev_loop_count (EV_P)
1506 {
1507 return loop_count;
1508 }
1509
1510 unsigned int
1511 ev_loop_depth (EV_P)
1512 {
1513 return loop_depth;
1514 }
1515
1516 void
1517 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518 {
1519 io_blocktime = interval;
1520 }
1521
1522 void
1523 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524 {
1525 timeout_blocktime = interval;
1526 }
1527
1528 void
1529 ev_set_userdata (EV_P_ void *data)
1530 {
1531 userdata = data;
1532 }
1533
1534 void *
1535 ev_userdata (EV_P)
1536 {
1537 return userdata;
1538 }
1539
1540 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541 {
1542 invoke_cb = invoke_pending_cb;
1543 }
1544
1545 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546 {
1547 release_cb = release;
1548 acquire_cb = acquire;
1549 }
1550 #endif
1551
1552 /* initialise a loop structure, must be zero-initialised */
1553 static void noinline
1554 loop_init (EV_P_ unsigned int flags)
1555 {
1556 if (!backend)
1557 {
1558 #if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566 #endif
1567
1568 #if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1570 {
1571 struct timespec ts;
1572
1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1574 have_monotonic = 1;
1575 }
1576 #endif
1577
1578 /* pid check not overridable via env */
1579 #ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582 #endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593 #if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595 #endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602 #if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604 #endif
1605 #if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607 #endif
1608 #if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610 #endif
1611
1612 if (!(flags & 0x0000ffffU))
1613 flags |= ev_recommended_backends ();
1614
1615 #if EV_USE_PORT
1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1617 #endif
1618 #if EV_USE_KQUEUE
1619 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1620 #endif
1621 #if EV_USE_EPOLL
1622 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1623 #endif
1624 #if EV_USE_POLL
1625 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1626 #endif
1627 #if EV_USE_SELECT
1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1629 #endif
1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1633 ev_init (&pipe_w, pipecb);
1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1635 }
1636 }
1637
1638 /* free up a loop structure */
1639 static void noinline
1640 loop_destroy (EV_P)
1641 {
1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649 #if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652 #endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661 #if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664 #endif
1665
1666 #if EV_USE_INOTIFY
1667 if (fs_fd >= 0)
1668 close (fs_fd);
1669 #endif
1670
1671 if (backend_fd >= 0)
1672 close (backend_fd);
1673
1674 #if EV_USE_PORT
1675 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1676 #endif
1677 #if EV_USE_KQUEUE
1678 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1679 #endif
1680 #if EV_USE_EPOLL
1681 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1682 #endif
1683 #if EV_USE_POLL
1684 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1685 #endif
1686 #if EV_USE_SELECT
1687 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1688 #endif
1689
1690 for (i = NUMPRI; i--; )
1691 {
1692 array_free (pending, [i]);
1693 #if EV_IDLE_ENABLE
1694 array_free (idle, [i]);
1695 #endif
1696 }
1697
1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1699
1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1702 array_free (fdchange, EMPTY);
1703 array_free (timer, EMPTY);
1704 #if EV_PERIODIC_ENABLE
1705 array_free (periodic, EMPTY);
1706 #endif
1707 #if EV_FORK_ENABLE
1708 array_free (fork, EMPTY);
1709 #endif
1710 array_free (prepare, EMPTY);
1711 array_free (check, EMPTY);
1712 #if EV_ASYNC_ENABLE
1713 array_free (async, EMPTY);
1714 #endif
1715
1716 backend = 0;
1717 }
1718
1719 #if EV_USE_INOTIFY
1720 inline_size void infy_fork (EV_P);
1721 #endif
1722
1723 inline_size void
1724 loop_fork (EV_P)
1725 {
1726 #if EV_USE_PORT
1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1728 #endif
1729 #if EV_USE_KQUEUE
1730 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1731 #endif
1732 #if EV_USE_EPOLL
1733 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1734 #endif
1735 #if EV_USE_INOTIFY
1736 infy_fork (EV_A);
1737 #endif
1738
1739 if (ev_is_active (&pipe_w))
1740 {
1741 /* this "locks" the handlers against writing to the pipe */
1742 /* while we modify the fd vars */
1743 sig_pending = 1;
1744 #if EV_ASYNC_ENABLE
1745 async_pending = 1;
1746 #endif
1747
1748 ev_ref (EV_A);
1749 ev_io_stop (EV_A_ &pipe_w);
1750
1751 #if EV_USE_EVENTFD
1752 if (evfd >= 0)
1753 close (evfd);
1754 #endif
1755
1756 if (evpipe [0] >= 0)
1757 {
1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1760 }
1761
1762 evpipe_init (EV_A);
1763 /* now iterate over everything, in case we missed something */
1764 pipecb (EV_A_ &pipe_w, EV_READ);
1765 }
1766
1767 postfork = 0;
1768 }
1769
1770 #if EV_MULTIPLICITY
1771
1772 struct ev_loop *
1773 ev_loop_new (unsigned int flags)
1774 {
1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1776
1777 memset (EV_A, 0, sizeof (struct ev_loop));
1778 loop_init (EV_A_ flags);
1779
1780 if (ev_backend (EV_A))
1781 return EV_A;
1782
1783 return 0;
1784 }
1785
1786 void
1787 ev_loop_destroy (EV_P)
1788 {
1789 loop_destroy (EV_A);
1790 ev_free (loop);
1791 }
1792
1793 void
1794 ev_loop_fork (EV_P)
1795 {
1796 postfork = 1; /* must be in line with ev_default_fork */
1797 }
1798 #endif /* multiplicity */
1799
1800 #if EV_VERIFY
1801 static void noinline
1802 verify_watcher (EV_P_ W w)
1803 {
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808 }
1809
1810 static void noinline
1811 verify_heap (EV_P_ ANHE *heap, int N)
1812 {
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823 }
1824
1825 static void noinline
1826 array_verify (EV_P_ W *ws, int cnt)
1827 {
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833 }
1834 #endif
1835
1836 #if EV_MINIMAL < 2
1837 void
1838 ev_loop_verify (EV_P)
1839 {
1840 #if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862 #if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865 #endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870 #if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874 #endif
1875 }
1876
1877 #if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880 #endif
1881
1882 #if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885 #endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893 # if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896 # endif
1897 #endif
1898 }
1899 #endif
1900
1901 #if EV_MULTIPLICITY
1902 struct ev_loop *
1903 ev_default_loop_init (unsigned int flags)
1904 #else
1905 int
1906 ev_default_loop (unsigned int flags)
1907 #endif
1908 {
1909 if (!ev_default_loop_ptr)
1910 {
1911 #if EV_MULTIPLICITY
1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1913 #else
1914 ev_default_loop_ptr = 1;
1915 #endif
1916
1917 loop_init (EV_A_ flags);
1918
1919 if (ev_backend (EV_A))
1920 {
1921 #ifndef _WIN32
1922 ev_signal_init (&childev, childcb, SIGCHLD);
1923 ev_set_priority (&childev, EV_MAXPRI);
1924 ev_signal_start (EV_A_ &childev);
1925 ev_unref (EV_A); /* child watcher should not keep loop alive */
1926 #endif
1927 }
1928 else
1929 ev_default_loop_ptr = 0;
1930 }
1931
1932 return ev_default_loop_ptr;
1933 }
1934
1935 void
1936 ev_default_destroy (void)
1937 {
1938 #if EV_MULTIPLICITY
1939 EV_P = ev_default_loop_ptr;
1940 #endif
1941
1942 ev_default_loop_ptr = 0;
1943
1944 #ifndef _WIN32
1945 ev_ref (EV_A); /* child watcher */
1946 ev_signal_stop (EV_A_ &childev);
1947 #endif
1948
1949 loop_destroy (EV_A);
1950 }
1951
1952 void
1953 ev_default_fork (void)
1954 {
1955 #if EV_MULTIPLICITY
1956 EV_P = ev_default_loop_ptr;
1957 #endif
1958
1959 postfork = 1; /* must be in line with ev_loop_fork */
1960 }
1961
1962 /*****************************************************************************/
1963
1964 void
1965 ev_invoke (EV_P_ void *w, int revents)
1966 {
1967 EV_CB_INVOKE ((W)w, revents);
1968 }
1969
1970 unsigned int
1971 ev_pending_count (EV_P)
1972 {
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980 }
1981
1982 void noinline
1983 ev_invoke_pending (EV_P)
1984 {
1985 int pri;
1986
1987 for (pri = NUMPRI; pri--; )
1988 while (pendingcnt [pri])
1989 {
1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1991
1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1994
1995 p->w->pending = 0;
1996 EV_CB_INVOKE (p->w, p->events);
1997 EV_FREQUENT_CHECK;
1998 }
1999 }
2000
2001 #if EV_IDLE_ENABLE
2002 /* make idle watchers pending. this handles the "call-idle */
2003 /* only when higher priorities are idle" logic */
2004 inline_size void
2005 idle_reify (EV_P)
2006 {
2007 if (expect_false (idleall))
2008 {
2009 int pri;
2010
2011 for (pri = NUMPRI; pri--; )
2012 {
2013 if (pendingcnt [pri])
2014 break;
2015
2016 if (idlecnt [pri])
2017 {
2018 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2019 break;
2020 }
2021 }
2022 }
2023 }
2024 #endif
2025
2026 /* make timers pending */
2027 inline_size void
2028 timers_reify (EV_P)
2029 {
2030 EV_FREQUENT_CHECK;
2031
2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 {
2034 do
2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048
2049 ANHE_at_cache (timers [HEAP0]);
2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
2057 }
2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059
2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 }
2062 }
2063
2064 #if EV_PERIODIC_ENABLE
2065 /* make periodics pending */
2066 inline_size void
2067 periodics_reify (EV_P)
2068 {
2069 EV_FREQUENT_CHECK;
2070
2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 {
2073 int feed_count = 0;
2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120 }
2121
2122 /* simply recalculate all periodics */
2123 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124 static void noinline
2125 periodics_reschedule (EV_P)
2126 {
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143 }
2144 #endif
2145
2146 /* adjust all timers by a given offset */
2147 static void noinline
2148 timers_reschedule (EV_P_ ev_tstamp adjust)
2149 {
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158 }
2159
2160 /* fetch new monotonic and realtime times from the kernel */
2161 /* also detetc if there was a timejump, and act accordingly */
2162 inline_speed void
2163 time_update (EV_P_ ev_tstamp max_block)
2164 {
2165 #if EV_USE_MONOTONIC
2166 if (expect_true (have_monotonic))
2167 {
2168 int i;
2169 ev_tstamp odiff = rtmn_diff;
2170
2171 mn_now = get_clock ();
2172
2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2174 /* interpolate in the meantime */
2175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2176 {
2177 ev_rt_now = rtmn_diff + mn_now;
2178 return;
2179 }
2180
2181 now_floor = mn_now;
2182 ev_rt_now = ev_time ();
2183
2184 /* loop a few times, before making important decisions.
2185 * on the choice of "4": one iteration isn't enough,
2186 * in case we get preempted during the calls to
2187 * ev_time and get_clock. a second call is almost guaranteed
2188 * to succeed in that case, though. and looping a few more times
2189 * doesn't hurt either as we only do this on time-jumps or
2190 * in the unlikely event of having been preempted here.
2191 */
2192 for (i = 4; --i; )
2193 {
2194 rtmn_diff = ev_rt_now - mn_now;
2195
2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2197 return; /* all is well */
2198
2199 ev_rt_now = ev_time ();
2200 mn_now = get_clock ();
2201 now_floor = mn_now;
2202 }
2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2206 # if EV_PERIODIC_ENABLE
2207 periodics_reschedule (EV_A);
2208 # endif
2209 }
2210 else
2211 #endif
2212 {
2213 ev_rt_now = ev_time ();
2214
2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2219 #if EV_PERIODIC_ENABLE
2220 periodics_reschedule (EV_A);
2221 #endif
2222 }
2223
2224 mn_now = ev_rt_now;
2225 }
2226 }
2227
2228 void
2229 ev_loop (EV_P_ int flags)
2230 {
2231 #if EV_MINIMAL < 2
2232 ++loop_depth;
2233 #endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
2237 loop_done = EVUNLOOP_CANCEL;
2238
2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2240
2241 do
2242 {
2243 #if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245 #endif
2246
2247 #ifndef _WIN32
2248 if (expect_false (curpid)) /* penalise the forking check even more */
2249 if (expect_false (getpid () != curpid))
2250 {
2251 curpid = getpid ();
2252 postfork = 1;
2253 }
2254 #endif
2255
2256 #if EV_FORK_ENABLE
2257 /* we might have forked, so queue fork handlers */
2258 if (expect_false (postfork))
2259 if (forkcnt)
2260 {
2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2262 EV_INVOKE_PENDING;
2263 }
2264 #endif
2265
2266 /* queue prepare watchers (and execute them) */
2267 if (expect_false (preparecnt))
2268 {
2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2270 EV_INVOKE_PENDING;
2271 }
2272
2273 if (expect_false (loop_done))
2274 break;
2275
2276 /* we might have forked, so reify kernel state if necessary */
2277 if (expect_false (postfork))
2278 loop_fork (EV_A);
2279
2280 /* update fd-related kernel structures */
2281 fd_reify (EV_A);
2282
2283 /* calculate blocking time */
2284 {
2285 ev_tstamp waittime = 0.;
2286 ev_tstamp sleeptime = 0.;
2287
2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
2293 /* update time to cancel out callback processing overhead */
2294 time_update (EV_A_ 1e100);
2295
2296 waittime = MAX_BLOCKTIME;
2297
2298 if (timercnt)
2299 {
2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2301 if (waittime > to) waittime = to;
2302 }
2303
2304 #if EV_PERIODIC_ENABLE
2305 if (periodiccnt)
2306 {
2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2308 if (waittime > to) waittime = to;
2309 }
2310 #endif
2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
2313 if (expect_false (waittime < timeout_blocktime))
2314 waittime = timeout_blocktime;
2315
2316 /* extra check because io_blocktime is commonly 0 */
2317 if (expect_false (io_blocktime))
2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
2326 ev_sleep (sleeptime);
2327 waittime -= sleeptime;
2328 }
2329 }
2330 }
2331
2332 #if EV_MINIMAL < 2
2333 ++loop_count;
2334 #endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2338
2339 /* update ev_rt_now, do magic */
2340 time_update (EV_A_ waittime + sleeptime);
2341 }
2342
2343 /* queue pending timers and reschedule them */
2344 timers_reify (EV_A); /* relative timers called last */
2345 #if EV_PERIODIC_ENABLE
2346 periodics_reify (EV_A); /* absolute timers called first */
2347 #endif
2348
2349 #if EV_IDLE_ENABLE
2350 /* queue idle watchers unless other events are pending */
2351 idle_reify (EV_A);
2352 #endif
2353
2354 /* queue check watchers, to be executed first */
2355 if (expect_false (checkcnt))
2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2357
2358 EV_INVOKE_PENDING;
2359 }
2360 while (expect_true (
2361 activecnt
2362 && !loop_done
2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364 ));
2365
2366 if (loop_done == EVUNLOOP_ONE)
2367 loop_done = EVUNLOOP_CANCEL;
2368
2369 #if EV_MINIMAL < 2
2370 --loop_depth;
2371 #endif
2372 }
2373
2374 void
2375 ev_unloop (EV_P_ int how)
2376 {
2377 loop_done = how;
2378 }
2379
2380 void
2381 ev_ref (EV_P)
2382 {
2383 ++activecnt;
2384 }
2385
2386 void
2387 ev_unref (EV_P)
2388 {
2389 --activecnt;
2390 }
2391
2392 void
2393 ev_now_update (EV_P)
2394 {
2395 time_update (EV_A_ 1e100);
2396 }
2397
2398 void
2399 ev_suspend (EV_P)
2400 {
2401 ev_now_update (EV_A);
2402 }
2403
2404 void
2405 ev_resume (EV_P)
2406 {
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411 #if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414 #endif
2415 }
2416
2417 /*****************************************************************************/
2418 /* singly-linked list management, used when the expected list length is short */
2419
2420 inline_size void
2421 wlist_add (WL *head, WL elem)
2422 {
2423 elem->next = *head;
2424 *head = elem;
2425 }
2426
2427 inline_size void
2428 wlist_del (WL *head, WL elem)
2429 {
2430 while (*head)
2431 {
2432 if (expect_true (*head == elem))
2433 {
2434 *head = elem->next;
2435 break;
2436 }
2437
2438 head = &(*head)->next;
2439 }
2440 }
2441
2442 /* internal, faster, version of ev_clear_pending */
2443 inline_speed void
2444 clear_pending (EV_P_ W w)
2445 {
2446 if (w->pending)
2447 {
2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2449 w->pending = 0;
2450 }
2451 }
2452
2453 int
2454 ev_clear_pending (EV_P_ void *w)
2455 {
2456 W w_ = (W)w;
2457 int pending = w_->pending;
2458
2459 if (expect_true (pending))
2460 {
2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2463 w_->pending = 0;
2464 return p->events;
2465 }
2466 else
2467 return 0;
2468 }
2469
2470 inline_size void
2471 pri_adjust (EV_P_ W w)
2472 {
2473 int pri = ev_priority (w);
2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2476 ev_set_priority (w, pri);
2477 }
2478
2479 inline_speed void
2480 ev_start (EV_P_ W w, int active)
2481 {
2482 pri_adjust (EV_A_ w);
2483 w->active = active;
2484 ev_ref (EV_A);
2485 }
2486
2487 inline_size void
2488 ev_stop (EV_P_ W w)
2489 {
2490 ev_unref (EV_A);
2491 w->active = 0;
2492 }
2493
2494 /*****************************************************************************/
2495
2496 void noinline
2497 ev_io_start (EV_P_ ev_io *w)
2498 {
2499 int fd = w->fd;
2500
2501 if (expect_false (ev_is_active (w)))
2502 return;
2503
2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
2508
2509 ev_start (EV_A_ (W)w, 1);
2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2511 wlist_add (&anfds[fd].head, (WL)w);
2512
2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2514 w->events &= ~EV__IOFDSET;
2515
2516 EV_FREQUENT_CHECK;
2517 }
2518
2519 void noinline
2520 ev_io_stop (EV_P_ ev_io *w)
2521 {
2522 clear_pending (EV_A_ (W)w);
2523 if (expect_false (!ev_is_active (w)))
2524 return;
2525
2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 wlist_del (&anfds[w->fd].head, (WL)w);
2531 ev_stop (EV_A_ (W)w);
2532
2533 fd_change (EV_A_ w->fd, 1);
2534
2535 EV_FREQUENT_CHECK;
2536 }
2537
2538 void noinline
2539 ev_timer_start (EV_P_ ev_timer *w)
2540 {
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 ev_at (w) += mn_now;
2545
2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
2554 ANHE_at_cache (timers [ev_active (w)]);
2555 upheap (timers, ev_active (w));
2556
2557 EV_FREQUENT_CHECK;
2558
2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2560 }
2561
2562 void noinline
2563 ev_timer_stop (EV_P_ ev_timer *w)
2564 {
2565 clear_pending (EV_A_ (W)w);
2566 if (expect_false (!ev_is_active (w)))
2567 return;
2568
2569 EV_FREQUENT_CHECK;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2575
2576 --timercnt;
2577
2578 if (expect_true (active < timercnt + HEAP0))
2579 {
2580 timers [active] = timers [timercnt + HEAP0];
2581 adjustheap (timers, timercnt, active);
2582 }
2583 }
2584
2585 EV_FREQUENT_CHECK;
2586
2587 ev_at (w) -= mn_now;
2588
2589 ev_stop (EV_A_ (W)w);
2590 }
2591
2592 void noinline
2593 ev_timer_again (EV_P_ ev_timer *w)
2594 {
2595 EV_FREQUENT_CHECK;
2596
2597 if (ev_is_active (w))
2598 {
2599 if (w->repeat)
2600 {
2601 ev_at (w) = mn_now + w->repeat;
2602 ANHE_at_cache (timers [ev_active (w)]);
2603 adjustheap (timers, timercnt, ev_active (w));
2604 }
2605 else
2606 ev_timer_stop (EV_A_ w);
2607 }
2608 else if (w->repeat)
2609 {
2610 ev_at (w) = w->repeat;
2611 ev_timer_start (EV_A_ w);
2612 }
2613
2614 EV_FREQUENT_CHECK;
2615 }
2616
2617 ev_tstamp
2618 ev_timer_remaining (EV_P_ ev_timer *w)
2619 {
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621 }
2622
2623 #if EV_PERIODIC_ENABLE
2624 void noinline
2625 ev_periodic_start (EV_P_ ev_periodic *w)
2626 {
2627 if (expect_false (ev_is_active (w)))
2628 return;
2629
2630 if (w->reschedule_cb)
2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2632 else if (w->interval)
2633 {
2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2635 /* this formula differs from the one in periodic_reify because we do not always round up */
2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2637 }
2638 else
2639 ev_at (w) = w->offset;
2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
2649
2650 EV_FREQUENT_CHECK;
2651
2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2653 }
2654
2655 void noinline
2656 ev_periodic_stop (EV_P_ ev_periodic *w)
2657 {
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 EV_FREQUENT_CHECK;
2663
2664 {
2665 int active = ev_active (w);
2666
2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2668
2669 --periodiccnt;
2670
2671 if (expect_true (active < periodiccnt + HEAP0))
2672 {
2673 periodics [active] = periodics [periodiccnt + HEAP0];
2674 adjustheap (periodics, periodiccnt, active);
2675 }
2676 }
2677
2678 EV_FREQUENT_CHECK;
2679
2680 ev_stop (EV_A_ (W)w);
2681 }
2682
2683 void noinline
2684 ev_periodic_again (EV_P_ ev_periodic *w)
2685 {
2686 /* TODO: use adjustheap and recalculation */
2687 ev_periodic_stop (EV_A_ w);
2688 ev_periodic_start (EV_A_ w);
2689 }
2690 #endif
2691
2692 #ifndef SA_RESTART
2693 # define SA_RESTART 0
2694 #endif
2695
2696 void noinline
2697 ev_signal_start (EV_P_ ev_signal *w)
2698 {
2699 if (expect_false (ev_is_active (w)))
2700 return;
2701
2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2703
2704 #if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707
2708 signals [w->signum - 1].loop = EV_A;
2709 #endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713 #if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2715 {
2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2717 if (sigfd < 0 && errno == EINVAL)
2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2719
2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2723
2724 sigemptyset (&sigfd_set);
2725
2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741 #endif
2742
2743 ev_start (EV_A_ (W)w, 1);
2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2745
2746 if (!((WL)w)->next)
2747 # if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749 # endif
2750 {
2751 # if _WIN32
2752 evpipe_init (EV_A);
2753
2754 signal (w->signum, ev_sighandler);
2755 # else
2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2760 sa.sa_handler = ev_sighandler;
2761 sigfillset (&sa.sa_mask);
2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2768 #endif
2769 }
2770
2771 EV_FREQUENT_CHECK;
2772 }
2773
2774 void noinline
2775 ev_signal_stop (EV_P_ ev_signal *w)
2776 {
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2784 ev_stop (EV_A_ (W)w);
2785
2786 if (!signals [w->signum - 1].head)
2787 {
2788 #if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790 #endif
2791 #if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801 #endif
2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
2806 }
2807
2808 void
2809 ev_child_start (EV_P_ ev_child *w)
2810 {
2811 #if EV_MULTIPLICITY
2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2813 #endif
2814 if (expect_false (ev_is_active (w)))
2815 return;
2816
2817 EV_FREQUENT_CHECK;
2818
2819 ev_start (EV_A_ (W)w, 1);
2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
2823 }
2824
2825 void
2826 ev_child_stop (EV_P_ ev_child *w)
2827 {
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2838 }
2839
2840 #if EV_STAT_ENABLE
2841
2842 # ifdef _WIN32
2843 # undef lstat
2844 # define lstat(a,b) _stati64 (a,b)
2845 # endif
2846
2847 #define DEF_STAT_INTERVAL 5.0074891
2848 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2849 #define MIN_STAT_INTERVAL 0.1074891
2850
2851 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2852
2853 #if EV_USE_INOTIFY
2854 # define EV_INOTIFY_BUFSIZE 8192
2855
2856 static void noinline
2857 infy_add (EV_P_ ev_stat *w)
2858 {
2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2860
2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2881 }
2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2886
2887 /* if path is not there, monitor some parent directory for speedup hints */
2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2889 /* but an efficiency issue only */
2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2891 {
2892 char path [4096];
2893 strcpy (path, w->path);
2894
2895 do
2896 {
2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2899
2900 char *pend = strrchr (path, '/');
2901
2902 if (!pend || pend == path)
2903 break;
2904
2905 *pend = 0;
2906 w->wd = inotify_add_watch (fs_fd, path, mask);
2907 }
2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2909 }
2910 }
2911
2912 if (w->wd >= 0)
2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2919 }
2920
2921 static void noinline
2922 infy_del (EV_P_ ev_stat *w)
2923 {
2924 int slot;
2925 int wd = w->wd;
2926
2927 if (wd < 0)
2928 return;
2929
2930 w->wd = -2;
2931 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2932 wlist_del (&fs_hash [slot].head, (WL)w);
2933
2934 /* remove this watcher, if others are watching it, they will rearm */
2935 inotify_rm_watch (fs_fd, wd);
2936 }
2937
2938 static void noinline
2939 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2940 {
2941 if (slot < 0)
2942 /* overflow, need to check for all hash slots */
2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2944 infy_wd (EV_A_ slot, wd, ev);
2945 else
2946 {
2947 WL w_;
2948
2949 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2950 {
2951 ev_stat *w = (ev_stat *)w_;
2952 w_ = w_->next; /* lets us remove this watcher and all before it */
2953
2954 if (w->wd == wd || wd == -1)
2955 {
2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2959 w->wd = -1;
2960 infy_add (EV_A_ w); /* re-add, no matter what */
2961 }
2962
2963 stat_timer_cb (EV_A_ &w->timer, 0);
2964 }
2965 }
2966 }
2967 }
2968
2969 static void
2970 infy_cb (EV_P_ ev_io *w, int revents)
2971 {
2972 char buf [EV_INOTIFY_BUFSIZE];
2973 struct inotify_event *ev = (struct inotify_event *)buf;
2974 int ofs;
2975 int len = read (fs_fd, buf, sizeof (buf));
2976
2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2979 }
2980
2981 inline_size void
2982 check_2625 (EV_P)
2983 {
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002 }
3003
3004 inline_size int
3005 infy_newfd (void)
3006 {
3007 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011 #endif
3012 return inotify_init ();
3013 }
3014
3015 inline_size void
3016 infy_init (EV_P)
3017 {
3018 if (fs_fd != -2)
3019 return;
3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
3025 fs_fd = infy_newfd ();
3026
3027 if (fs_fd >= 0)
3028 {
3029 fd_intern (fs_fd);
3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3031 ev_set_priority (&fs_w, EV_MAXPRI);
3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
3034 }
3035 }
3036
3037 inline_size void
3038 infy_fork (EV_P)
3039 {
3040 int slot;
3041
3042 if (fs_fd < 0)
3043 return;
3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
3047 close (fs_fd);
3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
3057
3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3059 {
3060 WL w_ = fs_hash [slot].head;
3061 fs_hash [slot].head = 0;
3062
3063 while (w_)
3064 {
3065 ev_stat *w = (ev_stat *)w_;
3066 w_ = w_->next; /* lets us add this watcher */
3067
3068 w->wd = -1;
3069
3070 if (fs_fd >= 0)
3071 infy_add (EV_A_ w); /* re-add, no matter what */
3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
3079 }
3080 }
3081 }
3082
3083 #endif
3084
3085 #ifdef _WIN32
3086 # define EV_LSTAT(p,b) _stati64 (p, b)
3087 #else
3088 # define EV_LSTAT(p,b) lstat (p, b)
3089 #endif
3090
3091 void
3092 ev_stat_stat (EV_P_ ev_stat *w)
3093 {
3094 if (lstat (w->path, &w->attr) < 0)
3095 w->attr.st_nlink = 0;
3096 else if (!w->attr.st_nlink)
3097 w->attr.st_nlink = 1;
3098 }
3099
3100 static void noinline
3101 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3102 {
3103 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3104
3105 /* we copy this here each the time so that */
3106 /* prev has the old value when the callback gets invoked */
3107 w->prev = w->attr;
3108 ev_stat_stat (EV_A_ w);
3109
3110 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3111 if (
3112 w->prev.st_dev != w->attr.st_dev
3113 || w->prev.st_ino != w->attr.st_ino
3114 || w->prev.st_mode != w->attr.st_mode
3115 || w->prev.st_nlink != w->attr.st_nlink
3116 || w->prev.st_uid != w->attr.st_uid
3117 || w->prev.st_gid != w->attr.st_gid
3118 || w->prev.st_rdev != w->attr.st_rdev
3119 || w->prev.st_size != w->attr.st_size
3120 || w->prev.st_atime != w->attr.st_atime
3121 || w->prev.st_mtime != w->attr.st_mtime
3122 || w->prev.st_ctime != w->attr.st_ctime
3123 ) {
3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
3127 infy_del (EV_A_ w);
3128 infy_add (EV_A_ w);
3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
3131 #endif
3132
3133 ev_feed_event (EV_A_ w, EV_STAT);
3134 }
3135 }
3136
3137 void
3138 ev_stat_start (EV_P_ ev_stat *w)
3139 {
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 ev_stat_stat (EV_A_ w);
3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3146 w->interval = MIN_STAT_INTERVAL;
3147
3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3149 ev_set_priority (&w->timer, ev_priority (w));
3150
3151 #if EV_USE_INOTIFY
3152 infy_init (EV_A);
3153
3154 if (fs_fd >= 0)
3155 infy_add (EV_A_ w);
3156 else
3157 #endif
3158 {
3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
3162
3163 ev_start (EV_A_ (W)w, 1);
3164
3165 EV_FREQUENT_CHECK;
3166 }
3167
3168 void
3169 ev_stat_stop (EV_P_ ev_stat *w)
3170 {
3171 clear_pending (EV_A_ (W)w);
3172 if (expect_false (!ev_is_active (w)))
3173 return;
3174
3175 EV_FREQUENT_CHECK;
3176
3177 #if EV_USE_INOTIFY
3178 infy_del (EV_A_ w);
3179 #endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
3186
3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
3190 }
3191 #endif
3192
3193 #if EV_IDLE_ENABLE
3194 void
3195 ev_idle_start (EV_P_ ev_idle *w)
3196 {
3197 if (expect_false (ev_is_active (w)))
3198 return;
3199
3200 pri_adjust (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
3203
3204 {
3205 int active = ++idlecnt [ABSPRI (w)];
3206
3207 ++idleall;
3208 ev_start (EV_A_ (W)w, active);
3209
3210 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3211 idles [ABSPRI (w)][active - 1] = w;
3212 }
3213
3214 EV_FREQUENT_CHECK;
3215 }
3216
3217 void
3218 ev_idle_stop (EV_P_ ev_idle *w)
3219 {
3220 clear_pending (EV_A_ (W)w);
3221 if (expect_false (!ev_is_active (w)))
3222 return;
3223
3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3231
3232 ev_stop (EV_A_ (W)w);
3233 --idleall;
3234 }
3235
3236 EV_FREQUENT_CHECK;
3237 }
3238 #endif
3239
3240 void
3241 ev_prepare_start (EV_P_ ev_prepare *w)
3242 {
3243 if (expect_false (ev_is_active (w)))
3244 return;
3245
3246 EV_FREQUENT_CHECK;
3247
3248 ev_start (EV_A_ (W)w, ++preparecnt);
3249 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3250 prepares [preparecnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
3253 }
3254
3255 void
3256 ev_prepare_stop (EV_P_ ev_prepare *w)
3257 {
3258 clear_pending (EV_A_ (W)w);
3259 if (expect_false (!ev_is_active (w)))
3260 return;
3261
3262 EV_FREQUENT_CHECK;
3263
3264 {
3265 int active = ev_active (w);
3266
3267 prepares [active - 1] = prepares [--preparecnt];
3268 ev_active (prepares [active - 1]) = active;
3269 }
3270
3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
3274 }
3275
3276 void
3277 ev_check_start (EV_P_ ev_check *w)
3278 {
3279 if (expect_false (ev_is_active (w)))
3280 return;
3281
3282 EV_FREQUENT_CHECK;
3283
3284 ev_start (EV_A_ (W)w, ++checkcnt);
3285 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3286 checks [checkcnt - 1] = w;
3287
3288 EV_FREQUENT_CHECK;
3289 }
3290
3291 void
3292 ev_check_stop (EV_P_ ev_check *w)
3293 {
3294 clear_pending (EV_A_ (W)w);
3295 if (expect_false (!ev_is_active (w)))
3296 return;
3297
3298 EV_FREQUENT_CHECK;
3299
3300 {
3301 int active = ev_active (w);
3302
3303 checks [active - 1] = checks [--checkcnt];
3304 ev_active (checks [active - 1]) = active;
3305 }
3306
3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
3310 }
3311
3312 #if EV_EMBED_ENABLE
3313 void noinline
3314 ev_embed_sweep (EV_P_ ev_embed *w)
3315 {
3316 ev_loop (w->other, EVLOOP_NONBLOCK);
3317 }
3318
3319 static void
3320 embed_io_cb (EV_P_ ev_io *io, int revents)
3321 {
3322 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3323
3324 if (ev_cb (w))
3325 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3326 else
3327 ev_loop (w->other, EVLOOP_NONBLOCK);
3328 }
3329
3330 static void
3331 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3332 {
3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3334
3335 {
3336 EV_P = w->other;
3337
3338 while (fdchangecnt)
3339 {
3340 fd_reify (EV_A);
3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3342 }
3343 }
3344 }
3345
3346 static void
3347 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3348 {
3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3350
3351 ev_embed_stop (EV_A_ w);
3352
3353 {
3354 EV_P = w->other;
3355
3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3358 }
3359
3360 ev_embed_start (EV_A_ w);
3361 }
3362
3363 #if 0
3364 static void
3365 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3366 {
3367 ev_idle_stop (EV_A_ idle);
3368 }
3369 #endif
3370
3371 void
3372 ev_embed_start (EV_P_ ev_embed *w)
3373 {
3374 if (expect_false (ev_is_active (w)))
3375 return;
3376
3377 {
3378 EV_P = w->other;
3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3381 }
3382
3383 EV_FREQUENT_CHECK;
3384
3385 ev_set_priority (&w->io, ev_priority (w));
3386 ev_io_start (EV_A_ &w->io);
3387
3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
3389 ev_set_priority (&w->prepare, EV_MINPRI);
3390 ev_prepare_start (EV_A_ &w->prepare);
3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3396
3397 ev_start (EV_A_ (W)w, 1);
3398
3399 EV_FREQUENT_CHECK;
3400 }
3401
3402 void
3403 ev_embed_stop (EV_P_ ev_embed *w)
3404 {
3405 clear_pending (EV_A_ (W)w);
3406 if (expect_false (!ev_is_active (w)))
3407 return;
3408
3409 EV_FREQUENT_CHECK;
3410
3411 ev_io_stop (EV_A_ &w->io);
3412 ev_prepare_stop (EV_A_ &w->prepare);
3413 ev_fork_stop (EV_A_ &w->fork);
3414
3415 EV_FREQUENT_CHECK;
3416 }
3417 #endif
3418
3419 #if EV_FORK_ENABLE
3420 void
3421 ev_fork_start (EV_P_ ev_fork *w)
3422 {
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 EV_FREQUENT_CHECK;
3427
3428 ev_start (EV_A_ (W)w, ++forkcnt);
3429 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3430 forks [forkcnt - 1] = w;
3431
3432 EV_FREQUENT_CHECK;
3433 }
3434
3435 void
3436 ev_fork_stop (EV_P_ ev_fork *w)
3437 {
3438 clear_pending (EV_A_ (W)w);
3439 if (expect_false (!ev_is_active (w)))
3440 return;
3441
3442 EV_FREQUENT_CHECK;
3443
3444 {
3445 int active = ev_active (w);
3446
3447 forks [active - 1] = forks [--forkcnt];
3448 ev_active (forks [active - 1]) = active;
3449 }
3450
3451 ev_stop (EV_A_ (W)w);
3452
3453 EV_FREQUENT_CHECK;
3454 }
3455 #endif
3456
3457 #if EV_ASYNC_ENABLE
3458 void
3459 ev_async_start (EV_P_ ev_async *w)
3460 {
3461 if (expect_false (ev_is_active (w)))
3462 return;
3463
3464 evpipe_init (EV_A);
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_start (EV_A_ (W)w, ++asynccnt);
3469 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3470 asyncs [asynccnt - 1] = w;
3471
3472 EV_FREQUENT_CHECK;
3473 }
3474
3475 void
3476 ev_async_stop (EV_P_ ev_async *w)
3477 {
3478 clear_pending (EV_A_ (W)w);
3479 if (expect_false (!ev_is_active (w)))
3480 return;
3481
3482 EV_FREQUENT_CHECK;
3483
3484 {
3485 int active = ev_active (w);
3486
3487 asyncs [active - 1] = asyncs [--asynccnt];
3488 ev_active (asyncs [active - 1]) = active;
3489 }
3490
3491 ev_stop (EV_A_ (W)w);
3492
3493 EV_FREQUENT_CHECK;
3494 }
3495
3496 void
3497 ev_async_send (EV_P_ ev_async *w)
3498 {
3499 w->sent = 1;
3500 evpipe_write (EV_A_ &async_pending);
3501 }
3502 #endif
3503
3504 /*****************************************************************************/
3505
3506 struct ev_once
3507 {
3508 ev_io io;
3509 ev_timer to;
3510 void (*cb)(int revents, void *arg);
3511 void *arg;
3512 };
3513
3514 static void
3515 once_cb (EV_P_ struct ev_once *once, int revents)
3516 {
3517 void (*cb)(int revents, void *arg) = once->cb;
3518 void *arg = once->arg;
3519
3520 ev_io_stop (EV_A_ &once->io);
3521 ev_timer_stop (EV_A_ &once->to);
3522 ev_free (once);
3523
3524 cb (revents, arg);
3525 }
3526
3527 static void
3528 once_cb_io (EV_P_ ev_io *w, int revents)
3529 {
3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3533 }
3534
3535 static void
3536 once_cb_to (EV_P_ ev_timer *w, int revents)
3537 {
3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3541 }
3542
3543 void
3544 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3545 {
3546 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3547
3548 if (expect_false (!once))
3549 {
3550 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3551 return;
3552 }
3553
3554 once->cb = cb;
3555 once->arg = arg;
3556
3557 ev_init (&once->io, once_cb_io);
3558 if (fd >= 0)
3559 {
3560 ev_io_set (&once->io, fd, events);
3561 ev_io_start (EV_A_ &once->io);
3562 }
3563
3564 ev_init (&once->to, once_cb_to);
3565 if (timeout >= 0.)
3566 {
3567 ev_timer_set (&once->to, timeout, 0.);
3568 ev_timer_start (EV_A_ &once->to);
3569 }
3570 }
3571
3572 /*****************************************************************************/
3573
3574 #if EV_WALK_ENABLE
3575 void
3576 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577 {
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587 #if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594 #endif
3595 #if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599 #endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609 #if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617 #endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621 #if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625 #endif
3626
3627 #if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632 #endif
3633
3634 #if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639 #endif
3640
3641 #if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645 #endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649 #if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651 #endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675 /* EV_STAT 0x00001000 /* stat data changed */
3676 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677 }
3678 #endif
3679
3680 #if EV_MULTIPLICITY
3681 #include "ev_wrap.h"
3682 #endif
3683
3684 #ifdef __cplusplus
3685 }
3686 #endif
3687