ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.344
Committed: Fri Jul 9 20:55:14 2010 UTC (13 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.343: +8 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 /* this big block deduces configuration from config.h */
45 #ifndef EV_STANDALONE
46 # ifdef EV_CONFIG_H
47 # include EV_CONFIG_H
48 # else
49 # include "config.h"
50 # endif
51
52 # if HAVE_CLOCK_SYSCALL
53 # ifndef EV_USE_CLOCK_SYSCALL
54 # define EV_USE_CLOCK_SYSCALL 1
55 # ifndef EV_USE_REALTIME
56 # define EV_USE_REALTIME 0
57 # endif
58 # ifndef EV_USE_MONOTONIC
59 # define EV_USE_MONOTONIC 1
60 # endif
61 # endif
62 # elif !defined(EV_USE_CLOCK_SYSCALL)
63 # define EV_USE_CLOCK_SYSCALL 0
64 # endif
65
66 # if HAVE_CLOCK_GETTIME
67 # ifndef EV_USE_MONOTONIC
68 # define EV_USE_MONOTONIC 1
69 # endif
70 # ifndef EV_USE_REALTIME
71 # define EV_USE_REALTIME 0
72 # endif
73 # else
74 # ifndef EV_USE_MONOTONIC
75 # define EV_USE_MONOTONIC 0
76 # endif
77 # ifndef EV_USE_REALTIME
78 # define EV_USE_REALTIME 0
79 # endif
80 # endif
81
82 # if HAVE_NANOSLEEP
83 # ifndef EV_USE_NANOSLEEP
84 # define EV_USE_NANOSLEEP EV_FEATURE_OS
85 # endif
86 # else
87 # undef EV_USE_NANOSLEEP
88 # define EV_USE_NANOSLEEP 0
89 # endif
90
91 # if HAVE_SELECT && HAVE_SYS_SELECT_H
92 # ifndef EV_USE_SELECT
93 # define EV_USE_SELECT EV_FEATURE_BACKENDS
94 # endif
95 # else
96 # undef EV_USE_SELECT
97 # define EV_USE_SELECT 0
98 # endif
99
100 # if HAVE_POLL && HAVE_POLL_H
101 # ifndef EV_USE_POLL
102 # define EV_USE_POLL EV_FEATURE_BACKENDS
103 # endif
104 # else
105 # undef EV_USE_POLL
106 # define EV_USE_POLL 0
107 # endif
108
109 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110 # ifndef EV_USE_EPOLL
111 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
112 # endif
113 # else
114 # undef EV_USE_EPOLL
115 # define EV_USE_EPOLL 0
116 # endif
117
118 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119 # ifndef EV_USE_KQUEUE
120 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121 # endif
122 # else
123 # undef EV_USE_KQUEUE
124 # define EV_USE_KQUEUE 0
125 # endif
126
127 # if HAVE_PORT_H && HAVE_PORT_CREATE
128 # ifndef EV_USE_PORT
129 # define EV_USE_PORT EV_FEATURE_BACKENDS
130 # endif
131 # else
132 # undef EV_USE_PORT
133 # define EV_USE_PORT 0
134 # endif
135
136 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137 # ifndef EV_USE_INOTIFY
138 # define EV_USE_INOTIFY EV_FEATURE_OS
139 # endif
140 # else
141 # undef EV_USE_INOTIFY
142 # define EV_USE_INOTIFY 0
143 # endif
144
145 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146 # ifndef EV_USE_SIGNALFD
147 # define EV_USE_SIGNALFD EV_FEATURE_OS
148 # endif
149 # else
150 # undef EV_USE_SIGNALFD
151 # define EV_USE_SIGNALFD 0
152 # endif
153
154 # if HAVE_EVENTFD
155 # ifndef EV_USE_EVENTFD
156 # define EV_USE_EVENTFD EV_FEATURE_OS
157 # endif
158 # else
159 # undef EV_USE_EVENTFD
160 # define EV_USE_EVENTFD 0
161 # endif
162
163 #endif
164
165 #include <math.h>
166 #include <stdlib.h>
167 #include <string.h>
168 #include <fcntl.h>
169 #include <stddef.h>
170
171 #include <stdio.h>
172
173 #include <assert.h>
174 #include <errno.h>
175 #include <sys/types.h>
176 #include <time.h>
177 #include <limits.h>
178
179 #include <signal.h>
180
181 #ifdef EV_H
182 # include EV_H
183 #else
184 # include "ev.h"
185 #endif
186
187 #ifndef _WIN32
188 # include <sys/time.h>
189 # include <sys/wait.h>
190 # include <unistd.h>
191 #else
192 # include <io.h>
193 # define WIN32_LEAN_AND_MEAN
194 # include <windows.h>
195 # ifndef EV_SELECT_IS_WINSOCKET
196 # define EV_SELECT_IS_WINSOCKET 1
197 # endif
198 # undef EV_AVOID_STDIO
199 #endif
200
201 /* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207 #define _DARWIN_UNLIMITED_SELECT 1
208
209 /* this block tries to deduce configuration from header-defined symbols and defaults */
210
211 /* try to deduce the maximum number of signals on this platform */
212 #if defined (EV_NSIG)
213 /* use what's provided */
214 #elif defined (NSIG)
215 # define EV_NSIG (NSIG)
216 #elif defined(_NSIG)
217 # define EV_NSIG (_NSIG)
218 #elif defined (SIGMAX)
219 # define EV_NSIG (SIGMAX+1)
220 #elif defined (SIG_MAX)
221 # define EV_NSIG (SIG_MAX+1)
222 #elif defined (_SIG_MAX)
223 # define EV_NSIG (_SIG_MAX+1)
224 #elif defined (MAXSIG)
225 # define EV_NSIG (MAXSIG+1)
226 #elif defined (MAX_SIG)
227 # define EV_NSIG (MAX_SIG+1)
228 #elif defined (SIGARRAYSIZE)
229 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230 #elif defined (_sys_nsig)
231 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232 #else
233 # error "unable to find value for NSIG, please report"
234 /* to make it compile regardless, just remove the above line, */
235 /* but consider reporting it, too! :) */
236 # define EV_NSIG 65
237 #endif
238
239 #ifndef EV_USE_CLOCK_SYSCALL
240 # if __linux && __GLIBC__ >= 2
241 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242 # else
243 # define EV_USE_CLOCK_SYSCALL 0
244 # endif
245 #endif
246
247 #ifndef EV_USE_MONOTONIC
248 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249 # define EV_USE_MONOTONIC EV_FEATURE_OS
250 # else
251 # define EV_USE_MONOTONIC 0
252 # endif
253 #endif
254
255 #ifndef EV_USE_REALTIME
256 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257 #endif
258
259 #ifndef EV_USE_NANOSLEEP
260 # if _POSIX_C_SOURCE >= 199309L
261 # define EV_USE_NANOSLEEP EV_FEATURE_OS
262 # else
263 # define EV_USE_NANOSLEEP 0
264 # endif
265 #endif
266
267 #ifndef EV_USE_SELECT
268 # define EV_USE_SELECT EV_FEATURE_BACKENDS
269 #endif
270
271 #ifndef EV_USE_POLL
272 # ifdef _WIN32
273 # define EV_USE_POLL 0
274 # else
275 # define EV_USE_POLL EV_FEATURE_BACKENDS
276 # endif
277 #endif
278
279 #ifndef EV_USE_EPOLL
280 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
282 # else
283 # define EV_USE_EPOLL 0
284 # endif
285 #endif
286
287 #ifndef EV_USE_KQUEUE
288 # define EV_USE_KQUEUE 0
289 #endif
290
291 #ifndef EV_USE_PORT
292 # define EV_USE_PORT 0
293 #endif
294
295 #ifndef EV_USE_INOTIFY
296 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 # define EV_USE_INOTIFY EV_FEATURE_OS
298 # else
299 # define EV_USE_INOTIFY 0
300 # endif
301 #endif
302
303 #ifndef EV_PID_HASHSIZE
304 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305 #endif
306
307 #ifndef EV_INOTIFY_HASHSIZE
308 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309 #endif
310
311 #ifndef EV_USE_EVENTFD
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313 # define EV_USE_EVENTFD EV_FEATURE_OS
314 # else
315 # define EV_USE_EVENTFD 0
316 # endif
317 #endif
318
319 #ifndef EV_USE_SIGNALFD
320 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321 # define EV_USE_SIGNALFD EV_FEATURE_OS
322 # else
323 # define EV_USE_SIGNALFD 0
324 # endif
325 #endif
326
327 #if 0 /* debugging */
328 # define EV_VERIFY 3
329 # define EV_USE_4HEAP 1
330 # define EV_HEAP_CACHE_AT 1
331 #endif
332
333 #ifndef EV_VERIFY
334 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335 #endif
336
337 #ifndef EV_USE_4HEAP
338 # define EV_USE_4HEAP EV_FEATURE_DATA
339 #endif
340
341 #ifndef EV_HEAP_CACHE_AT
342 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343 #endif
344
345 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346 /* which makes programs even slower. might work on other unices, too. */
347 #if EV_USE_CLOCK_SYSCALL
348 # include <syscall.h>
349 # ifdef SYS_clock_gettime
350 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351 # undef EV_USE_MONOTONIC
352 # define EV_USE_MONOTONIC 1
353 # else
354 # undef EV_USE_CLOCK_SYSCALL
355 # define EV_USE_CLOCK_SYSCALL 0
356 # endif
357 #endif
358
359 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361 #ifdef _AIX
362 /* AIX has a completely broken poll.h header */
363 # undef EV_USE_POLL
364 # define EV_USE_POLL 0
365 #endif
366
367 #ifndef CLOCK_MONOTONIC
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 0
370 #endif
371
372 #ifndef CLOCK_REALTIME
373 # undef EV_USE_REALTIME
374 # define EV_USE_REALTIME 0
375 #endif
376
377 #if !EV_STAT_ENABLE
378 # undef EV_USE_INOTIFY
379 # define EV_USE_INOTIFY 0
380 #endif
381
382 #if !EV_USE_NANOSLEEP
383 # ifndef _WIN32
384 # include <sys/select.h>
385 # endif
386 #endif
387
388 #if EV_USE_INOTIFY
389 # include <sys/utsname.h>
390 # include <sys/statfs.h>
391 # include <sys/inotify.h>
392 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393 # ifndef IN_DONT_FOLLOW
394 # undef EV_USE_INOTIFY
395 # define EV_USE_INOTIFY 0
396 # endif
397 #endif
398
399 #if EV_SELECT_IS_WINSOCKET
400 # include <winsock.h>
401 #endif
402
403 #if EV_USE_EVENTFD
404 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405 # include <stdint.h>
406 # ifndef EFD_NONBLOCK
407 # define EFD_NONBLOCK O_NONBLOCK
408 # endif
409 # ifndef EFD_CLOEXEC
410 # ifdef O_CLOEXEC
411 # define EFD_CLOEXEC O_CLOEXEC
412 # else
413 # define EFD_CLOEXEC 02000000
414 # endif
415 # endif
416 # ifdef __cplusplus
417 extern "C" {
418 # endif
419 int (eventfd) (unsigned int initval, int flags);
420 # ifdef __cplusplus
421 }
422 # endif
423 #endif
424
425 #if EV_USE_SIGNALFD
426 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427 # include <stdint.h>
428 # ifndef SFD_NONBLOCK
429 # define SFD_NONBLOCK O_NONBLOCK
430 # endif
431 # ifndef SFD_CLOEXEC
432 # ifdef O_CLOEXEC
433 # define SFD_CLOEXEC O_CLOEXEC
434 # else
435 # define SFD_CLOEXEC 02000000
436 # endif
437 # endif
438 # ifdef __cplusplus
439 extern "C" {
440 # endif
441 int signalfd (int fd, const sigset_t *mask, int flags);
442
443 struct signalfd_siginfo
444 {
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447 };
448 # ifdef __cplusplus
449 }
450 # endif
451 #endif
452
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
471
472 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475 #if __GNUC__ >= 4
476 # define expect(expr,value) __builtin_expect ((expr),(value))
477 # define noinline __attribute__ ((noinline))
478 #else
479 # define expect(expr,value) (expr)
480 # define noinline
481 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482 # define inline
483 # endif
484 #endif
485
486 #define expect_false(expr) expect ((expr) != 0, 0)
487 #define expect_true(expr) expect ((expr) != 0, 1)
488 #define inline_size static inline
489
490 #if EV_FEATURE_CODE
491 # define inline_speed static inline
492 #else
493 # define inline_speed static noinline
494 #endif
495
496 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498 #if EV_MINPRI == EV_MAXPRI
499 # define ABSPRI(w) (((W)w), 0)
500 #else
501 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502 #endif
503
504 #define EMPTY /* required for microsofts broken pseudo-c compiler */
505 #define EMPTY2(a,b) /* used to suppress some warnings */
506
507 typedef ev_watcher *W;
508 typedef ev_watcher_list *WL;
509 typedef ev_watcher_time *WT;
510
511 #define ev_active(w) ((W)(w))->active
512 #define ev_at(w) ((WT)(w))->at
513
514 #if EV_USE_REALTIME
515 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
516 /* giving it a reasonably high chance of working on typical architetcures */
517 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518 #endif
519
520 #if EV_USE_MONOTONIC
521 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522 #endif
523
524 #ifndef EV_FD_TO_WIN32_HANDLE
525 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526 #endif
527 #ifndef EV_WIN32_HANDLE_TO_FD
528 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529 #endif
530 #ifndef EV_WIN32_CLOSE_FD
531 # define EV_WIN32_CLOSE_FD(fd) close (fd)
532 #endif
533
534 #ifdef _WIN32
535 # include "ev_win32.c"
536 #endif
537
538 /*****************************************************************************/
539
540 #if EV_AVOID_STDIO
541 static void noinline
542 ev_printerr (const char *msg)
543 {
544 write (STDERR_FILENO, msg, strlen (msg));
545 }
546 #endif
547
548 static void (*syserr_cb)(const char *msg);
549
550 void
551 ev_set_syserr_cb (void (*cb)(const char *msg))
552 {
553 syserr_cb = cb;
554 }
555
556 static void noinline
557 ev_syserr (const char *msg)
558 {
559 if (!msg)
560 msg = "(libev) system error";
561
562 if (syserr_cb)
563 syserr_cb (msg);
564 else
565 {
566 #if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573 #else
574 perror (msg);
575 #endif
576 abort ();
577 }
578 }
579
580 static void *
581 ev_realloc_emul (void *ptr, long size)
582 {
583 #if __GLIBC__
584 return realloc (ptr, size);
585 #else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596 #endif
597 }
598
599 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
600
601 void
602 ev_set_allocator (void *(*cb)(void *ptr, long size))
603 {
604 alloc = cb;
605 }
606
607 inline_speed void *
608 ev_realloc (void *ptr, long size)
609 {
610 ptr = alloc (ptr, size);
611
612 if (!ptr && size)
613 {
614 #if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616 #else
617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618 #endif
619 abort ();
620 }
621
622 return ptr;
623 }
624
625 #define ev_malloc(size) ev_realloc (0, (size))
626 #define ev_free(ptr) ev_realloc ((ptr), 0)
627
628 /*****************************************************************************/
629
630 /* set in reify when reification needed */
631 #define EV_ANFD_REIFY 1
632
633 /* file descriptor info structure */
634 typedef struct
635 {
636 WL head;
637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
640 unsigned char unused;
641 #if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643 #endif
644 #if EV_SELECT_IS_WINSOCKET
645 SOCKET handle;
646 #endif
647 } ANFD;
648
649 /* stores the pending event set for a given watcher */
650 typedef struct
651 {
652 W w;
653 int events; /* the pending event set for the given watcher */
654 } ANPENDING;
655
656 #if EV_USE_INOTIFY
657 /* hash table entry per inotify-id */
658 typedef struct
659 {
660 WL head;
661 } ANFS;
662 #endif
663
664 /* Heap Entry */
665 #if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675 #else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
682 #endif
683
684 #if EV_MULTIPLICITY
685
686 struct ev_loop
687 {
688 ev_tstamp ev_rt_now;
689 #define ev_rt_now ((loop)->ev_rt_now)
690 #define VAR(name,decl) decl;
691 #include "ev_vars.h"
692 #undef VAR
693 };
694 #include "ev_wrap.h"
695
696 static struct ev_loop default_loop_struct;
697 struct ev_loop *ev_default_loop_ptr;
698
699 #else
700
701 ev_tstamp ev_rt_now;
702 #define VAR(name,decl) static decl;
703 #include "ev_vars.h"
704 #undef VAR
705
706 static int ev_default_loop_ptr;
707
708 #endif
709
710 #if EV_FEATURE_API
711 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713 # define EV_INVOKE_PENDING invoke_cb (EV_A)
714 #else
715 # define EV_RELEASE_CB (void)0
716 # define EV_ACQUIRE_CB (void)0
717 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718 #endif
719
720 #define EVUNLOOP_RECURSE 0x80
721
722 /*****************************************************************************/
723
724 #ifndef EV_HAVE_EV_TIME
725 ev_tstamp
726 ev_time (void)
727 {
728 #if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
731 struct timespec ts;
732 clock_gettime (CLOCK_REALTIME, &ts);
733 return ts.tv_sec + ts.tv_nsec * 1e-9;
734 }
735 #endif
736
737 struct timeval tv;
738 gettimeofday (&tv, 0);
739 return tv.tv_sec + tv.tv_usec * 1e-6;
740 }
741 #endif
742
743 inline_size ev_tstamp
744 get_clock (void)
745 {
746 #if EV_USE_MONOTONIC
747 if (expect_true (have_monotonic))
748 {
749 struct timespec ts;
750 clock_gettime (CLOCK_MONOTONIC, &ts);
751 return ts.tv_sec + ts.tv_nsec * 1e-9;
752 }
753 #endif
754
755 return ev_time ();
756 }
757
758 #if EV_MULTIPLICITY
759 ev_tstamp
760 ev_now (EV_P)
761 {
762 return ev_rt_now;
763 }
764 #endif
765
766 void
767 ev_sleep (ev_tstamp delay)
768 {
769 if (delay > 0.)
770 {
771 #if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778 #elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780 #else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790 #endif
791 }
792 }
793
794 /*****************************************************************************/
795
796 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798 /* find a suitable new size for the given array, */
799 /* hopefully by rounding to a ncie-to-malloc size */
800 inline_size int
801 array_nextsize (int elem, int cur, int cnt)
802 {
803 int ncur = cur + 1;
804
805 do
806 ncur <<= 1;
807 while (cnt > ncur);
808
809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 {
812 ncur *= elem;
813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 ncur = ncur - sizeof (void *) * 4;
815 ncur /= elem;
816 }
817
818 return ncur;
819 }
820
821 static noinline void *
822 array_realloc (int elem, void *base, int *cur, int cnt)
823 {
824 *cur = array_nextsize (elem, *cur, cnt);
825 return ev_realloc (base, elem * *cur);
826 }
827
828 #define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
830
831 #define array_needsize(type,base,cur,cnt,init) \
832 if (expect_false ((cnt) > (cur))) \
833 { \
834 int ocur_ = (cur); \
835 (base) = (type *)array_realloc \
836 (sizeof (type), (base), &(cur), (cnt)); \
837 init ((base) + (ocur_), (cur) - ocur_); \
838 }
839
840 #if 0
841 #define array_slim(type,stem) \
842 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
843 { \
844 stem ## max = array_roundsize (stem ## cnt >> 1); \
845 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
847 }
848 #endif
849
850 #define array_free(stem, idx) \
851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
852
853 /*****************************************************************************/
854
855 /* dummy callback for pending events */
856 static void noinline
857 pendingcb (EV_P_ ev_prepare *w, int revents)
858 {
859 }
860
861 void noinline
862 ev_feed_event (EV_P_ void *w, int revents)
863 {
864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
866
867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
874 pendings [pri][w_->pending - 1].events = revents;
875 }
876 }
877
878 inline_speed void
879 feed_reverse (EV_P_ W w)
880 {
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883 }
884
885 inline_size void
886 feed_reverse_done (EV_P_ int revents)
887 {
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891 }
892
893 inline_speed void
894 queue_events (EV_P_ W *events, int eventcnt, int type)
895 {
896 int i;
897
898 for (i = 0; i < eventcnt; ++i)
899 ev_feed_event (EV_A_ events [i], type);
900 }
901
902 /*****************************************************************************/
903
904 inline_speed void
905 fd_event_nocheck (EV_P_ int fd, int revents)
906 {
907 ANFD *anfd = anfds + fd;
908 ev_io *w;
909
910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
911 {
912 int ev = w->events & revents;
913
914 if (ev)
915 ev_feed_event (EV_A_ (W)w, ev);
916 }
917 }
918
919 /* do not submit kernel events for fds that have reify set */
920 /* because that means they changed while we were polling for new events */
921 inline_speed void
922 fd_event (EV_P_ int fd, int revents)
923 {
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928 }
929
930 void
931 ev_feed_fd_event (EV_P_ int fd, int revents)
932 {
933 if (fd >= 0 && fd < anfdmax)
934 fd_event_nocheck (EV_A_ fd, revents);
935 }
936
937 /* make sure the external fd watch events are in-sync */
938 /* with the kernel/libev internal state */
939 inline_size void
940 fd_reify (EV_P)
941 {
942 int i;
943
944 for (i = 0; i < fdchangecnt; ++i)
945 {
946 int fd = fdchanges [i];
947 ANFD *anfd = anfds + fd;
948 ev_io *w;
949
950 unsigned char events = 0;
951
952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
953 events |= (unsigned char)w->events;
954
955 #if EV_SELECT_IS_WINSOCKET
956 if (events)
957 {
958 unsigned long arg;
959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
961 }
962 #endif
963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
968 anfd->reify = 0;
969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
974 }
975
976 fdchangecnt = 0;
977 }
978
979 /* something about the given fd changed */
980 inline_size void
981 fd_change (EV_P_ int fd, int flags)
982 {
983 unsigned char reify = anfds [fd].reify;
984 anfds [fd].reify |= flags;
985
986 if (expect_true (!reify))
987 {
988 ++fdchangecnt;
989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
990 fdchanges [fdchangecnt - 1] = fd;
991 }
992 }
993
994 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995 inline_speed void
996 fd_kill (EV_P_ int fd)
997 {
998 ev_io *w;
999
1000 while ((w = (ev_io *)anfds [fd].head))
1001 {
1002 ev_io_stop (EV_A_ w);
1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1004 }
1005 }
1006
1007 /* check whether the given fd is actually valid, for error recovery */
1008 inline_size int
1009 fd_valid (int fd)
1010 {
1011 #ifdef _WIN32
1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1013 #else
1014 return fcntl (fd, F_GETFD) != -1;
1015 #endif
1016 }
1017
1018 /* called on EBADF to verify fds */
1019 static void noinline
1020 fd_ebadf (EV_P)
1021 {
1022 int fd;
1023
1024 for (fd = 0; fd < anfdmax; ++fd)
1025 if (anfds [fd].events)
1026 if (!fd_valid (fd) && errno == EBADF)
1027 fd_kill (EV_A_ fd);
1028 }
1029
1030 /* called on ENOMEM in select/poll to kill some fds and retry */
1031 static void noinline
1032 fd_enomem (EV_P)
1033 {
1034 int fd;
1035
1036 for (fd = anfdmax; fd--; )
1037 if (anfds [fd].events)
1038 {
1039 fd_kill (EV_A_ fd);
1040 break;
1041 }
1042 }
1043
1044 /* usually called after fork if backend needs to re-arm all fds from scratch */
1045 static void noinline
1046 fd_rearm_all (EV_P)
1047 {
1048 int fd;
1049
1050 for (fd = 0; fd < anfdmax; ++fd)
1051 if (anfds [fd].events)
1052 {
1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1056 }
1057 }
1058
1059 /* used to prepare libev internal fd's */
1060 /* this is not fork-safe */
1061 inline_speed void
1062 fd_intern (int fd)
1063 {
1064 #ifdef _WIN32
1065 unsigned long arg = 1;
1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1067 #else
1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
1069 fcntl (fd, F_SETFL, O_NONBLOCK);
1070 #endif
1071 }
1072
1073 /*****************************************************************************/
1074
1075 /*
1076 * the heap functions want a real array index. array index 0 uis guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081 /*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087 #if EV_USE_4HEAP
1088
1089 #define DHEAP 4
1090 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092 #define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094 /* away from the root */
1095 inline_speed void
1096 downheap (ANHE *heap, int N, int k)
1097 {
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136 }
1137
1138 #else /* 4HEAP */
1139
1140 #define HEAP0 1
1141 #define HPARENT(k) ((k) >> 1)
1142 #define UPHEAP_DONE(p,k) (!(p))
1143
1144 /* away from the root */
1145 inline_speed void
1146 downheap (ANHE *heap, int N, int k)
1147 {
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171 }
1172 #endif
1173
1174 /* towards the root */
1175 inline_speed void
1176 upheap (ANHE *heap, int k)
1177 {
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194 }
1195
1196 /* move an element suitably so it is in a correct place */
1197 inline_size void
1198 adjustheap (ANHE *heap, int N, int k)
1199 {
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204 }
1205
1206 /* rebuild the heap: this function is used only once and executed rarely */
1207 inline_size void
1208 reheap (ANHE *heap, int N)
1209 {
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216 }
1217
1218 /*****************************************************************************/
1219
1220 /* associate signal watchers to a signal signal */
1221 typedef struct
1222 {
1223 EV_ATOMIC_T pending;
1224 #if EV_MULTIPLICITY
1225 EV_P;
1226 #endif
1227 WL head;
1228 } ANSIG;
1229
1230 static ANSIG signals [EV_NSIG - 1];
1231
1232 /*****************************************************************************/
1233
1234 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
1236 static void noinline
1237 evpipe_init (EV_P)
1238 {
1239 if (!ev_is_active (&pipe_w))
1240 {
1241 # if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253 # endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
1258 fd_intern (evpipe [0]);
1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
1262
1263 ev_io_start (EV_A_ &pipe_w);
1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266 }
1267
1268 inline_size void
1269 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270 {
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278 #if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285 #endif
1286 write (evpipe [1], &dummy, 1);
1287
1288 errno = old_errno;
1289 }
1290 }
1291
1292 /* called whenever the libev signal pipe */
1293 /* got some events (signal, async) */
1294 static void
1295 pipecb (EV_P_ ev_io *iow, int revents)
1296 {
1297 int i;
1298
1299 #if EV_USE_EVENTFD
1300 if (evfd >= 0)
1301 {
1302 uint64_t counter;
1303 read (evfd, &counter, sizeof (uint64_t));
1304 }
1305 else
1306 #endif
1307 {
1308 char dummy;
1309 read (evpipe [0], &dummy, 1);
1310 }
1311
1312 if (sig_pending)
1313 {
1314 sig_pending = 0;
1315
1316 for (i = EV_NSIG - 1; i--; )
1317 if (expect_false (signals [i].pending))
1318 ev_feed_signal_event (EV_A_ i + 1);
1319 }
1320
1321 #if EV_ASYNC_ENABLE
1322 if (async_pending)
1323 {
1324 async_pending = 0;
1325
1326 for (i = asynccnt; i--; )
1327 if (asyncs [i]->sent)
1328 {
1329 asyncs [i]->sent = 0;
1330 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1331 }
1332 }
1333 #endif
1334 }
1335
1336 /*****************************************************************************/
1337
1338 static void
1339 ev_sighandler (int signum)
1340 {
1341 #if EV_MULTIPLICITY
1342 EV_P = signals [signum - 1].loop;
1343 #endif
1344
1345 #ifdef _WIN32
1346 signal (signum, ev_sighandler);
1347 #endif
1348
1349 signals [signum - 1].pending = 1;
1350 evpipe_write (EV_A_ &sig_pending);
1351 }
1352
1353 void noinline
1354 ev_feed_signal_event (EV_P_ int signum)
1355 {
1356 WL w;
1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1363 #if EV_MULTIPLICITY
1364 /* it is permissible to try to feed a signal to the wrong loop */
1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1366
1367 if (expect_false (signals [signum].loop != EV_A))
1368 return;
1369 #endif
1370
1371 signals [signum].pending = 0;
1372
1373 for (w = signals [signum].head; w; w = w->next)
1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1375 }
1376
1377 #if EV_USE_SIGNALFD
1378 static void
1379 sigfdcb (EV_P_ ev_io *iow, int revents)
1380 {
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394 }
1395 #endif
1396
1397 #endif
1398
1399 /*****************************************************************************/
1400
1401 #if EV_CHILD_ENABLE
1402 static WL childs [EV_PID_HASHSIZE];
1403
1404 static ev_signal childev;
1405
1406 #ifndef WIFCONTINUED
1407 # define WIFCONTINUED(status) 0
1408 #endif
1409
1410 /* handle a single child status event */
1411 inline_speed void
1412 child_reap (EV_P_ int chain, int pid, int status)
1413 {
1414 ev_child *w;
1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1416
1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1418 {
1419 if ((w->pid == pid || !w->pid)
1420 && (!traced || (w->flags & 1)))
1421 {
1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1423 w->rpid = pid;
1424 w->rstatus = status;
1425 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1426 }
1427 }
1428 }
1429
1430 #ifndef WCONTINUED
1431 # define WCONTINUED 0
1432 #endif
1433
1434 /* called on sigchld etc., calls waitpid */
1435 static void
1436 childcb (EV_P_ ev_signal *sw, int revents)
1437 {
1438 int pid, status;
1439
1440 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1441 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1442 if (!WCONTINUED
1443 || errno != EINVAL
1444 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1445 return;
1446
1447 /* make sure we are called again until all children have been reaped */
1448 /* we need to do it this way so that the callback gets called before we continue */
1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1450
1451 child_reap (EV_A_ pid, pid, status);
1452 if ((EV_PID_HASHSIZE) > 1)
1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1454 }
1455
1456 #endif
1457
1458 /*****************************************************************************/
1459
1460 #if EV_USE_PORT
1461 # include "ev_port.c"
1462 #endif
1463 #if EV_USE_KQUEUE
1464 # include "ev_kqueue.c"
1465 #endif
1466 #if EV_USE_EPOLL
1467 # include "ev_epoll.c"
1468 #endif
1469 #if EV_USE_POLL
1470 # include "ev_poll.c"
1471 #endif
1472 #if EV_USE_SELECT
1473 # include "ev_select.c"
1474 #endif
1475
1476 int
1477 ev_version_major (void)
1478 {
1479 return EV_VERSION_MAJOR;
1480 }
1481
1482 int
1483 ev_version_minor (void)
1484 {
1485 return EV_VERSION_MINOR;
1486 }
1487
1488 /* return true if we are running with elevated privileges and should ignore env variables */
1489 int inline_size
1490 enable_secure (void)
1491 {
1492 #ifdef _WIN32
1493 return 0;
1494 #else
1495 return getuid () != geteuid ()
1496 || getgid () != getegid ();
1497 #endif
1498 }
1499
1500 unsigned int
1501 ev_supported_backends (void)
1502 {
1503 unsigned int flags = 0;
1504
1505 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1506 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1507 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1508 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1509 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1510
1511 return flags;
1512 }
1513
1514 unsigned int
1515 ev_recommended_backends (void)
1516 {
1517 unsigned int flags = ev_supported_backends ();
1518
1519 #ifndef __NetBSD__
1520 /* kqueue is borked on everything but netbsd apparently */
1521 /* it usually doesn't work correctly on anything but sockets and pipes */
1522 flags &= ~EVBACKEND_KQUEUE;
1523 #endif
1524 #ifdef __APPLE__
1525 /* only select works correctly on that "unix-certified" platform */
1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1528 #endif
1529 #ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1531 #endif
1532
1533 return flags;
1534 }
1535
1536 unsigned int
1537 ev_embeddable_backends (void)
1538 {
1539 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1540
1541 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1542 /* please fix it and tell me how to detect the fix */
1543 flags &= ~EVBACKEND_EPOLL;
1544
1545 return flags;
1546 }
1547
1548 unsigned int
1549 ev_backend (EV_P)
1550 {
1551 return backend;
1552 }
1553
1554 #if EV_FEATURE_API
1555 unsigned int
1556 ev_iteration (EV_P)
1557 {
1558 return loop_count;
1559 }
1560
1561 unsigned int
1562 ev_depth (EV_P)
1563 {
1564 return loop_depth;
1565 }
1566
1567 void
1568 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1569 {
1570 io_blocktime = interval;
1571 }
1572
1573 void
1574 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1575 {
1576 timeout_blocktime = interval;
1577 }
1578
1579 void
1580 ev_set_userdata (EV_P_ void *data)
1581 {
1582 userdata = data;
1583 }
1584
1585 void *
1586 ev_userdata (EV_P)
1587 {
1588 return userdata;
1589 }
1590
1591 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592 {
1593 invoke_cb = invoke_pending_cb;
1594 }
1595
1596 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597 {
1598 release_cb = release;
1599 acquire_cb = acquire;
1600 }
1601 #endif
1602
1603 /* initialise a loop structure, must be zero-initialised */
1604 static void noinline
1605 loop_init (EV_P_ unsigned int flags)
1606 {
1607 if (!backend)
1608 {
1609 #if EV_USE_REALTIME
1610 if (!have_realtime)
1611 {
1612 struct timespec ts;
1613
1614 if (!clock_gettime (CLOCK_REALTIME, &ts))
1615 have_realtime = 1;
1616 }
1617 #endif
1618
1619 #if EV_USE_MONOTONIC
1620 if (!have_monotonic)
1621 {
1622 struct timespec ts;
1623
1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1625 have_monotonic = 1;
1626 }
1627 #endif
1628
1629 /* pid check not overridable via env */
1630 #ifndef _WIN32
1631 if (flags & EVFLAG_FORKCHECK)
1632 curpid = getpid ();
1633 #endif
1634
1635 if (!(flags & EVFLAG_NOENV)
1636 && !enable_secure ()
1637 && getenv ("LIBEV_FLAGS"))
1638 flags = atoi (getenv ("LIBEV_FLAGS"));
1639
1640 ev_rt_now = ev_time ();
1641 mn_now = get_clock ();
1642 now_floor = mn_now;
1643 rtmn_diff = ev_rt_now - mn_now;
1644 #if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646 #endif
1647
1648 io_blocktime = 0.;
1649 timeout_blocktime = 0.;
1650 backend = 0;
1651 backend_fd = -1;
1652 sig_pending = 0;
1653 #if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655 #endif
1656 #if EV_USE_INOTIFY
1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1658 #endif
1659 #if EV_USE_SIGNALFD
1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1661 #endif
1662
1663 if (!(flags & 0x0000ffffU))
1664 flags |= ev_recommended_backends ();
1665
1666 #if EV_USE_PORT
1667 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1668 #endif
1669 #if EV_USE_KQUEUE
1670 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1671 #endif
1672 #if EV_USE_EPOLL
1673 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1674 #endif
1675 #if EV_USE_POLL
1676 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1677 #endif
1678 #if EV_USE_SELECT
1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1680 #endif
1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1685 ev_init (&pipe_w, pipecb);
1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687 #endif
1688 }
1689 }
1690
1691 /* free up a loop structure */
1692 static void noinline
1693 loop_destroy (EV_P)
1694 {
1695 int i;
1696
1697 if (ev_is_active (&pipe_w))
1698 {
1699 /*ev_ref (EV_A);*/
1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1701
1702 #if EV_USE_EVENTFD
1703 if (evfd >= 0)
1704 close (evfd);
1705 #endif
1706
1707 if (evpipe [0] >= 0)
1708 {
1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1711 }
1712 }
1713
1714 #if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717 #endif
1718
1719 #if EV_USE_INOTIFY
1720 if (fs_fd >= 0)
1721 close (fs_fd);
1722 #endif
1723
1724 if (backend_fd >= 0)
1725 close (backend_fd);
1726
1727 #if EV_USE_PORT
1728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1729 #endif
1730 #if EV_USE_KQUEUE
1731 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1732 #endif
1733 #if EV_USE_EPOLL
1734 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1735 #endif
1736 #if EV_USE_POLL
1737 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1738 #endif
1739 #if EV_USE_SELECT
1740 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1741 #endif
1742
1743 for (i = NUMPRI; i--; )
1744 {
1745 array_free (pending, [i]);
1746 #if EV_IDLE_ENABLE
1747 array_free (idle, [i]);
1748 #endif
1749 }
1750
1751 ev_free (anfds); anfds = 0; anfdmax = 0;
1752
1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
1755 array_free (fdchange, EMPTY);
1756 array_free (timer, EMPTY);
1757 #if EV_PERIODIC_ENABLE
1758 array_free (periodic, EMPTY);
1759 #endif
1760 #if EV_FORK_ENABLE
1761 array_free (fork, EMPTY);
1762 #endif
1763 array_free (prepare, EMPTY);
1764 array_free (check, EMPTY);
1765 #if EV_ASYNC_ENABLE
1766 array_free (async, EMPTY);
1767 #endif
1768
1769 backend = 0;
1770 }
1771
1772 #if EV_USE_INOTIFY
1773 inline_size void infy_fork (EV_P);
1774 #endif
1775
1776 inline_size void
1777 loop_fork (EV_P)
1778 {
1779 #if EV_USE_PORT
1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1781 #endif
1782 #if EV_USE_KQUEUE
1783 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1784 #endif
1785 #if EV_USE_EPOLL
1786 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1787 #endif
1788 #if EV_USE_INOTIFY
1789 infy_fork (EV_A);
1790 #endif
1791
1792 if (ev_is_active (&pipe_w))
1793 {
1794 /* this "locks" the handlers against writing to the pipe */
1795 /* while we modify the fd vars */
1796 sig_pending = 1;
1797 #if EV_ASYNC_ENABLE
1798 async_pending = 1;
1799 #endif
1800
1801 ev_ref (EV_A);
1802 ev_io_stop (EV_A_ &pipe_w);
1803
1804 #if EV_USE_EVENTFD
1805 if (evfd >= 0)
1806 close (evfd);
1807 #endif
1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814
1815 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1816 evpipe_init (EV_A);
1817 /* now iterate over everything, in case we missed something */
1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819 #endif
1820 }
1821
1822 postfork = 0;
1823 }
1824
1825 #if EV_MULTIPLICITY
1826
1827 struct ev_loop *
1828 ev_loop_new (unsigned int flags)
1829 {
1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1831
1832 memset (EV_A, 0, sizeof (struct ev_loop));
1833 loop_init (EV_A_ flags);
1834
1835 if (ev_backend (EV_A))
1836 return EV_A;
1837
1838 return 0;
1839 }
1840
1841 void
1842 ev_loop_destroy (EV_P)
1843 {
1844 loop_destroy (EV_A);
1845 ev_free (loop);
1846 }
1847
1848 void
1849 ev_loop_fork (EV_P)
1850 {
1851 postfork = 1; /* must be in line with ev_default_fork */
1852 }
1853 #endif /* multiplicity */
1854
1855 #if EV_VERIFY
1856 static void noinline
1857 verify_watcher (EV_P_ W w)
1858 {
1859 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1860
1861 if (w->pending)
1862 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1863 }
1864
1865 static void noinline
1866 verify_heap (EV_P_ ANHE *heap, int N)
1867 {
1868 int i;
1869
1870 for (i = HEAP0; i < N + HEAP0; ++i)
1871 {
1872 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1873 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1874 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1875
1876 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1877 }
1878 }
1879
1880 static void noinline
1881 array_verify (EV_P_ W *ws, int cnt)
1882 {
1883 while (cnt--)
1884 {
1885 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1886 verify_watcher (EV_A_ ws [cnt]);
1887 }
1888 }
1889 #endif
1890
1891 #if EV_FEATURE_API
1892 void
1893 ev_verify (EV_P)
1894 {
1895 #if EV_VERIFY
1896 int i;
1897 WL w;
1898
1899 assert (activecnt >= -1);
1900
1901 assert (fdchangemax >= fdchangecnt);
1902 for (i = 0; i < fdchangecnt; ++i)
1903 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1904
1905 assert (anfdmax >= 0);
1906 for (i = 0; i < anfdmax; ++i)
1907 for (w = anfds [i].head; w; w = w->next)
1908 {
1909 verify_watcher (EV_A_ (W)w);
1910 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1911 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1912 }
1913
1914 assert (timermax >= timercnt);
1915 verify_heap (EV_A_ timers, timercnt);
1916
1917 #if EV_PERIODIC_ENABLE
1918 assert (periodicmax >= periodiccnt);
1919 verify_heap (EV_A_ periodics, periodiccnt);
1920 #endif
1921
1922 for (i = NUMPRI; i--; )
1923 {
1924 assert (pendingmax [i] >= pendingcnt [i]);
1925 #if EV_IDLE_ENABLE
1926 assert (idleall >= 0);
1927 assert (idlemax [i] >= idlecnt [i]);
1928 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1929 #endif
1930 }
1931
1932 #if EV_FORK_ENABLE
1933 assert (forkmax >= forkcnt);
1934 array_verify (EV_A_ (W *)forks, forkcnt);
1935 #endif
1936
1937 #if EV_ASYNC_ENABLE
1938 assert (asyncmax >= asynccnt);
1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1940 #endif
1941
1942 #if EV_PREPARE_ENABLE
1943 assert (preparemax >= preparecnt);
1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945 #endif
1946
1947 #if EV_CHECK_ENABLE
1948 assert (checkmax >= checkcnt);
1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950 #endif
1951
1952 # if 0
1953 #if EV_CHILD_ENABLE
1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956 #endif
1957 # endif
1958 #endif
1959 }
1960 #endif
1961
1962 #if EV_MULTIPLICITY
1963 struct ev_loop *
1964 ev_default_loop_init (unsigned int flags)
1965 #else
1966 int
1967 ev_default_loop (unsigned int flags)
1968 #endif
1969 {
1970 if (!ev_default_loop_ptr)
1971 {
1972 #if EV_MULTIPLICITY
1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
1974 #else
1975 ev_default_loop_ptr = 1;
1976 #endif
1977
1978 loop_init (EV_A_ flags);
1979
1980 if (ev_backend (EV_A))
1981 {
1982 #if EV_CHILD_ENABLE
1983 ev_signal_init (&childev, childcb, SIGCHLD);
1984 ev_set_priority (&childev, EV_MAXPRI);
1985 ev_signal_start (EV_A_ &childev);
1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
1987 #endif
1988 }
1989 else
1990 ev_default_loop_ptr = 0;
1991 }
1992
1993 return ev_default_loop_ptr;
1994 }
1995
1996 void
1997 ev_default_destroy (void)
1998 {
1999 #if EV_MULTIPLICITY
2000 EV_P = ev_default_loop_ptr;
2001 #endif
2002
2003 ev_default_loop_ptr = 0;
2004
2005 #if EV_CHILD_ENABLE
2006 ev_ref (EV_A); /* child watcher */
2007 ev_signal_stop (EV_A_ &childev);
2008 #endif
2009
2010 loop_destroy (EV_A);
2011 }
2012
2013 void
2014 ev_default_fork (void)
2015 {
2016 #if EV_MULTIPLICITY
2017 EV_P = ev_default_loop_ptr;
2018 #endif
2019
2020 postfork = 1; /* must be in line with ev_loop_fork */
2021 }
2022
2023 /*****************************************************************************/
2024
2025 void
2026 ev_invoke (EV_P_ void *w, int revents)
2027 {
2028 EV_CB_INVOKE ((W)w, revents);
2029 }
2030
2031 unsigned int
2032 ev_pending_count (EV_P)
2033 {
2034 int pri;
2035 unsigned int count = 0;
2036
2037 for (pri = NUMPRI; pri--; )
2038 count += pendingcnt [pri];
2039
2040 return count;
2041 }
2042
2043 void noinline
2044 ev_invoke_pending (EV_P)
2045 {
2046 int pri;
2047
2048 for (pri = NUMPRI; pri--; )
2049 while (pendingcnt [pri])
2050 {
2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2052
2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2054 /* ^ this is no longer true, as pending_w could be here */
2055
2056 p->w->pending = 0;
2057 EV_CB_INVOKE (p->w, p->events);
2058 EV_FREQUENT_CHECK;
2059 }
2060 }
2061
2062 #if EV_IDLE_ENABLE
2063 /* make idle watchers pending. this handles the "call-idle */
2064 /* only when higher priorities are idle" logic */
2065 inline_size void
2066 idle_reify (EV_P)
2067 {
2068 if (expect_false (idleall))
2069 {
2070 int pri;
2071
2072 for (pri = NUMPRI; pri--; )
2073 {
2074 if (pendingcnt [pri])
2075 break;
2076
2077 if (idlecnt [pri])
2078 {
2079 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2080 break;
2081 }
2082 }
2083 }
2084 }
2085 #endif
2086
2087 /* make timers pending */
2088 inline_size void
2089 timers_reify (EV_P)
2090 {
2091 EV_FREQUENT_CHECK;
2092
2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2094 {
2095 do
2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
2104 ev_at (w) += w->repeat;
2105 if (ev_at (w) < mn_now)
2106 ev_at (w) = mn_now;
2107
2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2109
2110 ANHE_at_cache (timers [HEAP0]);
2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
2118 }
2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2120
2121 feed_reverse_done (EV_A_ EV_TIMER);
2122 }
2123 }
2124
2125 #if EV_PERIODIC_ENABLE
2126 /* make periodics pending */
2127 inline_size void
2128 periodics_reify (EV_P)
2129 {
2130 EV_FREQUENT_CHECK;
2131
2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2133 {
2134 int feed_count = 0;
2135
2136 do
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2141
2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2146
2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2148
2149 ANHE_at_cache (periodics [HEAP0]);
2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
2176 }
2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2178
2179 feed_reverse_done (EV_A_ EV_PERIODIC);
2180 }
2181 }
2182
2183 /* simply recalculate all periodics */
2184 /* TODO: maybe ensure that at leats one event happens when jumping forward? */
2185 static void noinline
2186 periodics_reschedule (EV_P)
2187 {
2188 int i;
2189
2190 /* adjust periodics after time jump */
2191 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2192 {
2193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2194
2195 if (w->reschedule_cb)
2196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2197 else if (w->interval)
2198 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2199
2200 ANHE_at_cache (periodics [i]);
2201 }
2202
2203 reheap (periodics, periodiccnt);
2204 }
2205 #endif
2206
2207 /* adjust all timers by a given offset */
2208 static void noinline
2209 timers_reschedule (EV_P_ ev_tstamp adjust)
2210 {
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
2214 {
2215 ANHE *he = timers + i + HEAP0;
2216 ANHE_w (*he)->at += adjust;
2217 ANHE_at_cache (*he);
2218 }
2219 }
2220
2221 /* fetch new monotonic and realtime times from the kernel */
2222 /* also detect if there was a timejump, and act accordingly */
2223 inline_speed void
2224 time_update (EV_P_ ev_tstamp max_block)
2225 {
2226 #if EV_USE_MONOTONIC
2227 if (expect_true (have_monotonic))
2228 {
2229 int i;
2230 ev_tstamp odiff = rtmn_diff;
2231
2232 mn_now = get_clock ();
2233
2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2235 /* interpolate in the meantime */
2236 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2237 {
2238 ev_rt_now = rtmn_diff + mn_now;
2239 return;
2240 }
2241
2242 now_floor = mn_now;
2243 ev_rt_now = ev_time ();
2244
2245 /* loop a few times, before making important decisions.
2246 * on the choice of "4": one iteration isn't enough,
2247 * in case we get preempted during the calls to
2248 * ev_time and get_clock. a second call is almost guaranteed
2249 * to succeed in that case, though. and looping a few more times
2250 * doesn't hurt either as we only do this on time-jumps or
2251 * in the unlikely event of having been preempted here.
2252 */
2253 for (i = 4; --i; )
2254 {
2255 rtmn_diff = ev_rt_now - mn_now;
2256
2257 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2258 return; /* all is well */
2259
2260 ev_rt_now = ev_time ();
2261 mn_now = get_clock ();
2262 now_floor = mn_now;
2263 }
2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2267 # if EV_PERIODIC_ENABLE
2268 periodics_reschedule (EV_A);
2269 # endif
2270 }
2271 else
2272 #endif
2273 {
2274 ev_rt_now = ev_time ();
2275
2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2280 #if EV_PERIODIC_ENABLE
2281 periodics_reschedule (EV_A);
2282 #endif
2283 }
2284
2285 mn_now = ev_rt_now;
2286 }
2287 }
2288
2289 void
2290 ev_loop (EV_P_ int flags)
2291 {
2292 #if EV_FEATURE_API
2293 ++loop_depth;
2294 #endif
2295
2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
2298 loop_done = EVUNLOOP_CANCEL;
2299
2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2301
2302 do
2303 {
2304 #if EV_VERIFY >= 2
2305 ev_verify (EV_A);
2306 #endif
2307
2308 #ifndef _WIN32
2309 if (expect_false (curpid)) /* penalise the forking check even more */
2310 if (expect_false (getpid () != curpid))
2311 {
2312 curpid = getpid ();
2313 postfork = 1;
2314 }
2315 #endif
2316
2317 #if EV_FORK_ENABLE
2318 /* we might have forked, so queue fork handlers */
2319 if (expect_false (postfork))
2320 if (forkcnt)
2321 {
2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2323 EV_INVOKE_PENDING;
2324 }
2325 #endif
2326
2327 #if EV_PREPARE_ENABLE
2328 /* queue prepare watchers (and execute them) */
2329 if (expect_false (preparecnt))
2330 {
2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2332 EV_INVOKE_PENDING;
2333 }
2334 #endif
2335
2336 if (expect_false (loop_done))
2337 break;
2338
2339 /* we might have forked, so reify kernel state if necessary */
2340 if (expect_false (postfork))
2341 loop_fork (EV_A);
2342
2343 /* update fd-related kernel structures */
2344 fd_reify (EV_A);
2345
2346 /* calculate blocking time */
2347 {
2348 ev_tstamp waittime = 0.;
2349 ev_tstamp sleeptime = 0.;
2350
2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2352 {
2353 /* remember old timestamp for io_blocktime calculation */
2354 ev_tstamp prev_mn_now = mn_now;
2355
2356 /* update time to cancel out callback processing overhead */
2357 time_update (EV_A_ 1e100);
2358
2359 waittime = MAX_BLOCKTIME;
2360
2361 if (timercnt)
2362 {
2363 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2364 if (waittime > to) waittime = to;
2365 }
2366
2367 #if EV_PERIODIC_ENABLE
2368 if (periodiccnt)
2369 {
2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2371 if (waittime > to) waittime = to;
2372 }
2373 #endif
2374
2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
2376 if (expect_false (waittime < timeout_blocktime))
2377 waittime = timeout_blocktime;
2378
2379 /* extra check because io_blocktime is commonly 0 */
2380 if (expect_false (io_blocktime))
2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
2389 ev_sleep (sleeptime);
2390 waittime -= sleeptime;
2391 }
2392 }
2393 }
2394
2395 #if EV_FEATURE_API
2396 ++loop_count;
2397 #endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2401
2402 /* update ev_rt_now, do magic */
2403 time_update (EV_A_ waittime + sleeptime);
2404 }
2405
2406 /* queue pending timers and reschedule them */
2407 timers_reify (EV_A); /* relative timers called last */
2408 #if EV_PERIODIC_ENABLE
2409 periodics_reify (EV_A); /* absolute timers called first */
2410 #endif
2411
2412 #if EV_IDLE_ENABLE
2413 /* queue idle watchers unless other events are pending */
2414 idle_reify (EV_A);
2415 #endif
2416
2417 #if EV_CHECK_ENABLE
2418 /* queue check watchers, to be executed first */
2419 if (expect_false (checkcnt))
2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421 #endif
2422
2423 EV_INVOKE_PENDING;
2424 }
2425 while (expect_true (
2426 activecnt
2427 && !loop_done
2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2429 ));
2430
2431 if (loop_done == EVUNLOOP_ONE)
2432 loop_done = EVUNLOOP_CANCEL;
2433
2434 #if EV_FEATURE_API
2435 --loop_depth;
2436 #endif
2437 }
2438
2439 void
2440 ev_unloop (EV_P_ int how)
2441 {
2442 loop_done = how;
2443 }
2444
2445 void
2446 ev_ref (EV_P)
2447 {
2448 ++activecnt;
2449 }
2450
2451 void
2452 ev_unref (EV_P)
2453 {
2454 --activecnt;
2455 }
2456
2457 void
2458 ev_now_update (EV_P)
2459 {
2460 time_update (EV_A_ 1e100);
2461 }
2462
2463 void
2464 ev_suspend (EV_P)
2465 {
2466 ev_now_update (EV_A);
2467 }
2468
2469 void
2470 ev_resume (EV_P)
2471 {
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476 #if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479 #endif
2480 }
2481
2482 /*****************************************************************************/
2483 /* singly-linked list management, used when the expected list length is short */
2484
2485 inline_size void
2486 wlist_add (WL *head, WL elem)
2487 {
2488 elem->next = *head;
2489 *head = elem;
2490 }
2491
2492 inline_size void
2493 wlist_del (WL *head, WL elem)
2494 {
2495 while (*head)
2496 {
2497 if (expect_true (*head == elem))
2498 {
2499 *head = elem->next;
2500 break;
2501 }
2502
2503 head = &(*head)->next;
2504 }
2505 }
2506
2507 /* internal, faster, version of ev_clear_pending */
2508 inline_speed void
2509 clear_pending (EV_P_ W w)
2510 {
2511 if (w->pending)
2512 {
2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2514 w->pending = 0;
2515 }
2516 }
2517
2518 int
2519 ev_clear_pending (EV_P_ void *w)
2520 {
2521 W w_ = (W)w;
2522 int pending = w_->pending;
2523
2524 if (expect_true (pending))
2525 {
2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
2528 w_->pending = 0;
2529 return p->events;
2530 }
2531 else
2532 return 0;
2533 }
2534
2535 inline_size void
2536 pri_adjust (EV_P_ W w)
2537 {
2538 int pri = ev_priority (w);
2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2541 ev_set_priority (w, pri);
2542 }
2543
2544 inline_speed void
2545 ev_start (EV_P_ W w, int active)
2546 {
2547 pri_adjust (EV_A_ w);
2548 w->active = active;
2549 ev_ref (EV_A);
2550 }
2551
2552 inline_size void
2553 ev_stop (EV_P_ W w)
2554 {
2555 ev_unref (EV_A);
2556 w->active = 0;
2557 }
2558
2559 /*****************************************************************************/
2560
2561 void noinline
2562 ev_io_start (EV_P_ ev_io *w)
2563 {
2564 int fd = w->fd;
2565
2566 if (expect_false (ev_is_active (w)))
2567 return;
2568
2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2571
2572 EV_FREQUENT_CHECK;
2573
2574 ev_start (EV_A_ (W)w, 1);
2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2576 wlist_add (&anfds[fd].head, (WL)w);
2577
2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2579 w->events &= ~EV__IOFDSET;
2580
2581 EV_FREQUENT_CHECK;
2582 }
2583
2584 void noinline
2585 ev_io_stop (EV_P_ ev_io *w)
2586 {
2587 clear_pending (EV_A_ (W)w);
2588 if (expect_false (!ev_is_active (w)))
2589 return;
2590
2591 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2592
2593 EV_FREQUENT_CHECK;
2594
2595 wlist_del (&anfds[w->fd].head, (WL)w);
2596 ev_stop (EV_A_ (W)w);
2597
2598 fd_change (EV_A_ w->fd, 1);
2599
2600 EV_FREQUENT_CHECK;
2601 }
2602
2603 void noinline
2604 ev_timer_start (EV_P_ ev_timer *w)
2605 {
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 ev_at (w) += mn_now;
2610
2611 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2612
2613 EV_FREQUENT_CHECK;
2614
2615 ++timercnt;
2616 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2617 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2618 ANHE_w (timers [ev_active (w)]) = (WT)w;
2619 ANHE_at_cache (timers [ev_active (w)]);
2620 upheap (timers, ev_active (w));
2621
2622 EV_FREQUENT_CHECK;
2623
2624 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2625 }
2626
2627 void noinline
2628 ev_timer_stop (EV_P_ ev_timer *w)
2629 {
2630 clear_pending (EV_A_ (W)w);
2631 if (expect_false (!ev_is_active (w)))
2632 return;
2633
2634 EV_FREQUENT_CHECK;
2635
2636 {
2637 int active = ev_active (w);
2638
2639 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2640
2641 --timercnt;
2642
2643 if (expect_true (active < timercnt + HEAP0))
2644 {
2645 timers [active] = timers [timercnt + HEAP0];
2646 adjustheap (timers, timercnt, active);
2647 }
2648 }
2649
2650 ev_at (w) -= mn_now;
2651
2652 ev_stop (EV_A_ (W)w);
2653
2654 EV_FREQUENT_CHECK;
2655 }
2656
2657 void noinline
2658 ev_timer_again (EV_P_ ev_timer *w)
2659 {
2660 EV_FREQUENT_CHECK;
2661
2662 if (ev_is_active (w))
2663 {
2664 if (w->repeat)
2665 {
2666 ev_at (w) = mn_now + w->repeat;
2667 ANHE_at_cache (timers [ev_active (w)]);
2668 adjustheap (timers, timercnt, ev_active (w));
2669 }
2670 else
2671 ev_timer_stop (EV_A_ w);
2672 }
2673 else if (w->repeat)
2674 {
2675 ev_at (w) = w->repeat;
2676 ev_timer_start (EV_A_ w);
2677 }
2678
2679 EV_FREQUENT_CHECK;
2680 }
2681
2682 ev_tstamp
2683 ev_timer_remaining (EV_P_ ev_timer *w)
2684 {
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2686 }
2687
2688 #if EV_PERIODIC_ENABLE
2689 void noinline
2690 ev_periodic_start (EV_P_ ev_periodic *w)
2691 {
2692 if (expect_false (ev_is_active (w)))
2693 return;
2694
2695 if (w->reschedule_cb)
2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2697 else if (w->interval)
2698 {
2699 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2700 /* this formula differs from the one in periodic_reify because we do not always round up */
2701 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2702 }
2703 else
2704 ev_at (w) = w->offset;
2705
2706 EV_FREQUENT_CHECK;
2707
2708 ++periodiccnt;
2709 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2710 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2711 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2712 ANHE_at_cache (periodics [ev_active (w)]);
2713 upheap (periodics, ev_active (w));
2714
2715 EV_FREQUENT_CHECK;
2716
2717 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2718 }
2719
2720 void noinline
2721 ev_periodic_stop (EV_P_ ev_periodic *w)
2722 {
2723 clear_pending (EV_A_ (W)w);
2724 if (expect_false (!ev_is_active (w)))
2725 return;
2726
2727 EV_FREQUENT_CHECK;
2728
2729 {
2730 int active = ev_active (w);
2731
2732 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2733
2734 --periodiccnt;
2735
2736 if (expect_true (active < periodiccnt + HEAP0))
2737 {
2738 periodics [active] = periodics [periodiccnt + HEAP0];
2739 adjustheap (periodics, periodiccnt, active);
2740 }
2741 }
2742
2743 ev_stop (EV_A_ (W)w);
2744
2745 EV_FREQUENT_CHECK;
2746 }
2747
2748 void noinline
2749 ev_periodic_again (EV_P_ ev_periodic *w)
2750 {
2751 /* TODO: use adjustheap and recalculation */
2752 ev_periodic_stop (EV_A_ w);
2753 ev_periodic_start (EV_A_ w);
2754 }
2755 #endif
2756
2757 #ifndef SA_RESTART
2758 # define SA_RESTART 0
2759 #endif
2760
2761 #if EV_SIGNAL_ENABLE
2762
2763 void noinline
2764 ev_signal_start (EV_P_ ev_signal *w)
2765 {
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2770
2771 #if EV_MULTIPLICITY
2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2774
2775 signals [w->signum - 1].loop = EV_A;
2776 #endif
2777
2778 EV_FREQUENT_CHECK;
2779
2780 #if EV_USE_SIGNALFD
2781 if (sigfd == -2)
2782 {
2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2784 if (sigfd < 0 && errno == EINVAL)
2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2786
2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
2790
2791 sigemptyset (&sigfd_set);
2792
2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808 #endif
2809
2810 ev_start (EV_A_ (W)w, 1);
2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
2812
2813 if (!((WL)w)->next)
2814 # if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
2816 # endif
2817 {
2818 # ifdef _WIN32
2819 evpipe_init (EV_A);
2820
2821 signal (w->signum, ev_sighandler);
2822 # else
2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
2827 sa.sa_handler = ev_sighandler;
2828 sigfillset (&sa.sa_mask);
2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2835 #endif
2836 }
2837
2838 EV_FREQUENT_CHECK;
2839 }
2840
2841 void noinline
2842 ev_signal_stop (EV_P_ ev_signal *w)
2843 {
2844 clear_pending (EV_A_ (W)w);
2845 if (expect_false (!ev_is_active (w)))
2846 return;
2847
2848 EV_FREQUENT_CHECK;
2849
2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
2851 ev_stop (EV_A_ (W)w);
2852
2853 if (!signals [w->signum - 1].head)
2854 {
2855 #if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857 #endif
2858 #if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871 #endif
2872 signal (w->signum, SIG_DFL);
2873 }
2874
2875 EV_FREQUENT_CHECK;
2876 }
2877
2878 #endif
2879
2880 #if EV_CHILD_ENABLE
2881
2882 void
2883 ev_child_start (EV_P_ ev_child *w)
2884 {
2885 #if EV_MULTIPLICITY
2886 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2887 #endif
2888 if (expect_false (ev_is_active (w)))
2889 return;
2890
2891 EV_FREQUENT_CHECK;
2892
2893 ev_start (EV_A_ (W)w, 1);
2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2895
2896 EV_FREQUENT_CHECK;
2897 }
2898
2899 void
2900 ev_child_stop (EV_P_ ev_child *w)
2901 {
2902 clear_pending (EV_A_ (W)w);
2903 if (expect_false (!ev_is_active (w)))
2904 return;
2905
2906 EV_FREQUENT_CHECK;
2907
2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2909 ev_stop (EV_A_ (W)w);
2910
2911 EV_FREQUENT_CHECK;
2912 }
2913
2914 #endif
2915
2916 #if EV_STAT_ENABLE
2917
2918 # ifdef _WIN32
2919 # undef lstat
2920 # define lstat(a,b) _stati64 (a,b)
2921 # endif
2922
2923 #define DEF_STAT_INTERVAL 5.0074891
2924 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2925 #define MIN_STAT_INTERVAL 0.1074891
2926
2927 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2928
2929 #if EV_USE_INOTIFY
2930
2931 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2933
2934 static void noinline
2935 infy_add (EV_P_ ev_stat *w)
2936 {
2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2938
2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2959 }
2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2964
2965 /* if path is not there, monitor some parent directory for speedup hints */
2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2967 /* but an efficiency issue only */
2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2969 {
2970 char path [4096];
2971 strcpy (path, w->path);
2972
2973 do
2974 {
2975 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2976 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2977
2978 char *pend = strrchr (path, '/');
2979
2980 if (!pend || pend == path)
2981 break;
2982
2983 *pend = 0;
2984 w->wd = inotify_add_watch (fs_fd, path, mask);
2985 }
2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2987 }
2988 }
2989
2990 if (w->wd >= 0)
2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2992
2993 /* now re-arm timer, if required */
2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2995 ev_timer_again (EV_A_ &w->timer);
2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2997 }
2998
2999 static void noinline
3000 infy_del (EV_P_ ev_stat *w)
3001 {
3002 int slot;
3003 int wd = w->wd;
3004
3005 if (wd < 0)
3006 return;
3007
3008 w->wd = -2;
3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3010 wlist_del (&fs_hash [slot].head, (WL)w);
3011
3012 /* remove this watcher, if others are watching it, they will rearm */
3013 inotify_rm_watch (fs_fd, wd);
3014 }
3015
3016 static void noinline
3017 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3018 {
3019 if (slot < 0)
3020 /* overflow, need to check for all hash slots */
3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3022 infy_wd (EV_A_ slot, wd, ev);
3023 else
3024 {
3025 WL w_;
3026
3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3028 {
3029 ev_stat *w = (ev_stat *)w_;
3030 w_ = w_->next; /* lets us remove this watcher and all before it */
3031
3032 if (w->wd == wd || wd == -1)
3033 {
3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3035 {
3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3037 w->wd = -1;
3038 infy_add (EV_A_ w); /* re-add, no matter what */
3039 }
3040
3041 stat_timer_cb (EV_A_ &w->timer, 0);
3042 }
3043 }
3044 }
3045 }
3046
3047 static void
3048 infy_cb (EV_P_ ev_io *w, int revents)
3049 {
3050 char buf [EV_INOTIFY_BUFSIZE];
3051 int ofs;
3052 int len = read (fs_fd, buf, sizeof (buf));
3053
3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
3060 }
3061
3062 inline_size unsigned int
3063 ev_linux_version (void)
3064 {
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092 }
3093
3094 inline_size void
3095 ev_check_2625 (EV_P)
3096 {
3097 /* kernels < 2.6.25 are borked
3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3099 */
3100 if (ev_linux_version () < 0x020619)
3101 return;
3102
3103 fs_2625 = 1;
3104 }
3105
3106 inline_size int
3107 infy_newfd (void)
3108 {
3109 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113 #endif
3114 return inotify_init ();
3115 }
3116
3117 inline_size void
3118 infy_init (EV_P)
3119 {
3120 if (fs_fd != -2)
3121 return;
3122
3123 fs_fd = -1;
3124
3125 ev_check_2625 (EV_A);
3126
3127 fs_fd = infy_newfd ();
3128
3129 if (fs_fd >= 0)
3130 {
3131 fd_intern (fs_fd);
3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3133 ev_set_priority (&fs_w, EV_MAXPRI);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
3137 }
3138
3139 inline_size void
3140 infy_fork (EV_P)
3141 {
3142 int slot;
3143
3144 if (fs_fd < 0)
3145 return;
3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
3149 close (fs_fd);
3150 fs_fd = infy_newfd ();
3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3161 {
3162 WL w_ = fs_hash [slot].head;
3163 fs_hash [slot].head = 0;
3164
3165 while (w_)
3166 {
3167 ev_stat *w = (ev_stat *)w_;
3168 w_ = w_->next; /* lets us add this watcher */
3169
3170 w->wd = -1;
3171
3172 if (fs_fd >= 0)
3173 infy_add (EV_A_ w); /* re-add, no matter what */
3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
3181 }
3182 }
3183 }
3184
3185 #endif
3186
3187 #ifdef _WIN32
3188 # define EV_LSTAT(p,b) _stati64 (p, b)
3189 #else
3190 # define EV_LSTAT(p,b) lstat (p, b)
3191 #endif
3192
3193 void
3194 ev_stat_stat (EV_P_ ev_stat *w)
3195 {
3196 if (lstat (w->path, &w->attr) < 0)
3197 w->attr.st_nlink = 0;
3198 else if (!w->attr.st_nlink)
3199 w->attr.st_nlink = 1;
3200 }
3201
3202 static void noinline
3203 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3204 {
3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3206
3207 ev_statdata prev = w->attr;
3208 ev_stat_stat (EV_A_ w);
3209
3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3211 if (
3212 prev.st_dev != w->attr.st_dev
3213 || prev.st_ino != w->attr.st_ino
3214 || prev.st_mode != w->attr.st_mode
3215 || prev.st_nlink != w->attr.st_nlink
3216 || prev.st_uid != w->attr.st_uid
3217 || prev.st_gid != w->attr.st_gid
3218 || prev.st_rdev != w->attr.st_rdev
3219 || prev.st_size != w->attr.st_size
3220 || prev.st_atime != w->attr.st_atime
3221 || prev.st_mtime != w->attr.st_mtime
3222 || prev.st_ctime != w->attr.st_ctime
3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
3229 #if EV_USE_INOTIFY
3230 if (fs_fd >= 0)
3231 {
3232 infy_del (EV_A_ w);
3233 infy_add (EV_A_ w);
3234 ev_stat_stat (EV_A_ w); /* avoid race... */
3235 }
3236 #endif
3237
3238 ev_feed_event (EV_A_ w, EV_STAT);
3239 }
3240 }
3241
3242 void
3243 ev_stat_start (EV_P_ ev_stat *w)
3244 {
3245 if (expect_false (ev_is_active (w)))
3246 return;
3247
3248 ev_stat_stat (EV_A_ w);
3249
3250 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3251 w->interval = MIN_STAT_INTERVAL;
3252
3253 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3254 ev_set_priority (&w->timer, ev_priority (w));
3255
3256 #if EV_USE_INOTIFY
3257 infy_init (EV_A);
3258
3259 if (fs_fd >= 0)
3260 infy_add (EV_A_ w);
3261 else
3262 #endif
3263 {
3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
3267
3268 ev_start (EV_A_ (W)w, 1);
3269
3270 EV_FREQUENT_CHECK;
3271 }
3272
3273 void
3274 ev_stat_stop (EV_P_ ev_stat *w)
3275 {
3276 clear_pending (EV_A_ (W)w);
3277 if (expect_false (!ev_is_active (w)))
3278 return;
3279
3280 EV_FREQUENT_CHECK;
3281
3282 #if EV_USE_INOTIFY
3283 infy_del (EV_A_ w);
3284 #endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
3291
3292 ev_stop (EV_A_ (W)w);
3293
3294 EV_FREQUENT_CHECK;
3295 }
3296 #endif
3297
3298 #if EV_IDLE_ENABLE
3299 void
3300 ev_idle_start (EV_P_ ev_idle *w)
3301 {
3302 if (expect_false (ev_is_active (w)))
3303 return;
3304
3305 pri_adjust (EV_A_ (W)w);
3306
3307 EV_FREQUENT_CHECK;
3308
3309 {
3310 int active = ++idlecnt [ABSPRI (w)];
3311
3312 ++idleall;
3313 ev_start (EV_A_ (W)w, active);
3314
3315 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3316 idles [ABSPRI (w)][active - 1] = w;
3317 }
3318
3319 EV_FREQUENT_CHECK;
3320 }
3321
3322 void
3323 ev_idle_stop (EV_P_ ev_idle *w)
3324 {
3325 clear_pending (EV_A_ (W)w);
3326 if (expect_false (!ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
3334 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3335 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3336
3337 ev_stop (EV_A_ (W)w);
3338 --idleall;
3339 }
3340
3341 EV_FREQUENT_CHECK;
3342 }
3343 #endif
3344
3345 #if EV_PREPARE_ENABLE
3346 void
3347 ev_prepare_start (EV_P_ ev_prepare *w)
3348 {
3349 if (expect_false (ev_is_active (w)))
3350 return;
3351
3352 EV_FREQUENT_CHECK;
3353
3354 ev_start (EV_A_ (W)w, ++preparecnt);
3355 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3356 prepares [preparecnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
3359 }
3360
3361 void
3362 ev_prepare_stop (EV_P_ ev_prepare *w)
3363 {
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 prepares [active - 1] = prepares [--preparecnt];
3374 ev_active (prepares [active - 1]) = active;
3375 }
3376
3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380 }
3381 #endif
3382
3383 #if EV_CHECK_ENABLE
3384 void
3385 ev_check_start (EV_P_ ev_check *w)
3386 {
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 EV_FREQUENT_CHECK;
3391
3392 ev_start (EV_A_ (W)w, ++checkcnt);
3393 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3394 checks [checkcnt - 1] = w;
3395
3396 EV_FREQUENT_CHECK;
3397 }
3398
3399 void
3400 ev_check_stop (EV_P_ ev_check *w)
3401 {
3402 clear_pending (EV_A_ (W)w);
3403 if (expect_false (!ev_is_active (w)))
3404 return;
3405
3406 EV_FREQUENT_CHECK;
3407
3408 {
3409 int active = ev_active (w);
3410
3411 checks [active - 1] = checks [--checkcnt];
3412 ev_active (checks [active - 1]) = active;
3413 }
3414
3415 ev_stop (EV_A_ (W)w);
3416
3417 EV_FREQUENT_CHECK;
3418 }
3419 #endif
3420
3421 #if EV_EMBED_ENABLE
3422 void noinline
3423 ev_embed_sweep (EV_P_ ev_embed *w)
3424 {
3425 ev_loop (w->other, EVLOOP_NONBLOCK);
3426 }
3427
3428 static void
3429 embed_io_cb (EV_P_ ev_io *io, int revents)
3430 {
3431 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3432
3433 if (ev_cb (w))
3434 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3435 else
3436 ev_loop (w->other, EVLOOP_NONBLOCK);
3437 }
3438
3439 static void
3440 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3441 {
3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3443
3444 {
3445 EV_P = w->other;
3446
3447 while (fdchangecnt)
3448 {
3449 fd_reify (EV_A);
3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3451 }
3452 }
3453 }
3454
3455 static void
3456 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3457 {
3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3459
3460 ev_embed_stop (EV_A_ w);
3461
3462 {
3463 EV_P = w->other;
3464
3465 ev_loop_fork (EV_A);
3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3467 }
3468
3469 ev_embed_start (EV_A_ w);
3470 }
3471
3472 #if 0
3473 static void
3474 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3475 {
3476 ev_idle_stop (EV_A_ idle);
3477 }
3478 #endif
3479
3480 void
3481 ev_embed_start (EV_P_ ev_embed *w)
3482 {
3483 if (expect_false (ev_is_active (w)))
3484 return;
3485
3486 {
3487 EV_P = w->other;
3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3490 }
3491
3492 EV_FREQUENT_CHECK;
3493
3494 ev_set_priority (&w->io, ev_priority (w));
3495 ev_io_start (EV_A_ &w->io);
3496
3497 ev_prepare_init (&w->prepare, embed_prepare_cb);
3498 ev_set_priority (&w->prepare, EV_MINPRI);
3499 ev_prepare_start (EV_A_ &w->prepare);
3500
3501 ev_fork_init (&w->fork, embed_fork_cb);
3502 ev_fork_start (EV_A_ &w->fork);
3503
3504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3505
3506 ev_start (EV_A_ (W)w, 1);
3507
3508 EV_FREQUENT_CHECK;
3509 }
3510
3511 void
3512 ev_embed_stop (EV_P_ ev_embed *w)
3513 {
3514 clear_pending (EV_A_ (W)w);
3515 if (expect_false (!ev_is_active (w)))
3516 return;
3517
3518 EV_FREQUENT_CHECK;
3519
3520 ev_io_stop (EV_A_ &w->io);
3521 ev_prepare_stop (EV_A_ &w->prepare);
3522 ev_fork_stop (EV_A_ &w->fork);
3523
3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
3527 }
3528 #endif
3529
3530 #if EV_FORK_ENABLE
3531 void
3532 ev_fork_start (EV_P_ ev_fork *w)
3533 {
3534 if (expect_false (ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 ev_start (EV_A_ (W)w, ++forkcnt);
3540 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3541 forks [forkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
3544 }
3545
3546 void
3547 ev_fork_stop (EV_P_ ev_fork *w)
3548 {
3549 clear_pending (EV_A_ (W)w);
3550 if (expect_false (!ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 {
3556 int active = ev_active (w);
3557
3558 forks [active - 1] = forks [--forkcnt];
3559 ev_active (forks [active - 1]) = active;
3560 }
3561
3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565 }
3566 #endif
3567
3568 #if EV_ASYNC_ENABLE
3569 void
3570 ev_async_start (EV_P_ ev_async *w)
3571 {
3572 if (expect_false (ev_is_active (w)))
3573 return;
3574
3575 evpipe_init (EV_A);
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, ++asynccnt);
3580 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3581 asyncs [asynccnt - 1] = w;
3582
3583 EV_FREQUENT_CHECK;
3584 }
3585
3586 void
3587 ev_async_stop (EV_P_ ev_async *w)
3588 {
3589 clear_pending (EV_A_ (W)w);
3590 if (expect_false (!ev_is_active (w)))
3591 return;
3592
3593 EV_FREQUENT_CHECK;
3594
3595 {
3596 int active = ev_active (w);
3597
3598 asyncs [active - 1] = asyncs [--asynccnt];
3599 ev_active (asyncs [active - 1]) = active;
3600 }
3601
3602 ev_stop (EV_A_ (W)w);
3603
3604 EV_FREQUENT_CHECK;
3605 }
3606
3607 void
3608 ev_async_send (EV_P_ ev_async *w)
3609 {
3610 w->sent = 1;
3611 evpipe_write (EV_A_ &async_pending);
3612 }
3613 #endif
3614
3615 /*****************************************************************************/
3616
3617 struct ev_once
3618 {
3619 ev_io io;
3620 ev_timer to;
3621 void (*cb)(int revents, void *arg);
3622 void *arg;
3623 };
3624
3625 static void
3626 once_cb (EV_P_ struct ev_once *once, int revents)
3627 {
3628 void (*cb)(int revents, void *arg) = once->cb;
3629 void *arg = once->arg;
3630
3631 ev_io_stop (EV_A_ &once->io);
3632 ev_timer_stop (EV_A_ &once->to);
3633 ev_free (once);
3634
3635 cb (revents, arg);
3636 }
3637
3638 static void
3639 once_cb_io (EV_P_ ev_io *w, int revents)
3640 {
3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3644 }
3645
3646 static void
3647 once_cb_to (EV_P_ ev_timer *w, int revents)
3648 {
3649 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3650
3651 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3652 }
3653
3654 void
3655 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3656 {
3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3658
3659 if (expect_false (!once))
3660 {
3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3662 return;
3663 }
3664
3665 once->cb = cb;
3666 once->arg = arg;
3667
3668 ev_init (&once->io, once_cb_io);
3669 if (fd >= 0)
3670 {
3671 ev_io_set (&once->io, fd, events);
3672 ev_io_start (EV_A_ &once->io);
3673 }
3674
3675 ev_init (&once->to, once_cb_to);
3676 if (timeout >= 0.)
3677 {
3678 ev_timer_set (&once->to, timeout, 0.);
3679 ev_timer_start (EV_A_ &once->to);
3680 }
3681 }
3682
3683 /*****************************************************************************/
3684
3685 #if EV_WALK_ENABLE
3686 void
3687 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3688 {
3689 int i, j;
3690 ev_watcher_list *wl, *wn;
3691
3692 if (types & (EV_IO | EV_EMBED))
3693 for (i = 0; i < anfdmax; ++i)
3694 for (wl = anfds [i].head; wl; )
3695 {
3696 wn = wl->next;
3697
3698 #if EV_EMBED_ENABLE
3699 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3700 {
3701 if (types & EV_EMBED)
3702 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3703 }
3704 else
3705 #endif
3706 #if EV_USE_INOTIFY
3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3708 ;
3709 else
3710 #endif
3711 if ((ev_io *)wl != &pipe_w)
3712 if (types & EV_IO)
3713 cb (EV_A_ EV_IO, wl);
3714
3715 wl = wn;
3716 }
3717
3718 if (types & (EV_TIMER | EV_STAT))
3719 for (i = timercnt + HEAP0; i-- > HEAP0; )
3720 #if EV_STAT_ENABLE
3721 /*TODO: timer is not always active*/
3722 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3723 {
3724 if (types & EV_STAT)
3725 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3726 }
3727 else
3728 #endif
3729 if (types & EV_TIMER)
3730 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3731
3732 #if EV_PERIODIC_ENABLE
3733 if (types & EV_PERIODIC)
3734 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3735 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3736 #endif
3737
3738 #if EV_IDLE_ENABLE
3739 if (types & EV_IDLE)
3740 for (j = NUMPRI; i--; )
3741 for (i = idlecnt [j]; i--; )
3742 cb (EV_A_ EV_IDLE, idles [j][i]);
3743 #endif
3744
3745 #if EV_FORK_ENABLE
3746 if (types & EV_FORK)
3747 for (i = forkcnt; i--; )
3748 if (ev_cb (forks [i]) != embed_fork_cb)
3749 cb (EV_A_ EV_FORK, forks [i]);
3750 #endif
3751
3752 #if EV_ASYNC_ENABLE
3753 if (types & EV_ASYNC)
3754 for (i = asynccnt; i--; )
3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3756 #endif
3757
3758 #if EV_PREPARE_ENABLE
3759 if (types & EV_PREPARE)
3760 for (i = preparecnt; i--; )
3761 # if EV_EMBED_ENABLE
3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3763 # endif
3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765 #endif
3766
3767 #if EV_CHECK_ENABLE
3768 if (types & EV_CHECK)
3769 for (i = checkcnt; i--; )
3770 cb (EV_A_ EV_CHECK, checks [i]);
3771 #endif
3772
3773 #if EV_SIGNAL_ENABLE
3774 if (types & EV_SIGNAL)
3775 for (i = 0; i < EV_NSIG - 1; ++i)
3776 for (wl = signals [i].head; wl; )
3777 {
3778 wn = wl->next;
3779 cb (EV_A_ EV_SIGNAL, wl);
3780 wl = wn;
3781 }
3782 #endif
3783
3784 #if EV_CHILD_ENABLE
3785 if (types & EV_CHILD)
3786 for (i = (EV_PID_HASHSIZE); i--; )
3787 for (wl = childs [i]; wl; )
3788 {
3789 wn = wl->next;
3790 cb (EV_A_ EV_CHILD, wl);
3791 wl = wn;
3792 }
3793 #endif
3794 /* EV_STAT 0x00001000 /* stat data changed */
3795 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3796 }
3797 #endif
3798
3799 #if EV_MULTIPLICITY
3800 #include "ev_wrap.h"
3801 #endif
3802
3803 #ifdef __cplusplus
3804 }
3805 #endif
3806