ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.323
Committed: Wed Jan 13 12:44:33 2010 UTC (14 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.322: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # ifndef EV_USE_NANOSLEEP
83 # if HAVE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 1
85 # else
86 # define EV_USE_NANOSLEEP 0
87 # endif
88 # endif
89
90 # ifndef EV_USE_SELECT
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # define EV_USE_SELECT 1
93 # else
94 # define EV_USE_SELECT 0
95 # endif
96 # endif
97
98 # ifndef EV_USE_POLL
99 # if HAVE_POLL && HAVE_POLL_H
100 # define EV_USE_POLL 1
101 # else
102 # define EV_USE_POLL 0
103 # endif
104 # endif
105
106 # ifndef EV_USE_EPOLL
107 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108 # define EV_USE_EPOLL 1
109 # else
110 # define EV_USE_EPOLL 0
111 # endif
112 # endif
113
114 # ifndef EV_USE_KQUEUE
115 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116 # define EV_USE_KQUEUE 1
117 # else
118 # define EV_USE_KQUEUE 0
119 # endif
120 # endif
121
122 # ifndef EV_USE_PORT
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # define EV_USE_PORT 1
125 # else
126 # define EV_USE_PORT 0
127 # endif
128 # endif
129
130 # ifndef EV_USE_INOTIFY
131 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132 # define EV_USE_INOTIFY 1
133 # else
134 # define EV_USE_INOTIFY 0
135 # endif
136 # endif
137
138 # ifndef EV_USE_SIGNALFD
139 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140 # define EV_USE_SIGNALFD 1
141 # else
142 # define EV_USE_SIGNALFD 0
143 # endif
144 # endif
145
146 # ifndef EV_USE_EVENTFD
147 # if HAVE_EVENTFD
148 # define EV_USE_EVENTFD 1
149 # else
150 # define EV_USE_EVENTFD 0
151 # endif
152 # endif
153
154 #endif
155
156 #include <math.h>
157 #include <stdlib.h>
158 #include <string.h>
159 #include <fcntl.h>
160 #include <stddef.h>
161
162 #include <stdio.h>
163
164 #include <assert.h>
165 #include <errno.h>
166 #include <sys/types.h>
167 #include <time.h>
168
169 #include <signal.h>
170
171 #ifdef EV_H
172 # include EV_H
173 #else
174 # include "ev.h"
175 #endif
176
177 #ifndef _WIN32
178 # include <sys/time.h>
179 # include <sys/wait.h>
180 # include <unistd.h>
181 #else
182 # include <io.h>
183 # define WIN32_LEAN_AND_MEAN
184 # include <windows.h>
185 # ifndef EV_SELECT_IS_WINSOCKET
186 # define EV_SELECT_IS_WINSOCKET 1
187 # endif
188 #endif
189
190 /* this block tries to deduce configuration from header-defined symbols and defaults */
191
192 /* try to deduce the maximum number of signals on this platform */
193 #if defined (EV_NSIG)
194 /* use what's provided */
195 #elif defined (NSIG)
196 # define EV_NSIG (NSIG)
197 #elif defined(_NSIG)
198 # define EV_NSIG (_NSIG)
199 #elif defined (SIGMAX)
200 # define EV_NSIG (SIGMAX+1)
201 #elif defined (SIG_MAX)
202 # define EV_NSIG (SIG_MAX+1)
203 #elif defined (_SIG_MAX)
204 # define EV_NSIG (_SIG_MAX+1)
205 #elif defined (MAXSIG)
206 # define EV_NSIG (MAXSIG+1)
207 #elif defined (MAX_SIG)
208 # define EV_NSIG (MAX_SIG+1)
209 #elif defined (SIGARRAYSIZE)
210 # define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211 #elif defined (_sys_nsig)
212 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213 #else
214 # error "unable to find value for NSIG, please report"
215 /* to make it compile regardless, just remove the above line */
216 # define EV_NSIG 65
217 #endif
218
219 #ifndef EV_USE_CLOCK_SYSCALL
220 # if __linux && __GLIBC__ >= 2
221 # define EV_USE_CLOCK_SYSCALL 1
222 # else
223 # define EV_USE_CLOCK_SYSCALL 0
224 # endif
225 #endif
226
227 #ifndef EV_USE_MONOTONIC
228 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229 # define EV_USE_MONOTONIC 1
230 # else
231 # define EV_USE_MONOTONIC 0
232 # endif
233 #endif
234
235 #ifndef EV_USE_REALTIME
236 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237 #endif
238
239 #ifndef EV_USE_NANOSLEEP
240 # if _POSIX_C_SOURCE >= 199309L
241 # define EV_USE_NANOSLEEP 1
242 # else
243 # define EV_USE_NANOSLEEP 0
244 # endif
245 #endif
246
247 #ifndef EV_USE_SELECT
248 # define EV_USE_SELECT 1
249 #endif
250
251 #ifndef EV_USE_POLL
252 # ifdef _WIN32
253 # define EV_USE_POLL 0
254 # else
255 # define EV_USE_POLL 1
256 # endif
257 #endif
258
259 #ifndef EV_USE_EPOLL
260 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261 # define EV_USE_EPOLL 1
262 # else
263 # define EV_USE_EPOLL 0
264 # endif
265 #endif
266
267 #ifndef EV_USE_KQUEUE
268 # define EV_USE_KQUEUE 0
269 #endif
270
271 #ifndef EV_USE_PORT
272 # define EV_USE_PORT 0
273 #endif
274
275 #ifndef EV_USE_INOTIFY
276 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277 # define EV_USE_INOTIFY 1
278 # else
279 # define EV_USE_INOTIFY 0
280 # endif
281 #endif
282
283 #ifndef EV_PID_HASHSIZE
284 # if EV_MINIMAL
285 # define EV_PID_HASHSIZE 1
286 # else
287 # define EV_PID_HASHSIZE 16
288 # endif
289 #endif
290
291 #ifndef EV_INOTIFY_HASHSIZE
292 # if EV_MINIMAL
293 # define EV_INOTIFY_HASHSIZE 1
294 # else
295 # define EV_INOTIFY_HASHSIZE 16
296 # endif
297 #endif
298
299 #ifndef EV_USE_EVENTFD
300 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301 # define EV_USE_EVENTFD 1
302 # else
303 # define EV_USE_EVENTFD 0
304 # endif
305 #endif
306
307 #ifndef EV_USE_SIGNALFD
308 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309 # define EV_USE_SIGNALFD 1
310 # else
311 # define EV_USE_SIGNALFD 0
312 # endif
313 #endif
314
315 #if 0 /* debugging */
316 # define EV_VERIFY 3
317 # define EV_USE_4HEAP 1
318 # define EV_HEAP_CACHE_AT 1
319 #endif
320
321 #ifndef EV_VERIFY
322 # define EV_VERIFY !EV_MINIMAL
323 #endif
324
325 #ifndef EV_USE_4HEAP
326 # define EV_USE_4HEAP !EV_MINIMAL
327 #endif
328
329 #ifndef EV_HEAP_CACHE_AT
330 # define EV_HEAP_CACHE_AT !EV_MINIMAL
331 #endif
332
333 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334 /* which makes programs even slower. might work on other unices, too. */
335 #if EV_USE_CLOCK_SYSCALL
336 # include <syscall.h>
337 # ifdef SYS_clock_gettime
338 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339 # undef EV_USE_MONOTONIC
340 # define EV_USE_MONOTONIC 1
341 # else
342 # undef EV_USE_CLOCK_SYSCALL
343 # define EV_USE_CLOCK_SYSCALL 0
344 # endif
345 #endif
346
347 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349 #ifndef CLOCK_MONOTONIC
350 # undef EV_USE_MONOTONIC
351 # define EV_USE_MONOTONIC 0
352 #endif
353
354 #ifndef CLOCK_REALTIME
355 # undef EV_USE_REALTIME
356 # define EV_USE_REALTIME 0
357 #endif
358
359 #if !EV_STAT_ENABLE
360 # undef EV_USE_INOTIFY
361 # define EV_USE_INOTIFY 0
362 #endif
363
364 #if !EV_USE_NANOSLEEP
365 # ifndef _WIN32
366 # include <sys/select.h>
367 # endif
368 #endif
369
370 #if EV_USE_INOTIFY
371 # include <sys/utsname.h>
372 # include <sys/statfs.h>
373 # include <sys/inotify.h>
374 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375 # ifndef IN_DONT_FOLLOW
376 # undef EV_USE_INOTIFY
377 # define EV_USE_INOTIFY 0
378 # endif
379 #endif
380
381 #if EV_SELECT_IS_WINSOCKET
382 # include <winsock.h>
383 #endif
384
385 #if EV_USE_EVENTFD
386 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387 # include <stdint.h>
388 # ifndef EFD_NONBLOCK
389 # define EFD_NONBLOCK O_NONBLOCK
390 # endif
391 # ifndef EFD_CLOEXEC
392 # ifdef O_CLOEXEC
393 # define EFD_CLOEXEC O_CLOEXEC
394 # else
395 # define EFD_CLOEXEC 02000000
396 # endif
397 # endif
398 # ifdef __cplusplus
399 extern "C" {
400 # endif
401 int eventfd (unsigned int initval, int flags);
402 # ifdef __cplusplus
403 }
404 # endif
405 #endif
406
407 #if EV_USE_SIGNALFD
408 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409 # include <stdint.h>
410 # ifndef SFD_NONBLOCK
411 # define SFD_NONBLOCK O_NONBLOCK
412 # endif
413 # ifndef SFD_CLOEXEC
414 # ifdef O_CLOEXEC
415 # define SFD_CLOEXEC O_CLOEXEC
416 # else
417 # define SFD_CLOEXEC 02000000
418 # endif
419 # endif
420 # ifdef __cplusplus
421 extern "C" {
422 # endif
423 int signalfd (int fd, const sigset_t *mask, int flags);
424
425 struct signalfd_siginfo
426 {
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429 };
430 # ifdef __cplusplus
431 }
432 # endif
433 #endif
434
435
436 /**/
437
438 #if EV_VERIFY >= 3
439 # define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440 #else
441 # define EV_FREQUENT_CHECK do { } while (0)
442 #endif
443
444 /*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
453
454 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
455 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
456
457 #if __GNUC__ >= 4
458 # define expect(expr,value) __builtin_expect ((expr),(value))
459 # define noinline __attribute__ ((noinline))
460 #else
461 # define expect(expr,value) (expr)
462 # define noinline
463 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464 # define inline
465 # endif
466 #endif
467
468 #define expect_false(expr) expect ((expr) != 0, 0)
469 #define expect_true(expr) expect ((expr) != 0, 1)
470 #define inline_size static inline
471
472 #if EV_MINIMAL
473 # define inline_speed static noinline
474 #else
475 # define inline_speed static inline
476 #endif
477
478 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480 #if EV_MINPRI == EV_MAXPRI
481 # define ABSPRI(w) (((W)w), 0)
482 #else
483 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484 #endif
485
486 #define EMPTY /* required for microsofts broken pseudo-c compiler */
487 #define EMPTY2(a,b) /* used to suppress some warnings */
488
489 typedef ev_watcher *W;
490 typedef ev_watcher_list *WL;
491 typedef ev_watcher_time *WT;
492
493 #define ev_active(w) ((W)(w))->active
494 #define ev_at(w) ((WT)(w))->at
495
496 #if EV_USE_REALTIME
497 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
498 /* giving it a reasonably high chance of working on typical architetcures */
499 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500 #endif
501
502 #if EV_USE_MONOTONIC
503 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504 #endif
505
506 #ifndef EV_FD_TO_WIN32_HANDLE
507 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508 #endif
509 #ifndef EV_WIN32_HANDLE_TO_FD
510 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
511 #endif
512 #ifndef EV_WIN32_CLOSE_FD
513 # define EV_WIN32_CLOSE_FD(fd) close (fd)
514 #endif
515
516 #ifdef _WIN32
517 # include "ev_win32.c"
518 #endif
519
520 /*****************************************************************************/
521
522 static void (*syserr_cb)(const char *msg);
523
524 void
525 ev_set_syserr_cb (void (*cb)(const char *msg))
526 {
527 syserr_cb = cb;
528 }
529
530 static void noinline
531 ev_syserr (const char *msg)
532 {
533 if (!msg)
534 msg = "(libev) system error";
535
536 if (syserr_cb)
537 syserr_cb (msg);
538 else
539 {
540 perror (msg);
541 abort ();
542 }
543 }
544
545 static void *
546 ev_realloc_emul (void *ptr, long size)
547 {
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558 }
559
560 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
561
562 void
563 ev_set_allocator (void *(*cb)(void *ptr, long size))
564 {
565 alloc = cb;
566 }
567
568 inline_speed void *
569 ev_realloc (void *ptr, long size)
570 {
571 ptr = alloc (ptr, size);
572
573 if (!ptr && size)
574 {
575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
576 abort ();
577 }
578
579 return ptr;
580 }
581
582 #define ev_malloc(size) ev_realloc (0, (size))
583 #define ev_free(ptr) ev_realloc ((ptr), 0)
584
585 /*****************************************************************************/
586
587 /* set in reify when reification needed */
588 #define EV_ANFD_REIFY 1
589
590 /* file descriptor info structure */
591 typedef struct
592 {
593 WL head;
594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
597 unsigned char unused;
598 #if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600 #endif
601 #if EV_SELECT_IS_WINSOCKET
602 SOCKET handle;
603 #endif
604 } ANFD;
605
606 /* stores the pending event set for a given watcher */
607 typedef struct
608 {
609 W w;
610 int events; /* the pending event set for the given watcher */
611 } ANPENDING;
612
613 #if EV_USE_INOTIFY
614 /* hash table entry per inotify-id */
615 typedef struct
616 {
617 WL head;
618 } ANFS;
619 #endif
620
621 /* Heap Entry */
622 #if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632 #else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639 #endif
640
641 #if EV_MULTIPLICITY
642
643 struct ev_loop
644 {
645 ev_tstamp ev_rt_now;
646 #define ev_rt_now ((loop)->ev_rt_now)
647 #define VAR(name,decl) decl;
648 #include "ev_vars.h"
649 #undef VAR
650 };
651 #include "ev_wrap.h"
652
653 static struct ev_loop default_loop_struct;
654 struct ev_loop *ev_default_loop_ptr;
655
656 #else
657
658 ev_tstamp ev_rt_now;
659 #define VAR(name,decl) static decl;
660 #include "ev_vars.h"
661 #undef VAR
662
663 static int ev_default_loop_ptr;
664
665 #endif
666
667 #if EV_MINIMAL < 2
668 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670 # define EV_INVOKE_PENDING invoke_cb (EV_A)
671 #else
672 # define EV_RELEASE_CB (void)0
673 # define EV_ACQUIRE_CB (void)0
674 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675 #endif
676
677 #define EVUNLOOP_RECURSE 0x80
678
679 /*****************************************************************************/
680
681 #ifndef EV_HAVE_EV_TIME
682 ev_tstamp
683 ev_time (void)
684 {
685 #if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
688 struct timespec ts;
689 clock_gettime (CLOCK_REALTIME, &ts);
690 return ts.tv_sec + ts.tv_nsec * 1e-9;
691 }
692 #endif
693
694 struct timeval tv;
695 gettimeofday (&tv, 0);
696 return tv.tv_sec + tv.tv_usec * 1e-6;
697 }
698 #endif
699
700 inline_size ev_tstamp
701 get_clock (void)
702 {
703 #if EV_USE_MONOTONIC
704 if (expect_true (have_monotonic))
705 {
706 struct timespec ts;
707 clock_gettime (CLOCK_MONOTONIC, &ts);
708 return ts.tv_sec + ts.tv_nsec * 1e-9;
709 }
710 #endif
711
712 return ev_time ();
713 }
714
715 #if EV_MULTIPLICITY
716 ev_tstamp
717 ev_now (EV_P)
718 {
719 return ev_rt_now;
720 }
721 #endif
722
723 void
724 ev_sleep (ev_tstamp delay)
725 {
726 if (delay > 0.)
727 {
728 #if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735 #elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737 #else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747 #endif
748 }
749 }
750
751 /*****************************************************************************/
752
753 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755 /* find a suitable new size for the given array, */
756 /* hopefully by rounding to a ncie-to-malloc size */
757 inline_size int
758 array_nextsize (int elem, int cur, int cnt)
759 {
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776 }
777
778 static noinline void *
779 array_realloc (int elem, void *base, int *cur, int cnt)
780 {
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783 }
784
785 #define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
787
788 #define array_needsize(type,base,cur,cnt,init) \
789 if (expect_false ((cnt) > (cur))) \
790 { \
791 int ocur_ = (cur); \
792 (base) = (type *)array_realloc \
793 (sizeof (type), (base), &(cur), (cnt)); \
794 init ((base) + (ocur_), (cur) - ocur_); \
795 }
796
797 #if 0
798 #define array_slim(type,stem) \
799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
800 { \
801 stem ## max = array_roundsize (stem ## cnt >> 1); \
802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
804 }
805 #endif
806
807 #define array_free(stem, idx) \
808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
809
810 /*****************************************************************************/
811
812 /* dummy callback for pending events */
813 static void noinline
814 pendingcb (EV_P_ ev_prepare *w, int revents)
815 {
816 }
817
818 void noinline
819 ev_feed_event (EV_P_ void *w, int revents)
820 {
821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
823
824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
831 pendings [pri][w_->pending - 1].events = revents;
832 }
833 }
834
835 inline_speed void
836 feed_reverse (EV_P_ W w)
837 {
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840 }
841
842 inline_size void
843 feed_reverse_done (EV_P_ int revents)
844 {
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848 }
849
850 inline_speed void
851 queue_events (EV_P_ W *events, int eventcnt, int type)
852 {
853 int i;
854
855 for (i = 0; i < eventcnt; ++i)
856 ev_feed_event (EV_A_ events [i], type);
857 }
858
859 /*****************************************************************************/
860
861 inline_speed void
862 fd_event_nc (EV_P_ int fd, int revents)
863 {
864 ANFD *anfd = anfds + fd;
865 ev_io *w;
866
867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
868 {
869 int ev = w->events & revents;
870
871 if (ev)
872 ev_feed_event (EV_A_ (W)w, ev);
873 }
874 }
875
876 /* do not submit kernel events for fds that have reify set */
877 /* because that means they changed while we were polling for new events */
878 inline_speed void
879 fd_event (EV_P_ int fd, int revents)
880 {
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885 }
886
887 void
888 ev_feed_fd_event (EV_P_ int fd, int revents)
889 {
890 if (fd >= 0 && fd < anfdmax)
891 fd_event_nc (EV_A_ fd, revents);
892 }
893
894 /* make sure the external fd watch events are in-sync */
895 /* with the kernel/libev internal state */
896 inline_size void
897 fd_reify (EV_P)
898 {
899 int i;
900
901 for (i = 0; i < fdchangecnt; ++i)
902 {
903 int fd = fdchanges [i];
904 ANFD *anfd = anfds + fd;
905 ev_io *w;
906
907 unsigned char events = 0;
908
909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
910 events |= (unsigned char)w->events;
911
912 #if EV_SELECT_IS_WINSOCKET
913 if (events)
914 {
915 unsigned long arg;
916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
918 }
919 #endif
920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
925 anfd->reify = 0;
926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
931 }
932
933 fdchangecnt = 0;
934 }
935
936 /* something about the given fd changed */
937 inline_size void
938 fd_change (EV_P_ int fd, int flags)
939 {
940 unsigned char reify = anfds [fd].reify;
941 anfds [fd].reify |= flags;
942
943 if (expect_true (!reify))
944 {
945 ++fdchangecnt;
946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
947 fdchanges [fdchangecnt - 1] = fd;
948 }
949 }
950
951 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952 inline_speed void
953 fd_kill (EV_P_ int fd)
954 {
955 ev_io *w;
956
957 while ((w = (ev_io *)anfds [fd].head))
958 {
959 ev_io_stop (EV_A_ w);
960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
961 }
962 }
963
964 /* check whether the given fd is atcually valid, for error recovery */
965 inline_size int
966 fd_valid (int fd)
967 {
968 #ifdef _WIN32
969 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
970 #else
971 return fcntl (fd, F_GETFD) != -1;
972 #endif
973 }
974
975 /* called on EBADF to verify fds */
976 static void noinline
977 fd_ebadf (EV_P)
978 {
979 int fd;
980
981 for (fd = 0; fd < anfdmax; ++fd)
982 if (anfds [fd].events)
983 if (!fd_valid (fd) && errno == EBADF)
984 fd_kill (EV_A_ fd);
985 }
986
987 /* called on ENOMEM in select/poll to kill some fds and retry */
988 static void noinline
989 fd_enomem (EV_P)
990 {
991 int fd;
992
993 for (fd = anfdmax; fd--; )
994 if (anfds [fd].events)
995 {
996 fd_kill (EV_A_ fd);
997 break;
998 }
999 }
1000
1001 /* usually called after fork if backend needs to re-arm all fds from scratch */
1002 static void noinline
1003 fd_rearm_all (EV_P)
1004 {
1005 int fd;
1006
1007 for (fd = 0; fd < anfdmax; ++fd)
1008 if (anfds [fd].events)
1009 {
1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1013 }
1014 }
1015
1016 /*****************************************************************************/
1017
1018 /*
1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1021 * the branching factor of the d-tree.
1022 */
1023
1024 /*
1025 * at the moment we allow libev the luxury of two heaps,
1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030 #if EV_USE_4HEAP
1031
1032 #define DHEAP 4
1033 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035 #define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037 /* away from the root */
1038 inline_speed void
1039 downheap (ANHE *heap, int N, int k)
1040 {
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
1066 break;
1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079 }
1080
1081 #else /* 4HEAP */
1082
1083 #define HEAP0 1
1084 #define HPARENT(k) ((k) >> 1)
1085 #define UPHEAP_DONE(p,k) (!(p))
1086
1087 /* away from the root */
1088 inline_speed void
1089 downheap (ANHE *heap, int N, int k)
1090 {
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114 }
1115 #endif
1116
1117 /* towards the root */
1118 inline_speed void
1119 upheap (ANHE *heap, int k)
1120 {
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137 }
1138
1139 /* move an element suitably so it is in a correct place */
1140 inline_size void
1141 adjustheap (ANHE *heap, int N, int k)
1142 {
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1144 upheap (heap, k);
1145 else
1146 downheap (heap, N, k);
1147 }
1148
1149 /* rebuild the heap: this function is used only once and executed rarely */
1150 inline_size void
1151 reheap (ANHE *heap, int N)
1152 {
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
1159 }
1160
1161 /*****************************************************************************/
1162
1163 /* associate signal watchers to a signal signal */
1164 typedef struct
1165 {
1166 EV_ATOMIC_T pending;
1167 #if EV_MULTIPLICITY
1168 EV_P;
1169 #endif
1170 WL head;
1171 } ANSIG;
1172
1173 static ANSIG signals [EV_NSIG - 1];
1174
1175 /*****************************************************************************/
1176
1177 /* used to prepare libev internal fd's */
1178 /* this is not fork-safe */
1179 inline_speed void
1180 fd_intern (int fd)
1181 {
1182 #ifdef _WIN32
1183 unsigned long arg = 1;
1184 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1185 #else
1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
1187 fcntl (fd, F_SETFL, O_NONBLOCK);
1188 #endif
1189 }
1190
1191 static void noinline
1192 evpipe_init (EV_P)
1193 {
1194 if (!ev_is_active (&pipe_w))
1195 {
1196 #if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208 #endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221 }
1222
1223 inline_size void
1224 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225 {
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232 #if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239 #endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244 }
1245
1246 /* called whenever the libev signal pipe */
1247 /* got some events (signal, async) */
1248 static void
1249 pipecb (EV_P_ ev_io *iow, int revents)
1250 {
1251 int i;
1252
1253 #if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260 #endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275 #if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287 #endif
1288 }
1289
1290 /*****************************************************************************/
1291
1292 static void
1293 ev_sighandler (int signum)
1294 {
1295 #if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297 #endif
1298
1299 #ifdef _WIN32
1300 signal (signum, ev_sighandler);
1301 #endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305 }
1306
1307 void noinline
1308 ev_feed_signal_event (EV_P_ int signum)
1309 {
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317 #if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323 #endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329 }
1330
1331 #if EV_USE_SIGNALFD
1332 static void
1333 sigfdcb (EV_P_ ev_io *iow, int revents)
1334 {
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348 }
1349 #endif
1350
1351 /*****************************************************************************/
1352
1353 static WL childs [EV_PID_HASHSIZE];
1354
1355 #ifndef _WIN32
1356
1357 static ev_signal childev;
1358
1359 #ifndef WIFCONTINUED
1360 # define WIFCONTINUED(status) 0
1361 #endif
1362
1363 /* handle a single child status event */
1364 inline_speed void
1365 child_reap (EV_P_ int chain, int pid, int status)
1366 {
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381 }
1382
1383 #ifndef WCONTINUED
1384 # define WCONTINUED 0
1385 #endif
1386
1387 /* called on sigchld etc., calls waitpid */
1388 static void
1389 childcb (EV_P_ ev_signal *sw, int revents)
1390 {
1391 int pid, status;
1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1403
1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1407 }
1408
1409 #endif
1410
1411 /*****************************************************************************/
1412
1413 #if EV_USE_PORT
1414 # include "ev_port.c"
1415 #endif
1416 #if EV_USE_KQUEUE
1417 # include "ev_kqueue.c"
1418 #endif
1419 #if EV_USE_EPOLL
1420 # include "ev_epoll.c"
1421 #endif
1422 #if EV_USE_POLL
1423 # include "ev_poll.c"
1424 #endif
1425 #if EV_USE_SELECT
1426 # include "ev_select.c"
1427 #endif
1428
1429 int
1430 ev_version_major (void)
1431 {
1432 return EV_VERSION_MAJOR;
1433 }
1434
1435 int
1436 ev_version_minor (void)
1437 {
1438 return EV_VERSION_MINOR;
1439 }
1440
1441 /* return true if we are running with elevated privileges and should ignore env variables */
1442 int inline_size
1443 enable_secure (void)
1444 {
1445 #ifdef _WIN32
1446 return 0;
1447 #else
1448 return getuid () != geteuid ()
1449 || getgid () != getegid ();
1450 #endif
1451 }
1452
1453 unsigned int
1454 ev_supported_backends (void)
1455 {
1456 unsigned int flags = 0;
1457
1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465 }
1466
1467 unsigned int
1468 ev_recommended_backends (void)
1469 {
1470 unsigned int flags = ev_supported_backends ();
1471
1472 #ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476 #endif
1477 #ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481 #endif
1482
1483 return flags;
1484 }
1485
1486 unsigned int
1487 ev_embeddable_backends (void)
1488 {
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496 }
1497
1498 unsigned int
1499 ev_backend (EV_P)
1500 {
1501 return backend;
1502 }
1503
1504 #if EV_MINIMAL < 2
1505 unsigned int
1506 ev_loop_count (EV_P)
1507 {
1508 return loop_count;
1509 }
1510
1511 unsigned int
1512 ev_loop_depth (EV_P)
1513 {
1514 return loop_depth;
1515 }
1516
1517 void
1518 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519 {
1520 io_blocktime = interval;
1521 }
1522
1523 void
1524 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525 {
1526 timeout_blocktime = interval;
1527 }
1528
1529 void
1530 ev_set_userdata (EV_P_ void *data)
1531 {
1532 userdata = data;
1533 }
1534
1535 void *
1536 ev_userdata (EV_P)
1537 {
1538 return userdata;
1539 }
1540
1541 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542 {
1543 invoke_cb = invoke_pending_cb;
1544 }
1545
1546 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547 {
1548 release_cb = release;
1549 acquire_cb = acquire;
1550 }
1551 #endif
1552
1553 /* initialise a loop structure, must be zero-initialised */
1554 static void noinline
1555 loop_init (EV_P_ unsigned int flags)
1556 {
1557 if (!backend)
1558 {
1559 #if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567 #endif
1568
1569 #if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1571 {
1572 struct timespec ts;
1573
1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1575 have_monotonic = 1;
1576 }
1577 #endif
1578
1579 /* pid check not overridable via env */
1580 #ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583 #endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594 #if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596 #endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603 #if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605 #endif
1606 #if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608 #endif
1609 #if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611 #endif
1612
1613 if (!(flags & 0x0000ffffU))
1614 flags |= ev_recommended_backends ();
1615
1616 #if EV_USE_PORT
1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1618 #endif
1619 #if EV_USE_KQUEUE
1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1621 #endif
1622 #if EV_USE_EPOLL
1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1624 #endif
1625 #if EV_USE_POLL
1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1627 #endif
1628 #if EV_USE_SELECT
1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1630 #endif
1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1634 ev_init (&pipe_w, pipecb);
1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1636 }
1637 }
1638
1639 /* free up a loop structure */
1640 static void noinline
1641 loop_destroy (EV_P)
1642 {
1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650 #if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653 #endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662 #if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665 #endif
1666
1667 #if EV_USE_INOTIFY
1668 if (fs_fd >= 0)
1669 close (fs_fd);
1670 #endif
1671
1672 if (backend_fd >= 0)
1673 close (backend_fd);
1674
1675 #if EV_USE_PORT
1676 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1677 #endif
1678 #if EV_USE_KQUEUE
1679 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1680 #endif
1681 #if EV_USE_EPOLL
1682 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1683 #endif
1684 #if EV_USE_POLL
1685 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1686 #endif
1687 #if EV_USE_SELECT
1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1689 #endif
1690
1691 for (i = NUMPRI; i--; )
1692 {
1693 array_free (pending, [i]);
1694 #if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696 #endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1700
1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1703 array_free (fdchange, EMPTY);
1704 array_free (timer, EMPTY);
1705 #if EV_PERIODIC_ENABLE
1706 array_free (periodic, EMPTY);
1707 #endif
1708 #if EV_FORK_ENABLE
1709 array_free (fork, EMPTY);
1710 #endif
1711 array_free (prepare, EMPTY);
1712 array_free (check, EMPTY);
1713 #if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715 #endif
1716
1717 backend = 0;
1718 }
1719
1720 #if EV_USE_INOTIFY
1721 inline_size void infy_fork (EV_P);
1722 #endif
1723
1724 inline_size void
1725 loop_fork (EV_P)
1726 {
1727 #if EV_USE_PORT
1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1729 #endif
1730 #if EV_USE_KQUEUE
1731 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1732 #endif
1733 #if EV_USE_EPOLL
1734 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1735 #endif
1736 #if EV_USE_INOTIFY
1737 infy_fork (EV_A);
1738 #endif
1739
1740 if (ev_is_active (&pipe_w))
1741 {
1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745 #if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747 #endif
1748
1749 ev_ref (EV_A);
1750 ev_io_stop (EV_A_ &pipe_w);
1751
1752 #if EV_USE_EVENTFD
1753 if (evfd >= 0)
1754 close (evfd);
1755 #endif
1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1766 }
1767
1768 postfork = 0;
1769 }
1770
1771 #if EV_MULTIPLICITY
1772
1773 struct ev_loop *
1774 ev_loop_new (unsigned int flags)
1775 {
1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1777
1778 memset (EV_A, 0, sizeof (struct ev_loop));
1779 loop_init (EV_A_ flags);
1780
1781 if (ev_backend (EV_A))
1782 return EV_A;
1783
1784 return 0;
1785 }
1786
1787 void
1788 ev_loop_destroy (EV_P)
1789 {
1790 loop_destroy (EV_A);
1791 ev_free (loop);
1792 }
1793
1794 void
1795 ev_loop_fork (EV_P)
1796 {
1797 postfork = 1; /* must be in line with ev_default_fork */
1798 }
1799 #endif /* multiplicity */
1800
1801 #if EV_VERIFY
1802 static void noinline
1803 verify_watcher (EV_P_ W w)
1804 {
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809 }
1810
1811 static void noinline
1812 verify_heap (EV_P_ ANHE *heap, int N)
1813 {
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824 }
1825
1826 static void noinline
1827 array_verify (EV_P_ W *ws, int cnt)
1828 {
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834 }
1835 #endif
1836
1837 #if EV_MINIMAL < 2
1838 void
1839 ev_loop_verify (EV_P)
1840 {
1841 #if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863 #if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866 #endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871 #if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875 #endif
1876 }
1877
1878 #if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881 #endif
1882
1883 #if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886 #endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894 # if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897 # endif
1898 #endif
1899 }
1900 #endif
1901
1902 #if EV_MULTIPLICITY
1903 struct ev_loop *
1904 ev_default_loop_init (unsigned int flags)
1905 #else
1906 int
1907 ev_default_loop (unsigned int flags)
1908 #endif
1909 {
1910 if (!ev_default_loop_ptr)
1911 {
1912 #if EV_MULTIPLICITY
1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1914 #else
1915 ev_default_loop_ptr = 1;
1916 #endif
1917
1918 loop_init (EV_A_ flags);
1919
1920 if (ev_backend (EV_A))
1921 {
1922 #ifndef _WIN32
1923 ev_signal_init (&childev, childcb, SIGCHLD);
1924 ev_set_priority (&childev, EV_MAXPRI);
1925 ev_signal_start (EV_A_ &childev);
1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1927 #endif
1928 }
1929 else
1930 ev_default_loop_ptr = 0;
1931 }
1932
1933 return ev_default_loop_ptr;
1934 }
1935
1936 void
1937 ev_default_destroy (void)
1938 {
1939 #if EV_MULTIPLICITY
1940 EV_P = ev_default_loop_ptr;
1941 #endif
1942
1943 ev_default_loop_ptr = 0;
1944
1945 #ifndef _WIN32
1946 ev_ref (EV_A); /* child watcher */
1947 ev_signal_stop (EV_A_ &childev);
1948 #endif
1949
1950 loop_destroy (EV_A);
1951 }
1952
1953 void
1954 ev_default_fork (void)
1955 {
1956 #if EV_MULTIPLICITY
1957 EV_P = ev_default_loop_ptr;
1958 #endif
1959
1960 postfork = 1; /* must be in line with ev_loop_fork */
1961 }
1962
1963 /*****************************************************************************/
1964
1965 void
1966 ev_invoke (EV_P_ void *w, int revents)
1967 {
1968 EV_CB_INVOKE ((W)w, revents);
1969 }
1970
1971 unsigned int
1972 ev_pending_count (EV_P)
1973 {
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981 }
1982
1983 void noinline
1984 ev_invoke_pending (EV_P)
1985 {
1986 int pri;
1987
1988 for (pri = NUMPRI; pri--; )
1989 while (pendingcnt [pri])
1990 {
1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1992
1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1995
1996 p->w->pending = 0;
1997 EV_CB_INVOKE (p->w, p->events);
1998 EV_FREQUENT_CHECK;
1999 }
2000 }
2001
2002 #if EV_IDLE_ENABLE
2003 /* make idle watchers pending. this handles the "call-idle */
2004 /* only when higher priorities are idle" logic */
2005 inline_size void
2006 idle_reify (EV_P)
2007 {
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024 }
2025 #endif
2026
2027 /* make timers pending */
2028 inline_size void
2029 timers_reify (EV_P)
2030 {
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063 }
2064
2065 #if EV_PERIODIC_ENABLE
2066 /* make periodics pending */
2067 inline_size void
2068 periodics_reify (EV_P)
2069 {
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121 }
2122
2123 /* simply recalculate all periodics */
2124 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125 static void noinline
2126 periodics_reschedule (EV_P)
2127 {
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144 }
2145 #endif
2146
2147 /* adjust all timers by a given offset */
2148 static void noinline
2149 timers_reschedule (EV_P_ ev_tstamp adjust)
2150 {
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159 }
2160
2161 /* fetch new monotonic and realtime times from the kernel */
2162 /* also detetc if there was a timejump, and act accordingly */
2163 inline_speed void
2164 time_update (EV_P_ ev_tstamp max_block)
2165 {
2166 #if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
2172 mn_now = get_clock ();
2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2177 {
2178 ev_rt_now = rtmn_diff + mn_now;
2179 return;
2180 }
2181
2182 now_floor = mn_now;
2183 ev_rt_now = ev_time ();
2184
2185 /* loop a few times, before making important decisions.
2186 * on the choice of "4": one iteration isn't enough,
2187 * in case we get preempted during the calls to
2188 * ev_time and get_clock. a second call is almost guaranteed
2189 * to succeed in that case, though. and looping a few more times
2190 * doesn't hurt either as we only do this on time-jumps or
2191 * in the unlikely event of having been preempted here.
2192 */
2193 for (i = 4; --i; )
2194 {
2195 rtmn_diff = ev_rt_now - mn_now;
2196
2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2198 return; /* all is well */
2199
2200 ev_rt_now = ev_time ();
2201 mn_now = get_clock ();
2202 now_floor = mn_now;
2203 }
2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2207 # if EV_PERIODIC_ENABLE
2208 periodics_reschedule (EV_A);
2209 # endif
2210 }
2211 else
2212 #endif
2213 {
2214 ev_rt_now = ev_time ();
2215
2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2220 #if EV_PERIODIC_ENABLE
2221 periodics_reschedule (EV_A);
2222 #endif
2223 }
2224
2225 mn_now = ev_rt_now;
2226 }
2227 }
2228
2229 void
2230 ev_loop (EV_P_ int flags)
2231 {
2232 #if EV_MINIMAL < 2
2233 ++loop_depth;
2234 #endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2241
2242 do
2243 {
2244 #if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246 #endif
2247
2248 #ifndef _WIN32
2249 if (expect_false (curpid)) /* penalise the forking check even more */
2250 if (expect_false (getpid () != curpid))
2251 {
2252 curpid = getpid ();
2253 postfork = 1;
2254 }
2255 #endif
2256
2257 #if EV_FORK_ENABLE
2258 /* we might have forked, so queue fork handlers */
2259 if (expect_false (postfork))
2260 if (forkcnt)
2261 {
2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2263 EV_INVOKE_PENDING;
2264 }
2265 #endif
2266
2267 /* queue prepare watchers (and execute them) */
2268 if (expect_false (preparecnt))
2269 {
2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2271 EV_INVOKE_PENDING;
2272 }
2273
2274 if (expect_false (loop_done))
2275 break;
2276
2277 /* we might have forked, so reify kernel state if necessary */
2278 if (expect_false (postfork))
2279 loop_fork (EV_A);
2280
2281 /* update fd-related kernel structures */
2282 fd_reify (EV_A);
2283
2284 /* calculate blocking time */
2285 {
2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
2288
2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
2294 /* update time to cancel out callback processing overhead */
2295 time_update (EV_A_ 1e100);
2296
2297 waittime = MAX_BLOCKTIME;
2298
2299 if (timercnt)
2300 {
2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2302 if (waittime > to) waittime = to;
2303 }
2304
2305 #if EV_PERIODIC_ENABLE
2306 if (periodiccnt)
2307 {
2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2309 if (waittime > to) waittime = to;
2310 }
2311 #endif
2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
2331 }
2332
2333 #if EV_MINIMAL < 2
2334 ++loop_count;
2335 #endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2339
2340 /* update ev_rt_now, do magic */
2341 time_update (EV_A_ waittime + sleeptime);
2342 }
2343
2344 /* queue pending timers and reschedule them */
2345 timers_reify (EV_A); /* relative timers called last */
2346 #if EV_PERIODIC_ENABLE
2347 periodics_reify (EV_A); /* absolute timers called first */
2348 #endif
2349
2350 #if EV_IDLE_ENABLE
2351 /* queue idle watchers unless other events are pending */
2352 idle_reify (EV_A);
2353 #endif
2354
2355 /* queue check watchers, to be executed first */
2356 if (expect_false (checkcnt))
2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2358
2359 EV_INVOKE_PENDING;
2360 }
2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
2366
2367 if (loop_done == EVUNLOOP_ONE)
2368 loop_done = EVUNLOOP_CANCEL;
2369
2370 #if EV_MINIMAL < 2
2371 --loop_depth;
2372 #endif
2373 }
2374
2375 void
2376 ev_unloop (EV_P_ int how)
2377 {
2378 loop_done = how;
2379 }
2380
2381 void
2382 ev_ref (EV_P)
2383 {
2384 ++activecnt;
2385 }
2386
2387 void
2388 ev_unref (EV_P)
2389 {
2390 --activecnt;
2391 }
2392
2393 void
2394 ev_now_update (EV_P)
2395 {
2396 time_update (EV_A_ 1e100);
2397 }
2398
2399 void
2400 ev_suspend (EV_P)
2401 {
2402 ev_now_update (EV_A);
2403 }
2404
2405 void
2406 ev_resume (EV_P)
2407 {
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412 #if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415 #endif
2416 }
2417
2418 /*****************************************************************************/
2419 /* singly-linked list management, used when the expected list length is short */
2420
2421 inline_size void
2422 wlist_add (WL *head, WL elem)
2423 {
2424 elem->next = *head;
2425 *head = elem;
2426 }
2427
2428 inline_size void
2429 wlist_del (WL *head, WL elem)
2430 {
2431 while (*head)
2432 {
2433 if (expect_true (*head == elem))
2434 {
2435 *head = elem->next;
2436 break;
2437 }
2438
2439 head = &(*head)->next;
2440 }
2441 }
2442
2443 /* internal, faster, version of ev_clear_pending */
2444 inline_speed void
2445 clear_pending (EV_P_ W w)
2446 {
2447 if (w->pending)
2448 {
2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2450 w->pending = 0;
2451 }
2452 }
2453
2454 int
2455 ev_clear_pending (EV_P_ void *w)
2456 {
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469 }
2470
2471 inline_size void
2472 pri_adjust (EV_P_ W w)
2473 {
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478 }
2479
2480 inline_speed void
2481 ev_start (EV_P_ W w, int active)
2482 {
2483 pri_adjust (EV_A_ w);
2484 w->active = active;
2485 ev_ref (EV_A);
2486 }
2487
2488 inline_size void
2489 ev_stop (EV_P_ W w)
2490 {
2491 ev_unref (EV_A);
2492 w->active = 0;
2493 }
2494
2495 /*****************************************************************************/
2496
2497 void noinline
2498 ev_io_start (EV_P_ ev_io *w)
2499 {
2500 int fd = w->fd;
2501
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
2509
2510 ev_start (EV_A_ (W)w, 1);
2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2512 wlist_add (&anfds[fd].head, (WL)w);
2513
2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
2518 }
2519
2520 void noinline
2521 ev_io_stop (EV_P_ ev_io *w)
2522 {
2523 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w)))
2525 return;
2526
2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
2530
2531 wlist_del (&anfds[w->fd].head, (WL)w);
2532 ev_stop (EV_A_ (W)w);
2533
2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
2537 }
2538
2539 void noinline
2540 ev_timer_start (EV_P_ ev_timer *w)
2541 {
2542 if (expect_false (ev_is_active (w)))
2543 return;
2544
2545 ev_at (w) += mn_now;
2546
2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
2557
2558 EV_FREQUENT_CHECK;
2559
2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2561 }
2562
2563 void noinline
2564 ev_timer_stop (EV_P_ ev_timer *w)
2565 {
2566 clear_pending (EV_A_ (W)w);
2567 if (expect_false (!ev_is_active (w)))
2568 return;
2569
2570 EV_FREQUENT_CHECK;
2571
2572 {
2573 int active = ev_active (w);
2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
2579 if (expect_true (active < timercnt + HEAP0))
2580 {
2581 timers [active] = timers [timercnt + HEAP0];
2582 adjustheap (timers, timercnt, active);
2583 }
2584 }
2585
2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
2589
2590 ev_stop (EV_A_ (W)w);
2591 }
2592
2593 void noinline
2594 ev_timer_again (EV_P_ ev_timer *w)
2595 {
2596 EV_FREQUENT_CHECK;
2597
2598 if (ev_is_active (w))
2599 {
2600 if (w->repeat)
2601 {
2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
2604 adjustheap (timers, timercnt, ev_active (w));
2605 }
2606 else
2607 ev_timer_stop (EV_A_ w);
2608 }
2609 else if (w->repeat)
2610 {
2611 ev_at (w) = w->repeat;
2612 ev_timer_start (EV_A_ w);
2613 }
2614
2615 EV_FREQUENT_CHECK;
2616 }
2617
2618 ev_tstamp
2619 ev_timer_remaining (EV_P_ ev_timer *w)
2620 {
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2622 }
2623
2624 #if EV_PERIODIC_ENABLE
2625 void noinline
2626 ev_periodic_start (EV_P_ ev_periodic *w)
2627 {
2628 if (expect_false (ev_is_active (w)))
2629 return;
2630
2631 if (w->reschedule_cb)
2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2633 else if (w->interval)
2634 {
2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2636 /* this formula differs from the one in periodic_reify because we do not always round up */
2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2638 }
2639 else
2640 ev_at (w) = w->offset;
2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
2650
2651 EV_FREQUENT_CHECK;
2652
2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2654 }
2655
2656 void noinline
2657 ev_periodic_stop (EV_P_ ev_periodic *w)
2658 {
2659 clear_pending (EV_A_ (W)w);
2660 if (expect_false (!ev_is_active (w)))
2661 return;
2662
2663 EV_FREQUENT_CHECK;
2664
2665 {
2666 int active = ev_active (w);
2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
2672 if (expect_true (active < periodiccnt + HEAP0))
2673 {
2674 periodics [active] = periodics [periodiccnt + HEAP0];
2675 adjustheap (periodics, periodiccnt, active);
2676 }
2677 }
2678
2679 EV_FREQUENT_CHECK;
2680
2681 ev_stop (EV_A_ (W)w);
2682 }
2683
2684 void noinline
2685 ev_periodic_again (EV_P_ ev_periodic *w)
2686 {
2687 /* TODO: use adjustheap and recalculation */
2688 ev_periodic_stop (EV_A_ w);
2689 ev_periodic_start (EV_A_ w);
2690 }
2691 #endif
2692
2693 #ifndef SA_RESTART
2694 # define SA_RESTART 0
2695 #endif
2696
2697 void noinline
2698 ev_signal_start (EV_P_ ev_signal *w)
2699 {
2700 if (expect_false (ev_is_active (w)))
2701 return;
2702
2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
2705 #if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710 #endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714 #if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742 #endif
2743
2744 ev_start (EV_A_ (W)w, 1);
2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2746
2747 if (!((WL)w)->next)
2748 # if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750 # endif
2751 {
2752 # ifdef _WIN32
2753 evpipe_init (EV_A);
2754
2755 signal (w->signum, ev_sighandler);
2756 # else
2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2761 sa.sa_handler = ev_sighandler;
2762 sigfillset (&sa.sa_mask);
2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2769 #endif
2770 }
2771
2772 EV_FREQUENT_CHECK;
2773 }
2774
2775 void noinline
2776 ev_signal_stop (EV_P_ ev_signal *w)
2777 {
2778 clear_pending (EV_A_ (W)w);
2779 if (expect_false (!ev_is_active (w)))
2780 return;
2781
2782 EV_FREQUENT_CHECK;
2783
2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2785 ev_stop (EV_A_ (W)w);
2786
2787 if (!signals [w->signum - 1].head)
2788 {
2789 #if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791 #endif
2792 #if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805 #endif
2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
2810 }
2811
2812 void
2813 ev_child_start (EV_P_ ev_child *w)
2814 {
2815 #if EV_MULTIPLICITY
2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2817 #endif
2818 if (expect_false (ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
2822
2823 ev_start (EV_A_ (W)w, 1);
2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
2827 }
2828
2829 void
2830 ev_child_stop (EV_P_ ev_child *w)
2831 {
2832 clear_pending (EV_A_ (W)w);
2833 if (expect_false (!ev_is_active (w)))
2834 return;
2835
2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
2842 }
2843
2844 #if EV_STAT_ENABLE
2845
2846 # ifdef _WIN32
2847 # undef lstat
2848 # define lstat(a,b) _stati64 (a,b)
2849 # endif
2850
2851 #define DEF_STAT_INTERVAL 5.0074891
2852 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2853 #define MIN_STAT_INTERVAL 0.1074891
2854
2855 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2856
2857 #if EV_USE_INOTIFY
2858 # define EV_INOTIFY_BUFSIZE 8192
2859
2860 static void noinline
2861 infy_add (EV_P_ ev_stat *w)
2862 {
2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2864
2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2885 }
2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2890
2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2895 {
2896 char path [4096];
2897 strcpy (path, w->path);
2898
2899 do
2900 {
2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2903
2904 char *pend = strrchr (path, '/');
2905
2906 if (!pend || pend == path)
2907 break;
2908
2909 *pend = 0;
2910 w->wd = inotify_add_watch (fs_fd, path, mask);
2911 }
2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2913 }
2914 }
2915
2916 if (w->wd >= 0)
2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2923 }
2924
2925 static void noinline
2926 infy_del (EV_P_ ev_stat *w)
2927 {
2928 int slot;
2929 int wd = w->wd;
2930
2931 if (wd < 0)
2932 return;
2933
2934 w->wd = -2;
2935 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2936 wlist_del (&fs_hash [slot].head, (WL)w);
2937
2938 /* remove this watcher, if others are watching it, they will rearm */
2939 inotify_rm_watch (fs_fd, wd);
2940 }
2941
2942 static void noinline
2943 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2944 {
2945 if (slot < 0)
2946 /* overflow, need to check for all hash slots */
2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2948 infy_wd (EV_A_ slot, wd, ev);
2949 else
2950 {
2951 WL w_;
2952
2953 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2954 {
2955 ev_stat *w = (ev_stat *)w_;
2956 w_ = w_->next; /* lets us remove this watcher and all before it */
2957
2958 if (w->wd == wd || wd == -1)
2959 {
2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2963 w->wd = -1;
2964 infy_add (EV_A_ w); /* re-add, no matter what */
2965 }
2966
2967 stat_timer_cb (EV_A_ &w->timer, 0);
2968 }
2969 }
2970 }
2971 }
2972
2973 static void
2974 infy_cb (EV_P_ ev_io *w, int revents)
2975 {
2976 char buf [EV_INOTIFY_BUFSIZE];
2977 struct inotify_event *ev = (struct inotify_event *)buf;
2978 int ofs;
2979 int len = read (fs_fd, buf, sizeof (buf));
2980
2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2983 }
2984
2985 inline_size void
2986 check_2625 (EV_P)
2987 {
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006 }
3007
3008 inline_size int
3009 infy_newfd (void)
3010 {
3011 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015 #endif
3016 return inotify_init ();
3017 }
3018
3019 inline_size void
3020 infy_init (EV_P)
3021 {
3022 if (fs_fd != -2)
3023 return;
3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
3029 fs_fd = infy_newfd ();
3030
3031 if (fs_fd >= 0)
3032 {
3033 fd_intern (fs_fd);
3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3035 ev_set_priority (&fs_w, EV_MAXPRI);
3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
3038 }
3039 }
3040
3041 inline_size void
3042 infy_fork (EV_P)
3043 {
3044 int slot;
3045
3046 if (fs_fd < 0)
3047 return;
3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
3051 close (fs_fd);
3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
3061
3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3063 {
3064 WL w_ = fs_hash [slot].head;
3065 fs_hash [slot].head = 0;
3066
3067 while (w_)
3068 {
3069 ev_stat *w = (ev_stat *)w_;
3070 w_ = w_->next; /* lets us add this watcher */
3071
3072 w->wd = -1;
3073
3074 if (fs_fd >= 0)
3075 infy_add (EV_A_ w); /* re-add, no matter what */
3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
3083 }
3084 }
3085 }
3086
3087 #endif
3088
3089 #ifdef _WIN32
3090 # define EV_LSTAT(p,b) _stati64 (p, b)
3091 #else
3092 # define EV_LSTAT(p,b) lstat (p, b)
3093 #endif
3094
3095 void
3096 ev_stat_stat (EV_P_ ev_stat *w)
3097 {
3098 if (lstat (w->path, &w->attr) < 0)
3099 w->attr.st_nlink = 0;
3100 else if (!w->attr.st_nlink)
3101 w->attr.st_nlink = 1;
3102 }
3103
3104 static void noinline
3105 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3106 {
3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3108
3109 ev_statdata prev = w->attr;
3110 ev_stat_stat (EV_A_ w);
3111
3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3113 if (
3114 prev.st_dev != w->attr.st_dev
3115 || prev.st_ino != w->attr.st_ino
3116 || prev.st_mode != w->attr.st_mode
3117 || prev.st_nlink != w->attr.st_nlink
3118 || prev.st_uid != w->attr.st_uid
3119 || prev.st_gid != w->attr.st_gid
3120 || prev.st_rdev != w->attr.st_rdev
3121 || prev.st_size != w->attr.st_size
3122 || prev.st_atime != w->attr.st_atime
3123 || prev.st_mtime != w->attr.st_mtime
3124 || prev.st_ctime != w->attr.st_ctime
3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
3134 infy_del (EV_A_ w);
3135 infy_add (EV_A_ w);
3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
3138 #endif
3139
3140 ev_feed_event (EV_A_ w, EV_STAT);
3141 }
3142 }
3143
3144 void
3145 ev_stat_start (EV_P_ ev_stat *w)
3146 {
3147 if (expect_false (ev_is_active (w)))
3148 return;
3149
3150 ev_stat_stat (EV_A_ w);
3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3153 w->interval = MIN_STAT_INTERVAL;
3154
3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3156 ev_set_priority (&w->timer, ev_priority (w));
3157
3158 #if EV_USE_INOTIFY
3159 infy_init (EV_A);
3160
3161 if (fs_fd >= 0)
3162 infy_add (EV_A_ w);
3163 else
3164 #endif
3165 {
3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
3169
3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
3173 }
3174
3175 void
3176 ev_stat_stop (EV_P_ ev_stat *w)
3177 {
3178 clear_pending (EV_A_ (W)w);
3179 if (expect_false (!ev_is_active (w)))
3180 return;
3181
3182 EV_FREQUENT_CHECK;
3183
3184 #if EV_USE_INOTIFY
3185 infy_del (EV_A_ w);
3186 #endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
3193
3194 ev_stop (EV_A_ (W)w);
3195
3196 EV_FREQUENT_CHECK;
3197 }
3198 #endif
3199
3200 #if EV_IDLE_ENABLE
3201 void
3202 ev_idle_start (EV_P_ ev_idle *w)
3203 {
3204 if (expect_false (ev_is_active (w)))
3205 return;
3206
3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
3210
3211 {
3212 int active = ++idlecnt [ABSPRI (w)];
3213
3214 ++idleall;
3215 ev_start (EV_A_ (W)w, active);
3216
3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3218 idles [ABSPRI (w)][active - 1] = w;
3219 }
3220
3221 EV_FREQUENT_CHECK;
3222 }
3223
3224 void
3225 ev_idle_stop (EV_P_ ev_idle *w)
3226 {
3227 clear_pending (EV_A_ (W)w);
3228 if (expect_false (!ev_is_active (w)))
3229 return;
3230
3231 EV_FREQUENT_CHECK;
3232
3233 {
3234 int active = ev_active (w);
3235
3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3238
3239 ev_stop (EV_A_ (W)w);
3240 --idleall;
3241 }
3242
3243 EV_FREQUENT_CHECK;
3244 }
3245 #endif
3246
3247 void
3248 ev_prepare_start (EV_P_ ev_prepare *w)
3249 {
3250 if (expect_false (ev_is_active (w)))
3251 return;
3252
3253 EV_FREQUENT_CHECK;
3254
3255 ev_start (EV_A_ (W)w, ++preparecnt);
3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
3260 }
3261
3262 void
3263 ev_prepare_stop (EV_P_ ev_prepare *w)
3264 {
3265 clear_pending (EV_A_ (W)w);
3266 if (expect_false (!ev_is_active (w)))
3267 return;
3268
3269 EV_FREQUENT_CHECK;
3270
3271 {
3272 int active = ev_active (w);
3273
3274 prepares [active - 1] = prepares [--preparecnt];
3275 ev_active (prepares [active - 1]) = active;
3276 }
3277
3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
3281 }
3282
3283 void
3284 ev_check_start (EV_P_ ev_check *w)
3285 {
3286 if (expect_false (ev_is_active (w)))
3287 return;
3288
3289 EV_FREQUENT_CHECK;
3290
3291 ev_start (EV_A_ (W)w, ++checkcnt);
3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
3296 }
3297
3298 void
3299 ev_check_stop (EV_P_ ev_check *w)
3300 {
3301 clear_pending (EV_A_ (W)w);
3302 if (expect_false (!ev_is_active (w)))
3303 return;
3304
3305 EV_FREQUENT_CHECK;
3306
3307 {
3308 int active = ev_active (w);
3309
3310 checks [active - 1] = checks [--checkcnt];
3311 ev_active (checks [active - 1]) = active;
3312 }
3313
3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
3317 }
3318
3319 #if EV_EMBED_ENABLE
3320 void noinline
3321 ev_embed_sweep (EV_P_ ev_embed *w)
3322 {
3323 ev_loop (w->other, EVLOOP_NONBLOCK);
3324 }
3325
3326 static void
3327 embed_io_cb (EV_P_ ev_io *io, int revents)
3328 {
3329 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3330
3331 if (ev_cb (w))
3332 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3333 else
3334 ev_loop (w->other, EVLOOP_NONBLOCK);
3335 }
3336
3337 static void
3338 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3339 {
3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3341
3342 {
3343 EV_P = w->other;
3344
3345 while (fdchangecnt)
3346 {
3347 fd_reify (EV_A);
3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3349 }
3350 }
3351 }
3352
3353 static void
3354 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355 {
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368 }
3369
3370 #if 0
3371 static void
3372 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3373 {
3374 ev_idle_stop (EV_A_ idle);
3375 }
3376 #endif
3377
3378 void
3379 ev_embed_start (EV_P_ ev_embed *w)
3380 {
3381 if (expect_false (ev_is_active (w)))
3382 return;
3383
3384 {
3385 EV_P = w->other;
3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3388 }
3389
3390 EV_FREQUENT_CHECK;
3391
3392 ev_set_priority (&w->io, ev_priority (w));
3393 ev_io_start (EV_A_ &w->io);
3394
3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
3396 ev_set_priority (&w->prepare, EV_MINPRI);
3397 ev_prepare_start (EV_A_ &w->prepare);
3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3403
3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
3407 }
3408
3409 void
3410 ev_embed_stop (EV_P_ ev_embed *w)
3411 {
3412 clear_pending (EV_A_ (W)w);
3413 if (expect_false (!ev_is_active (w)))
3414 return;
3415
3416 EV_FREQUENT_CHECK;
3417
3418 ev_io_stop (EV_A_ &w->io);
3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
3421
3422 EV_FREQUENT_CHECK;
3423 }
3424 #endif
3425
3426 #if EV_FORK_ENABLE
3427 void
3428 ev_fork_start (EV_P_ ev_fork *w)
3429 {
3430 if (expect_false (ev_is_active (w)))
3431 return;
3432
3433 EV_FREQUENT_CHECK;
3434
3435 ev_start (EV_A_ (W)w, ++forkcnt);
3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
3440 }
3441
3442 void
3443 ev_fork_stop (EV_P_ ev_fork *w)
3444 {
3445 clear_pending (EV_A_ (W)w);
3446 if (expect_false (!ev_is_active (w)))
3447 return;
3448
3449 EV_FREQUENT_CHECK;
3450
3451 {
3452 int active = ev_active (w);
3453
3454 forks [active - 1] = forks [--forkcnt];
3455 ev_active (forks [active - 1]) = active;
3456 }
3457
3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461 }
3462 #endif
3463
3464 #if EV_ASYNC_ENABLE
3465 void
3466 ev_async_start (EV_P_ ev_async *w)
3467 {
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480 }
3481
3482 void
3483 ev_async_stop (EV_P_ ev_async *w)
3484 {
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501 }
3502
3503 void
3504 ev_async_send (EV_P_ ev_async *w)
3505 {
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
3508 }
3509 #endif
3510
3511 /*****************************************************************************/
3512
3513 struct ev_once
3514 {
3515 ev_io io;
3516 ev_timer to;
3517 void (*cb)(int revents, void *arg);
3518 void *arg;
3519 };
3520
3521 static void
3522 once_cb (EV_P_ struct ev_once *once, int revents)
3523 {
3524 void (*cb)(int revents, void *arg) = once->cb;
3525 void *arg = once->arg;
3526
3527 ev_io_stop (EV_A_ &once->io);
3528 ev_timer_stop (EV_A_ &once->to);
3529 ev_free (once);
3530
3531 cb (revents, arg);
3532 }
3533
3534 static void
3535 once_cb_io (EV_P_ ev_io *w, int revents)
3536 {
3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3540 }
3541
3542 static void
3543 once_cb_to (EV_P_ ev_timer *w, int revents)
3544 {
3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3548 }
3549
3550 void
3551 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3552 {
3553 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3554
3555 if (expect_false (!once))
3556 {
3557 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3558 return;
3559 }
3560
3561 once->cb = cb;
3562 once->arg = arg;
3563
3564 ev_init (&once->io, once_cb_io);
3565 if (fd >= 0)
3566 {
3567 ev_io_set (&once->io, fd, events);
3568 ev_io_start (EV_A_ &once->io);
3569 }
3570
3571 ev_init (&once->to, once_cb_to);
3572 if (timeout >= 0.)
3573 {
3574 ev_timer_set (&once->to, timeout, 0.);
3575 ev_timer_start (EV_A_ &once->to);
3576 }
3577 }
3578
3579 /*****************************************************************************/
3580
3581 #if EV_WALK_ENABLE
3582 void
3583 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584 {
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594 #if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601 #endif
3602 #if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606 #endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616 #if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624 #endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628 #if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632 #endif
3633
3634 #if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639 #endif
3640
3641 #if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646 #endif
3647
3648 #if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652 #endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656 #if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658 #endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682 /* EV_STAT 0x00001000 /* stat data changed */
3683 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684 }
3685 #endif
3686
3687 #if EV_MULTIPLICITY
3688 #include "ev_wrap.h"
3689 #endif
3690
3691 #ifdef __cplusplus
3692 }
3693 #endif
3694