ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.343
Committed: Fri Apr 2 21:03:46 2010 UTC (14 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.342: +46 -37 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # if HAVE_NANOSLEEP
83 # ifndef EV_USE_NANOSLEEP
84 # define EV_USE_NANOSLEEP EV_FEATURE_OS
85 # endif
86 # else
87 # undef EV_USE_NANOSLEEP
88 # define EV_USE_NANOSLEEP 0
89 # endif
90
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # ifndef EV_USE_SELECT
93 # define EV_USE_SELECT EV_FEATURE_BACKENDS
94 # endif
95 # else
96 # undef EV_USE_SELECT
97 # define EV_USE_SELECT 0
98 # endif
99
100 # if HAVE_POLL && HAVE_POLL_H
101 # ifndef EV_USE_POLL
102 # define EV_USE_POLL EV_FEATURE_BACKENDS
103 # endif
104 # else
105 # undef EV_USE_POLL
106 # define EV_USE_POLL 0
107 # endif
108
109 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110 # ifndef EV_USE_EPOLL
111 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
112 # endif
113 # else
114 # undef EV_USE_EPOLL
115 # define EV_USE_EPOLL 0
116 # endif
117
118 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119 # ifndef EV_USE_KQUEUE
120 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121 # endif
122 # else
123 # undef EV_USE_KQUEUE
124 # define EV_USE_KQUEUE 0
125 # endif
126
127 # if HAVE_PORT_H && HAVE_PORT_CREATE
128 # ifndef EV_USE_PORT
129 # define EV_USE_PORT EV_FEATURE_BACKENDS
130 # endif
131 # else
132 # undef EV_USE_PORT
133 # define EV_USE_PORT 0
134 # endif
135
136 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137 # ifndef EV_USE_INOTIFY
138 # define EV_USE_INOTIFY EV_FEATURE_OS
139 # endif
140 # else
141 # undef EV_USE_INOTIFY
142 # define EV_USE_INOTIFY 0
143 # endif
144
145 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146 # ifndef EV_USE_SIGNALFD
147 # define EV_USE_SIGNALFD EV_FEATURE_OS
148 # endif
149 # else
150 # undef EV_USE_SIGNALFD
151 # define EV_USE_SIGNALFD 0
152 # endif
153
154 # if HAVE_EVENTFD
155 # ifndef EV_USE_EVENTFD
156 # define EV_USE_EVENTFD EV_FEATURE_OS
157 # endif
158 # else
159 # undef EV_USE_EVENTFD
160 # define EV_USE_EVENTFD 0
161 # endif
162
163 #endif
164
165 #include <math.h>
166 #include <stdlib.h>
167 #include <string.h>
168 #include <fcntl.h>
169 #include <stddef.h>
170
171 #include <stdio.h>
172
173 #include <assert.h>
174 #include <errno.h>
175 #include <sys/types.h>
176 #include <time.h>
177 #include <limits.h>
178
179 #include <signal.h>
180
181 #ifdef EV_H
182 # include EV_H
183 #else
184 # include "ev.h"
185 #endif
186
187 #ifndef _WIN32
188 # include <sys/time.h>
189 # include <sys/wait.h>
190 # include <unistd.h>
191 #else
192 # include <io.h>
193 # define WIN32_LEAN_AND_MEAN
194 # include <windows.h>
195 # ifndef EV_SELECT_IS_WINSOCKET
196 # define EV_SELECT_IS_WINSOCKET 1
197 # endif
198 # undef EV_AVOID_STDIO
199 #endif
200
201 /* this block tries to deduce configuration from header-defined symbols and defaults */
202
203 /* try to deduce the maximum number of signals on this platform */
204 #if defined (EV_NSIG)
205 /* use what's provided */
206 #elif defined (NSIG)
207 # define EV_NSIG (NSIG)
208 #elif defined(_NSIG)
209 # define EV_NSIG (_NSIG)
210 #elif defined (SIGMAX)
211 # define EV_NSIG (SIGMAX+1)
212 #elif defined (SIG_MAX)
213 # define EV_NSIG (SIG_MAX+1)
214 #elif defined (_SIG_MAX)
215 # define EV_NSIG (_SIG_MAX+1)
216 #elif defined (MAXSIG)
217 # define EV_NSIG (MAXSIG+1)
218 #elif defined (MAX_SIG)
219 # define EV_NSIG (MAX_SIG+1)
220 #elif defined (SIGARRAYSIZE)
221 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222 #elif defined (_sys_nsig)
223 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224 #else
225 # error "unable to find value for NSIG, please report"
226 /* to make it compile regardless, just remove the above line, */
227 /* but consider reporting it, too! :) */
228 # define EV_NSIG 65
229 #endif
230
231 #ifndef EV_USE_CLOCK_SYSCALL
232 # if __linux && __GLIBC__ >= 2
233 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234 # else
235 # define EV_USE_CLOCK_SYSCALL 0
236 # endif
237 #endif
238
239 #ifndef EV_USE_MONOTONIC
240 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241 # define EV_USE_MONOTONIC EV_FEATURE_OS
242 # else
243 # define EV_USE_MONOTONIC 0
244 # endif
245 #endif
246
247 #ifndef EV_USE_REALTIME
248 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
249 #endif
250
251 #ifndef EV_USE_NANOSLEEP
252 # if _POSIX_C_SOURCE >= 199309L
253 # define EV_USE_NANOSLEEP EV_FEATURE_OS
254 # else
255 # define EV_USE_NANOSLEEP 0
256 # endif
257 #endif
258
259 #ifndef EV_USE_SELECT
260 # define EV_USE_SELECT EV_FEATURE_BACKENDS
261 #endif
262
263 #ifndef EV_USE_POLL
264 # ifdef _WIN32
265 # define EV_USE_POLL 0
266 # else
267 # define EV_USE_POLL EV_FEATURE_BACKENDS
268 # endif
269 #endif
270
271 #ifndef EV_USE_EPOLL
272 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
273 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
274 # else
275 # define EV_USE_EPOLL 0
276 # endif
277 #endif
278
279 #ifndef EV_USE_KQUEUE
280 # define EV_USE_KQUEUE 0
281 #endif
282
283 #ifndef EV_USE_PORT
284 # define EV_USE_PORT 0
285 #endif
286
287 #ifndef EV_USE_INOTIFY
288 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
289 # define EV_USE_INOTIFY EV_FEATURE_OS
290 # else
291 # define EV_USE_INOTIFY 0
292 # endif
293 #endif
294
295 #ifndef EV_PID_HASHSIZE
296 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
297 #endif
298
299 #ifndef EV_INOTIFY_HASHSIZE
300 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
301 #endif
302
303 #ifndef EV_USE_EVENTFD
304 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
305 # define EV_USE_EVENTFD EV_FEATURE_OS
306 # else
307 # define EV_USE_EVENTFD 0
308 # endif
309 #endif
310
311 #ifndef EV_USE_SIGNALFD
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313 # define EV_USE_SIGNALFD EV_FEATURE_OS
314 # else
315 # define EV_USE_SIGNALFD 0
316 # endif
317 #endif
318
319 #if 0 /* debugging */
320 # define EV_VERIFY 3
321 # define EV_USE_4HEAP 1
322 # define EV_HEAP_CACHE_AT 1
323 #endif
324
325 #ifndef EV_VERIFY
326 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327 #endif
328
329 #ifndef EV_USE_4HEAP
330 # define EV_USE_4HEAP EV_FEATURE_DATA
331 #endif
332
333 #ifndef EV_HEAP_CACHE_AT
334 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335 #endif
336
337 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338 /* which makes programs even slower. might work on other unices, too. */
339 #if EV_USE_CLOCK_SYSCALL
340 # include <syscall.h>
341 # ifdef SYS_clock_gettime
342 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343 # undef EV_USE_MONOTONIC
344 # define EV_USE_MONOTONIC 1
345 # else
346 # undef EV_USE_CLOCK_SYSCALL
347 # define EV_USE_CLOCK_SYSCALL 0
348 # endif
349 #endif
350
351 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353 #ifdef _AIX
354 /* AIX has a completely broken poll.h header */
355 # undef EV_USE_POLL
356 # define EV_USE_POLL 0
357 #endif
358
359 #ifndef CLOCK_MONOTONIC
360 # undef EV_USE_MONOTONIC
361 # define EV_USE_MONOTONIC 0
362 #endif
363
364 #ifndef CLOCK_REALTIME
365 # undef EV_USE_REALTIME
366 # define EV_USE_REALTIME 0
367 #endif
368
369 #if !EV_STAT_ENABLE
370 # undef EV_USE_INOTIFY
371 # define EV_USE_INOTIFY 0
372 #endif
373
374 #if !EV_USE_NANOSLEEP
375 # ifndef _WIN32
376 # include <sys/select.h>
377 # endif
378 #endif
379
380 #if EV_USE_INOTIFY
381 # include <sys/utsname.h>
382 # include <sys/statfs.h>
383 # include <sys/inotify.h>
384 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385 # ifndef IN_DONT_FOLLOW
386 # undef EV_USE_INOTIFY
387 # define EV_USE_INOTIFY 0
388 # endif
389 #endif
390
391 #if EV_SELECT_IS_WINSOCKET
392 # include <winsock.h>
393 #endif
394
395 #if EV_USE_EVENTFD
396 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
397 # include <stdint.h>
398 # ifndef EFD_NONBLOCK
399 # define EFD_NONBLOCK O_NONBLOCK
400 # endif
401 # ifndef EFD_CLOEXEC
402 # ifdef O_CLOEXEC
403 # define EFD_CLOEXEC O_CLOEXEC
404 # else
405 # define EFD_CLOEXEC 02000000
406 # endif
407 # endif
408 # ifdef __cplusplus
409 extern "C" {
410 # endif
411 int (eventfd) (unsigned int initval, int flags);
412 # ifdef __cplusplus
413 }
414 # endif
415 #endif
416
417 #if EV_USE_SIGNALFD
418 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419 # include <stdint.h>
420 # ifndef SFD_NONBLOCK
421 # define SFD_NONBLOCK O_NONBLOCK
422 # endif
423 # ifndef SFD_CLOEXEC
424 # ifdef O_CLOEXEC
425 # define SFD_CLOEXEC O_CLOEXEC
426 # else
427 # define SFD_CLOEXEC 02000000
428 # endif
429 # endif
430 # ifdef __cplusplus
431 extern "C" {
432 # endif
433 int signalfd (int fd, const sigset_t *mask, int flags);
434
435 struct signalfd_siginfo
436 {
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439 };
440 # ifdef __cplusplus
441 }
442 # endif
443 #endif
444
445
446 /**/
447
448 #if EV_VERIFY >= 3
449 # define EV_FREQUENT_CHECK ev_verify (EV_A)
450 #else
451 # define EV_FREQUENT_CHECK do { } while (0)
452 #endif
453
454 /*
455 * This is used to avoid floating point rounding problems.
456 * It is added to ev_rt_now when scheduling periodics
457 * to ensure progress, time-wise, even when rounding
458 * errors are against us.
459 * This value is good at least till the year 4000.
460 * Better solutions welcome.
461 */
462 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
463
464 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
465 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
466
467 #if __GNUC__ >= 4
468 # define expect(expr,value) __builtin_expect ((expr),(value))
469 # define noinline __attribute__ ((noinline))
470 #else
471 # define expect(expr,value) (expr)
472 # define noinline
473 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
474 # define inline
475 # endif
476 #endif
477
478 #define expect_false(expr) expect ((expr) != 0, 0)
479 #define expect_true(expr) expect ((expr) != 0, 1)
480 #define inline_size static inline
481
482 #if EV_FEATURE_CODE
483 # define inline_speed static inline
484 #else
485 # define inline_speed static noinline
486 #endif
487
488 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490 #if EV_MINPRI == EV_MAXPRI
491 # define ABSPRI(w) (((W)w), 0)
492 #else
493 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494 #endif
495
496 #define EMPTY /* required for microsofts broken pseudo-c compiler */
497 #define EMPTY2(a,b) /* used to suppress some warnings */
498
499 typedef ev_watcher *W;
500 typedef ev_watcher_list *WL;
501 typedef ev_watcher_time *WT;
502
503 #define ev_active(w) ((W)(w))->active
504 #define ev_at(w) ((WT)(w))->at
505
506 #if EV_USE_REALTIME
507 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
508 /* giving it a reasonably high chance of working on typical architetcures */
509 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510 #endif
511
512 #if EV_USE_MONOTONIC
513 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514 #endif
515
516 #ifndef EV_FD_TO_WIN32_HANDLE
517 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518 #endif
519 #ifndef EV_WIN32_HANDLE_TO_FD
520 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521 #endif
522 #ifndef EV_WIN32_CLOSE_FD
523 # define EV_WIN32_CLOSE_FD(fd) close (fd)
524 #endif
525
526 #ifdef _WIN32
527 # include "ev_win32.c"
528 #endif
529
530 /*****************************************************************************/
531
532 #if EV_AVOID_STDIO
533 static void noinline
534 ev_printerr (const char *msg)
535 {
536 write (STDERR_FILENO, msg, strlen (msg));
537 }
538 #endif
539
540 static void (*syserr_cb)(const char *msg);
541
542 void
543 ev_set_syserr_cb (void (*cb)(const char *msg))
544 {
545 syserr_cb = cb;
546 }
547
548 static void noinline
549 ev_syserr (const char *msg)
550 {
551 if (!msg)
552 msg = "(libev) system error";
553
554 if (syserr_cb)
555 syserr_cb (msg);
556 else
557 {
558 #if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565 #else
566 perror (msg);
567 #endif
568 abort ();
569 }
570 }
571
572 static void *
573 ev_realloc_emul (void *ptr, long size)
574 {
575 #if __GLIBC__
576 return realloc (ptr, size);
577 #else
578 /* some systems, notably openbsd and darwin, fail to properly
579 * implement realloc (x, 0) (as required by both ansi c-89 and
580 * the single unix specification, so work around them here.
581 */
582
583 if (size)
584 return realloc (ptr, size);
585
586 free (ptr);
587 return 0;
588 #endif
589 }
590
591 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
592
593 void
594 ev_set_allocator (void *(*cb)(void *ptr, long size))
595 {
596 alloc = cb;
597 }
598
599 inline_speed void *
600 ev_realloc (void *ptr, long size)
601 {
602 ptr = alloc (ptr, size);
603
604 if (!ptr && size)
605 {
606 #if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608 #else
609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610 #endif
611 abort ();
612 }
613
614 return ptr;
615 }
616
617 #define ev_malloc(size) ev_realloc (0, (size))
618 #define ev_free(ptr) ev_realloc ((ptr), 0)
619
620 /*****************************************************************************/
621
622 /* set in reify when reification needed */
623 #define EV_ANFD_REIFY 1
624
625 /* file descriptor info structure */
626 typedef struct
627 {
628 WL head;
629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
632 unsigned char unused;
633 #if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635 #endif
636 #if EV_SELECT_IS_WINSOCKET
637 SOCKET handle;
638 #endif
639 } ANFD;
640
641 /* stores the pending event set for a given watcher */
642 typedef struct
643 {
644 W w;
645 int events; /* the pending event set for the given watcher */
646 } ANPENDING;
647
648 #if EV_USE_INOTIFY
649 /* hash table entry per inotify-id */
650 typedef struct
651 {
652 WL head;
653 } ANFS;
654 #endif
655
656 /* Heap Entry */
657 #if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667 #else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
674 #endif
675
676 #if EV_MULTIPLICITY
677
678 struct ev_loop
679 {
680 ev_tstamp ev_rt_now;
681 #define ev_rt_now ((loop)->ev_rt_now)
682 #define VAR(name,decl) decl;
683 #include "ev_vars.h"
684 #undef VAR
685 };
686 #include "ev_wrap.h"
687
688 static struct ev_loop default_loop_struct;
689 struct ev_loop *ev_default_loop_ptr;
690
691 #else
692
693 ev_tstamp ev_rt_now;
694 #define VAR(name,decl) static decl;
695 #include "ev_vars.h"
696 #undef VAR
697
698 static int ev_default_loop_ptr;
699
700 #endif
701
702 #if EV_FEATURE_API
703 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705 # define EV_INVOKE_PENDING invoke_cb (EV_A)
706 #else
707 # define EV_RELEASE_CB (void)0
708 # define EV_ACQUIRE_CB (void)0
709 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710 #endif
711
712 #define EVUNLOOP_RECURSE 0x80
713
714 /*****************************************************************************/
715
716 #ifndef EV_HAVE_EV_TIME
717 ev_tstamp
718 ev_time (void)
719 {
720 #if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
723 struct timespec ts;
724 clock_gettime (CLOCK_REALTIME, &ts);
725 return ts.tv_sec + ts.tv_nsec * 1e-9;
726 }
727 #endif
728
729 struct timeval tv;
730 gettimeofday (&tv, 0);
731 return tv.tv_sec + tv.tv_usec * 1e-6;
732 }
733 #endif
734
735 inline_size ev_tstamp
736 get_clock (void)
737 {
738 #if EV_USE_MONOTONIC
739 if (expect_true (have_monotonic))
740 {
741 struct timespec ts;
742 clock_gettime (CLOCK_MONOTONIC, &ts);
743 return ts.tv_sec + ts.tv_nsec * 1e-9;
744 }
745 #endif
746
747 return ev_time ();
748 }
749
750 #if EV_MULTIPLICITY
751 ev_tstamp
752 ev_now (EV_P)
753 {
754 return ev_rt_now;
755 }
756 #endif
757
758 void
759 ev_sleep (ev_tstamp delay)
760 {
761 if (delay > 0.)
762 {
763 #if EV_USE_NANOSLEEP
764 struct timespec ts;
765
766 ts.tv_sec = (time_t)delay;
767 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
768
769 nanosleep (&ts, 0);
770 #elif defined(_WIN32)
771 Sleep ((unsigned long)(delay * 1e3));
772 #else
773 struct timeval tv;
774
775 tv.tv_sec = (time_t)delay;
776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
781 select (0, 0, 0, 0, &tv);
782 #endif
783 }
784 }
785
786 /*****************************************************************************/
787
788 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
789
790 /* find a suitable new size for the given array, */
791 /* hopefully by rounding to a ncie-to-malloc size */
792 inline_size int
793 array_nextsize (int elem, int cur, int cnt)
794 {
795 int ncur = cur + 1;
796
797 do
798 ncur <<= 1;
799 while (cnt > ncur);
800
801 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
802 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
803 {
804 ncur *= elem;
805 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
806 ncur = ncur - sizeof (void *) * 4;
807 ncur /= elem;
808 }
809
810 return ncur;
811 }
812
813 static noinline void *
814 array_realloc (int elem, void *base, int *cur, int cnt)
815 {
816 *cur = array_nextsize (elem, *cur, cnt);
817 return ev_realloc (base, elem * *cur);
818 }
819
820 #define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
822
823 #define array_needsize(type,base,cur,cnt,init) \
824 if (expect_false ((cnt) > (cur))) \
825 { \
826 int ocur_ = (cur); \
827 (base) = (type *)array_realloc \
828 (sizeof (type), (base), &(cur), (cnt)); \
829 init ((base) + (ocur_), (cur) - ocur_); \
830 }
831
832 #if 0
833 #define array_slim(type,stem) \
834 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
835 { \
836 stem ## max = array_roundsize (stem ## cnt >> 1); \
837 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
839 }
840 #endif
841
842 #define array_free(stem, idx) \
843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
844
845 /*****************************************************************************/
846
847 /* dummy callback for pending events */
848 static void noinline
849 pendingcb (EV_P_ ev_prepare *w, int revents)
850 {
851 }
852
853 void noinline
854 ev_feed_event (EV_P_ void *w, int revents)
855 {
856 W w_ = (W)w;
857 int pri = ABSPRI (w_);
858
859 if (expect_false (w_->pending))
860 pendings [pri][w_->pending - 1].events |= revents;
861 else
862 {
863 w_->pending = ++pendingcnt [pri];
864 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
865 pendings [pri][w_->pending - 1].w = w_;
866 pendings [pri][w_->pending - 1].events = revents;
867 }
868 }
869
870 inline_speed void
871 feed_reverse (EV_P_ W w)
872 {
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875 }
876
877 inline_size void
878 feed_reverse_done (EV_P_ int revents)
879 {
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883 }
884
885 inline_speed void
886 queue_events (EV_P_ W *events, int eventcnt, int type)
887 {
888 int i;
889
890 for (i = 0; i < eventcnt; ++i)
891 ev_feed_event (EV_A_ events [i], type);
892 }
893
894 /*****************************************************************************/
895
896 inline_speed void
897 fd_event_nocheck (EV_P_ int fd, int revents)
898 {
899 ANFD *anfd = anfds + fd;
900 ev_io *w;
901
902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
903 {
904 int ev = w->events & revents;
905
906 if (ev)
907 ev_feed_event (EV_A_ (W)w, ev);
908 }
909 }
910
911 /* do not submit kernel events for fds that have reify set */
912 /* because that means they changed while we were polling for new events */
913 inline_speed void
914 fd_event (EV_P_ int fd, int revents)
915 {
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920 }
921
922 void
923 ev_feed_fd_event (EV_P_ int fd, int revents)
924 {
925 if (fd >= 0 && fd < anfdmax)
926 fd_event_nocheck (EV_A_ fd, revents);
927 }
928
929 /* make sure the external fd watch events are in-sync */
930 /* with the kernel/libev internal state */
931 inline_size void
932 fd_reify (EV_P)
933 {
934 int i;
935
936 for (i = 0; i < fdchangecnt; ++i)
937 {
938 int fd = fdchanges [i];
939 ANFD *anfd = anfds + fd;
940 ev_io *w;
941
942 unsigned char events = 0;
943
944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
945 events |= (unsigned char)w->events;
946
947 #if EV_SELECT_IS_WINSOCKET
948 if (events)
949 {
950 unsigned long arg;
951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
953 }
954 #endif
955
956 {
957 unsigned char o_events = anfd->events;
958 unsigned char o_reify = anfd->reify;
959
960 anfd->reify = 0;
961 anfd->events = events;
962
963 if (o_events != events || o_reify & EV__IOFDSET)
964 backend_modify (EV_A_ fd, o_events, events);
965 }
966 }
967
968 fdchangecnt = 0;
969 }
970
971 /* something about the given fd changed */
972 inline_size void
973 fd_change (EV_P_ int fd, int flags)
974 {
975 unsigned char reify = anfds [fd].reify;
976 anfds [fd].reify |= flags;
977
978 if (expect_true (!reify))
979 {
980 ++fdchangecnt;
981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
982 fdchanges [fdchangecnt - 1] = fd;
983 }
984 }
985
986 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987 inline_speed void
988 fd_kill (EV_P_ int fd)
989 {
990 ev_io *w;
991
992 while ((w = (ev_io *)anfds [fd].head))
993 {
994 ev_io_stop (EV_A_ w);
995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
996 }
997 }
998
999 /* check whether the given fd is actually valid, for error recovery */
1000 inline_size int
1001 fd_valid (int fd)
1002 {
1003 #ifdef _WIN32
1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1005 #else
1006 return fcntl (fd, F_GETFD) != -1;
1007 #endif
1008 }
1009
1010 /* called on EBADF to verify fds */
1011 static void noinline
1012 fd_ebadf (EV_P)
1013 {
1014 int fd;
1015
1016 for (fd = 0; fd < anfdmax; ++fd)
1017 if (anfds [fd].events)
1018 if (!fd_valid (fd) && errno == EBADF)
1019 fd_kill (EV_A_ fd);
1020 }
1021
1022 /* called on ENOMEM in select/poll to kill some fds and retry */
1023 static void noinline
1024 fd_enomem (EV_P)
1025 {
1026 int fd;
1027
1028 for (fd = anfdmax; fd--; )
1029 if (anfds [fd].events)
1030 {
1031 fd_kill (EV_A_ fd);
1032 break;
1033 }
1034 }
1035
1036 /* usually called after fork if backend needs to re-arm all fds from scratch */
1037 static void noinline
1038 fd_rearm_all (EV_P)
1039 {
1040 int fd;
1041
1042 for (fd = 0; fd < anfdmax; ++fd)
1043 if (anfds [fd].events)
1044 {
1045 anfds [fd].events = 0;
1046 anfds [fd].emask = 0;
1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1048 }
1049 }
1050
1051 /* used to prepare libev internal fd's */
1052 /* this is not fork-safe */
1053 inline_speed void
1054 fd_intern (int fd)
1055 {
1056 #ifdef _WIN32
1057 unsigned long arg = 1;
1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1059 #else
1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
1061 fcntl (fd, F_SETFL, O_NONBLOCK);
1062 #endif
1063 }
1064
1065 /*****************************************************************************/
1066
1067 /*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
1072
1073 /*
1074 * at the moment we allow libev the luxury of two heaps,
1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1076 * which is more cache-efficient.
1077 * the difference is about 5% with 50000+ watchers.
1078 */
1079 #if EV_USE_4HEAP
1080
1081 #define DHEAP 4
1082 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084 #define UPHEAP_DONE(p,k) ((p) == (k))
1085
1086 /* away from the root */
1087 inline_speed void
1088 downheap (ANHE *heap, int N, int k)
1089 {
1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
1092
1093 for (;;)
1094 {
1095 ev_tstamp minat;
1096 ANHE *minpos;
1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1098
1099 /* find minimum child */
1100 if (expect_true (pos + DHEAP - 1 < E))
1101 {
1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1113 }
1114 else
1115 break;
1116
1117 if (ANHE_at (he) <= minat)
1118 break;
1119
1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
1122
1123 k = minpos - heap;
1124 }
1125
1126 heap [k] = he;
1127 ev_active (ANHE_w (he)) = k;
1128 }
1129
1130 #else /* 4HEAP */
1131
1132 #define HEAP0 1
1133 #define HPARENT(k) ((k) >> 1)
1134 #define UPHEAP_DONE(p,k) (!(p))
1135
1136 /* away from the root */
1137 inline_speed void
1138 downheap (ANHE *heap, int N, int k)
1139 {
1140 ANHE he = heap [k];
1141
1142 for (;;)
1143 {
1144 int c = k << 1;
1145
1146 if (c >= N + HEAP0)
1147 break;
1148
1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1150 ? 1 : 0;
1151
1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
1153 break;
1154
1155 heap [k] = heap [c];
1156 ev_active (ANHE_w (heap [k])) = k;
1157
1158 k = c;
1159 }
1160
1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163 }
1164 #endif
1165
1166 /* towards the root */
1167 inline_speed void
1168 upheap (ANHE *heap, int k)
1169 {
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
1180 ev_active (ANHE_w (heap [k])) = k;
1181 k = p;
1182 }
1183
1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186 }
1187
1188 /* move an element suitably so it is in a correct place */
1189 inline_size void
1190 adjustheap (ANHE *heap, int N, int k)
1191 {
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1193 upheap (heap, k);
1194 else
1195 downheap (heap, N, k);
1196 }
1197
1198 /* rebuild the heap: this function is used only once and executed rarely */
1199 inline_size void
1200 reheap (ANHE *heap, int N)
1201 {
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
1208 }
1209
1210 /*****************************************************************************/
1211
1212 /* associate signal watchers to a signal signal */
1213 typedef struct
1214 {
1215 EV_ATOMIC_T pending;
1216 #if EV_MULTIPLICITY
1217 EV_P;
1218 #endif
1219 WL head;
1220 } ANSIG;
1221
1222 static ANSIG signals [EV_NSIG - 1];
1223
1224 /*****************************************************************************/
1225
1226 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1227
1228 static void noinline
1229 evpipe_init (EV_P)
1230 {
1231 if (!ev_is_active (&pipe_w))
1232 {
1233 # if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
1239 {
1240 evpipe [0] = -1;
1241 fd_intern (evfd); /* doing it twice doesn't hurt */
1242 ev_io_set (&pipe_w, evfd, EV_READ);
1243 }
1244 else
1245 # endif
1246 {
1247 while (pipe (evpipe))
1248 ev_syserr ("(libev) error creating signal/async pipe");
1249
1250 fd_intern (evpipe [0]);
1251 fd_intern (evpipe [1]);
1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1253 }
1254
1255 ev_io_start (EV_A_ &pipe_w);
1256 ev_unref (EV_A); /* watcher should not keep loop alive */
1257 }
1258 }
1259
1260 inline_size void
1261 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1262 {
1263 if (!*flag)
1264 {
1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
1267
1268 *flag = 1;
1269
1270 #if EV_USE_EVENTFD
1271 if (evfd >= 0)
1272 {
1273 uint64_t counter = 1;
1274 write (evfd, &counter, sizeof (uint64_t));
1275 }
1276 else
1277 #endif
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282 }
1283
1284 /* called whenever the libev signal pipe */
1285 /* got some events (signal, async) */
1286 static void
1287 pipecb (EV_P_ ev_io *iow, int revents)
1288 {
1289 int i;
1290
1291 #if EV_USE_EVENTFD
1292 if (evfd >= 0)
1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298 #endif
1299 {
1300 char dummy;
1301 read (evpipe [0], &dummy, 1);
1302 }
1303
1304 if (sig_pending)
1305 {
1306 sig_pending = 0;
1307
1308 for (i = EV_NSIG - 1; i--; )
1309 if (expect_false (signals [i].pending))
1310 ev_feed_signal_event (EV_A_ i + 1);
1311 }
1312
1313 #if EV_ASYNC_ENABLE
1314 if (async_pending)
1315 {
1316 async_pending = 0;
1317
1318 for (i = asynccnt; i--; )
1319 if (asyncs [i]->sent)
1320 {
1321 asyncs [i]->sent = 0;
1322 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1323 }
1324 }
1325 #endif
1326 }
1327
1328 /*****************************************************************************/
1329
1330 static void
1331 ev_sighandler (int signum)
1332 {
1333 #if EV_MULTIPLICITY
1334 EV_P = signals [signum - 1].loop;
1335 #endif
1336
1337 #ifdef _WIN32
1338 signal (signum, ev_sighandler);
1339 #endif
1340
1341 signals [signum - 1].pending = 1;
1342 evpipe_write (EV_A_ &sig_pending);
1343 }
1344
1345 void noinline
1346 ev_feed_signal_event (EV_P_ int signum)
1347 {
1348 WL w;
1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
1355 #if EV_MULTIPLICITY
1356 /* it is permissible to try to feed a signal to the wrong loop */
1357 /* or, likely more useful, feeding a signal nobody is waiting for */
1358
1359 if (expect_false (signals [signum].loop != EV_A))
1360 return;
1361 #endif
1362
1363 signals [signum].pending = 0;
1364
1365 for (w = signals [signum].head; w; w = w->next)
1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1367 }
1368
1369 #if EV_USE_SIGNALFD
1370 static void
1371 sigfdcb (EV_P_ ev_io *iow, int revents)
1372 {
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386 }
1387 #endif
1388
1389 #endif
1390
1391 /*****************************************************************************/
1392
1393 #if EV_CHILD_ENABLE
1394 static WL childs [EV_PID_HASHSIZE];
1395
1396 static ev_signal childev;
1397
1398 #ifndef WIFCONTINUED
1399 # define WIFCONTINUED(status) 0
1400 #endif
1401
1402 /* handle a single child status event */
1403 inline_speed void
1404 child_reap (EV_P_ int chain, int pid, int status)
1405 {
1406 ev_child *w;
1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1408
1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1410 {
1411 if ((w->pid == pid || !w->pid)
1412 && (!traced || (w->flags & 1)))
1413 {
1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1415 w->rpid = pid;
1416 w->rstatus = status;
1417 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1418 }
1419 }
1420 }
1421
1422 #ifndef WCONTINUED
1423 # define WCONTINUED 0
1424 #endif
1425
1426 /* called on sigchld etc., calls waitpid */
1427 static void
1428 childcb (EV_P_ ev_signal *sw, int revents)
1429 {
1430 int pid, status;
1431
1432 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1433 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1434 if (!WCONTINUED
1435 || errno != EINVAL
1436 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1437 return;
1438
1439 /* make sure we are called again until all children have been reaped */
1440 /* we need to do it this way so that the callback gets called before we continue */
1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1442
1443 child_reap (EV_A_ pid, pid, status);
1444 if ((EV_PID_HASHSIZE) > 1)
1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1446 }
1447
1448 #endif
1449
1450 /*****************************************************************************/
1451
1452 #if EV_USE_PORT
1453 # include "ev_port.c"
1454 #endif
1455 #if EV_USE_KQUEUE
1456 # include "ev_kqueue.c"
1457 #endif
1458 #if EV_USE_EPOLL
1459 # include "ev_epoll.c"
1460 #endif
1461 #if EV_USE_POLL
1462 # include "ev_poll.c"
1463 #endif
1464 #if EV_USE_SELECT
1465 # include "ev_select.c"
1466 #endif
1467
1468 int
1469 ev_version_major (void)
1470 {
1471 return EV_VERSION_MAJOR;
1472 }
1473
1474 int
1475 ev_version_minor (void)
1476 {
1477 return EV_VERSION_MINOR;
1478 }
1479
1480 /* return true if we are running with elevated privileges and should ignore env variables */
1481 int inline_size
1482 enable_secure (void)
1483 {
1484 #ifdef _WIN32
1485 return 0;
1486 #else
1487 return getuid () != geteuid ()
1488 || getgid () != getegid ();
1489 #endif
1490 }
1491
1492 unsigned int
1493 ev_supported_backends (void)
1494 {
1495 unsigned int flags = 0;
1496
1497 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1498 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1499 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1500 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1501 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1502
1503 return flags;
1504 }
1505
1506 unsigned int
1507 ev_recommended_backends (void)
1508 {
1509 unsigned int flags = ev_supported_backends ();
1510
1511 #ifndef __NetBSD__
1512 /* kqueue is borked on everything but netbsd apparently */
1513 /* it usually doesn't work correctly on anything but sockets and pipes */
1514 flags &= ~EVBACKEND_KQUEUE;
1515 #endif
1516 #ifdef __APPLE__
1517 /* only select works correctly on that "unix-certified" platform */
1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520 #endif
1521 #ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1523 #endif
1524
1525 return flags;
1526 }
1527
1528 unsigned int
1529 ev_embeddable_backends (void)
1530 {
1531 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1532
1533 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1534 /* please fix it and tell me how to detect the fix */
1535 flags &= ~EVBACKEND_EPOLL;
1536
1537 return flags;
1538 }
1539
1540 unsigned int
1541 ev_backend (EV_P)
1542 {
1543 return backend;
1544 }
1545
1546 #if EV_FEATURE_API
1547 unsigned int
1548 ev_iteration (EV_P)
1549 {
1550 return loop_count;
1551 }
1552
1553 unsigned int
1554 ev_depth (EV_P)
1555 {
1556 return loop_depth;
1557 }
1558
1559 void
1560 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1561 {
1562 io_blocktime = interval;
1563 }
1564
1565 void
1566 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1567 {
1568 timeout_blocktime = interval;
1569 }
1570
1571 void
1572 ev_set_userdata (EV_P_ void *data)
1573 {
1574 userdata = data;
1575 }
1576
1577 void *
1578 ev_userdata (EV_P)
1579 {
1580 return userdata;
1581 }
1582
1583 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584 {
1585 invoke_cb = invoke_pending_cb;
1586 }
1587
1588 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589 {
1590 release_cb = release;
1591 acquire_cb = acquire;
1592 }
1593 #endif
1594
1595 /* initialise a loop structure, must be zero-initialised */
1596 static void noinline
1597 loop_init (EV_P_ unsigned int flags)
1598 {
1599 if (!backend)
1600 {
1601 #if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609 #endif
1610
1611 #if EV_USE_MONOTONIC
1612 if (!have_monotonic)
1613 {
1614 struct timespec ts;
1615
1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1617 have_monotonic = 1;
1618 }
1619 #endif
1620
1621 /* pid check not overridable via env */
1622 #ifndef _WIN32
1623 if (flags & EVFLAG_FORKCHECK)
1624 curpid = getpid ();
1625 #endif
1626
1627 if (!(flags & EVFLAG_NOENV)
1628 && !enable_secure ()
1629 && getenv ("LIBEV_FLAGS"))
1630 flags = atoi (getenv ("LIBEV_FLAGS"));
1631
1632 ev_rt_now = ev_time ();
1633 mn_now = get_clock ();
1634 now_floor = mn_now;
1635 rtmn_diff = ev_rt_now - mn_now;
1636 #if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638 #endif
1639
1640 io_blocktime = 0.;
1641 timeout_blocktime = 0.;
1642 backend = 0;
1643 backend_fd = -1;
1644 sig_pending = 0;
1645 #if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647 #endif
1648 #if EV_USE_INOTIFY
1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1650 #endif
1651 #if EV_USE_SIGNALFD
1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1653 #endif
1654
1655 if (!(flags & 0x0000ffffU))
1656 flags |= ev_recommended_backends ();
1657
1658 #if EV_USE_PORT
1659 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1660 #endif
1661 #if EV_USE_KQUEUE
1662 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1663 #endif
1664 #if EV_USE_EPOLL
1665 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1666 #endif
1667 #if EV_USE_POLL
1668 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1669 #endif
1670 #if EV_USE_SELECT
1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1672 #endif
1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1677 ev_init (&pipe_w, pipecb);
1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679 #endif
1680 }
1681 }
1682
1683 /* free up a loop structure */
1684 static void noinline
1685 loop_destroy (EV_P)
1686 {
1687 int i;
1688
1689 if (ev_is_active (&pipe_w))
1690 {
1691 /*ev_ref (EV_A);*/
1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1693
1694 #if EV_USE_EVENTFD
1695 if (evfd >= 0)
1696 close (evfd);
1697 #endif
1698
1699 if (evpipe [0] >= 0)
1700 {
1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1703 }
1704 }
1705
1706 #if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709 #endif
1710
1711 #if EV_USE_INOTIFY
1712 if (fs_fd >= 0)
1713 close (fs_fd);
1714 #endif
1715
1716 if (backend_fd >= 0)
1717 close (backend_fd);
1718
1719 #if EV_USE_PORT
1720 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1721 #endif
1722 #if EV_USE_KQUEUE
1723 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1724 #endif
1725 #if EV_USE_EPOLL
1726 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1727 #endif
1728 #if EV_USE_POLL
1729 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1730 #endif
1731 #if EV_USE_SELECT
1732 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1733 #endif
1734
1735 for (i = NUMPRI; i--; )
1736 {
1737 array_free (pending, [i]);
1738 #if EV_IDLE_ENABLE
1739 array_free (idle, [i]);
1740 #endif
1741 }
1742
1743 ev_free (anfds); anfds = 0; anfdmax = 0;
1744
1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
1747 array_free (fdchange, EMPTY);
1748 array_free (timer, EMPTY);
1749 #if EV_PERIODIC_ENABLE
1750 array_free (periodic, EMPTY);
1751 #endif
1752 #if EV_FORK_ENABLE
1753 array_free (fork, EMPTY);
1754 #endif
1755 array_free (prepare, EMPTY);
1756 array_free (check, EMPTY);
1757 #if EV_ASYNC_ENABLE
1758 array_free (async, EMPTY);
1759 #endif
1760
1761 backend = 0;
1762 }
1763
1764 #if EV_USE_INOTIFY
1765 inline_size void infy_fork (EV_P);
1766 #endif
1767
1768 inline_size void
1769 loop_fork (EV_P)
1770 {
1771 #if EV_USE_PORT
1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1773 #endif
1774 #if EV_USE_KQUEUE
1775 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1776 #endif
1777 #if EV_USE_EPOLL
1778 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1779 #endif
1780 #if EV_USE_INOTIFY
1781 infy_fork (EV_A);
1782 #endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /* this "locks" the handlers against writing to the pipe */
1787 /* while we modify the fd vars */
1788 sig_pending = 1;
1789 #if EV_ASYNC_ENABLE
1790 async_pending = 1;
1791 #endif
1792
1793 ev_ref (EV_A);
1794 ev_io_stop (EV_A_ &pipe_w);
1795
1796 #if EV_USE_EVENTFD
1797 if (evfd >= 0)
1798 close (evfd);
1799 #endif
1800
1801 if (evpipe [0] >= 0)
1802 {
1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1805 }
1806
1807 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1808 evpipe_init (EV_A);
1809 /* now iterate over everything, in case we missed something */
1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811 #endif
1812 }
1813
1814 postfork = 0;
1815 }
1816
1817 #if EV_MULTIPLICITY
1818
1819 struct ev_loop *
1820 ev_loop_new (unsigned int flags)
1821 {
1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1823
1824 memset (EV_A, 0, sizeof (struct ev_loop));
1825 loop_init (EV_A_ flags);
1826
1827 if (ev_backend (EV_A))
1828 return EV_A;
1829
1830 return 0;
1831 }
1832
1833 void
1834 ev_loop_destroy (EV_P)
1835 {
1836 loop_destroy (EV_A);
1837 ev_free (loop);
1838 }
1839
1840 void
1841 ev_loop_fork (EV_P)
1842 {
1843 postfork = 1; /* must be in line with ev_default_fork */
1844 }
1845 #endif /* multiplicity */
1846
1847 #if EV_VERIFY
1848 static void noinline
1849 verify_watcher (EV_P_ W w)
1850 {
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855 }
1856
1857 static void noinline
1858 verify_heap (EV_P_ ANHE *heap, int N)
1859 {
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870 }
1871
1872 static void noinline
1873 array_verify (EV_P_ W *ws, int cnt)
1874 {
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880 }
1881 #endif
1882
1883 #if EV_FEATURE_API
1884 void
1885 ev_verify (EV_P)
1886 {
1887 #if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
1900 {
1901 verify_watcher (EV_A_ (W)w);
1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1904 }
1905
1906 assert (timermax >= timercnt);
1907 verify_heap (EV_A_ timers, timercnt);
1908
1909 #if EV_PERIODIC_ENABLE
1910 assert (periodicmax >= periodiccnt);
1911 verify_heap (EV_A_ periodics, periodiccnt);
1912 #endif
1913
1914 for (i = NUMPRI; i--; )
1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917 #if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921 #endif
1922 }
1923
1924 #if EV_FORK_ENABLE
1925 assert (forkmax >= forkcnt);
1926 array_verify (EV_A_ (W *)forks, forkcnt);
1927 #endif
1928
1929 #if EV_ASYNC_ENABLE
1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932 #endif
1933
1934 #if EV_PREPARE_ENABLE
1935 assert (preparemax >= preparecnt);
1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937 #endif
1938
1939 #if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942 #endif
1943
1944 # if 0
1945 #if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948 #endif
1949 # endif
1950 #endif
1951 }
1952 #endif
1953
1954 #if EV_MULTIPLICITY
1955 struct ev_loop *
1956 ev_default_loop_init (unsigned int flags)
1957 #else
1958 int
1959 ev_default_loop (unsigned int flags)
1960 #endif
1961 {
1962 if (!ev_default_loop_ptr)
1963 {
1964 #if EV_MULTIPLICITY
1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
1966 #else
1967 ev_default_loop_ptr = 1;
1968 #endif
1969
1970 loop_init (EV_A_ flags);
1971
1972 if (ev_backend (EV_A))
1973 {
1974 #if EV_CHILD_ENABLE
1975 ev_signal_init (&childev, childcb, SIGCHLD);
1976 ev_set_priority (&childev, EV_MAXPRI);
1977 ev_signal_start (EV_A_ &childev);
1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
1979 #endif
1980 }
1981 else
1982 ev_default_loop_ptr = 0;
1983 }
1984
1985 return ev_default_loop_ptr;
1986 }
1987
1988 void
1989 ev_default_destroy (void)
1990 {
1991 #if EV_MULTIPLICITY
1992 EV_P = ev_default_loop_ptr;
1993 #endif
1994
1995 ev_default_loop_ptr = 0;
1996
1997 #if EV_CHILD_ENABLE
1998 ev_ref (EV_A); /* child watcher */
1999 ev_signal_stop (EV_A_ &childev);
2000 #endif
2001
2002 loop_destroy (EV_A);
2003 }
2004
2005 void
2006 ev_default_fork (void)
2007 {
2008 #if EV_MULTIPLICITY
2009 EV_P = ev_default_loop_ptr;
2010 #endif
2011
2012 postfork = 1; /* must be in line with ev_loop_fork */
2013 }
2014
2015 /*****************************************************************************/
2016
2017 void
2018 ev_invoke (EV_P_ void *w, int revents)
2019 {
2020 EV_CB_INVOKE ((W)w, revents);
2021 }
2022
2023 unsigned int
2024 ev_pending_count (EV_P)
2025 {
2026 int pri;
2027 unsigned int count = 0;
2028
2029 for (pri = NUMPRI; pri--; )
2030 count += pendingcnt [pri];
2031
2032 return count;
2033 }
2034
2035 void noinline
2036 ev_invoke_pending (EV_P)
2037 {
2038 int pri;
2039
2040 for (pri = NUMPRI; pri--; )
2041 while (pendingcnt [pri])
2042 {
2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2044
2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2046 /* ^ this is no longer true, as pending_w could be here */
2047
2048 p->w->pending = 0;
2049 EV_CB_INVOKE (p->w, p->events);
2050 EV_FREQUENT_CHECK;
2051 }
2052 }
2053
2054 #if EV_IDLE_ENABLE
2055 /* make idle watchers pending. this handles the "call-idle */
2056 /* only when higher priorities are idle" logic */
2057 inline_size void
2058 idle_reify (EV_P)
2059 {
2060 if (expect_false (idleall))
2061 {
2062 int pri;
2063
2064 for (pri = NUMPRI; pri--; )
2065 {
2066 if (pendingcnt [pri])
2067 break;
2068
2069 if (idlecnt [pri])
2070 {
2071 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2072 break;
2073 }
2074 }
2075 }
2076 }
2077 #endif
2078
2079 /* make timers pending */
2080 inline_size void
2081 timers_reify (EV_P)
2082 {
2083 EV_FREQUENT_CHECK;
2084
2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2086 {
2087 do
2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2101
2102 ANHE_at_cache (timers [HEAP0]);
2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
2110 }
2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2112
2113 feed_reverse_done (EV_A_ EV_TIMER);
2114 }
2115 }
2116
2117 #if EV_PERIODIC_ENABLE
2118 /* make periodics pending */
2119 inline_size void
2120 periodics_reify (EV_P)
2121 {
2122 EV_FREQUENT_CHECK;
2123
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2125 {
2126 int feed_count = 0;
2127
2128 do
2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2133
2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
2168 }
2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2170
2171 feed_reverse_done (EV_A_ EV_PERIODIC);
2172 }
2173 }
2174
2175 /* simply recalculate all periodics */
2176 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2177 static void noinline
2178 periodics_reschedule (EV_P)
2179 {
2180 int i;
2181
2182 /* adjust periodics after time jump */
2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2184 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2186
2187 if (w->reschedule_cb)
2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2189 else if (w->interval)
2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2191
2192 ANHE_at_cache (periodics [i]);
2193 }
2194
2195 reheap (periodics, periodiccnt);
2196 }
2197 #endif
2198
2199 /* adjust all timers by a given offset */
2200 static void noinline
2201 timers_reschedule (EV_P_ ev_tstamp adjust)
2202 {
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
2206 {
2207 ANHE *he = timers + i + HEAP0;
2208 ANHE_w (*he)->at += adjust;
2209 ANHE_at_cache (*he);
2210 }
2211 }
2212
2213 /* fetch new monotonic and realtime times from the kernel */
2214 /* also detect if there was a timejump, and act accordingly */
2215 inline_speed void
2216 time_update (EV_P_ ev_tstamp max_block)
2217 {
2218 #if EV_USE_MONOTONIC
2219 if (expect_true (have_monotonic))
2220 {
2221 int i;
2222 ev_tstamp odiff = rtmn_diff;
2223
2224 mn_now = get_clock ();
2225
2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2227 /* interpolate in the meantime */
2228 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2229 {
2230 ev_rt_now = rtmn_diff + mn_now;
2231 return;
2232 }
2233
2234 now_floor = mn_now;
2235 ev_rt_now = ev_time ();
2236
2237 /* loop a few times, before making important decisions.
2238 * on the choice of "4": one iteration isn't enough,
2239 * in case we get preempted during the calls to
2240 * ev_time and get_clock. a second call is almost guaranteed
2241 * to succeed in that case, though. and looping a few more times
2242 * doesn't hurt either as we only do this on time-jumps or
2243 * in the unlikely event of having been preempted here.
2244 */
2245 for (i = 4; --i; )
2246 {
2247 rtmn_diff = ev_rt_now - mn_now;
2248
2249 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2250 return; /* all is well */
2251
2252 ev_rt_now = ev_time ();
2253 mn_now = get_clock ();
2254 now_floor = mn_now;
2255 }
2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2259 # if EV_PERIODIC_ENABLE
2260 periodics_reschedule (EV_A);
2261 # endif
2262 }
2263 else
2264 #endif
2265 {
2266 ev_rt_now = ev_time ();
2267
2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2272 #if EV_PERIODIC_ENABLE
2273 periodics_reschedule (EV_A);
2274 #endif
2275 }
2276
2277 mn_now = ev_rt_now;
2278 }
2279 }
2280
2281 void
2282 ev_loop (EV_P_ int flags)
2283 {
2284 #if EV_FEATURE_API
2285 ++loop_depth;
2286 #endif
2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
2290 loop_done = EVUNLOOP_CANCEL;
2291
2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2293
2294 do
2295 {
2296 #if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298 #endif
2299
2300 #ifndef _WIN32
2301 if (expect_false (curpid)) /* penalise the forking check even more */
2302 if (expect_false (getpid () != curpid))
2303 {
2304 curpid = getpid ();
2305 postfork = 1;
2306 }
2307 #endif
2308
2309 #if EV_FORK_ENABLE
2310 /* we might have forked, so queue fork handlers */
2311 if (expect_false (postfork))
2312 if (forkcnt)
2313 {
2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2315 EV_INVOKE_PENDING;
2316 }
2317 #endif
2318
2319 #if EV_PREPARE_ENABLE
2320 /* queue prepare watchers (and execute them) */
2321 if (expect_false (preparecnt))
2322 {
2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2324 EV_INVOKE_PENDING;
2325 }
2326 #endif
2327
2328 if (expect_false (loop_done))
2329 break;
2330
2331 /* we might have forked, so reify kernel state if necessary */
2332 if (expect_false (postfork))
2333 loop_fork (EV_A);
2334
2335 /* update fd-related kernel structures */
2336 fd_reify (EV_A);
2337
2338 /* calculate blocking time */
2339 {
2340 ev_tstamp waittime = 0.;
2341 ev_tstamp sleeptime = 0.;
2342
2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2344 {
2345 /* remember old timestamp for io_blocktime calculation */
2346 ev_tstamp prev_mn_now = mn_now;
2347
2348 /* update time to cancel out callback processing overhead */
2349 time_update (EV_A_ 1e100);
2350
2351 waittime = MAX_BLOCKTIME;
2352
2353 if (timercnt)
2354 {
2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2356 if (waittime > to) waittime = to;
2357 }
2358
2359 #if EV_PERIODIC_ENABLE
2360 if (periodiccnt)
2361 {
2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2363 if (waittime > to) waittime = to;
2364 }
2365 #endif
2366
2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
2368 if (expect_false (waittime < timeout_blocktime))
2369 waittime = timeout_blocktime;
2370
2371 /* extra check because io_blocktime is commonly 0 */
2372 if (expect_false (io_blocktime))
2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
2381 ev_sleep (sleeptime);
2382 waittime -= sleeptime;
2383 }
2384 }
2385 }
2386
2387 #if EV_FEATURE_API
2388 ++loop_count;
2389 #endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2393
2394 /* update ev_rt_now, do magic */
2395 time_update (EV_A_ waittime + sleeptime);
2396 }
2397
2398 /* queue pending timers and reschedule them */
2399 timers_reify (EV_A); /* relative timers called last */
2400 #if EV_PERIODIC_ENABLE
2401 periodics_reify (EV_A); /* absolute timers called first */
2402 #endif
2403
2404 #if EV_IDLE_ENABLE
2405 /* queue idle watchers unless other events are pending */
2406 idle_reify (EV_A);
2407 #endif
2408
2409 #if EV_CHECK_ENABLE
2410 /* queue check watchers, to be executed first */
2411 if (expect_false (checkcnt))
2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413 #endif
2414
2415 EV_INVOKE_PENDING;
2416 }
2417 while (expect_true (
2418 activecnt
2419 && !loop_done
2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2421 ));
2422
2423 if (loop_done == EVUNLOOP_ONE)
2424 loop_done = EVUNLOOP_CANCEL;
2425
2426 #if EV_FEATURE_API
2427 --loop_depth;
2428 #endif
2429 }
2430
2431 void
2432 ev_unloop (EV_P_ int how)
2433 {
2434 loop_done = how;
2435 }
2436
2437 void
2438 ev_ref (EV_P)
2439 {
2440 ++activecnt;
2441 }
2442
2443 void
2444 ev_unref (EV_P)
2445 {
2446 --activecnt;
2447 }
2448
2449 void
2450 ev_now_update (EV_P)
2451 {
2452 time_update (EV_A_ 1e100);
2453 }
2454
2455 void
2456 ev_suspend (EV_P)
2457 {
2458 ev_now_update (EV_A);
2459 }
2460
2461 void
2462 ev_resume (EV_P)
2463 {
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468 #if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471 #endif
2472 }
2473
2474 /*****************************************************************************/
2475 /* singly-linked list management, used when the expected list length is short */
2476
2477 inline_size void
2478 wlist_add (WL *head, WL elem)
2479 {
2480 elem->next = *head;
2481 *head = elem;
2482 }
2483
2484 inline_size void
2485 wlist_del (WL *head, WL elem)
2486 {
2487 while (*head)
2488 {
2489 if (expect_true (*head == elem))
2490 {
2491 *head = elem->next;
2492 break;
2493 }
2494
2495 head = &(*head)->next;
2496 }
2497 }
2498
2499 /* internal, faster, version of ev_clear_pending */
2500 inline_speed void
2501 clear_pending (EV_P_ W w)
2502 {
2503 if (w->pending)
2504 {
2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2506 w->pending = 0;
2507 }
2508 }
2509
2510 int
2511 ev_clear_pending (EV_P_ void *w)
2512 {
2513 W w_ = (W)w;
2514 int pending = w_->pending;
2515
2516 if (expect_true (pending))
2517 {
2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
2520 w_->pending = 0;
2521 return p->events;
2522 }
2523 else
2524 return 0;
2525 }
2526
2527 inline_size void
2528 pri_adjust (EV_P_ W w)
2529 {
2530 int pri = ev_priority (w);
2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2533 ev_set_priority (w, pri);
2534 }
2535
2536 inline_speed void
2537 ev_start (EV_P_ W w, int active)
2538 {
2539 pri_adjust (EV_A_ w);
2540 w->active = active;
2541 ev_ref (EV_A);
2542 }
2543
2544 inline_size void
2545 ev_stop (EV_P_ W w)
2546 {
2547 ev_unref (EV_A);
2548 w->active = 0;
2549 }
2550
2551 /*****************************************************************************/
2552
2553 void noinline
2554 ev_io_start (EV_P_ ev_io *w)
2555 {
2556 int fd = w->fd;
2557
2558 if (expect_false (ev_is_active (w)))
2559 return;
2560
2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
2565
2566 ev_start (EV_A_ (W)w, 1);
2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2568 wlist_add (&anfds[fd].head, (WL)w);
2569
2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2571 w->events &= ~EV__IOFDSET;
2572
2573 EV_FREQUENT_CHECK;
2574 }
2575
2576 void noinline
2577 ev_io_stop (EV_P_ ev_io *w)
2578 {
2579 clear_pending (EV_A_ (W)w);
2580 if (expect_false (!ev_is_active (w)))
2581 return;
2582
2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2584
2585 EV_FREQUENT_CHECK;
2586
2587 wlist_del (&anfds[w->fd].head, (WL)w);
2588 ev_stop (EV_A_ (W)w);
2589
2590 fd_change (EV_A_ w->fd, 1);
2591
2592 EV_FREQUENT_CHECK;
2593 }
2594
2595 void noinline
2596 ev_timer_start (EV_P_ ev_timer *w)
2597 {
2598 if (expect_false (ev_is_active (w)))
2599 return;
2600
2601 ev_at (w) += mn_now;
2602
2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
2611 ANHE_at_cache (timers [ev_active (w)]);
2612 upheap (timers, ev_active (w));
2613
2614 EV_FREQUENT_CHECK;
2615
2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2617 }
2618
2619 void noinline
2620 ev_timer_stop (EV_P_ ev_timer *w)
2621 {
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 EV_FREQUENT_CHECK;
2627
2628 {
2629 int active = ev_active (w);
2630
2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2632
2633 --timercnt;
2634
2635 if (expect_true (active < timercnt + HEAP0))
2636 {
2637 timers [active] = timers [timercnt + HEAP0];
2638 adjustheap (timers, timercnt, active);
2639 }
2640 }
2641
2642 ev_at (w) -= mn_now;
2643
2644 ev_stop (EV_A_ (W)w);
2645
2646 EV_FREQUENT_CHECK;
2647 }
2648
2649 void noinline
2650 ev_timer_again (EV_P_ ev_timer *w)
2651 {
2652 EV_FREQUENT_CHECK;
2653
2654 if (ev_is_active (w))
2655 {
2656 if (w->repeat)
2657 {
2658 ev_at (w) = mn_now + w->repeat;
2659 ANHE_at_cache (timers [ev_active (w)]);
2660 adjustheap (timers, timercnt, ev_active (w));
2661 }
2662 else
2663 ev_timer_stop (EV_A_ w);
2664 }
2665 else if (w->repeat)
2666 {
2667 ev_at (w) = w->repeat;
2668 ev_timer_start (EV_A_ w);
2669 }
2670
2671 EV_FREQUENT_CHECK;
2672 }
2673
2674 ev_tstamp
2675 ev_timer_remaining (EV_P_ ev_timer *w)
2676 {
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2678 }
2679
2680 #if EV_PERIODIC_ENABLE
2681 void noinline
2682 ev_periodic_start (EV_P_ ev_periodic *w)
2683 {
2684 if (expect_false (ev_is_active (w)))
2685 return;
2686
2687 if (w->reschedule_cb)
2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2689 else if (w->interval)
2690 {
2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2692 /* this formula differs from the one in periodic_reify because we do not always round up */
2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2694 }
2695 else
2696 ev_at (w) = w->offset;
2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2704 ANHE_at_cache (periodics [ev_active (w)]);
2705 upheap (periodics, ev_active (w));
2706
2707 EV_FREQUENT_CHECK;
2708
2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2710 }
2711
2712 void noinline
2713 ev_periodic_stop (EV_P_ ev_periodic *w)
2714 {
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 EV_FREQUENT_CHECK;
2720
2721 {
2722 int active = ev_active (w);
2723
2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2725
2726 --periodiccnt;
2727
2728 if (expect_true (active < periodiccnt + HEAP0))
2729 {
2730 periodics [active] = periodics [periodiccnt + HEAP0];
2731 adjustheap (periodics, periodiccnt, active);
2732 }
2733 }
2734
2735 ev_stop (EV_A_ (W)w);
2736
2737 EV_FREQUENT_CHECK;
2738 }
2739
2740 void noinline
2741 ev_periodic_again (EV_P_ ev_periodic *w)
2742 {
2743 /* TODO: use adjustheap and recalculation */
2744 ev_periodic_stop (EV_A_ w);
2745 ev_periodic_start (EV_A_ w);
2746 }
2747 #endif
2748
2749 #ifndef SA_RESTART
2750 # define SA_RESTART 0
2751 #endif
2752
2753 #if EV_SIGNAL_ENABLE
2754
2755 void noinline
2756 ev_signal_start (EV_P_ ev_signal *w)
2757 {
2758 if (expect_false (ev_is_active (w)))
2759 return;
2760
2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2762
2763 #if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2766
2767 signals [w->signum - 1].loop = EV_A;
2768 #endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772 #if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2774 {
2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2776 if (sigfd < 0 && errno == EINVAL)
2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2778
2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2782
2783 sigemptyset (&sigfd_set);
2784
2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800 #endif
2801
2802 ev_start (EV_A_ (W)w, 1);
2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
2804
2805 if (!((WL)w)->next)
2806 # if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808 # endif
2809 {
2810 # ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2813 signal (w->signum, ev_sighandler);
2814 # else
2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2819 sa.sa_handler = ev_sighandler;
2820 sigfillset (&sa.sa_mask);
2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2827 #endif
2828 }
2829
2830 EV_FREQUENT_CHECK;
2831 }
2832
2833 void noinline
2834 ev_signal_stop (EV_P_ ev_signal *w)
2835 {
2836 clear_pending (EV_A_ (W)w);
2837 if (expect_false (!ev_is_active (w)))
2838 return;
2839
2840 EV_FREQUENT_CHECK;
2841
2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2843 ev_stop (EV_A_ (W)w);
2844
2845 if (!signals [w->signum - 1].head)
2846 {
2847 #if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849 #endif
2850 #if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863 #endif
2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
2868 }
2869
2870 #endif
2871
2872 #if EV_CHILD_ENABLE
2873
2874 void
2875 ev_child_start (EV_P_ ev_child *w)
2876 {
2877 #if EV_MULTIPLICITY
2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2879 #endif
2880 if (expect_false (ev_is_active (w)))
2881 return;
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_start (EV_A_ (W)w, 1);
2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2887
2888 EV_FREQUENT_CHECK;
2889 }
2890
2891 void
2892 ev_child_stop (EV_P_ ev_child *w)
2893 {
2894 clear_pending (EV_A_ (W)w);
2895 if (expect_false (!ev_is_active (w)))
2896 return;
2897
2898 EV_FREQUENT_CHECK;
2899
2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2904 }
2905
2906 #endif
2907
2908 #if EV_STAT_ENABLE
2909
2910 # ifdef _WIN32
2911 # undef lstat
2912 # define lstat(a,b) _stati64 (a,b)
2913 # endif
2914
2915 #define DEF_STAT_INTERVAL 5.0074891
2916 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2917 #define MIN_STAT_INTERVAL 0.1074891
2918
2919 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2920
2921 #if EV_USE_INOTIFY
2922
2923 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2925
2926 static void noinline
2927 infy_add (EV_P_ ev_stat *w)
2928 {
2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2930
2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2951 }
2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956
2957 /* if path is not there, monitor some parent directory for speedup hints */
2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2959 /* but an efficiency issue only */
2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2961 {
2962 char path [4096];
2963 strcpy (path, w->path);
2964
2965 do
2966 {
2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2969
2970 char *pend = strrchr (path, '/');
2971
2972 if (!pend || pend == path)
2973 break;
2974
2975 *pend = 0;
2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2977 }
2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2979 }
2980 }
2981
2982 if (w->wd >= 0)
2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2989 }
2990
2991 static void noinline
2992 infy_del (EV_P_ ev_stat *w)
2993 {
2994 int slot;
2995 int wd = w->wd;
2996
2997 if (wd < 0)
2998 return;
2999
3000 w->wd = -2;
3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3002 wlist_del (&fs_hash [slot].head, (WL)w);
3003
3004 /* remove this watcher, if others are watching it, they will rearm */
3005 inotify_rm_watch (fs_fd, wd);
3006 }
3007
3008 static void noinline
3009 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3010 {
3011 if (slot < 0)
3012 /* overflow, need to check for all hash slots */
3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3014 infy_wd (EV_A_ slot, wd, ev);
3015 else
3016 {
3017 WL w_;
3018
3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3020 {
3021 ev_stat *w = (ev_stat *)w_;
3022 w_ = w_->next; /* lets us remove this watcher and all before it */
3023
3024 if (w->wd == wd || wd == -1)
3025 {
3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3029 w->wd = -1;
3030 infy_add (EV_A_ w); /* re-add, no matter what */
3031 }
3032
3033 stat_timer_cb (EV_A_ &w->timer, 0);
3034 }
3035 }
3036 }
3037 }
3038
3039 static void
3040 infy_cb (EV_P_ ev_io *w, int revents)
3041 {
3042 char buf [EV_INOTIFY_BUFSIZE];
3043 int ofs;
3044 int len = read (fs_fd, buf, sizeof (buf));
3045
3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
3052 }
3053
3054 inline_size unsigned int
3055 ev_linux_version (void)
3056 {
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084 }
3085
3086 inline_size void
3087 ev_check_2625 (EV_P)
3088 {
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096 }
3097
3098 inline_size int
3099 infy_newfd (void)
3100 {
3101 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105 #endif
3106 return inotify_init ();
3107 }
3108
3109 inline_size void
3110 infy_init (EV_P)
3111 {
3112 if (fs_fd != -2)
3113 return;
3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
3119 fs_fd = infy_newfd ();
3120
3121 if (fs_fd >= 0)
3122 {
3123 fd_intern (fs_fd);
3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3125 ev_set_priority (&fs_w, EV_MAXPRI);
3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
3128 }
3129 }
3130
3131 inline_size void
3132 infy_fork (EV_P)
3133 {
3134 int slot;
3135
3136 if (fs_fd < 0)
3137 return;
3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
3141 close (fs_fd);
3142 fs_fd = infy_newfd ();
3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3153 {
3154 WL w_ = fs_hash [slot].head;
3155 fs_hash [slot].head = 0;
3156
3157 while (w_)
3158 {
3159 ev_stat *w = (ev_stat *)w_;
3160 w_ = w_->next; /* lets us add this watcher */
3161
3162 w->wd = -1;
3163
3164 if (fs_fd >= 0)
3165 infy_add (EV_A_ w); /* re-add, no matter what */
3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
3173 }
3174 }
3175 }
3176
3177 #endif
3178
3179 #ifdef _WIN32
3180 # define EV_LSTAT(p,b) _stati64 (p, b)
3181 #else
3182 # define EV_LSTAT(p,b) lstat (p, b)
3183 #endif
3184
3185 void
3186 ev_stat_stat (EV_P_ ev_stat *w)
3187 {
3188 if (lstat (w->path, &w->attr) < 0)
3189 w->attr.st_nlink = 0;
3190 else if (!w->attr.st_nlink)
3191 w->attr.st_nlink = 1;
3192 }
3193
3194 static void noinline
3195 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3196 {
3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3198
3199 ev_statdata prev = w->attr;
3200 ev_stat_stat (EV_A_ w);
3201
3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3203 if (
3204 prev.st_dev != w->attr.st_dev
3205 || prev.st_ino != w->attr.st_ino
3206 || prev.st_mode != w->attr.st_mode
3207 || prev.st_nlink != w->attr.st_nlink
3208 || prev.st_uid != w->attr.st_uid
3209 || prev.st_gid != w->attr.st_gid
3210 || prev.st_rdev != w->attr.st_rdev
3211 || prev.st_size != w->attr.st_size
3212 || prev.st_atime != w->attr.st_atime
3213 || prev.st_mtime != w->attr.st_mtime
3214 || prev.st_ctime != w->attr.st_ctime
3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
3224 infy_del (EV_A_ w);
3225 infy_add (EV_A_ w);
3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
3228 #endif
3229
3230 ev_feed_event (EV_A_ w, EV_STAT);
3231 }
3232 }
3233
3234 void
3235 ev_stat_start (EV_P_ ev_stat *w)
3236 {
3237 if (expect_false (ev_is_active (w)))
3238 return;
3239
3240 ev_stat_stat (EV_A_ w);
3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3243 w->interval = MIN_STAT_INTERVAL;
3244
3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3246 ev_set_priority (&w->timer, ev_priority (w));
3247
3248 #if EV_USE_INOTIFY
3249 infy_init (EV_A);
3250
3251 if (fs_fd >= 0)
3252 infy_add (EV_A_ w);
3253 else
3254 #endif
3255 {
3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
3259
3260 ev_start (EV_A_ (W)w, 1);
3261
3262 EV_FREQUENT_CHECK;
3263 }
3264
3265 void
3266 ev_stat_stop (EV_P_ ev_stat *w)
3267 {
3268 clear_pending (EV_A_ (W)w);
3269 if (expect_false (!ev_is_active (w)))
3270 return;
3271
3272 EV_FREQUENT_CHECK;
3273
3274 #if EV_USE_INOTIFY
3275 infy_del (EV_A_ w);
3276 #endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
3283
3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
3287 }
3288 #endif
3289
3290 #if EV_IDLE_ENABLE
3291 void
3292 ev_idle_start (EV_P_ ev_idle *w)
3293 {
3294 if (expect_false (ev_is_active (w)))
3295 return;
3296
3297 pri_adjust (EV_A_ (W)w);
3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ++idlecnt [ABSPRI (w)];
3303
3304 ++idleall;
3305 ev_start (EV_A_ (W)w, active);
3306
3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3308 idles [ABSPRI (w)][active - 1] = w;
3309 }
3310
3311 EV_FREQUENT_CHECK;
3312 }
3313
3314 void
3315 ev_idle_stop (EV_P_ ev_idle *w)
3316 {
3317 clear_pending (EV_A_ (W)w);
3318 if (expect_false (!ev_is_active (w)))
3319 return;
3320
3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ev_active (w);
3325
3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3328
3329 ev_stop (EV_A_ (W)w);
3330 --idleall;
3331 }
3332
3333 EV_FREQUENT_CHECK;
3334 }
3335 #endif
3336
3337 #if EV_PREPARE_ENABLE
3338 void
3339 ev_prepare_start (EV_P_ ev_prepare *w)
3340 {
3341 if (expect_false (ev_is_active (w)))
3342 return;
3343
3344 EV_FREQUENT_CHECK;
3345
3346 ev_start (EV_A_ (W)w, ++preparecnt);
3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3348 prepares [preparecnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
3351 }
3352
3353 void
3354 ev_prepare_stop (EV_P_ ev_prepare *w)
3355 {
3356 clear_pending (EV_A_ (W)w);
3357 if (expect_false (!ev_is_active (w)))
3358 return;
3359
3360 EV_FREQUENT_CHECK;
3361
3362 {
3363 int active = ev_active (w);
3364
3365 prepares [active - 1] = prepares [--preparecnt];
3366 ev_active (prepares [active - 1]) = active;
3367 }
3368
3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
3372 }
3373 #endif
3374
3375 #if EV_CHECK_ENABLE
3376 void
3377 ev_check_start (EV_P_ ev_check *w)
3378 {
3379 if (expect_false (ev_is_active (w)))
3380 return;
3381
3382 EV_FREQUENT_CHECK;
3383
3384 ev_start (EV_A_ (W)w, ++checkcnt);
3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
3389 }
3390
3391 void
3392 ev_check_stop (EV_P_ ev_check *w)
3393 {
3394 clear_pending (EV_A_ (W)w);
3395 if (expect_false (!ev_is_active (w)))
3396 return;
3397
3398 EV_FREQUENT_CHECK;
3399
3400 {
3401 int active = ev_active (w);
3402
3403 checks [active - 1] = checks [--checkcnt];
3404 ev_active (checks [active - 1]) = active;
3405 }
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410 }
3411 #endif
3412
3413 #if EV_EMBED_ENABLE
3414 void noinline
3415 ev_embed_sweep (EV_P_ ev_embed *w)
3416 {
3417 ev_loop (w->other, EVLOOP_NONBLOCK);
3418 }
3419
3420 static void
3421 embed_io_cb (EV_P_ ev_io *io, int revents)
3422 {
3423 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3424
3425 if (ev_cb (w))
3426 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3427 else
3428 ev_loop (w->other, EVLOOP_NONBLOCK);
3429 }
3430
3431 static void
3432 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3433 {
3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3435
3436 {
3437 EV_P = w->other;
3438
3439 while (fdchangecnt)
3440 {
3441 fd_reify (EV_A);
3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3443 }
3444 }
3445 }
3446
3447 static void
3448 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449 {
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462 }
3463
3464 #if 0
3465 static void
3466 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3467 {
3468 ev_idle_stop (EV_A_ idle);
3469 }
3470 #endif
3471
3472 void
3473 ev_embed_start (EV_P_ ev_embed *w)
3474 {
3475 if (expect_false (ev_is_active (w)))
3476 return;
3477
3478 {
3479 EV_P = w->other;
3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3482 }
3483
3484 EV_FREQUENT_CHECK;
3485
3486 ev_set_priority (&w->io, ev_priority (w));
3487 ev_io_start (EV_A_ &w->io);
3488
3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
3490 ev_set_priority (&w->prepare, EV_MINPRI);
3491 ev_prepare_start (EV_A_ &w->prepare);
3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3497
3498 ev_start (EV_A_ (W)w, 1);
3499
3500 EV_FREQUENT_CHECK;
3501 }
3502
3503 void
3504 ev_embed_stop (EV_P_ ev_embed *w)
3505 {
3506 clear_pending (EV_A_ (W)w);
3507 if (expect_false (!ev_is_active (w)))
3508 return;
3509
3510 EV_FREQUENT_CHECK;
3511
3512 ev_io_stop (EV_A_ &w->io);
3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
3515
3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
3519 }
3520 #endif
3521
3522 #if EV_FORK_ENABLE
3523 void
3524 ev_fork_start (EV_P_ ev_fork *w)
3525 {
3526 if (expect_false (ev_is_active (w)))
3527 return;
3528
3529 EV_FREQUENT_CHECK;
3530
3531 ev_start (EV_A_ (W)w, ++forkcnt);
3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
3536 }
3537
3538 void
3539 ev_fork_stop (EV_P_ ev_fork *w)
3540 {
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 {
3548 int active = ev_active (w);
3549
3550 forks [active - 1] = forks [--forkcnt];
3551 ev_active (forks [active - 1]) = active;
3552 }
3553
3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557 }
3558 #endif
3559
3560 #if EV_ASYNC_ENABLE
3561 void
3562 ev_async_start (EV_P_ ev_async *w)
3563 {
3564 if (expect_false (ev_is_active (w)))
3565 return;
3566
3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
3570
3571 ev_start (EV_A_ (W)w, ++asynccnt);
3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
3576 }
3577
3578 void
3579 ev_async_stop (EV_P_ ev_async *w)
3580 {
3581 clear_pending (EV_A_ (W)w);
3582 if (expect_false (!ev_is_active (w)))
3583 return;
3584
3585 EV_FREQUENT_CHECK;
3586
3587 {
3588 int active = ev_active (w);
3589
3590 asyncs [active - 1] = asyncs [--asynccnt];
3591 ev_active (asyncs [active - 1]) = active;
3592 }
3593
3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
3597 }
3598
3599 void
3600 ev_async_send (EV_P_ ev_async *w)
3601 {
3602 w->sent = 1;
3603 evpipe_write (EV_A_ &async_pending);
3604 }
3605 #endif
3606
3607 /*****************************************************************************/
3608
3609 struct ev_once
3610 {
3611 ev_io io;
3612 ev_timer to;
3613 void (*cb)(int revents, void *arg);
3614 void *arg;
3615 };
3616
3617 static void
3618 once_cb (EV_P_ struct ev_once *once, int revents)
3619 {
3620 void (*cb)(int revents, void *arg) = once->cb;
3621 void *arg = once->arg;
3622
3623 ev_io_stop (EV_A_ &once->io);
3624 ev_timer_stop (EV_A_ &once->to);
3625 ev_free (once);
3626
3627 cb (revents, arg);
3628 }
3629
3630 static void
3631 once_cb_io (EV_P_ ev_io *w, int revents)
3632 {
3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3636 }
3637
3638 static void
3639 once_cb_to (EV_P_ ev_timer *w, int revents)
3640 {
3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3644 }
3645
3646 void
3647 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3648 {
3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3650
3651 if (expect_false (!once))
3652 {
3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3654 return;
3655 }
3656
3657 once->cb = cb;
3658 once->arg = arg;
3659
3660 ev_init (&once->io, once_cb_io);
3661 if (fd >= 0)
3662 {
3663 ev_io_set (&once->io, fd, events);
3664 ev_io_start (EV_A_ &once->io);
3665 }
3666
3667 ev_init (&once->to, once_cb_to);
3668 if (timeout >= 0.)
3669 {
3670 ev_timer_set (&once->to, timeout, 0.);
3671 ev_timer_start (EV_A_ &once->to);
3672 }
3673 }
3674
3675 /*****************************************************************************/
3676
3677 #if EV_WALK_ENABLE
3678 void
3679 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680 {
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690 #if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697 #endif
3698 #if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702 #endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712 #if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720 #endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724 #if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728 #endif
3729
3730 #if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735 #endif
3736
3737 #if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742 #endif
3743
3744 #if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748 #endif
3749
3750 #if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753 # if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755 # endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757 #endif
3758
3759 #if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763 #endif
3764
3765 #if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774 #endif
3775
3776 #if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785 #endif
3786 /* EV_STAT 0x00001000 /* stat data changed */
3787 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788 }
3789 #endif
3790
3791 #if EV_MULTIPLICITY
3792 #include "ev_wrap.h"
3793 #endif
3794
3795 #ifdef __cplusplus
3796 }
3797 #endif
3798