ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.360
Committed: Sun Oct 24 18:12:41 2010 UTC (13 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.359: +46 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_CLOCK_SYSCALL
49 # ifndef EV_USE_CLOCK_SYSCALL
50 # define EV_USE_CLOCK_SYSCALL 1
51 # ifndef EV_USE_REALTIME
52 # define EV_USE_REALTIME 0
53 # endif
54 # ifndef EV_USE_MONOTONIC
55 # define EV_USE_MONOTONIC 1
56 # endif
57 # endif
58 # elif !defined(EV_USE_CLOCK_SYSCALL)
59 # define EV_USE_CLOCK_SYSCALL 0
60 # endif
61
62 # if HAVE_CLOCK_GETTIME
63 # ifndef EV_USE_MONOTONIC
64 # define EV_USE_MONOTONIC 1
65 # endif
66 # ifndef EV_USE_REALTIME
67 # define EV_USE_REALTIME 0
68 # endif
69 # else
70 # ifndef EV_USE_MONOTONIC
71 # define EV_USE_MONOTONIC 0
72 # endif
73 # ifndef EV_USE_REALTIME
74 # define EV_USE_REALTIME 0
75 # endif
76 # endif
77
78 # if HAVE_NANOSLEEP
79 # ifndef EV_USE_NANOSLEEP
80 # define EV_USE_NANOSLEEP EV_FEATURE_OS
81 # endif
82 # else
83 # undef EV_USE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 0
85 # endif
86
87 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88 # ifndef EV_USE_SELECT
89 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 # endif
91 # else
92 # undef EV_USE_SELECT
93 # define EV_USE_SELECT 0
94 # endif
95
96 # if HAVE_POLL && HAVE_POLL_H
97 # ifndef EV_USE_POLL
98 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 # endif
100 # else
101 # undef EV_USE_POLL
102 # define EV_USE_POLL 0
103 # endif
104
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # ifndef EV_USE_EPOLL
107 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 # endif
109 # else
110 # undef EV_USE_EPOLL
111 # define EV_USE_EPOLL 0
112 # endif
113
114 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115 # ifndef EV_USE_KQUEUE
116 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 # endif
118 # else
119 # undef EV_USE_KQUEUE
120 # define EV_USE_KQUEUE 0
121 # endif
122
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # ifndef EV_USE_PORT
125 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 # endif
127 # else
128 # undef EV_USE_PORT
129 # define EV_USE_PORT 0
130 # endif
131
132 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133 # ifndef EV_USE_INOTIFY
134 # define EV_USE_INOTIFY EV_FEATURE_OS
135 # endif
136 # else
137 # undef EV_USE_INOTIFY
138 # define EV_USE_INOTIFY 0
139 # endif
140
141 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142 # ifndef EV_USE_SIGNALFD
143 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 # endif
145 # else
146 # undef EV_USE_SIGNALFD
147 # define EV_USE_SIGNALFD 0
148 # endif
149
150 # if HAVE_EVENTFD
151 # ifndef EV_USE_EVENTFD
152 # define EV_USE_EVENTFD EV_FEATURE_OS
153 # endif
154 # else
155 # undef EV_USE_EVENTFD
156 # define EV_USE_EVENTFD 0
157 # endif
158
159 #endif
160
161 #include <math.h>
162 #include <stdlib.h>
163 #include <string.h>
164 #include <fcntl.h>
165 #include <stddef.h>
166
167 #include <stdio.h>
168
169 #include <assert.h>
170 #include <errno.h>
171 #include <sys/types.h>
172 #include <time.h>
173 #include <limits.h>
174
175 #include <signal.h>
176
177 #ifdef EV_H
178 # include EV_H
179 #else
180 # include "ev.h"
181 #endif
182
183 EV_CPP(extern "C" {)
184
185 #ifndef _WIN32
186 # include <sys/time.h>
187 # include <sys/wait.h>
188 # include <unistd.h>
189 #else
190 # include <io.h>
191 # define WIN32_LEAN_AND_MEAN
192 # include <windows.h>
193 # ifndef EV_SELECT_IS_WINSOCKET
194 # define EV_SELECT_IS_WINSOCKET 1
195 # endif
196 # undef EV_AVOID_STDIO
197 #endif
198
199 /* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205 #define _DARWIN_UNLIMITED_SELECT 1
206
207 /* this block tries to deduce configuration from header-defined symbols and defaults */
208
209 /* try to deduce the maximum number of signals on this platform */
210 #if defined (EV_NSIG)
211 /* use what's provided */
212 #elif defined (NSIG)
213 # define EV_NSIG (NSIG)
214 #elif defined(_NSIG)
215 # define EV_NSIG (_NSIG)
216 #elif defined (SIGMAX)
217 # define EV_NSIG (SIGMAX+1)
218 #elif defined (SIG_MAX)
219 # define EV_NSIG (SIG_MAX+1)
220 #elif defined (_SIG_MAX)
221 # define EV_NSIG (_SIG_MAX+1)
222 #elif defined (MAXSIG)
223 # define EV_NSIG (MAXSIG+1)
224 #elif defined (MAX_SIG)
225 # define EV_NSIG (MAX_SIG+1)
226 #elif defined (SIGARRAYSIZE)
227 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 #elif defined (_sys_nsig)
229 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230 #else
231 # error "unable to find value for NSIG, please report"
232 /* to make it compile regardless, just remove the above line, */
233 /* but consider reporting it, too! :) */
234 # define EV_NSIG 65
235 #endif
236
237 #ifndef EV_USE_CLOCK_SYSCALL
238 # if __linux && __GLIBC__ >= 2
239 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 # else
241 # define EV_USE_CLOCK_SYSCALL 0
242 # endif
243 #endif
244
245 #ifndef EV_USE_MONOTONIC
246 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 # else
249 # define EV_USE_MONOTONIC 0
250 # endif
251 #endif
252
253 #ifndef EV_USE_REALTIME
254 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 #endif
256
257 #ifndef EV_USE_NANOSLEEP
258 # if _POSIX_C_SOURCE >= 199309L
259 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 # else
261 # define EV_USE_NANOSLEEP 0
262 # endif
263 #endif
264
265 #ifndef EV_USE_SELECT
266 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 #endif
268
269 #ifndef EV_USE_POLL
270 # ifdef _WIN32
271 # define EV_USE_POLL 0
272 # else
273 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 # endif
275 #endif
276
277 #ifndef EV_USE_EPOLL
278 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 # else
281 # define EV_USE_EPOLL 0
282 # endif
283 #endif
284
285 #ifndef EV_USE_KQUEUE
286 # define EV_USE_KQUEUE 0
287 #endif
288
289 #ifndef EV_USE_PORT
290 # define EV_USE_PORT 0
291 #endif
292
293 #ifndef EV_USE_INOTIFY
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_INOTIFY EV_FEATURE_OS
296 # else
297 # define EV_USE_INOTIFY 0
298 # endif
299 #endif
300
301 #ifndef EV_PID_HASHSIZE
302 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 #endif
304
305 #ifndef EV_INOTIFY_HASHSIZE
306 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 #endif
308
309 #ifndef EV_USE_EVENTFD
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 # define EV_USE_EVENTFD EV_FEATURE_OS
312 # else
313 # define EV_USE_EVENTFD 0
314 # endif
315 #endif
316
317 #ifndef EV_USE_SIGNALFD
318 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 # else
321 # define EV_USE_SIGNALFD 0
322 # endif
323 #endif
324
325 #if 0 /* debugging */
326 # define EV_VERIFY 3
327 # define EV_USE_4HEAP 1
328 # define EV_HEAP_CACHE_AT 1
329 #endif
330
331 #ifndef EV_VERIFY
332 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 #endif
334
335 #ifndef EV_USE_4HEAP
336 # define EV_USE_4HEAP EV_FEATURE_DATA
337 #endif
338
339 #ifndef EV_HEAP_CACHE_AT
340 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 #endif
342
343 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344 /* which makes programs even slower. might work on other unices, too. */
345 #if EV_USE_CLOCK_SYSCALL
346 # include <syscall.h>
347 # ifdef SYS_clock_gettime
348 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 1
351 # else
352 # undef EV_USE_CLOCK_SYSCALL
353 # define EV_USE_CLOCK_SYSCALL 0
354 # endif
355 #endif
356
357 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359 #ifdef _AIX
360 /* AIX has a completely broken poll.h header */
361 # undef EV_USE_POLL
362 # define EV_USE_POLL 0
363 #endif
364
365 #ifndef CLOCK_MONOTONIC
366 # undef EV_USE_MONOTONIC
367 # define EV_USE_MONOTONIC 0
368 #endif
369
370 #ifndef CLOCK_REALTIME
371 # undef EV_USE_REALTIME
372 # define EV_USE_REALTIME 0
373 #endif
374
375 #if !EV_STAT_ENABLE
376 # undef EV_USE_INOTIFY
377 # define EV_USE_INOTIFY 0
378 #endif
379
380 #if !EV_USE_NANOSLEEP
381 # ifndef _WIN32
382 # include <sys/select.h>
383 # endif
384 #endif
385
386 #if EV_USE_INOTIFY
387 # include <sys/statfs.h>
388 # include <sys/inotify.h>
389 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390 # ifndef IN_DONT_FOLLOW
391 # undef EV_USE_INOTIFY
392 # define EV_USE_INOTIFY 0
393 # endif
394 #endif
395
396 #if EV_SELECT_IS_WINSOCKET
397 # include <winsock.h>
398 #endif
399
400 #if EV_USE_EVENTFD
401 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402 # include <stdint.h>
403 # ifndef EFD_NONBLOCK
404 # define EFD_NONBLOCK O_NONBLOCK
405 # endif
406 # ifndef EFD_CLOEXEC
407 # ifdef O_CLOEXEC
408 # define EFD_CLOEXEC O_CLOEXEC
409 # else
410 # define EFD_CLOEXEC 02000000
411 # endif
412 # endif
413 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414 #endif
415
416 #if EV_USE_SIGNALFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef SFD_NONBLOCK
420 # define SFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef SFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define SFD_CLOEXEC O_CLOEXEC
425 # else
426 # define SFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431 struct signalfd_siginfo
432 {
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435 };
436 #endif
437
438 /**/
439
440 #if EV_VERIFY >= 3
441 # define EV_FREQUENT_CHECK ev_verify (EV_A)
442 #else
443 # define EV_FREQUENT_CHECK do { } while (0)
444 #endif
445
446 /*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
462 #if __GNUC__ >= 4
463 # define expect(expr,value) __builtin_expect ((expr),(value))
464 # define noinline __attribute__ ((noinline))
465 #else
466 # define expect(expr,value) (expr)
467 # define noinline
468 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469 # define inline
470 # endif
471 #endif
472
473 #define expect_false(expr) expect ((expr) != 0, 0)
474 #define expect_true(expr) expect ((expr) != 0, 1)
475 #define inline_size static inline
476
477 #if EV_FEATURE_CODE
478 # define inline_speed static inline
479 #else
480 # define inline_speed static noinline
481 #endif
482
483 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485 #if EV_MINPRI == EV_MAXPRI
486 # define ABSPRI(w) (((W)w), 0)
487 #else
488 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489 #endif
490
491 #define EMPTY /* required for microsofts broken pseudo-c compiler */
492 #define EMPTY2(a,b) /* used to suppress some warnings */
493
494 typedef ev_watcher *W;
495 typedef ev_watcher_list *WL;
496 typedef ev_watcher_time *WT;
497
498 #define ev_active(w) ((W)(w))->active
499 #define ev_at(w) ((WT)(w))->at
500
501 #if EV_USE_REALTIME
502 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
503 /* giving it a reasonably high chance of working on typical architectures */
504 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505 #endif
506
507 #if EV_USE_MONOTONIC
508 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509 #endif
510
511 #ifndef EV_FD_TO_WIN32_HANDLE
512 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513 #endif
514 #ifndef EV_WIN32_HANDLE_TO_FD
515 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516 #endif
517 #ifndef EV_WIN32_CLOSE_FD
518 # define EV_WIN32_CLOSE_FD(fd) close (fd)
519 #endif
520
521 #ifdef _WIN32
522 # include "ev_win32.c"
523 #endif
524
525 /*****************************************************************************/
526
527 #ifdef __linux
528 # include <sys/utsname.h>
529 #endif
530
531 static unsigned int noinline
532 ev_linux_version (void)
533 {
534 #ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562 #else
563 return 0;
564 #endif
565 }
566
567 /*****************************************************************************/
568
569 #if EV_AVOID_STDIO
570 static void noinline
571 ev_printerr (const char *msg)
572 {
573 write (STDERR_FILENO, msg, strlen (msg));
574 }
575 #endif
576
577 static void (*syserr_cb)(const char *msg);
578
579 void
580 ev_set_syserr_cb (void (*cb)(const char *msg))
581 {
582 syserr_cb = cb;
583 }
584
585 static void noinline
586 ev_syserr (const char *msg)
587 {
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595 #if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602 #else
603 perror (msg);
604 #endif
605 abort ();
606 }
607 }
608
609 static void *
610 ev_realloc_emul (void *ptr, long size)
611 {
612 #if __GLIBC__
613 return realloc (ptr, size);
614 #else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625 #endif
626 }
627
628 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629
630 void
631 ev_set_allocator (void *(*cb)(void *ptr, long size))
632 {
633 alloc = cb;
634 }
635
636 inline_speed void *
637 ev_realloc (void *ptr, long size)
638 {
639 ptr = alloc (ptr, size);
640
641 if (!ptr && size)
642 {
643 #if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645 #else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647 #endif
648 abort ();
649 }
650
651 return ptr;
652 }
653
654 #define ev_malloc(size) ev_realloc (0, (size))
655 #define ev_free(ptr) ev_realloc ((ptr), 0)
656
657 /*****************************************************************************/
658
659 /* set in reify when reification needed */
660 #define EV_ANFD_REIFY 1
661
662 /* file descriptor info structure */
663 typedef struct
664 {
665 WL head;
666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
669 unsigned char unused;
670 #if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672 #endif
673 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675 #endif
676 #if EV_USE_IOCP
677 OVERLAPPED or, ow;
678 #endif
679 } ANFD;
680
681 /* stores the pending event set for a given watcher */
682 typedef struct
683 {
684 W w;
685 int events; /* the pending event set for the given watcher */
686 } ANPENDING;
687
688 #if EV_USE_INOTIFY
689 /* hash table entry per inotify-id */
690 typedef struct
691 {
692 WL head;
693 } ANFS;
694 #endif
695
696 /* Heap Entry */
697 #if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707 #else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714 #endif
715
716 #if EV_MULTIPLICITY
717
718 struct ev_loop
719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
722 #define VAR(name,decl) decl;
723 #include "ev_vars.h"
724 #undef VAR
725 };
726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
730
731 #else
732
733 ev_tstamp ev_rt_now;
734 #define VAR(name,decl) static decl;
735 #include "ev_vars.h"
736 #undef VAR
737
738 static int ev_default_loop_ptr;
739
740 #endif
741
742 #if EV_FEATURE_API
743 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745 # define EV_INVOKE_PENDING invoke_cb (EV_A)
746 #else
747 # define EV_RELEASE_CB (void)0
748 # define EV_ACQUIRE_CB (void)0
749 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750 #endif
751
752 #define EVBREAK_RECURSE 0x80
753
754 /*****************************************************************************/
755
756 #ifndef EV_HAVE_EV_TIME
757 ev_tstamp
758 ev_time (void)
759 {
760 #if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
763 struct timespec ts;
764 clock_gettime (CLOCK_REALTIME, &ts);
765 return ts.tv_sec + ts.tv_nsec * 1e-9;
766 }
767 #endif
768
769 struct timeval tv;
770 gettimeofday (&tv, 0);
771 return tv.tv_sec + tv.tv_usec * 1e-6;
772 }
773 #endif
774
775 inline_size ev_tstamp
776 get_clock (void)
777 {
778 #if EV_USE_MONOTONIC
779 if (expect_true (have_monotonic))
780 {
781 struct timespec ts;
782 clock_gettime (CLOCK_MONOTONIC, &ts);
783 return ts.tv_sec + ts.tv_nsec * 1e-9;
784 }
785 #endif
786
787 return ev_time ();
788 }
789
790 #if EV_MULTIPLICITY
791 ev_tstamp
792 ev_now (EV_P)
793 {
794 return ev_rt_now;
795 }
796 #endif
797
798 void
799 ev_sleep (ev_tstamp delay)
800 {
801 if (delay > 0.)
802 {
803 #if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808 #elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810 #else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818 #endif
819 }
820 }
821
822 /*****************************************************************************/
823
824 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826 /* find a suitable new size for the given array, */
827 /* hopefully by rounding to a nice-to-malloc size */
828 inline_size int
829 array_nextsize (int elem, int cur, int cnt)
830 {
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847 }
848
849 static noinline void *
850 array_realloc (int elem, void *base, int *cur, int cnt)
851 {
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854 }
855
856 #define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
859 #define array_needsize(type,base,cur,cnt,init) \
860 if (expect_false ((cnt) > (cur))) \
861 { \
862 int ocur_ = (cur); \
863 (base) = (type *)array_realloc \
864 (sizeof (type), (base), &(cur), (cnt)); \
865 init ((base) + (ocur_), (cur) - ocur_); \
866 }
867
868 #if 0
869 #define array_slim(type,stem) \
870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
871 { \
872 stem ## max = array_roundsize (stem ## cnt >> 1); \
873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
875 }
876 #endif
877
878 #define array_free(stem, idx) \
879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
880
881 /*****************************************************************************/
882
883 /* dummy callback for pending events */
884 static void noinline
885 pendingcb (EV_P_ ev_prepare *w, int revents)
886 {
887 }
888
889 void noinline
890 ev_feed_event (EV_P_ void *w, int revents)
891 {
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
902 pendings [pri][w_->pending - 1].events = revents;
903 }
904 }
905
906 inline_speed void
907 feed_reverse (EV_P_ W w)
908 {
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911 }
912
913 inline_size void
914 feed_reverse_done (EV_P_ int revents)
915 {
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919 }
920
921 inline_speed void
922 queue_events (EV_P_ W *events, int eventcnt, int type)
923 {
924 int i;
925
926 for (i = 0; i < eventcnt; ++i)
927 ev_feed_event (EV_A_ events [i], type);
928 }
929
930 /*****************************************************************************/
931
932 inline_speed void
933 fd_event_nocheck (EV_P_ int fd, int revents)
934 {
935 ANFD *anfd = anfds + fd;
936 ev_io *w;
937
938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
939 {
940 int ev = w->events & revents;
941
942 if (ev)
943 ev_feed_event (EV_A_ (W)w, ev);
944 }
945 }
946
947 /* do not submit kernel events for fds that have reify set */
948 /* because that means they changed while we were polling for new events */
949 inline_speed void
950 fd_event (EV_P_ int fd, int revents)
951 {
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956 }
957
958 void
959 ev_feed_fd_event (EV_P_ int fd, int revents)
960 {
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963 }
964
965 /* make sure the external fd watch events are in-sync */
966 /* with the kernel/libev internal state */
967 inline_size void
968 fd_reify (EV_P)
969 {
970 int i;
971
972 for (i = 0; i < fdchangecnt; ++i)
973 {
974 int fd = fdchanges [i];
975 ANFD *anfd = anfds + fd;
976 ev_io *w;
977
978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
980
981 anfd->reify = 0;
982
983 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991 #endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
1006 }
1007
1008 fdchangecnt = 0;
1009 }
1010
1011 /* something about the given fd changed */
1012 inline_size void
1013 fd_change (EV_P_ int fd, int flags)
1014 {
1015 unsigned char reify = anfds [fd].reify;
1016 anfds [fd].reify |= flags;
1017
1018 if (expect_true (!reify))
1019 {
1020 ++fdchangecnt;
1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
1024 }
1025
1026 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027 inline_speed void
1028 fd_kill (EV_P_ int fd)
1029 {
1030 ev_io *w;
1031
1032 while ((w = (ev_io *)anfds [fd].head))
1033 {
1034 ev_io_stop (EV_A_ w);
1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1036 }
1037 }
1038
1039 /* check whether the given fd is actually valid, for error recovery */
1040 inline_size int
1041 fd_valid (int fd)
1042 {
1043 #ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045 #else
1046 return fcntl (fd, F_GETFD) != -1;
1047 #endif
1048 }
1049
1050 /* called on EBADF to verify fds */
1051 static void noinline
1052 fd_ebadf (EV_P)
1053 {
1054 int fd;
1055
1056 for (fd = 0; fd < anfdmax; ++fd)
1057 if (anfds [fd].events)
1058 if (!fd_valid (fd) && errno == EBADF)
1059 fd_kill (EV_A_ fd);
1060 }
1061
1062 /* called on ENOMEM in select/poll to kill some fds and retry */
1063 static void noinline
1064 fd_enomem (EV_P)
1065 {
1066 int fd;
1067
1068 for (fd = anfdmax; fd--; )
1069 if (anfds [fd].events)
1070 {
1071 fd_kill (EV_A_ fd);
1072 break;
1073 }
1074 }
1075
1076 /* usually called after fork if backend needs to re-arm all fds from scratch */
1077 static void noinline
1078 fd_rearm_all (EV_P)
1079 {
1080 int fd;
1081
1082 for (fd = 0; fd < anfdmax; ++fd)
1083 if (anfds [fd].events)
1084 {
1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1088 }
1089 }
1090
1091 /* used to prepare libev internal fd's */
1092 /* this is not fork-safe */
1093 inline_speed void
1094 fd_intern (int fd)
1095 {
1096 #ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099 #else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102 #endif
1103 }
1104
1105 /*****************************************************************************/
1106
1107 /*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113 /*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119 #if EV_USE_4HEAP
1120
1121 #define DHEAP 4
1122 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124 #define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126 /* away from the root */
1127 inline_speed void
1128 downheap (ANHE *heap, int N, int k)
1129 {
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168 }
1169
1170 #else /* 4HEAP */
1171
1172 #define HEAP0 1
1173 #define HPARENT(k) ((k) >> 1)
1174 #define UPHEAP_DONE(p,k) (!(p))
1175
1176 /* away from the root */
1177 inline_speed void
1178 downheap (ANHE *heap, int N, int k)
1179 {
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203 }
1204 #endif
1205
1206 /* towards the root */
1207 inline_speed void
1208 upheap (ANHE *heap, int k)
1209 {
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226 }
1227
1228 /* move an element suitably so it is in a correct place */
1229 inline_size void
1230 adjustheap (ANHE *heap, int N, int k)
1231 {
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236 }
1237
1238 /* rebuild the heap: this function is used only once and executed rarely */
1239 inline_size void
1240 reheap (ANHE *heap, int N)
1241 {
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248 }
1249
1250 /*****************************************************************************/
1251
1252 /* associate signal watchers to a signal signal */
1253 typedef struct
1254 {
1255 EV_ATOMIC_T pending;
1256 #if EV_MULTIPLICITY
1257 EV_P;
1258 #endif
1259 WL head;
1260 } ANSIG;
1261
1262 static ANSIG signals [EV_NSIG - 1];
1263
1264 /*****************************************************************************/
1265
1266 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268 static void noinline
1269 evpipe_init (EV_P)
1270 {
1271 if (!ev_is_active (&pipe_w))
1272 {
1273 # if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285 # endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298 }
1299
1300 inline_size void
1301 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302 {
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310 #if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317 #endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327 }
1328
1329 /* called whenever the libev signal pipe */
1330 /* got some events (signal, async) */
1331 static void
1332 pipecb (EV_P_ ev_io *iow, int revents)
1333 {
1334 int i;
1335
1336 #if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343 #endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359 #if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371 #endif
1372 }
1373
1374 /*****************************************************************************/
1375
1376 static void
1377 ev_sighandler (int signum)
1378 {
1379 #if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381 #endif
1382
1383 #ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385 #endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389 }
1390
1391 void noinline
1392 ev_feed_signal_event (EV_P_ int signum)
1393 {
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401 #if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407 #endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413 }
1414
1415 #if EV_USE_SIGNALFD
1416 static void
1417 sigfdcb (EV_P_ ev_io *iow, int revents)
1418 {
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432 }
1433 #endif
1434
1435 #endif
1436
1437 /*****************************************************************************/
1438
1439 #if EV_CHILD_ENABLE
1440 static WL childs [EV_PID_HASHSIZE];
1441
1442 static ev_signal childev;
1443
1444 #ifndef WIFCONTINUED
1445 # define WIFCONTINUED(status) 0
1446 #endif
1447
1448 /* handle a single child status event */
1449 inline_speed void
1450 child_reap (EV_P_ int chain, int pid, int status)
1451 {
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466 }
1467
1468 #ifndef WCONTINUED
1469 # define WCONTINUED 0
1470 #endif
1471
1472 /* called on sigchld etc., calls waitpid */
1473 static void
1474 childcb (EV_P_ ev_signal *sw, int revents)
1475 {
1476 int pid, status;
1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1488
1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1492 }
1493
1494 #endif
1495
1496 /*****************************************************************************/
1497
1498 #if EV_USE_IOCP
1499 # include "ev_iocp.c"
1500 #endif
1501 #if EV_USE_PORT
1502 # include "ev_port.c"
1503 #endif
1504 #if EV_USE_KQUEUE
1505 # include "ev_kqueue.c"
1506 #endif
1507 #if EV_USE_EPOLL
1508 # include "ev_epoll.c"
1509 #endif
1510 #if EV_USE_POLL
1511 # include "ev_poll.c"
1512 #endif
1513 #if EV_USE_SELECT
1514 # include "ev_select.c"
1515 #endif
1516
1517 int
1518 ev_version_major (void)
1519 {
1520 return EV_VERSION_MAJOR;
1521 }
1522
1523 int
1524 ev_version_minor (void)
1525 {
1526 return EV_VERSION_MINOR;
1527 }
1528
1529 /* return true if we are running with elevated privileges and should ignore env variables */
1530 int inline_size
1531 enable_secure (void)
1532 {
1533 #ifdef _WIN32
1534 return 0;
1535 #else
1536 return getuid () != geteuid ()
1537 || getgid () != getegid ();
1538 #endif
1539 }
1540
1541 unsigned int
1542 ev_supported_backends (void)
1543 {
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553 }
1554
1555 unsigned int
1556 ev_recommended_backends (void)
1557 {
1558 unsigned int flags = ev_supported_backends ();
1559
1560 #ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564 #endif
1565 #ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569 #endif
1570 #ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572 #endif
1573
1574 return flags;
1575 }
1576
1577 unsigned int
1578 ev_embeddable_backends (void)
1579 {
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587 }
1588
1589 unsigned int
1590 ev_backend (EV_P)
1591 {
1592 return backend;
1593 }
1594
1595 #if EV_FEATURE_API
1596 unsigned int
1597 ev_iteration (EV_P)
1598 {
1599 return loop_count;
1600 }
1601
1602 unsigned int
1603 ev_depth (EV_P)
1604 {
1605 return loop_depth;
1606 }
1607
1608 void
1609 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610 {
1611 io_blocktime = interval;
1612 }
1613
1614 void
1615 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616 {
1617 timeout_blocktime = interval;
1618 }
1619
1620 void
1621 ev_set_userdata (EV_P_ void *data)
1622 {
1623 userdata = data;
1624 }
1625
1626 void *
1627 ev_userdata (EV_P)
1628 {
1629 return userdata;
1630 }
1631
1632 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633 {
1634 invoke_cb = invoke_pending_cb;
1635 }
1636
1637 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638 {
1639 release_cb = release;
1640 acquire_cb = acquire;
1641 }
1642 #endif
1643
1644 /* initialise a loop structure, must be zero-initialised */
1645 static void noinline
1646 loop_init (EV_P_ unsigned int flags)
1647 {
1648 if (!backend)
1649 {
1650 #if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658 #endif
1659
1660 #if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668 #endif
1669
1670 /* pid check not overridable via env */
1671 #ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674 #endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685 #if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687 #endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694 #if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696 #endif
1697 #if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699 #endif
1700 #if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702 #endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707 #if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709 #endif
1710 #if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712 #endif
1713 #if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715 #endif
1716 #if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718 #endif
1719 #if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721 #endif
1722 #if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724 #endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731 #endif
1732 }
1733 }
1734
1735 /* free up a loop structure */
1736 void
1737 ev_loop_destroy (EV_P)
1738 {
1739 int i;
1740
1741 #if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747 #endif
1748
1749 if (ev_is_active (&pipe_w))
1750 {
1751 /*ev_ref (EV_A);*/
1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1753
1754 #if EV_USE_EVENTFD
1755 if (evfd >= 0)
1756 close (evfd);
1757 #endif
1758
1759 if (evpipe [0] >= 0)
1760 {
1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1763 }
1764 }
1765
1766 #if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769 #endif
1770
1771 #if EV_USE_INOTIFY
1772 if (fs_fd >= 0)
1773 close (fs_fd);
1774 #endif
1775
1776 if (backend_fd >= 0)
1777 close (backend_fd);
1778
1779 #if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781 #endif
1782 #if EV_USE_PORT
1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1784 #endif
1785 #if EV_USE_KQUEUE
1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1787 #endif
1788 #if EV_USE_EPOLL
1789 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1790 #endif
1791 #if EV_USE_POLL
1792 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1793 #endif
1794 #if EV_USE_SELECT
1795 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1796 #endif
1797
1798 for (i = NUMPRI; i--; )
1799 {
1800 array_free (pending, [i]);
1801 #if EV_IDLE_ENABLE
1802 array_free (idle, [i]);
1803 #endif
1804 }
1805
1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1807
1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1810 array_free (fdchange, EMPTY);
1811 array_free (timer, EMPTY);
1812 #if EV_PERIODIC_ENABLE
1813 array_free (periodic, EMPTY);
1814 #endif
1815 #if EV_FORK_ENABLE
1816 array_free (fork, EMPTY);
1817 #endif
1818 #if EV_CLEANUP_ENABLE
1819 array_free (cleanup, EMPTY);
1820 #endif
1821 array_free (prepare, EMPTY);
1822 array_free (check, EMPTY);
1823 #if EV_ASYNC_ENABLE
1824 array_free (async, EMPTY);
1825 #endif
1826
1827 backend = 0;
1828
1829 #if EV_MULTIPLICITY
1830 if (ev_is_default_loop (EV_A))
1831 #endif
1832 ev_default_loop_ptr = 0;
1833 #if EV_MULTIPLICITY
1834 else
1835 ev_free (EV_A);
1836 #endif
1837 }
1838
1839 #if EV_USE_INOTIFY
1840 inline_size void infy_fork (EV_P);
1841 #endif
1842
1843 inline_size void
1844 loop_fork (EV_P)
1845 {
1846 #if EV_USE_PORT
1847 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1848 #endif
1849 #if EV_USE_KQUEUE
1850 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1851 #endif
1852 #if EV_USE_EPOLL
1853 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1854 #endif
1855 #if EV_USE_INOTIFY
1856 infy_fork (EV_A);
1857 #endif
1858
1859 if (ev_is_active (&pipe_w))
1860 {
1861 /* this "locks" the handlers against writing to the pipe */
1862 /* while we modify the fd vars */
1863 sig_pending = 1;
1864 #if EV_ASYNC_ENABLE
1865 async_pending = 1;
1866 #endif
1867
1868 ev_ref (EV_A);
1869 ev_io_stop (EV_A_ &pipe_w);
1870
1871 #if EV_USE_EVENTFD
1872 if (evfd >= 0)
1873 close (evfd);
1874 #endif
1875
1876 if (evpipe [0] >= 0)
1877 {
1878 EV_WIN32_CLOSE_FD (evpipe [0]);
1879 EV_WIN32_CLOSE_FD (evpipe [1]);
1880 }
1881
1882 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1883 evpipe_init (EV_A);
1884 /* now iterate over everything, in case we missed something */
1885 pipecb (EV_A_ &pipe_w, EV_READ);
1886 #endif
1887 }
1888
1889 postfork = 0;
1890 }
1891
1892 #if EV_MULTIPLICITY
1893
1894 struct ev_loop *
1895 ev_loop_new (unsigned int flags)
1896 {
1897 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1898
1899 memset (EV_A, 0, sizeof (struct ev_loop));
1900 loop_init (EV_A_ flags);
1901
1902 if (ev_backend (EV_A))
1903 return EV_A;
1904
1905 ev_free (EV_A);
1906 return 0;
1907 }
1908
1909 #endif /* multiplicity */
1910
1911 #if EV_VERIFY
1912 static void noinline
1913 verify_watcher (EV_P_ W w)
1914 {
1915 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1916
1917 if (w->pending)
1918 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1919 }
1920
1921 static void noinline
1922 verify_heap (EV_P_ ANHE *heap, int N)
1923 {
1924 int i;
1925
1926 for (i = HEAP0; i < N + HEAP0; ++i)
1927 {
1928 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1929 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1930 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1931
1932 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1933 }
1934 }
1935
1936 static void noinline
1937 array_verify (EV_P_ W *ws, int cnt)
1938 {
1939 while (cnt--)
1940 {
1941 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1942 verify_watcher (EV_A_ ws [cnt]);
1943 }
1944 }
1945 #endif
1946
1947 #if EV_FEATURE_API
1948 void
1949 ev_verify (EV_P)
1950 {
1951 #if EV_VERIFY
1952 int i;
1953 WL w;
1954
1955 assert (activecnt >= -1);
1956
1957 assert (fdchangemax >= fdchangecnt);
1958 for (i = 0; i < fdchangecnt; ++i)
1959 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1960
1961 assert (anfdmax >= 0);
1962 for (i = 0; i < anfdmax; ++i)
1963 for (w = anfds [i].head; w; w = w->next)
1964 {
1965 verify_watcher (EV_A_ (W)w);
1966 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1967 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1968 }
1969
1970 assert (timermax >= timercnt);
1971 verify_heap (EV_A_ timers, timercnt);
1972
1973 #if EV_PERIODIC_ENABLE
1974 assert (periodicmax >= periodiccnt);
1975 verify_heap (EV_A_ periodics, periodiccnt);
1976 #endif
1977
1978 for (i = NUMPRI; i--; )
1979 {
1980 assert (pendingmax [i] >= pendingcnt [i]);
1981 #if EV_IDLE_ENABLE
1982 assert (idleall >= 0);
1983 assert (idlemax [i] >= idlecnt [i]);
1984 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1985 #endif
1986 }
1987
1988 #if EV_FORK_ENABLE
1989 assert (forkmax >= forkcnt);
1990 array_verify (EV_A_ (W *)forks, forkcnt);
1991 #endif
1992
1993 #if EV_CLEANUP_ENABLE
1994 assert (cleanupmax >= cleanupcnt);
1995 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
1996 #endif
1997
1998 #if EV_ASYNC_ENABLE
1999 assert (asyncmax >= asynccnt);
2000 array_verify (EV_A_ (W *)asyncs, asynccnt);
2001 #endif
2002
2003 #if EV_PREPARE_ENABLE
2004 assert (preparemax >= preparecnt);
2005 array_verify (EV_A_ (W *)prepares, preparecnt);
2006 #endif
2007
2008 #if EV_CHECK_ENABLE
2009 assert (checkmax >= checkcnt);
2010 array_verify (EV_A_ (W *)checks, checkcnt);
2011 #endif
2012
2013 # if 0
2014 #if EV_CHILD_ENABLE
2015 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2016 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2017 #endif
2018 # endif
2019 #endif
2020 }
2021 #endif
2022
2023 #if EV_MULTIPLICITY
2024 struct ev_loop *
2025 #else
2026 int
2027 #endif
2028 ev_default_loop (unsigned int flags)
2029 {
2030 if (!ev_default_loop_ptr)
2031 {
2032 #if EV_MULTIPLICITY
2033 EV_P = ev_default_loop_ptr = &default_loop_struct;
2034 #else
2035 ev_default_loop_ptr = 1;
2036 #endif
2037
2038 loop_init (EV_A_ flags);
2039
2040 if (ev_backend (EV_A))
2041 {
2042 #if EV_CHILD_ENABLE
2043 ev_signal_init (&childev, childcb, SIGCHLD);
2044 ev_set_priority (&childev, EV_MAXPRI);
2045 ev_signal_start (EV_A_ &childev);
2046 ev_unref (EV_A); /* child watcher should not keep loop alive */
2047 #endif
2048 }
2049 else
2050 ev_default_loop_ptr = 0;
2051 }
2052
2053 return ev_default_loop_ptr;
2054 }
2055
2056 void
2057 ev_loop_fork (EV_P)
2058 {
2059 postfork = 1; /* must be in line with ev_default_fork */
2060 }
2061
2062 /*****************************************************************************/
2063
2064 void
2065 ev_invoke (EV_P_ void *w, int revents)
2066 {
2067 EV_CB_INVOKE ((W)w, revents);
2068 }
2069
2070 unsigned int
2071 ev_pending_count (EV_P)
2072 {
2073 int pri;
2074 unsigned int count = 0;
2075
2076 for (pri = NUMPRI; pri--; )
2077 count += pendingcnt [pri];
2078
2079 return count;
2080 }
2081
2082 void noinline
2083 ev_invoke_pending (EV_P)
2084 {
2085 int pri;
2086
2087 for (pri = NUMPRI; pri--; )
2088 while (pendingcnt [pri])
2089 {
2090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2091
2092 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2093 /* ^ this is no longer true, as pending_w could be here */
2094
2095 p->w->pending = 0;
2096 EV_CB_INVOKE (p->w, p->events);
2097 EV_FREQUENT_CHECK;
2098 }
2099 }
2100
2101 #if EV_IDLE_ENABLE
2102 /* make idle watchers pending. this handles the "call-idle */
2103 /* only when higher priorities are idle" logic */
2104 inline_size void
2105 idle_reify (EV_P)
2106 {
2107 if (expect_false (idleall))
2108 {
2109 int pri;
2110
2111 for (pri = NUMPRI; pri--; )
2112 {
2113 if (pendingcnt [pri])
2114 break;
2115
2116 if (idlecnt [pri])
2117 {
2118 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2119 break;
2120 }
2121 }
2122 }
2123 }
2124 #endif
2125
2126 /* make timers pending */
2127 inline_size void
2128 timers_reify (EV_P)
2129 {
2130 EV_FREQUENT_CHECK;
2131
2132 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2133 {
2134 do
2135 {
2136 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2137
2138 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2139
2140 /* first reschedule or stop timer */
2141 if (w->repeat)
2142 {
2143 ev_at (w) += w->repeat;
2144 if (ev_at (w) < mn_now)
2145 ev_at (w) = mn_now;
2146
2147 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2148
2149 ANHE_at_cache (timers [HEAP0]);
2150 downheap (timers, timercnt, HEAP0);
2151 }
2152 else
2153 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2154
2155 EV_FREQUENT_CHECK;
2156 feed_reverse (EV_A_ (W)w);
2157 }
2158 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2159
2160 feed_reverse_done (EV_A_ EV_TIMER);
2161 }
2162 }
2163
2164 #if EV_PERIODIC_ENABLE
2165 /* make periodics pending */
2166 inline_size void
2167 periodics_reify (EV_P)
2168 {
2169 EV_FREQUENT_CHECK;
2170
2171 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2172 {
2173 int feed_count = 0;
2174
2175 do
2176 {
2177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2178
2179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2180
2181 /* first reschedule or stop timer */
2182 if (w->reschedule_cb)
2183 {
2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185
2186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2187
2188 ANHE_at_cache (periodics [HEAP0]);
2189 downheap (periodics, periodiccnt, HEAP0);
2190 }
2191 else if (w->interval)
2192 {
2193 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2194 /* if next trigger time is not sufficiently in the future, put it there */
2195 /* this might happen because of floating point inexactness */
2196 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2197 {
2198 ev_at (w) += w->interval;
2199
2200 /* if interval is unreasonably low we might still have a time in the past */
2201 /* so correct this. this will make the periodic very inexact, but the user */
2202 /* has effectively asked to get triggered more often than possible */
2203 if (ev_at (w) < ev_rt_now)
2204 ev_at (w) = ev_rt_now;
2205 }
2206
2207 ANHE_at_cache (periodics [HEAP0]);
2208 downheap (periodics, periodiccnt, HEAP0);
2209 }
2210 else
2211 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2212
2213 EV_FREQUENT_CHECK;
2214 feed_reverse (EV_A_ (W)w);
2215 }
2216 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2217
2218 feed_reverse_done (EV_A_ EV_PERIODIC);
2219 }
2220 }
2221
2222 /* simply recalculate all periodics */
2223 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2224 static void noinline
2225 periodics_reschedule (EV_P)
2226 {
2227 int i;
2228
2229 /* adjust periodics after time jump */
2230 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2231 {
2232 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2233
2234 if (w->reschedule_cb)
2235 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2236 else if (w->interval)
2237 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2238
2239 ANHE_at_cache (periodics [i]);
2240 }
2241
2242 reheap (periodics, periodiccnt);
2243 }
2244 #endif
2245
2246 /* adjust all timers by a given offset */
2247 static void noinline
2248 timers_reschedule (EV_P_ ev_tstamp adjust)
2249 {
2250 int i;
2251
2252 for (i = 0; i < timercnt; ++i)
2253 {
2254 ANHE *he = timers + i + HEAP0;
2255 ANHE_w (*he)->at += adjust;
2256 ANHE_at_cache (*he);
2257 }
2258 }
2259
2260 /* fetch new monotonic and realtime times from the kernel */
2261 /* also detect if there was a timejump, and act accordingly */
2262 inline_speed void
2263 time_update (EV_P_ ev_tstamp max_block)
2264 {
2265 #if EV_USE_MONOTONIC
2266 if (expect_true (have_monotonic))
2267 {
2268 int i;
2269 ev_tstamp odiff = rtmn_diff;
2270
2271 mn_now = get_clock ();
2272
2273 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2274 /* interpolate in the meantime */
2275 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2276 {
2277 ev_rt_now = rtmn_diff + mn_now;
2278 return;
2279 }
2280
2281 now_floor = mn_now;
2282 ev_rt_now = ev_time ();
2283
2284 /* loop a few times, before making important decisions.
2285 * on the choice of "4": one iteration isn't enough,
2286 * in case we get preempted during the calls to
2287 * ev_time and get_clock. a second call is almost guaranteed
2288 * to succeed in that case, though. and looping a few more times
2289 * doesn't hurt either as we only do this on time-jumps or
2290 * in the unlikely event of having been preempted here.
2291 */
2292 for (i = 4; --i; )
2293 {
2294 rtmn_diff = ev_rt_now - mn_now;
2295
2296 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2297 return; /* all is well */
2298
2299 ev_rt_now = ev_time ();
2300 mn_now = get_clock ();
2301 now_floor = mn_now;
2302 }
2303
2304 /* no timer adjustment, as the monotonic clock doesn't jump */
2305 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2306 # if EV_PERIODIC_ENABLE
2307 periodics_reschedule (EV_A);
2308 # endif
2309 }
2310 else
2311 #endif
2312 {
2313 ev_rt_now = ev_time ();
2314
2315 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2316 {
2317 /* adjust timers. this is easy, as the offset is the same for all of them */
2318 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2319 #if EV_PERIODIC_ENABLE
2320 periodics_reschedule (EV_A);
2321 #endif
2322 }
2323
2324 mn_now = ev_rt_now;
2325 }
2326 }
2327
2328 void
2329 ev_run (EV_P_ int flags)
2330 {
2331 #if EV_FEATURE_API
2332 ++loop_depth;
2333 #endif
2334
2335 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2336
2337 loop_done = EVBREAK_CANCEL;
2338
2339 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2340
2341 do
2342 {
2343 #if EV_VERIFY >= 2
2344 ev_verify (EV_A);
2345 #endif
2346
2347 #ifndef _WIN32
2348 if (expect_false (curpid)) /* penalise the forking check even more */
2349 if (expect_false (getpid () != curpid))
2350 {
2351 curpid = getpid ();
2352 postfork = 1;
2353 }
2354 #endif
2355
2356 #if EV_FORK_ENABLE
2357 /* we might have forked, so queue fork handlers */
2358 if (expect_false (postfork))
2359 if (forkcnt)
2360 {
2361 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2362 EV_INVOKE_PENDING;
2363 }
2364 #endif
2365
2366 #if EV_PREPARE_ENABLE
2367 /* queue prepare watchers (and execute them) */
2368 if (expect_false (preparecnt))
2369 {
2370 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2371 EV_INVOKE_PENDING;
2372 }
2373 #endif
2374
2375 if (expect_false (loop_done))
2376 break;
2377
2378 /* we might have forked, so reify kernel state if necessary */
2379 if (expect_false (postfork))
2380 loop_fork (EV_A);
2381
2382 /* update fd-related kernel structures */
2383 fd_reify (EV_A);
2384
2385 /* calculate blocking time */
2386 {
2387 ev_tstamp waittime = 0.;
2388 ev_tstamp sleeptime = 0.;
2389
2390 /* remember old timestamp for io_blocktime calculation */
2391 ev_tstamp prev_mn_now = mn_now;
2392
2393 /* update time to cancel out callback processing overhead */
2394 time_update (EV_A_ 1e100);
2395
2396 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2397 {
2398 waittime = MAX_BLOCKTIME;
2399
2400 if (timercnt)
2401 {
2402 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2403 if (waittime > to) waittime = to;
2404 }
2405
2406 #if EV_PERIODIC_ENABLE
2407 if (periodiccnt)
2408 {
2409 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2410 if (waittime > to) waittime = to;
2411 }
2412 #endif
2413
2414 /* don't let timeouts decrease the waittime below timeout_blocktime */
2415 if (expect_false (waittime < timeout_blocktime))
2416 waittime = timeout_blocktime;
2417
2418 /* extra check because io_blocktime is commonly 0 */
2419 if (expect_false (io_blocktime))
2420 {
2421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2422
2423 if (sleeptime > waittime - backend_fudge)
2424 sleeptime = waittime - backend_fudge;
2425
2426 if (expect_true (sleeptime > 0.))
2427 {
2428 ev_sleep (sleeptime);
2429 waittime -= sleeptime;
2430 }
2431 }
2432 }
2433
2434 #if EV_FEATURE_API
2435 ++loop_count;
2436 #endif
2437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2438 backend_poll (EV_A_ waittime);
2439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2440
2441 /* update ev_rt_now, do magic */
2442 time_update (EV_A_ waittime + sleeptime);
2443 }
2444
2445 /* queue pending timers and reschedule them */
2446 timers_reify (EV_A); /* relative timers called last */
2447 #if EV_PERIODIC_ENABLE
2448 periodics_reify (EV_A); /* absolute timers called first */
2449 #endif
2450
2451 #if EV_IDLE_ENABLE
2452 /* queue idle watchers unless other events are pending */
2453 idle_reify (EV_A);
2454 #endif
2455
2456 #if EV_CHECK_ENABLE
2457 /* queue check watchers, to be executed first */
2458 if (expect_false (checkcnt))
2459 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2460 #endif
2461
2462 EV_INVOKE_PENDING;
2463 }
2464 while (expect_true (
2465 activecnt
2466 && !loop_done
2467 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2468 ));
2469
2470 if (loop_done == EVBREAK_ONE)
2471 loop_done = EVBREAK_CANCEL;
2472
2473 #if EV_FEATURE_API
2474 --loop_depth;
2475 #endif
2476 }
2477
2478 void
2479 ev_break (EV_P_ int how)
2480 {
2481 loop_done = how;
2482 }
2483
2484 void
2485 ev_ref (EV_P)
2486 {
2487 ++activecnt;
2488 }
2489
2490 void
2491 ev_unref (EV_P)
2492 {
2493 --activecnt;
2494 }
2495
2496 void
2497 ev_now_update (EV_P)
2498 {
2499 time_update (EV_A_ 1e100);
2500 }
2501
2502 void
2503 ev_suspend (EV_P)
2504 {
2505 ev_now_update (EV_A);
2506 }
2507
2508 void
2509 ev_resume (EV_P)
2510 {
2511 ev_tstamp mn_prev = mn_now;
2512
2513 ev_now_update (EV_A);
2514 timers_reschedule (EV_A_ mn_now - mn_prev);
2515 #if EV_PERIODIC_ENABLE
2516 /* TODO: really do this? */
2517 periodics_reschedule (EV_A);
2518 #endif
2519 }
2520
2521 /*****************************************************************************/
2522 /* singly-linked list management, used when the expected list length is short */
2523
2524 inline_size void
2525 wlist_add (WL *head, WL elem)
2526 {
2527 elem->next = *head;
2528 *head = elem;
2529 }
2530
2531 inline_size void
2532 wlist_del (WL *head, WL elem)
2533 {
2534 while (*head)
2535 {
2536 if (expect_true (*head == elem))
2537 {
2538 *head = elem->next;
2539 break;
2540 }
2541
2542 head = &(*head)->next;
2543 }
2544 }
2545
2546 /* internal, faster, version of ev_clear_pending */
2547 inline_speed void
2548 clear_pending (EV_P_ W w)
2549 {
2550 if (w->pending)
2551 {
2552 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2553 w->pending = 0;
2554 }
2555 }
2556
2557 int
2558 ev_clear_pending (EV_P_ void *w)
2559 {
2560 W w_ = (W)w;
2561 int pending = w_->pending;
2562
2563 if (expect_true (pending))
2564 {
2565 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2566 p->w = (W)&pending_w;
2567 w_->pending = 0;
2568 return p->events;
2569 }
2570 else
2571 return 0;
2572 }
2573
2574 inline_size void
2575 pri_adjust (EV_P_ W w)
2576 {
2577 int pri = ev_priority (w);
2578 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2579 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2580 ev_set_priority (w, pri);
2581 }
2582
2583 inline_speed void
2584 ev_start (EV_P_ W w, int active)
2585 {
2586 pri_adjust (EV_A_ w);
2587 w->active = active;
2588 ev_ref (EV_A);
2589 }
2590
2591 inline_size void
2592 ev_stop (EV_P_ W w)
2593 {
2594 ev_unref (EV_A);
2595 w->active = 0;
2596 }
2597
2598 /*****************************************************************************/
2599
2600 void noinline
2601 ev_io_start (EV_P_ ev_io *w)
2602 {
2603 int fd = w->fd;
2604
2605 if (expect_false (ev_is_active (w)))
2606 return;
2607
2608 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2609 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2610
2611 EV_FREQUENT_CHECK;
2612
2613 ev_start (EV_A_ (W)w, 1);
2614 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2615 wlist_add (&anfds[fd].head, (WL)w);
2616
2617 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2618 w->events &= ~EV__IOFDSET;
2619
2620 EV_FREQUENT_CHECK;
2621 }
2622
2623 void noinline
2624 ev_io_stop (EV_P_ ev_io *w)
2625 {
2626 clear_pending (EV_A_ (W)w);
2627 if (expect_false (!ev_is_active (w)))
2628 return;
2629
2630 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2631
2632 EV_FREQUENT_CHECK;
2633
2634 wlist_del (&anfds[w->fd].head, (WL)w);
2635 ev_stop (EV_A_ (W)w);
2636
2637 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2638
2639 EV_FREQUENT_CHECK;
2640 }
2641
2642 void noinline
2643 ev_timer_start (EV_P_ ev_timer *w)
2644 {
2645 if (expect_false (ev_is_active (w)))
2646 return;
2647
2648 ev_at (w) += mn_now;
2649
2650 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2651
2652 EV_FREQUENT_CHECK;
2653
2654 ++timercnt;
2655 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2656 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2657 ANHE_w (timers [ev_active (w)]) = (WT)w;
2658 ANHE_at_cache (timers [ev_active (w)]);
2659 upheap (timers, ev_active (w));
2660
2661 EV_FREQUENT_CHECK;
2662
2663 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2664 }
2665
2666 void noinline
2667 ev_timer_stop (EV_P_ ev_timer *w)
2668 {
2669 clear_pending (EV_A_ (W)w);
2670 if (expect_false (!ev_is_active (w)))
2671 return;
2672
2673 EV_FREQUENT_CHECK;
2674
2675 {
2676 int active = ev_active (w);
2677
2678 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2679
2680 --timercnt;
2681
2682 if (expect_true (active < timercnt + HEAP0))
2683 {
2684 timers [active] = timers [timercnt + HEAP0];
2685 adjustheap (timers, timercnt, active);
2686 }
2687 }
2688
2689 ev_at (w) -= mn_now;
2690
2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2694 }
2695
2696 void noinline
2697 ev_timer_again (EV_P_ ev_timer *w)
2698 {
2699 EV_FREQUENT_CHECK;
2700
2701 if (ev_is_active (w))
2702 {
2703 if (w->repeat)
2704 {
2705 ev_at (w) = mn_now + w->repeat;
2706 ANHE_at_cache (timers [ev_active (w)]);
2707 adjustheap (timers, timercnt, ev_active (w));
2708 }
2709 else
2710 ev_timer_stop (EV_A_ w);
2711 }
2712 else if (w->repeat)
2713 {
2714 ev_at (w) = w->repeat;
2715 ev_timer_start (EV_A_ w);
2716 }
2717
2718 EV_FREQUENT_CHECK;
2719 }
2720
2721 ev_tstamp
2722 ev_timer_remaining (EV_P_ ev_timer *w)
2723 {
2724 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2725 }
2726
2727 #if EV_PERIODIC_ENABLE
2728 void noinline
2729 ev_periodic_start (EV_P_ ev_periodic *w)
2730 {
2731 if (expect_false (ev_is_active (w)))
2732 return;
2733
2734 if (w->reschedule_cb)
2735 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2736 else if (w->interval)
2737 {
2738 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2739 /* this formula differs from the one in periodic_reify because we do not always round up */
2740 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2741 }
2742 else
2743 ev_at (w) = w->offset;
2744
2745 EV_FREQUENT_CHECK;
2746
2747 ++periodiccnt;
2748 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2749 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2750 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2751 ANHE_at_cache (periodics [ev_active (w)]);
2752 upheap (periodics, ev_active (w));
2753
2754 EV_FREQUENT_CHECK;
2755
2756 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2757 }
2758
2759 void noinline
2760 ev_periodic_stop (EV_P_ ev_periodic *w)
2761 {
2762 clear_pending (EV_A_ (W)w);
2763 if (expect_false (!ev_is_active (w)))
2764 return;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
2771 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2772
2773 --periodiccnt;
2774
2775 if (expect_true (active < periodiccnt + HEAP0))
2776 {
2777 periodics [active] = periodics [periodiccnt + HEAP0];
2778 adjustheap (periodics, periodiccnt, active);
2779 }
2780 }
2781
2782 ev_stop (EV_A_ (W)w);
2783
2784 EV_FREQUENT_CHECK;
2785 }
2786
2787 void noinline
2788 ev_periodic_again (EV_P_ ev_periodic *w)
2789 {
2790 /* TODO: use adjustheap and recalculation */
2791 ev_periodic_stop (EV_A_ w);
2792 ev_periodic_start (EV_A_ w);
2793 }
2794 #endif
2795
2796 #ifndef SA_RESTART
2797 # define SA_RESTART 0
2798 #endif
2799
2800 #if EV_SIGNAL_ENABLE
2801
2802 void noinline
2803 ev_signal_start (EV_P_ ev_signal *w)
2804 {
2805 if (expect_false (ev_is_active (w)))
2806 return;
2807
2808 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2809
2810 #if EV_MULTIPLICITY
2811 assert (("libev: a signal must not be attached to two different loops",
2812 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2813
2814 signals [w->signum - 1].loop = EV_A;
2815 #endif
2816
2817 EV_FREQUENT_CHECK;
2818
2819 #if EV_USE_SIGNALFD
2820 if (sigfd == -2)
2821 {
2822 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2823 if (sigfd < 0 && errno == EINVAL)
2824 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2825
2826 if (sigfd >= 0)
2827 {
2828 fd_intern (sigfd); /* doing it twice will not hurt */
2829
2830 sigemptyset (&sigfd_set);
2831
2832 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2833 ev_set_priority (&sigfd_w, EV_MAXPRI);
2834 ev_io_start (EV_A_ &sigfd_w);
2835 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2836 }
2837 }
2838
2839 if (sigfd >= 0)
2840 {
2841 /* TODO: check .head */
2842 sigaddset (&sigfd_set, w->signum);
2843 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 }
2847 #endif
2848
2849 ev_start (EV_A_ (W)w, 1);
2850 wlist_add (&signals [w->signum - 1].head, (WL)w);
2851
2852 if (!((WL)w)->next)
2853 # if EV_USE_SIGNALFD
2854 if (sigfd < 0) /*TODO*/
2855 # endif
2856 {
2857 # ifdef _WIN32
2858 evpipe_init (EV_A);
2859
2860 signal (w->signum, ev_sighandler);
2861 # else
2862 struct sigaction sa;
2863
2864 evpipe_init (EV_A);
2865
2866 sa.sa_handler = ev_sighandler;
2867 sigfillset (&sa.sa_mask);
2868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2869 sigaction (w->signum, &sa, 0);
2870
2871 sigemptyset (&sa.sa_mask);
2872 sigaddset (&sa.sa_mask, w->signum);
2873 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2874 #endif
2875 }
2876
2877 EV_FREQUENT_CHECK;
2878 }
2879
2880 void noinline
2881 ev_signal_stop (EV_P_ ev_signal *w)
2882 {
2883 clear_pending (EV_A_ (W)w);
2884 if (expect_false (!ev_is_active (w)))
2885 return;
2886
2887 EV_FREQUENT_CHECK;
2888
2889 wlist_del (&signals [w->signum - 1].head, (WL)w);
2890 ev_stop (EV_A_ (W)w);
2891
2892 if (!signals [w->signum - 1].head)
2893 {
2894 #if EV_MULTIPLICITY
2895 signals [w->signum - 1].loop = 0; /* unattach from signal */
2896 #endif
2897 #if EV_USE_SIGNALFD
2898 if (sigfd >= 0)
2899 {
2900 sigset_t ss;
2901
2902 sigemptyset (&ss);
2903 sigaddset (&ss, w->signum);
2904 sigdelset (&sigfd_set, w->signum);
2905
2906 signalfd (sigfd, &sigfd_set, 0);
2907 sigprocmask (SIG_UNBLOCK, &ss, 0);
2908 }
2909 else
2910 #endif
2911 signal (w->signum, SIG_DFL);
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915 }
2916
2917 #endif
2918
2919 #if EV_CHILD_ENABLE
2920
2921 void
2922 ev_child_start (EV_P_ ev_child *w)
2923 {
2924 #if EV_MULTIPLICITY
2925 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2926 #endif
2927 if (expect_false (ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, 1);
2933 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2934
2935 EV_FREQUENT_CHECK;
2936 }
2937
2938 void
2939 ev_child_stop (EV_P_ ev_child *w)
2940 {
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951 }
2952
2953 #endif
2954
2955 #if EV_STAT_ENABLE
2956
2957 # ifdef _WIN32
2958 # undef lstat
2959 # define lstat(a,b) _stati64 (a,b)
2960 # endif
2961
2962 #define DEF_STAT_INTERVAL 5.0074891
2963 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2964 #define MIN_STAT_INTERVAL 0.1074891
2965
2966 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2967
2968 #if EV_USE_INOTIFY
2969
2970 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2971 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2972
2973 static void noinline
2974 infy_add (EV_P_ ev_stat *w)
2975 {
2976 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2977
2978 if (w->wd >= 0)
2979 {
2980 struct statfs sfs;
2981
2982 /* now local changes will be tracked by inotify, but remote changes won't */
2983 /* unless the filesystem is known to be local, we therefore still poll */
2984 /* also do poll on <2.6.25, but with normal frequency */
2985
2986 if (!fs_2625)
2987 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2988 else if (!statfs (w->path, &sfs)
2989 && (sfs.f_type == 0x1373 /* devfs */
2990 || sfs.f_type == 0xEF53 /* ext2/3 */
2991 || sfs.f_type == 0x3153464a /* jfs */
2992 || sfs.f_type == 0x52654973 /* reiser3 */
2993 || sfs.f_type == 0x01021994 /* tempfs */
2994 || sfs.f_type == 0x58465342 /* xfs */))
2995 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2996 else
2997 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2998 }
2999 else
3000 {
3001 /* can't use inotify, continue to stat */
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003
3004 /* if path is not there, monitor some parent directory for speedup hints */
3005 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3006 /* but an efficiency issue only */
3007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3008 {
3009 char path [4096];
3010 strcpy (path, w->path);
3011
3012 do
3013 {
3014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3016
3017 char *pend = strrchr (path, '/');
3018
3019 if (!pend || pend == path)
3020 break;
3021
3022 *pend = 0;
3023 w->wd = inotify_add_watch (fs_fd, path, mask);
3024 }
3025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3026 }
3027 }
3028
3029 if (w->wd >= 0)
3030 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3031
3032 /* now re-arm timer, if required */
3033 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3034 ev_timer_again (EV_A_ &w->timer);
3035 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3036 }
3037
3038 static void noinline
3039 infy_del (EV_P_ ev_stat *w)
3040 {
3041 int slot;
3042 int wd = w->wd;
3043
3044 if (wd < 0)
3045 return;
3046
3047 w->wd = -2;
3048 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3049 wlist_del (&fs_hash [slot].head, (WL)w);
3050
3051 /* remove this watcher, if others are watching it, they will rearm */
3052 inotify_rm_watch (fs_fd, wd);
3053 }
3054
3055 static void noinline
3056 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3057 {
3058 if (slot < 0)
3059 /* overflow, need to check for all hash slots */
3060 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3061 infy_wd (EV_A_ slot, wd, ev);
3062 else
3063 {
3064 WL w_;
3065
3066 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3067 {
3068 ev_stat *w = (ev_stat *)w_;
3069 w_ = w_->next; /* lets us remove this watcher and all before it */
3070
3071 if (w->wd == wd || wd == -1)
3072 {
3073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3074 {
3075 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3076 w->wd = -1;
3077 infy_add (EV_A_ w); /* re-add, no matter what */
3078 }
3079
3080 stat_timer_cb (EV_A_ &w->timer, 0);
3081 }
3082 }
3083 }
3084 }
3085
3086 static void
3087 infy_cb (EV_P_ ev_io *w, int revents)
3088 {
3089 char buf [EV_INOTIFY_BUFSIZE];
3090 int ofs;
3091 int len = read (fs_fd, buf, sizeof (buf));
3092
3093 for (ofs = 0; ofs < len; )
3094 {
3095 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3096 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3097 ofs += sizeof (struct inotify_event) + ev->len;
3098 }
3099 }
3100
3101 inline_size void
3102 ev_check_2625 (EV_P)
3103 {
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111 }
3112
3113 inline_size int
3114 infy_newfd (void)
3115 {
3116 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120 #endif
3121 return inotify_init ();
3122 }
3123
3124 inline_size void
3125 infy_init (EV_P)
3126 {
3127 if (fs_fd != -2)
3128 return;
3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
3134 fs_fd = infy_newfd ();
3135
3136 if (fs_fd >= 0)
3137 {
3138 fd_intern (fs_fd);
3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3140 ev_set_priority (&fs_w, EV_MAXPRI);
3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
3143 }
3144 }
3145
3146 inline_size void
3147 infy_fork (EV_P)
3148 {
3149 int slot;
3150
3151 if (fs_fd < 0)
3152 return;
3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
3156 close (fs_fd);
3157 fs_fd = infy_newfd ();
3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3168 {
3169 WL w_ = fs_hash [slot].head;
3170 fs_hash [slot].head = 0;
3171
3172 while (w_)
3173 {
3174 ev_stat *w = (ev_stat *)w_;
3175 w_ = w_->next; /* lets us add this watcher */
3176
3177 w->wd = -1;
3178
3179 if (fs_fd >= 0)
3180 infy_add (EV_A_ w); /* re-add, no matter what */
3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
3188 }
3189 }
3190 }
3191
3192 #endif
3193
3194 #ifdef _WIN32
3195 # define EV_LSTAT(p,b) _stati64 (p, b)
3196 #else
3197 # define EV_LSTAT(p,b) lstat (p, b)
3198 #endif
3199
3200 void
3201 ev_stat_stat (EV_P_ ev_stat *w)
3202 {
3203 if (lstat (w->path, &w->attr) < 0)
3204 w->attr.st_nlink = 0;
3205 else if (!w->attr.st_nlink)
3206 w->attr.st_nlink = 1;
3207 }
3208
3209 static void noinline
3210 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3211 {
3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3213
3214 ev_statdata prev = w->attr;
3215 ev_stat_stat (EV_A_ w);
3216
3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3218 if (
3219 prev.st_dev != w->attr.st_dev
3220 || prev.st_ino != w->attr.st_ino
3221 || prev.st_mode != w->attr.st_mode
3222 || prev.st_nlink != w->attr.st_nlink
3223 || prev.st_uid != w->attr.st_uid
3224 || prev.st_gid != w->attr.st_gid
3225 || prev.st_rdev != w->attr.st_rdev
3226 || prev.st_size != w->attr.st_size
3227 || prev.st_atime != w->attr.st_atime
3228 || prev.st_mtime != w->attr.st_mtime
3229 || prev.st_ctime != w->attr.st_ctime
3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
3239 infy_del (EV_A_ w);
3240 infy_add (EV_A_ w);
3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
3243 #endif
3244
3245 ev_feed_event (EV_A_ w, EV_STAT);
3246 }
3247 }
3248
3249 void
3250 ev_stat_start (EV_P_ ev_stat *w)
3251 {
3252 if (expect_false (ev_is_active (w)))
3253 return;
3254
3255 ev_stat_stat (EV_A_ w);
3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3258 w->interval = MIN_STAT_INTERVAL;
3259
3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3261 ev_set_priority (&w->timer, ev_priority (w));
3262
3263 #if EV_USE_INOTIFY
3264 infy_init (EV_A);
3265
3266 if (fs_fd >= 0)
3267 infy_add (EV_A_ w);
3268 else
3269 #endif
3270 {
3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
3274
3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
3278 }
3279
3280 void
3281 ev_stat_stop (EV_P_ ev_stat *w)
3282 {
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 EV_FREQUENT_CHECK;
3288
3289 #if EV_USE_INOTIFY
3290 infy_del (EV_A_ w);
3291 #endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
3298
3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
3302 }
3303 #endif
3304
3305 #if EV_IDLE_ENABLE
3306 void
3307 ev_idle_start (EV_P_ ev_idle *w)
3308 {
3309 if (expect_false (ev_is_active (w)))
3310 return;
3311
3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
3315
3316 {
3317 int active = ++idlecnt [ABSPRI (w)];
3318
3319 ++idleall;
3320 ev_start (EV_A_ (W)w, active);
3321
3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3323 idles [ABSPRI (w)][active - 1] = w;
3324 }
3325
3326 EV_FREQUENT_CHECK;
3327 }
3328
3329 void
3330 ev_idle_stop (EV_P_ ev_idle *w)
3331 {
3332 clear_pending (EV_A_ (W)w);
3333 if (expect_false (!ev_is_active (w)))
3334 return;
3335
3336 EV_FREQUENT_CHECK;
3337
3338 {
3339 int active = ev_active (w);
3340
3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343
3344 ev_stop (EV_A_ (W)w);
3345 --idleall;
3346 }
3347
3348 EV_FREQUENT_CHECK;
3349 }
3350 #endif
3351
3352 #if EV_PREPARE_ENABLE
3353 void
3354 ev_prepare_start (EV_P_ ev_prepare *w)
3355 {
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 EV_FREQUENT_CHECK;
3360
3361 ev_start (EV_A_ (W)w, ++preparecnt);
3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
3366 }
3367
3368 void
3369 ev_prepare_stop (EV_P_ ev_prepare *w)
3370 {
3371 clear_pending (EV_A_ (W)w);
3372 if (expect_false (!ev_is_active (w)))
3373 return;
3374
3375 EV_FREQUENT_CHECK;
3376
3377 {
3378 int active = ev_active (w);
3379
3380 prepares [active - 1] = prepares [--preparecnt];
3381 ev_active (prepares [active - 1]) = active;
3382 }
3383
3384 ev_stop (EV_A_ (W)w);
3385
3386 EV_FREQUENT_CHECK;
3387 }
3388 #endif
3389
3390 #if EV_CHECK_ENABLE
3391 void
3392 ev_check_start (EV_P_ ev_check *w)
3393 {
3394 if (expect_false (ev_is_active (w)))
3395 return;
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++checkcnt);
3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404 }
3405
3406 void
3407 ev_check_stop (EV_P_ ev_check *w)
3408 {
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 checks [active - 1] = checks [--checkcnt];
3419 ev_active (checks [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425 }
3426 #endif
3427
3428 #if EV_EMBED_ENABLE
3429 void noinline
3430 ev_embed_sweep (EV_P_ ev_embed *w)
3431 {
3432 ev_run (w->other, EVRUN_NOWAIT);
3433 }
3434
3435 static void
3436 embed_io_cb (EV_P_ ev_io *io, int revents)
3437 {
3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3439
3440 if (ev_cb (w))
3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3442 else
3443 ev_run (w->other, EVRUN_NOWAIT);
3444 }
3445
3446 static void
3447 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448 {
3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450
3451 {
3452 EV_P = w->other;
3453
3454 while (fdchangecnt)
3455 {
3456 fd_reify (EV_A);
3457 ev_run (EV_A_ EVRUN_NOWAIT);
3458 }
3459 }
3460 }
3461
3462 static void
3463 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464 {
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477 }
3478
3479 #if 0
3480 static void
3481 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482 {
3483 ev_idle_stop (EV_A_ idle);
3484 }
3485 #endif
3486
3487 void
3488 ev_embed_start (EV_P_ ev_embed *w)
3489 {
3490 if (expect_false (ev_is_active (w)))
3491 return;
3492
3493 {
3494 EV_P = w->other;
3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3497 }
3498
3499 EV_FREQUENT_CHECK;
3500
3501 ev_set_priority (&w->io, ev_priority (w));
3502 ev_io_start (EV_A_ &w->io);
3503
3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505 ev_set_priority (&w->prepare, EV_MINPRI);
3506 ev_prepare_start (EV_A_ &w->prepare);
3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512
3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
3516 }
3517
3518 void
3519 ev_embed_stop (EV_P_ ev_embed *w)
3520 {
3521 clear_pending (EV_A_ (W)w);
3522 if (expect_false (!ev_is_active (w)))
3523 return;
3524
3525 EV_FREQUENT_CHECK;
3526
3527 ev_io_stop (EV_A_ &w->io);
3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
3530
3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
3534 }
3535 #endif
3536
3537 #if EV_FORK_ENABLE
3538 void
3539 ev_fork_start (EV_P_ ev_fork *w)
3540 {
3541 if (expect_false (ev_is_active (w)))
3542 return;
3543
3544 EV_FREQUENT_CHECK;
3545
3546 ev_start (EV_A_ (W)w, ++forkcnt);
3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
3551 }
3552
3553 void
3554 ev_fork_stop (EV_P_ ev_fork *w)
3555 {
3556 clear_pending (EV_A_ (W)w);
3557 if (expect_false (!ev_is_active (w)))
3558 return;
3559
3560 EV_FREQUENT_CHECK;
3561
3562 {
3563 int active = ev_active (w);
3564
3565 forks [active - 1] = forks [--forkcnt];
3566 ev_active (forks [active - 1]) = active;
3567 }
3568
3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
3572 }
3573 #endif
3574
3575 #if EV_CLEANUP_ENABLE
3576 void
3577 ev_cleanup_start (EV_P_ ev_cleanup *w)
3578 {
3579 if (expect_false (ev_is_active (w)))
3580 return;
3581
3582 EV_FREQUENT_CHECK;
3583
3584 ev_start (EV_A_ (W)w, ++cleanupcnt);
3585 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3586 cleanups [cleanupcnt - 1] = w;
3587
3588 EV_FREQUENT_CHECK;
3589 }
3590
3591 void
3592 ev_cleanup_stop (EV_P_ ev_cleanup *w)
3593 {
3594 clear_pending (EV_A_ (W)w);
3595 if (expect_false (!ev_is_active (w)))
3596 return;
3597
3598 EV_FREQUENT_CHECK;
3599
3600 {
3601 int active = ev_active (w);
3602
3603 cleanups [active - 1] = cleanups [--cleanupcnt];
3604 ev_active (cleanups [active - 1]) = active;
3605 }
3606
3607 ev_stop (EV_A_ (W)w);
3608
3609 EV_FREQUENT_CHECK;
3610 }
3611 #endif
3612
3613 #if EV_ASYNC_ENABLE
3614 void
3615 ev_async_start (EV_P_ ev_async *w)
3616 {
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 w->sent = 0;
3621
3622 evpipe_init (EV_A);
3623
3624 EV_FREQUENT_CHECK;
3625
3626 ev_start (EV_A_ (W)w, ++asynccnt);
3627 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3628 asyncs [asynccnt - 1] = w;
3629
3630 EV_FREQUENT_CHECK;
3631 }
3632
3633 void
3634 ev_async_stop (EV_P_ ev_async *w)
3635 {
3636 clear_pending (EV_A_ (W)w);
3637 if (expect_false (!ev_is_active (w)))
3638 return;
3639
3640 EV_FREQUENT_CHECK;
3641
3642 {
3643 int active = ev_active (w);
3644
3645 asyncs [active - 1] = asyncs [--asynccnt];
3646 ev_active (asyncs [active - 1]) = active;
3647 }
3648
3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
3652 }
3653
3654 void
3655 ev_async_send (EV_P_ ev_async *w)
3656 {
3657 w->sent = 1;
3658 evpipe_write (EV_A_ &async_pending);
3659 }
3660 #endif
3661
3662 /*****************************************************************************/
3663
3664 struct ev_once
3665 {
3666 ev_io io;
3667 ev_timer to;
3668 void (*cb)(int revents, void *arg);
3669 void *arg;
3670 };
3671
3672 static void
3673 once_cb (EV_P_ struct ev_once *once, int revents)
3674 {
3675 void (*cb)(int revents, void *arg) = once->cb;
3676 void *arg = once->arg;
3677
3678 ev_io_stop (EV_A_ &once->io);
3679 ev_timer_stop (EV_A_ &once->to);
3680 ev_free (once);
3681
3682 cb (revents, arg);
3683 }
3684
3685 static void
3686 once_cb_io (EV_P_ ev_io *w, int revents)
3687 {
3688 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3689
3690 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3691 }
3692
3693 static void
3694 once_cb_to (EV_P_ ev_timer *w, int revents)
3695 {
3696 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3697
3698 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3699 }
3700
3701 void
3702 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3703 {
3704 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3705
3706 if (expect_false (!once))
3707 {
3708 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3709 return;
3710 }
3711
3712 once->cb = cb;
3713 once->arg = arg;
3714
3715 ev_init (&once->io, once_cb_io);
3716 if (fd >= 0)
3717 {
3718 ev_io_set (&once->io, fd, events);
3719 ev_io_start (EV_A_ &once->io);
3720 }
3721
3722 ev_init (&once->to, once_cb_to);
3723 if (timeout >= 0.)
3724 {
3725 ev_timer_set (&once->to, timeout, 0.);
3726 ev_timer_start (EV_A_ &once->to);
3727 }
3728 }
3729
3730 /*****************************************************************************/
3731
3732 #if EV_WALK_ENABLE
3733 void
3734 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3735 {
3736 int i, j;
3737 ev_watcher_list *wl, *wn;
3738
3739 if (types & (EV_IO | EV_EMBED))
3740 for (i = 0; i < anfdmax; ++i)
3741 for (wl = anfds [i].head; wl; )
3742 {
3743 wn = wl->next;
3744
3745 #if EV_EMBED_ENABLE
3746 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3747 {
3748 if (types & EV_EMBED)
3749 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3750 }
3751 else
3752 #endif
3753 #if EV_USE_INOTIFY
3754 if (ev_cb ((ev_io *)wl) == infy_cb)
3755 ;
3756 else
3757 #endif
3758 if ((ev_io *)wl != &pipe_w)
3759 if (types & EV_IO)
3760 cb (EV_A_ EV_IO, wl);
3761
3762 wl = wn;
3763 }
3764
3765 if (types & (EV_TIMER | EV_STAT))
3766 for (i = timercnt + HEAP0; i-- > HEAP0; )
3767 #if EV_STAT_ENABLE
3768 /*TODO: timer is not always active*/
3769 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3770 {
3771 if (types & EV_STAT)
3772 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3773 }
3774 else
3775 #endif
3776 if (types & EV_TIMER)
3777 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3778
3779 #if EV_PERIODIC_ENABLE
3780 if (types & EV_PERIODIC)
3781 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3782 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3783 #endif
3784
3785 #if EV_IDLE_ENABLE
3786 if (types & EV_IDLE)
3787 for (j = NUMPRI; i--; )
3788 for (i = idlecnt [j]; i--; )
3789 cb (EV_A_ EV_IDLE, idles [j][i]);
3790 #endif
3791
3792 #if EV_FORK_ENABLE
3793 if (types & EV_FORK)
3794 for (i = forkcnt; i--; )
3795 if (ev_cb (forks [i]) != embed_fork_cb)
3796 cb (EV_A_ EV_FORK, forks [i]);
3797 #endif
3798
3799 #if EV_ASYNC_ENABLE
3800 if (types & EV_ASYNC)
3801 for (i = asynccnt; i--; )
3802 cb (EV_A_ EV_ASYNC, asyncs [i]);
3803 #endif
3804
3805 #if EV_PREPARE_ENABLE
3806 if (types & EV_PREPARE)
3807 for (i = preparecnt; i--; )
3808 # if EV_EMBED_ENABLE
3809 if (ev_cb (prepares [i]) != embed_prepare_cb)
3810 # endif
3811 cb (EV_A_ EV_PREPARE, prepares [i]);
3812 #endif
3813
3814 #if EV_CHECK_ENABLE
3815 if (types & EV_CHECK)
3816 for (i = checkcnt; i--; )
3817 cb (EV_A_ EV_CHECK, checks [i]);
3818 #endif
3819
3820 #if EV_SIGNAL_ENABLE
3821 if (types & EV_SIGNAL)
3822 for (i = 0; i < EV_NSIG - 1; ++i)
3823 for (wl = signals [i].head; wl; )
3824 {
3825 wn = wl->next;
3826 cb (EV_A_ EV_SIGNAL, wl);
3827 wl = wn;
3828 }
3829 #endif
3830
3831 #if EV_CHILD_ENABLE
3832 if (types & EV_CHILD)
3833 for (i = (EV_PID_HASHSIZE); i--; )
3834 for (wl = childs [i]; wl; )
3835 {
3836 wn = wl->next;
3837 cb (EV_A_ EV_CHILD, wl);
3838 wl = wn;
3839 }
3840 #endif
3841 /* EV_STAT 0x00001000 /* stat data changed */
3842 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3843 }
3844 #endif
3845
3846 #if EV_MULTIPLICITY
3847 #include "ev_wrap.h"
3848 #endif
3849
3850 EV_CPP(})
3851