ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.367
Committed: Tue Jan 11 02:15:58 2011 UTC (13 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_03
Changes since 1.366: +0 -3 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_CLOCK_SYSCALL
49 # ifndef EV_USE_CLOCK_SYSCALL
50 # define EV_USE_CLOCK_SYSCALL 1
51 # ifndef EV_USE_REALTIME
52 # define EV_USE_REALTIME 0
53 # endif
54 # ifndef EV_USE_MONOTONIC
55 # define EV_USE_MONOTONIC 1
56 # endif
57 # endif
58 # elif !defined(EV_USE_CLOCK_SYSCALL)
59 # define EV_USE_CLOCK_SYSCALL 0
60 # endif
61
62 # if HAVE_CLOCK_GETTIME
63 # ifndef EV_USE_MONOTONIC
64 # define EV_USE_MONOTONIC 1
65 # endif
66 # ifndef EV_USE_REALTIME
67 # define EV_USE_REALTIME 0
68 # endif
69 # else
70 # ifndef EV_USE_MONOTONIC
71 # define EV_USE_MONOTONIC 0
72 # endif
73 # ifndef EV_USE_REALTIME
74 # define EV_USE_REALTIME 0
75 # endif
76 # endif
77
78 # if HAVE_NANOSLEEP
79 # ifndef EV_USE_NANOSLEEP
80 # define EV_USE_NANOSLEEP EV_FEATURE_OS
81 # endif
82 # else
83 # undef EV_USE_NANOSLEEP
84 # define EV_USE_NANOSLEEP 0
85 # endif
86
87 # if HAVE_SELECT && HAVE_SYS_SELECT_H
88 # ifndef EV_USE_SELECT
89 # define EV_USE_SELECT EV_FEATURE_BACKENDS
90 # endif
91 # else
92 # undef EV_USE_SELECT
93 # define EV_USE_SELECT 0
94 # endif
95
96 # if HAVE_POLL && HAVE_POLL_H
97 # ifndef EV_USE_POLL
98 # define EV_USE_POLL EV_FEATURE_BACKENDS
99 # endif
100 # else
101 # undef EV_USE_POLL
102 # define EV_USE_POLL 0
103 # endif
104
105 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106 # ifndef EV_USE_EPOLL
107 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
108 # endif
109 # else
110 # undef EV_USE_EPOLL
111 # define EV_USE_EPOLL 0
112 # endif
113
114 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115 # ifndef EV_USE_KQUEUE
116 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117 # endif
118 # else
119 # undef EV_USE_KQUEUE
120 # define EV_USE_KQUEUE 0
121 # endif
122
123 # if HAVE_PORT_H && HAVE_PORT_CREATE
124 # ifndef EV_USE_PORT
125 # define EV_USE_PORT EV_FEATURE_BACKENDS
126 # endif
127 # else
128 # undef EV_USE_PORT
129 # define EV_USE_PORT 0
130 # endif
131
132 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133 # ifndef EV_USE_INOTIFY
134 # define EV_USE_INOTIFY EV_FEATURE_OS
135 # endif
136 # else
137 # undef EV_USE_INOTIFY
138 # define EV_USE_INOTIFY 0
139 # endif
140
141 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142 # ifndef EV_USE_SIGNALFD
143 # define EV_USE_SIGNALFD EV_FEATURE_OS
144 # endif
145 # else
146 # undef EV_USE_SIGNALFD
147 # define EV_USE_SIGNALFD 0
148 # endif
149
150 # if HAVE_EVENTFD
151 # ifndef EV_USE_EVENTFD
152 # define EV_USE_EVENTFD EV_FEATURE_OS
153 # endif
154 # else
155 # undef EV_USE_EVENTFD
156 # define EV_USE_EVENTFD 0
157 # endif
158
159 #endif
160
161 #include <math.h>
162 #include <stdlib.h>
163 #include <string.h>
164 #include <fcntl.h>
165 #include <stddef.h>
166
167 #include <stdio.h>
168
169 #include <assert.h>
170 #include <errno.h>
171 #include <sys/types.h>
172 #include <time.h>
173 #include <limits.h>
174
175 #include <signal.h>
176
177 #ifdef EV_H
178 # include EV_H
179 #else
180 # include "ev.h"
181 #endif
182
183 EV_CPP(extern "C" {)
184
185 #ifndef _WIN32
186 # include <sys/time.h>
187 # include <sys/wait.h>
188 # include <unistd.h>
189 #else
190 # include <io.h>
191 # define WIN32_LEAN_AND_MEAN
192 # include <windows.h>
193 # ifndef EV_SELECT_IS_WINSOCKET
194 # define EV_SELECT_IS_WINSOCKET 1
195 # endif
196 # undef EV_AVOID_STDIO
197 #endif
198
199 /* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205 #define _DARWIN_UNLIMITED_SELECT 1
206
207 /* this block tries to deduce configuration from header-defined symbols and defaults */
208
209 /* try to deduce the maximum number of signals on this platform */
210 #if defined (EV_NSIG)
211 /* use what's provided */
212 #elif defined (NSIG)
213 # define EV_NSIG (NSIG)
214 #elif defined(_NSIG)
215 # define EV_NSIG (_NSIG)
216 #elif defined (SIGMAX)
217 # define EV_NSIG (SIGMAX+1)
218 #elif defined (SIG_MAX)
219 # define EV_NSIG (SIG_MAX+1)
220 #elif defined (_SIG_MAX)
221 # define EV_NSIG (_SIG_MAX+1)
222 #elif defined (MAXSIG)
223 # define EV_NSIG (MAXSIG+1)
224 #elif defined (MAX_SIG)
225 # define EV_NSIG (MAX_SIG+1)
226 #elif defined (SIGARRAYSIZE)
227 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228 #elif defined (_sys_nsig)
229 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230 #else
231 # error "unable to find value for NSIG, please report"
232 /* to make it compile regardless, just remove the above line, */
233 /* but consider reporting it, too! :) */
234 # define EV_NSIG 65
235 #endif
236
237 #ifndef EV_USE_CLOCK_SYSCALL
238 # if __linux && __GLIBC__ >= 2
239 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240 # else
241 # define EV_USE_CLOCK_SYSCALL 0
242 # endif
243 #endif
244
245 #ifndef EV_USE_MONOTONIC
246 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247 # define EV_USE_MONOTONIC EV_FEATURE_OS
248 # else
249 # define EV_USE_MONOTONIC 0
250 # endif
251 #endif
252
253 #ifndef EV_USE_REALTIME
254 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255 #endif
256
257 #ifndef EV_USE_NANOSLEEP
258 # if _POSIX_C_SOURCE >= 199309L
259 # define EV_USE_NANOSLEEP EV_FEATURE_OS
260 # else
261 # define EV_USE_NANOSLEEP 0
262 # endif
263 #endif
264
265 #ifndef EV_USE_SELECT
266 # define EV_USE_SELECT EV_FEATURE_BACKENDS
267 #endif
268
269 #ifndef EV_USE_POLL
270 # ifdef _WIN32
271 # define EV_USE_POLL 0
272 # else
273 # define EV_USE_POLL EV_FEATURE_BACKENDS
274 # endif
275 #endif
276
277 #ifndef EV_USE_EPOLL
278 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
280 # else
281 # define EV_USE_EPOLL 0
282 # endif
283 #endif
284
285 #ifndef EV_USE_KQUEUE
286 # define EV_USE_KQUEUE 0
287 #endif
288
289 #ifndef EV_USE_PORT
290 # define EV_USE_PORT 0
291 #endif
292
293 #ifndef EV_USE_INOTIFY
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_INOTIFY EV_FEATURE_OS
296 # else
297 # define EV_USE_INOTIFY 0
298 # endif
299 #endif
300
301 #ifndef EV_PID_HASHSIZE
302 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303 #endif
304
305 #ifndef EV_INOTIFY_HASHSIZE
306 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307 #endif
308
309 #ifndef EV_USE_EVENTFD
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311 # define EV_USE_EVENTFD EV_FEATURE_OS
312 # else
313 # define EV_USE_EVENTFD 0
314 # endif
315 #endif
316
317 #ifndef EV_USE_SIGNALFD
318 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319 # define EV_USE_SIGNALFD EV_FEATURE_OS
320 # else
321 # define EV_USE_SIGNALFD 0
322 # endif
323 #endif
324
325 #if 0 /* debugging */
326 # define EV_VERIFY 3
327 # define EV_USE_4HEAP 1
328 # define EV_HEAP_CACHE_AT 1
329 #endif
330
331 #ifndef EV_VERIFY
332 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333 #endif
334
335 #ifndef EV_USE_4HEAP
336 # define EV_USE_4HEAP EV_FEATURE_DATA
337 #endif
338
339 #ifndef EV_HEAP_CACHE_AT
340 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341 #endif
342
343 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344 /* which makes programs even slower. might work on other unices, too. */
345 #if EV_USE_CLOCK_SYSCALL
346 # include <syscall.h>
347 # ifdef SYS_clock_gettime
348 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349 # undef EV_USE_MONOTONIC
350 # define EV_USE_MONOTONIC 1
351 # else
352 # undef EV_USE_CLOCK_SYSCALL
353 # define EV_USE_CLOCK_SYSCALL 0
354 # endif
355 #endif
356
357 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359 #ifdef _AIX
360 /* AIX has a completely broken poll.h header */
361 # undef EV_USE_POLL
362 # define EV_USE_POLL 0
363 #endif
364
365 #ifndef CLOCK_MONOTONIC
366 # undef EV_USE_MONOTONIC
367 # define EV_USE_MONOTONIC 0
368 #endif
369
370 #ifndef CLOCK_REALTIME
371 # undef EV_USE_REALTIME
372 # define EV_USE_REALTIME 0
373 #endif
374
375 #if !EV_STAT_ENABLE
376 # undef EV_USE_INOTIFY
377 # define EV_USE_INOTIFY 0
378 #endif
379
380 #if !EV_USE_NANOSLEEP
381 # ifndef _WIN32
382 # include <sys/select.h>
383 # endif
384 #endif
385
386 #if EV_USE_INOTIFY
387 # include <sys/statfs.h>
388 # include <sys/inotify.h>
389 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390 # ifndef IN_DONT_FOLLOW
391 # undef EV_USE_INOTIFY
392 # define EV_USE_INOTIFY 0
393 # endif
394 #endif
395
396 #if EV_SELECT_IS_WINSOCKET
397 # include <winsock.h>
398 #endif
399
400 #if EV_USE_EVENTFD
401 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402 # include <stdint.h>
403 # ifndef EFD_NONBLOCK
404 # define EFD_NONBLOCK O_NONBLOCK
405 # endif
406 # ifndef EFD_CLOEXEC
407 # ifdef O_CLOEXEC
408 # define EFD_CLOEXEC O_CLOEXEC
409 # else
410 # define EFD_CLOEXEC 02000000
411 # endif
412 # endif
413 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414 #endif
415
416 #if EV_USE_SIGNALFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef SFD_NONBLOCK
420 # define SFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef SFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define SFD_CLOEXEC O_CLOEXEC
425 # else
426 # define SFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431 struct signalfd_siginfo
432 {
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435 };
436 #endif
437
438 /**/
439
440 #if EV_VERIFY >= 3
441 # define EV_FREQUENT_CHECK ev_verify (EV_A)
442 #else
443 # define EV_FREQUENT_CHECK do { } while (0)
444 #endif
445
446 /*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454 #define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
462 #if __GNUC__ >= 4
463 # define expect(expr,value) __builtin_expect ((expr),(value))
464 # define noinline __attribute__ ((noinline))
465 #else
466 # define expect(expr,value) (expr)
467 # define noinline
468 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469 # define inline
470 # endif
471 #endif
472
473 #define expect_false(expr) expect ((expr) != 0, 0)
474 #define expect_true(expr) expect ((expr) != 0, 1)
475 #define inline_size static inline
476
477 #if EV_FEATURE_CODE
478 # define inline_speed static inline
479 #else
480 # define inline_speed static noinline
481 #endif
482
483 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485 #if EV_MINPRI == EV_MAXPRI
486 # define ABSPRI(w) (((W)w), 0)
487 #else
488 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489 #endif
490
491 #define EMPTY /* required for microsofts broken pseudo-c compiler */
492 #define EMPTY2(a,b) /* used to suppress some warnings */
493
494 typedef ev_watcher *W;
495 typedef ev_watcher_list *WL;
496 typedef ev_watcher_time *WT;
497
498 #define ev_active(w) ((W)(w))->active
499 #define ev_at(w) ((WT)(w))->at
500
501 #if EV_USE_REALTIME
502 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
503 /* giving it a reasonably high chance of working on typical architectures */
504 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505 #endif
506
507 #if EV_USE_MONOTONIC
508 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509 #endif
510
511 #ifndef EV_FD_TO_WIN32_HANDLE
512 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513 #endif
514 #ifndef EV_WIN32_HANDLE_TO_FD
515 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516 #endif
517 #ifndef EV_WIN32_CLOSE_FD
518 # define EV_WIN32_CLOSE_FD(fd) close (fd)
519 #endif
520
521 #ifdef _WIN32
522 # include "ev_win32.c"
523 #endif
524
525 /*****************************************************************************/
526
527 #ifdef __linux
528 # include <sys/utsname.h>
529 #endif
530
531 static unsigned int noinline
532 ev_linux_version (void)
533 {
534 #ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562 #else
563 return 0;
564 #endif
565 }
566
567 /*****************************************************************************/
568
569 #if EV_AVOID_STDIO
570 static void noinline
571 ev_printerr (const char *msg)
572 {
573 write (STDERR_FILENO, msg, strlen (msg));
574 }
575 #endif
576
577 static void (*syserr_cb)(const char *msg);
578
579 void
580 ev_set_syserr_cb (void (*cb)(const char *msg))
581 {
582 syserr_cb = cb;
583 }
584
585 static void noinline
586 ev_syserr (const char *msg)
587 {
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595 #if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600 #else
601 perror (msg);
602 #endif
603 abort ();
604 }
605 }
606
607 static void *
608 ev_realloc_emul (void *ptr, long size)
609 {
610 #if __GLIBC__
611 return realloc (ptr, size);
612 #else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623 #endif
624 }
625
626 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
627
628 void
629 ev_set_allocator (void *(*cb)(void *ptr, long size))
630 {
631 alloc = cb;
632 }
633
634 inline_speed void *
635 ev_realloc (void *ptr, long size)
636 {
637 ptr = alloc (ptr, size);
638
639 if (!ptr && size)
640 {
641 #if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643 #else
644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645 #endif
646 abort ();
647 }
648
649 return ptr;
650 }
651
652 #define ev_malloc(size) ev_realloc (0, (size))
653 #define ev_free(ptr) ev_realloc ((ptr), 0)
654
655 /*****************************************************************************/
656
657 /* set in reify when reification needed */
658 #define EV_ANFD_REIFY 1
659
660 /* file descriptor info structure */
661 typedef struct
662 {
663 WL head;
664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
667 unsigned char unused;
668 #if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670 #endif
671 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
672 SOCKET handle;
673 #endif
674 #if EV_USE_IOCP
675 OVERLAPPED or, ow;
676 #endif
677 } ANFD;
678
679 /* stores the pending event set for a given watcher */
680 typedef struct
681 {
682 W w;
683 int events; /* the pending event set for the given watcher */
684 } ANPENDING;
685
686 #if EV_USE_INOTIFY
687 /* hash table entry per inotify-id */
688 typedef struct
689 {
690 WL head;
691 } ANFS;
692 #endif
693
694 /* Heap Entry */
695 #if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705 #else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712 #endif
713
714 #if EV_MULTIPLICITY
715
716 struct ev_loop
717 {
718 ev_tstamp ev_rt_now;
719 #define ev_rt_now ((loop)->ev_rt_now)
720 #define VAR(name,decl) decl;
721 #include "ev_vars.h"
722 #undef VAR
723 };
724 #include "ev_wrap.h"
725
726 static struct ev_loop default_loop_struct;
727 struct ev_loop *ev_default_loop_ptr;
728
729 #else
730
731 ev_tstamp ev_rt_now;
732 #define VAR(name,decl) static decl;
733 #include "ev_vars.h"
734 #undef VAR
735
736 static int ev_default_loop_ptr;
737
738 #endif
739
740 #if EV_FEATURE_API
741 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743 # define EV_INVOKE_PENDING invoke_cb (EV_A)
744 #else
745 # define EV_RELEASE_CB (void)0
746 # define EV_ACQUIRE_CB (void)0
747 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748 #endif
749
750 #define EVBREAK_RECURSE 0x80
751
752 /*****************************************************************************/
753
754 #ifndef EV_HAVE_EV_TIME
755 ev_tstamp
756 ev_time (void)
757 {
758 #if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
761 struct timespec ts;
762 clock_gettime (CLOCK_REALTIME, &ts);
763 return ts.tv_sec + ts.tv_nsec * 1e-9;
764 }
765 #endif
766
767 struct timeval tv;
768 gettimeofday (&tv, 0);
769 return tv.tv_sec + tv.tv_usec * 1e-6;
770 }
771 #endif
772
773 inline_size ev_tstamp
774 get_clock (void)
775 {
776 #if EV_USE_MONOTONIC
777 if (expect_true (have_monotonic))
778 {
779 struct timespec ts;
780 clock_gettime (CLOCK_MONOTONIC, &ts);
781 return ts.tv_sec + ts.tv_nsec * 1e-9;
782 }
783 #endif
784
785 return ev_time ();
786 }
787
788 #if EV_MULTIPLICITY
789 ev_tstamp
790 ev_now (EV_P)
791 {
792 return ev_rt_now;
793 }
794 #endif
795
796 void
797 ev_sleep (ev_tstamp delay)
798 {
799 if (delay > 0.)
800 {
801 #if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806 #elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808 #else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816 #endif
817 }
818 }
819
820 /*****************************************************************************/
821
822 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824 /* find a suitable new size for the given array, */
825 /* hopefully by rounding to a nice-to-malloc size */
826 inline_size int
827 array_nextsize (int elem, int cur, int cnt)
828 {
829 int ncur = cur + 1;
830
831 do
832 ncur <<= 1;
833 while (cnt > ncur);
834
835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
837 {
838 ncur *= elem;
839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
840 ncur = ncur - sizeof (void *) * 4;
841 ncur /= elem;
842 }
843
844 return ncur;
845 }
846
847 static noinline void *
848 array_realloc (int elem, void *base, int *cur, int cnt)
849 {
850 *cur = array_nextsize (elem, *cur, cnt);
851 return ev_realloc (base, elem * *cur);
852 }
853
854 #define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
856
857 #define array_needsize(type,base,cur,cnt,init) \
858 if (expect_false ((cnt) > (cur))) \
859 { \
860 int ocur_ = (cur); \
861 (base) = (type *)array_realloc \
862 (sizeof (type), (base), &(cur), (cnt)); \
863 init ((base) + (ocur_), (cur) - ocur_); \
864 }
865
866 #if 0
867 #define array_slim(type,stem) \
868 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
869 { \
870 stem ## max = array_roundsize (stem ## cnt >> 1); \
871 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
873 }
874 #endif
875
876 #define array_free(stem, idx) \
877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
878
879 /*****************************************************************************/
880
881 /* dummy callback for pending events */
882 static void noinline
883 pendingcb (EV_P_ ev_prepare *w, int revents)
884 {
885 }
886
887 void noinline
888 ev_feed_event (EV_P_ void *w, int revents)
889 {
890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
892
893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
900 pendings [pri][w_->pending - 1].events = revents;
901 }
902 }
903
904 inline_speed void
905 feed_reverse (EV_P_ W w)
906 {
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909 }
910
911 inline_size void
912 feed_reverse_done (EV_P_ int revents)
913 {
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917 }
918
919 inline_speed void
920 queue_events (EV_P_ W *events, int eventcnt, int type)
921 {
922 int i;
923
924 for (i = 0; i < eventcnt; ++i)
925 ev_feed_event (EV_A_ events [i], type);
926 }
927
928 /*****************************************************************************/
929
930 inline_speed void
931 fd_event_nocheck (EV_P_ int fd, int revents)
932 {
933 ANFD *anfd = anfds + fd;
934 ev_io *w;
935
936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
937 {
938 int ev = w->events & revents;
939
940 if (ev)
941 ev_feed_event (EV_A_ (W)w, ev);
942 }
943 }
944
945 /* do not submit kernel events for fds that have reify set */
946 /* because that means they changed while we were polling for new events */
947 inline_speed void
948 fd_event (EV_P_ int fd, int revents)
949 {
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954 }
955
956 void
957 ev_feed_fd_event (EV_P_ int fd, int revents)
958 {
959 if (fd >= 0 && fd < anfdmax)
960 fd_event_nocheck (EV_A_ fd, revents);
961 }
962
963 /* make sure the external fd watch events are in-sync */
964 /* with the kernel/libev internal state */
965 inline_size void
966 fd_reify (EV_P)
967 {
968 int i;
969
970 for (i = 0; i < fdchangecnt; ++i)
971 {
972 int fd = fdchanges [i];
973 ANFD *anfd = anfds + fd;
974 ev_io *w;
975
976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
978
979 anfd->reify = 0;
980
981 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
982 if (o_reify & EV__IOFDSET)
983 {
984 unsigned long arg;
985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
988 }
989 #endif
990
991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
1003 backend_modify (EV_A_ fd, o_events, anfd->events);
1004 }
1005
1006 fdchangecnt = 0;
1007 }
1008
1009 /* something about the given fd changed */
1010 inline_size void
1011 fd_change (EV_P_ int fd, int flags)
1012 {
1013 unsigned char reify = anfds [fd].reify;
1014 anfds [fd].reify |= flags;
1015
1016 if (expect_true (!reify))
1017 {
1018 ++fdchangecnt;
1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
1022 }
1023
1024 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025 inline_speed void
1026 fd_kill (EV_P_ int fd)
1027 {
1028 ev_io *w;
1029
1030 while ((w = (ev_io *)anfds [fd].head))
1031 {
1032 ev_io_stop (EV_A_ w);
1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1034 }
1035 }
1036
1037 /* check whether the given fd is actually valid, for error recovery */
1038 inline_size int
1039 fd_valid (int fd)
1040 {
1041 #ifdef _WIN32
1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1043 #else
1044 return fcntl (fd, F_GETFD) != -1;
1045 #endif
1046 }
1047
1048 /* called on EBADF to verify fds */
1049 static void noinline
1050 fd_ebadf (EV_P)
1051 {
1052 int fd;
1053
1054 for (fd = 0; fd < anfdmax; ++fd)
1055 if (anfds [fd].events)
1056 if (!fd_valid (fd) && errno == EBADF)
1057 fd_kill (EV_A_ fd);
1058 }
1059
1060 /* called on ENOMEM in select/poll to kill some fds and retry */
1061 static void noinline
1062 fd_enomem (EV_P)
1063 {
1064 int fd;
1065
1066 for (fd = anfdmax; fd--; )
1067 if (anfds [fd].events)
1068 {
1069 fd_kill (EV_A_ fd);
1070 break;
1071 }
1072 }
1073
1074 /* usually called after fork if backend needs to re-arm all fds from scratch */
1075 static void noinline
1076 fd_rearm_all (EV_P)
1077 {
1078 int fd;
1079
1080 for (fd = 0; fd < anfdmax; ++fd)
1081 if (anfds [fd].events)
1082 {
1083 anfds [fd].events = 0;
1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1086 }
1087 }
1088
1089 /* used to prepare libev internal fd's */
1090 /* this is not fork-safe */
1091 inline_speed void
1092 fd_intern (int fd)
1093 {
1094 #ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1097 #else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100 #endif
1101 }
1102
1103 /*****************************************************************************/
1104
1105 /*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111 /*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117 #if EV_USE_4HEAP
1118
1119 #define DHEAP 4
1120 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122 #define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124 /* away from the root */
1125 inline_speed void
1126 downheap (ANHE *heap, int N, int k)
1127 {
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166 }
1167
1168 #else /* 4HEAP */
1169
1170 #define HEAP0 1
1171 #define HPARENT(k) ((k) >> 1)
1172 #define UPHEAP_DONE(p,k) (!(p))
1173
1174 /* away from the root */
1175 inline_speed void
1176 downheap (ANHE *heap, int N, int k)
1177 {
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201 }
1202 #endif
1203
1204 /* towards the root */
1205 inline_speed void
1206 upheap (ANHE *heap, int k)
1207 {
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224 }
1225
1226 /* move an element suitably so it is in a correct place */
1227 inline_size void
1228 adjustheap (ANHE *heap, int N, int k)
1229 {
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234 }
1235
1236 /* rebuild the heap: this function is used only once and executed rarely */
1237 inline_size void
1238 reheap (ANHE *heap, int N)
1239 {
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246 }
1247
1248 /*****************************************************************************/
1249
1250 /* associate signal watchers to a signal signal */
1251 typedef struct
1252 {
1253 EV_ATOMIC_T pending;
1254 #if EV_MULTIPLICITY
1255 EV_P;
1256 #endif
1257 WL head;
1258 } ANSIG;
1259
1260 static ANSIG signals [EV_NSIG - 1];
1261
1262 /*****************************************************************************/
1263
1264 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
1266 static void noinline
1267 evpipe_init (EV_P)
1268 {
1269 if (!ev_is_active (&pipe_w))
1270 {
1271 # if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283 # endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
1288 fd_intern (evpipe [0]);
1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
1292
1293 ev_io_start (EV_A_ &pipe_w);
1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296 }
1297
1298 inline_size void
1299 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300 {
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308 #if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315 #endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325 }
1326
1327 /* called whenever the libev signal pipe */
1328 /* got some events (signal, async) */
1329 static void
1330 pipecb (EV_P_ ev_io *iow, int revents)
1331 {
1332 int i;
1333
1334 #if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341 #endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357 #if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369 #endif
1370 }
1371
1372 /*****************************************************************************/
1373
1374 void
1375 ev_feed_signal (int signum)
1376 {
1377 #if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379
1380 if (!EV_A)
1381 return;
1382 #endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386 }
1387
1388 static void
1389 ev_sighandler (int signum)
1390 {
1391 #ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393 #endif
1394
1395 ev_feed_signal (signum);
1396 }
1397
1398 void noinline
1399 ev_feed_signal_event (EV_P_ int signum)
1400 {
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408 #if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414 #endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420 }
1421
1422 #if EV_USE_SIGNALFD
1423 static void
1424 sigfdcb (EV_P_ ev_io *iow, int revents)
1425 {
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439 }
1440 #endif
1441
1442 #endif
1443
1444 /*****************************************************************************/
1445
1446 #if EV_CHILD_ENABLE
1447 static WL childs [EV_PID_HASHSIZE];
1448
1449 static ev_signal childev;
1450
1451 #ifndef WIFCONTINUED
1452 # define WIFCONTINUED(status) 0
1453 #endif
1454
1455 /* handle a single child status event */
1456 inline_speed void
1457 child_reap (EV_P_ int chain, int pid, int status)
1458 {
1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1461
1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
1466 {
1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1468 w->rpid = pid;
1469 w->rstatus = status;
1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1471 }
1472 }
1473 }
1474
1475 #ifndef WCONTINUED
1476 # define WCONTINUED 0
1477 #endif
1478
1479 /* called on sigchld etc., calls waitpid */
1480 static void
1481 childcb (EV_P_ ev_signal *sw, int revents)
1482 {
1483 int pid, status;
1484
1485 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1486 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1487 if (!WCONTINUED
1488 || errno != EINVAL
1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1490 return;
1491
1492 /* make sure we are called again until all children have been reaped */
1493 /* we need to do it this way so that the callback gets called before we continue */
1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1495
1496 child_reap (EV_A_ pid, pid, status);
1497 if ((EV_PID_HASHSIZE) > 1)
1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1499 }
1500
1501 #endif
1502
1503 /*****************************************************************************/
1504
1505 #if EV_USE_IOCP
1506 # include "ev_iocp.c"
1507 #endif
1508 #if EV_USE_PORT
1509 # include "ev_port.c"
1510 #endif
1511 #if EV_USE_KQUEUE
1512 # include "ev_kqueue.c"
1513 #endif
1514 #if EV_USE_EPOLL
1515 # include "ev_epoll.c"
1516 #endif
1517 #if EV_USE_POLL
1518 # include "ev_poll.c"
1519 #endif
1520 #if EV_USE_SELECT
1521 # include "ev_select.c"
1522 #endif
1523
1524 int
1525 ev_version_major (void)
1526 {
1527 return EV_VERSION_MAJOR;
1528 }
1529
1530 int
1531 ev_version_minor (void)
1532 {
1533 return EV_VERSION_MINOR;
1534 }
1535
1536 /* return true if we are running with elevated privileges and should ignore env variables */
1537 int inline_size
1538 enable_secure (void)
1539 {
1540 #ifdef _WIN32
1541 return 0;
1542 #else
1543 return getuid () != geteuid ()
1544 || getgid () != getegid ();
1545 #endif
1546 }
1547
1548 unsigned int
1549 ev_supported_backends (void)
1550 {
1551 unsigned int flags = 0;
1552
1553 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1554 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1555 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1556 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1557 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1558
1559 return flags;
1560 }
1561
1562 unsigned int
1563 ev_recommended_backends (void)
1564 {
1565 unsigned int flags = ev_supported_backends ();
1566
1567 #ifndef __NetBSD__
1568 /* kqueue is borked on everything but netbsd apparently */
1569 /* it usually doesn't work correctly on anything but sockets and pipes */
1570 flags &= ~EVBACKEND_KQUEUE;
1571 #endif
1572 #ifdef __APPLE__
1573 /* only select works correctly on that "unix-certified" platform */
1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576 #endif
1577 #ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1579 #endif
1580
1581 return flags;
1582 }
1583
1584 unsigned int
1585 ev_embeddable_backends (void)
1586 {
1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1588
1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
1594 }
1595
1596 unsigned int
1597 ev_backend (EV_P)
1598 {
1599 return backend;
1600 }
1601
1602 #if EV_FEATURE_API
1603 unsigned int
1604 ev_iteration (EV_P)
1605 {
1606 return loop_count;
1607 }
1608
1609 unsigned int
1610 ev_depth (EV_P)
1611 {
1612 return loop_depth;
1613 }
1614
1615 void
1616 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617 {
1618 io_blocktime = interval;
1619 }
1620
1621 void
1622 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623 {
1624 timeout_blocktime = interval;
1625 }
1626
1627 void
1628 ev_set_userdata (EV_P_ void *data)
1629 {
1630 userdata = data;
1631 }
1632
1633 void *
1634 ev_userdata (EV_P)
1635 {
1636 return userdata;
1637 }
1638
1639 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640 {
1641 invoke_cb = invoke_pending_cb;
1642 }
1643
1644 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645 {
1646 release_cb = release;
1647 acquire_cb = acquire;
1648 }
1649 #endif
1650
1651 /* initialise a loop structure, must be zero-initialised */
1652 static void noinline
1653 loop_init (EV_P_ unsigned int flags)
1654 {
1655 if (!backend)
1656 {
1657 origflags = flags;
1658
1659 #if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667 #endif
1668
1669 #if EV_USE_MONOTONIC
1670 if (!have_monotonic)
1671 {
1672 struct timespec ts;
1673
1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1675 have_monotonic = 1;
1676 }
1677 #endif
1678
1679 /* pid check not overridable via env */
1680 #ifndef _WIN32
1681 if (flags & EVFLAG_FORKCHECK)
1682 curpid = getpid ();
1683 #endif
1684
1685 if (!(flags & EVFLAG_NOENV)
1686 && !enable_secure ()
1687 && getenv ("LIBEV_FLAGS"))
1688 flags = atoi (getenv ("LIBEV_FLAGS"));
1689
1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694 #if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696 #endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703 #if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705 #endif
1706 #if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708 #endif
1709 #if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711 #endif
1712
1713 if (!(flags & EVBACKEND_MASK))
1714 flags |= ev_recommended_backends ();
1715
1716 #if EV_USE_IOCP
1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1718 #endif
1719 #if EV_USE_PORT
1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1721 #endif
1722 #if EV_USE_KQUEUE
1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1724 #endif
1725 #if EV_USE_EPOLL
1726 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1727 #endif
1728 #if EV_USE_POLL
1729 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1730 #endif
1731 #if EV_USE_SELECT
1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1733 #endif
1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1738 ev_init (&pipe_w, pipecb);
1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740 #endif
1741 }
1742 }
1743
1744 /* free up a loop structure */
1745 void
1746 ev_loop_destroy (EV_P)
1747 {
1748 int i;
1749
1750 #if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754 #endif
1755
1756 #if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763 #endif
1764
1765 #if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771 #endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778 #if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781 #endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790 #if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793 #endif
1794
1795 #if EV_USE_INOTIFY
1796 if (fs_fd >= 0)
1797 close (fs_fd);
1798 #endif
1799
1800 if (backend_fd >= 0)
1801 close (backend_fd);
1802
1803 #if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805 #endif
1806 #if EV_USE_PORT
1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1808 #endif
1809 #if EV_USE_KQUEUE
1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1811 #endif
1812 #if EV_USE_EPOLL
1813 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1814 #endif
1815 #if EV_USE_POLL
1816 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1817 #endif
1818 #if EV_USE_SELECT
1819 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1820 #endif
1821
1822 for (i = NUMPRI; i--; )
1823 {
1824 array_free (pending, [i]);
1825 #if EV_IDLE_ENABLE
1826 array_free (idle, [i]);
1827 #endif
1828 }
1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1831
1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1834 array_free (fdchange, EMPTY);
1835 array_free (timer, EMPTY);
1836 #if EV_PERIODIC_ENABLE
1837 array_free (periodic, EMPTY);
1838 #endif
1839 #if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841 #endif
1842 #if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844 #endif
1845 array_free (prepare, EMPTY);
1846 array_free (check, EMPTY);
1847 #if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849 #endif
1850
1851 backend = 0;
1852
1853 #if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855 #endif
1856 ev_default_loop_ptr = 0;
1857 #if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860 #endif
1861 }
1862
1863 #if EV_USE_INOTIFY
1864 inline_size void infy_fork (EV_P);
1865 #endif
1866
1867 inline_size void
1868 loop_fork (EV_P)
1869 {
1870 #if EV_USE_PORT
1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1872 #endif
1873 #if EV_USE_KQUEUE
1874 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1875 #endif
1876 #if EV_USE_EPOLL
1877 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1878 #endif
1879 #if EV_USE_INOTIFY
1880 infy_fork (EV_A);
1881 #endif
1882
1883 if (ev_is_active (&pipe_w))
1884 {
1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888 #if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890 #endif
1891
1892 ev_ref (EV_A);
1893 ev_io_stop (EV_A_ &pipe_w);
1894
1895 #if EV_USE_EVENTFD
1896 if (evfd >= 0)
1897 close (evfd);
1898 #endif
1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910 #endif
1911 }
1912
1913 postfork = 0;
1914 }
1915
1916 #if EV_MULTIPLICITY
1917
1918 struct ev_loop *
1919 ev_loop_new (unsigned int flags)
1920 {
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931 }
1932
1933 #endif /* multiplicity */
1934
1935 #if EV_VERIFY
1936 static void noinline
1937 verify_watcher (EV_P_ W w)
1938 {
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943 }
1944
1945 static void noinline
1946 verify_heap (EV_P_ ANHE *heap, int N)
1947 {
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958 }
1959
1960 static void noinline
1961 array_verify (EV_P_ W *ws, int cnt)
1962 {
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968 }
1969 #endif
1970
1971 #if EV_FEATURE_API
1972 void
1973 ev_verify (EV_P)
1974 {
1975 #if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997 #if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000 #endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005 #if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009 #endif
2010 }
2011
2012 #if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015 #endif
2016
2017 #if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020 #endif
2021
2022 #if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025 #endif
2026
2027 #if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030 #endif
2031
2032 #if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035 #endif
2036
2037 # if 0
2038 #if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041 #endif
2042 # endif
2043 #endif
2044 }
2045 #endif
2046
2047 #if EV_MULTIPLICITY
2048 struct ev_loop *
2049 #else
2050 int
2051 #endif
2052 ev_default_loop (unsigned int flags)
2053 {
2054 if (!ev_default_loop_ptr)
2055 {
2056 #if EV_MULTIPLICITY
2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
2058 #else
2059 ev_default_loop_ptr = 1;
2060 #endif
2061
2062 loop_init (EV_A_ flags);
2063
2064 if (ev_backend (EV_A))
2065 {
2066 #if EV_CHILD_ENABLE
2067 ev_signal_init (&childev, childcb, SIGCHLD);
2068 ev_set_priority (&childev, EV_MAXPRI);
2069 ev_signal_start (EV_A_ &childev);
2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
2071 #endif
2072 }
2073 else
2074 ev_default_loop_ptr = 0;
2075 }
2076
2077 return ev_default_loop_ptr;
2078 }
2079
2080 void
2081 ev_loop_fork (EV_P)
2082 {
2083 postfork = 1; /* must be in line with ev_default_fork */
2084 }
2085
2086 /*****************************************************************************/
2087
2088 void
2089 ev_invoke (EV_P_ void *w, int revents)
2090 {
2091 EV_CB_INVOKE ((W)w, revents);
2092 }
2093
2094 unsigned int
2095 ev_pending_count (EV_P)
2096 {
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104 }
2105
2106 void noinline
2107 ev_invoke_pending (EV_P)
2108 {
2109 int pri;
2110
2111 for (pri = NUMPRI; pri--; )
2112 while (pendingcnt [pri])
2113 {
2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2115
2116 p->w->pending = 0;
2117 EV_CB_INVOKE (p->w, p->events);
2118 EV_FREQUENT_CHECK;
2119 }
2120 }
2121
2122 #if EV_IDLE_ENABLE
2123 /* make idle watchers pending. this handles the "call-idle */
2124 /* only when higher priorities are idle" logic */
2125 inline_size void
2126 idle_reify (EV_P)
2127 {
2128 if (expect_false (idleall))
2129 {
2130 int pri;
2131
2132 for (pri = NUMPRI; pri--; )
2133 {
2134 if (pendingcnt [pri])
2135 break;
2136
2137 if (idlecnt [pri])
2138 {
2139 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2140 break;
2141 }
2142 }
2143 }
2144 }
2145 #endif
2146
2147 /* make timers pending */
2148 inline_size void
2149 timers_reify (EV_P)
2150 {
2151 EV_FREQUENT_CHECK;
2152
2153 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2154 {
2155 do
2156 {
2157 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2158
2159 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2160
2161 /* first reschedule or stop timer */
2162 if (w->repeat)
2163 {
2164 ev_at (w) += w->repeat;
2165 if (ev_at (w) < mn_now)
2166 ev_at (w) = mn_now;
2167
2168 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2169
2170 ANHE_at_cache (timers [HEAP0]);
2171 downheap (timers, timercnt, HEAP0);
2172 }
2173 else
2174 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2175
2176 EV_FREQUENT_CHECK;
2177 feed_reverse (EV_A_ (W)w);
2178 }
2179 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2180
2181 feed_reverse_done (EV_A_ EV_TIMER);
2182 }
2183 }
2184
2185 #if EV_PERIODIC_ENABLE
2186 /* make periodics pending */
2187 inline_size void
2188 periodics_reify (EV_P)
2189 {
2190 EV_FREQUENT_CHECK;
2191
2192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2193 {
2194 int feed_count = 0;
2195
2196 do
2197 {
2198 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2199
2200 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2201
2202 /* first reschedule or stop timer */
2203 if (w->reschedule_cb)
2204 {
2205 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2206
2207 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2208
2209 ANHE_at_cache (periodics [HEAP0]);
2210 downheap (periodics, periodiccnt, HEAP0);
2211 }
2212 else if (w->interval)
2213 {
2214 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2215 /* if next trigger time is not sufficiently in the future, put it there */
2216 /* this might happen because of floating point inexactness */
2217 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2218 {
2219 ev_at (w) += w->interval;
2220
2221 /* if interval is unreasonably low we might still have a time in the past */
2222 /* so correct this. this will make the periodic very inexact, but the user */
2223 /* has effectively asked to get triggered more often than possible */
2224 if (ev_at (w) < ev_rt_now)
2225 ev_at (w) = ev_rt_now;
2226 }
2227
2228 ANHE_at_cache (periodics [HEAP0]);
2229 downheap (periodics, periodiccnt, HEAP0);
2230 }
2231 else
2232 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2233
2234 EV_FREQUENT_CHECK;
2235 feed_reverse (EV_A_ (W)w);
2236 }
2237 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2238
2239 feed_reverse_done (EV_A_ EV_PERIODIC);
2240 }
2241 }
2242
2243 /* simply recalculate all periodics */
2244 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2245 static void noinline
2246 periodics_reschedule (EV_P)
2247 {
2248 int i;
2249
2250 /* adjust periodics after time jump */
2251 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2252 {
2253 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2254
2255 if (w->reschedule_cb)
2256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2257 else if (w->interval)
2258 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2259
2260 ANHE_at_cache (periodics [i]);
2261 }
2262
2263 reheap (periodics, periodiccnt);
2264 }
2265 #endif
2266
2267 /* adjust all timers by a given offset */
2268 static void noinline
2269 timers_reschedule (EV_P_ ev_tstamp adjust)
2270 {
2271 int i;
2272
2273 for (i = 0; i < timercnt; ++i)
2274 {
2275 ANHE *he = timers + i + HEAP0;
2276 ANHE_w (*he)->at += adjust;
2277 ANHE_at_cache (*he);
2278 }
2279 }
2280
2281 /* fetch new monotonic and realtime times from the kernel */
2282 /* also detect if there was a timejump, and act accordingly */
2283 inline_speed void
2284 time_update (EV_P_ ev_tstamp max_block)
2285 {
2286 #if EV_USE_MONOTONIC
2287 if (expect_true (have_monotonic))
2288 {
2289 int i;
2290 ev_tstamp odiff = rtmn_diff;
2291
2292 mn_now = get_clock ();
2293
2294 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2295 /* interpolate in the meantime */
2296 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2297 {
2298 ev_rt_now = rtmn_diff + mn_now;
2299 return;
2300 }
2301
2302 now_floor = mn_now;
2303 ev_rt_now = ev_time ();
2304
2305 /* loop a few times, before making important decisions.
2306 * on the choice of "4": one iteration isn't enough,
2307 * in case we get preempted during the calls to
2308 * ev_time and get_clock. a second call is almost guaranteed
2309 * to succeed in that case, though. and looping a few more times
2310 * doesn't hurt either as we only do this on time-jumps or
2311 * in the unlikely event of having been preempted here.
2312 */
2313 for (i = 4; --i; )
2314 {
2315 rtmn_diff = ev_rt_now - mn_now;
2316
2317 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2318 return; /* all is well */
2319
2320 ev_rt_now = ev_time ();
2321 mn_now = get_clock ();
2322 now_floor = mn_now;
2323 }
2324
2325 /* no timer adjustment, as the monotonic clock doesn't jump */
2326 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2327 # if EV_PERIODIC_ENABLE
2328 periodics_reschedule (EV_A);
2329 # endif
2330 }
2331 else
2332 #endif
2333 {
2334 ev_rt_now = ev_time ();
2335
2336 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2337 {
2338 /* adjust timers. this is easy, as the offset is the same for all of them */
2339 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2340 #if EV_PERIODIC_ENABLE
2341 periodics_reschedule (EV_A);
2342 #endif
2343 }
2344
2345 mn_now = ev_rt_now;
2346 }
2347 }
2348
2349 void
2350 ev_run (EV_P_ int flags)
2351 {
2352 #if EV_FEATURE_API
2353 ++loop_depth;
2354 #endif
2355
2356 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2357
2358 loop_done = EVBREAK_CANCEL;
2359
2360 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2361
2362 do
2363 {
2364 #if EV_VERIFY >= 2
2365 ev_verify (EV_A);
2366 #endif
2367
2368 #ifndef _WIN32
2369 if (expect_false (curpid)) /* penalise the forking check even more */
2370 if (expect_false (getpid () != curpid))
2371 {
2372 curpid = getpid ();
2373 postfork = 1;
2374 }
2375 #endif
2376
2377 #if EV_FORK_ENABLE
2378 /* we might have forked, so queue fork handlers */
2379 if (expect_false (postfork))
2380 if (forkcnt)
2381 {
2382 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2383 EV_INVOKE_PENDING;
2384 }
2385 #endif
2386
2387 #if EV_PREPARE_ENABLE
2388 /* queue prepare watchers (and execute them) */
2389 if (expect_false (preparecnt))
2390 {
2391 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2392 EV_INVOKE_PENDING;
2393 }
2394 #endif
2395
2396 if (expect_false (loop_done))
2397 break;
2398
2399 /* we might have forked, so reify kernel state if necessary */
2400 if (expect_false (postfork))
2401 loop_fork (EV_A);
2402
2403 /* update fd-related kernel structures */
2404 fd_reify (EV_A);
2405
2406 /* calculate blocking time */
2407 {
2408 ev_tstamp waittime = 0.;
2409 ev_tstamp sleeptime = 0.;
2410
2411 /* remember old timestamp for io_blocktime calculation */
2412 ev_tstamp prev_mn_now = mn_now;
2413
2414 /* update time to cancel out callback processing overhead */
2415 time_update (EV_A_ 1e100);
2416
2417 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2418 {
2419 waittime = MAX_BLOCKTIME;
2420
2421 if (timercnt)
2422 {
2423 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2424 if (waittime > to) waittime = to;
2425 }
2426
2427 #if EV_PERIODIC_ENABLE
2428 if (periodiccnt)
2429 {
2430 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2431 if (waittime > to) waittime = to;
2432 }
2433 #endif
2434
2435 /* don't let timeouts decrease the waittime below timeout_blocktime */
2436 if (expect_false (waittime < timeout_blocktime))
2437 waittime = timeout_blocktime;
2438
2439 /* extra check because io_blocktime is commonly 0 */
2440 if (expect_false (io_blocktime))
2441 {
2442 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2443
2444 if (sleeptime > waittime - backend_fudge)
2445 sleeptime = waittime - backend_fudge;
2446
2447 if (expect_true (sleeptime > 0.))
2448 {
2449 ev_sleep (sleeptime);
2450 waittime -= sleeptime;
2451 }
2452 }
2453 }
2454
2455 #if EV_FEATURE_API
2456 ++loop_count;
2457 #endif
2458 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2459 backend_poll (EV_A_ waittime);
2460 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2461
2462 /* update ev_rt_now, do magic */
2463 time_update (EV_A_ waittime + sleeptime);
2464 }
2465
2466 /* queue pending timers and reschedule them */
2467 timers_reify (EV_A); /* relative timers called last */
2468 #if EV_PERIODIC_ENABLE
2469 periodics_reify (EV_A); /* absolute timers called first */
2470 #endif
2471
2472 #if EV_IDLE_ENABLE
2473 /* queue idle watchers unless other events are pending */
2474 idle_reify (EV_A);
2475 #endif
2476
2477 #if EV_CHECK_ENABLE
2478 /* queue check watchers, to be executed first */
2479 if (expect_false (checkcnt))
2480 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2481 #endif
2482
2483 EV_INVOKE_PENDING;
2484 }
2485 while (expect_true (
2486 activecnt
2487 && !loop_done
2488 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2489 ));
2490
2491 if (loop_done == EVBREAK_ONE)
2492 loop_done = EVBREAK_CANCEL;
2493
2494 #if EV_FEATURE_API
2495 --loop_depth;
2496 #endif
2497 }
2498
2499 void
2500 ev_break (EV_P_ int how)
2501 {
2502 loop_done = how;
2503 }
2504
2505 void
2506 ev_ref (EV_P)
2507 {
2508 ++activecnt;
2509 }
2510
2511 void
2512 ev_unref (EV_P)
2513 {
2514 --activecnt;
2515 }
2516
2517 void
2518 ev_now_update (EV_P)
2519 {
2520 time_update (EV_A_ 1e100);
2521 }
2522
2523 void
2524 ev_suspend (EV_P)
2525 {
2526 ev_now_update (EV_A);
2527 }
2528
2529 void
2530 ev_resume (EV_P)
2531 {
2532 ev_tstamp mn_prev = mn_now;
2533
2534 ev_now_update (EV_A);
2535 timers_reschedule (EV_A_ mn_now - mn_prev);
2536 #if EV_PERIODIC_ENABLE
2537 /* TODO: really do this? */
2538 periodics_reschedule (EV_A);
2539 #endif
2540 }
2541
2542 /*****************************************************************************/
2543 /* singly-linked list management, used when the expected list length is short */
2544
2545 inline_size void
2546 wlist_add (WL *head, WL elem)
2547 {
2548 elem->next = *head;
2549 *head = elem;
2550 }
2551
2552 inline_size void
2553 wlist_del (WL *head, WL elem)
2554 {
2555 while (*head)
2556 {
2557 if (expect_true (*head == elem))
2558 {
2559 *head = elem->next;
2560 break;
2561 }
2562
2563 head = &(*head)->next;
2564 }
2565 }
2566
2567 /* internal, faster, version of ev_clear_pending */
2568 inline_speed void
2569 clear_pending (EV_P_ W w)
2570 {
2571 if (w->pending)
2572 {
2573 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2574 w->pending = 0;
2575 }
2576 }
2577
2578 int
2579 ev_clear_pending (EV_P_ void *w)
2580 {
2581 W w_ = (W)w;
2582 int pending = w_->pending;
2583
2584 if (expect_true (pending))
2585 {
2586 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2587 p->w = (W)&pending_w;
2588 w_->pending = 0;
2589 return p->events;
2590 }
2591 else
2592 return 0;
2593 }
2594
2595 inline_size void
2596 pri_adjust (EV_P_ W w)
2597 {
2598 int pri = ev_priority (w);
2599 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2600 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2601 ev_set_priority (w, pri);
2602 }
2603
2604 inline_speed void
2605 ev_start (EV_P_ W w, int active)
2606 {
2607 pri_adjust (EV_A_ w);
2608 w->active = active;
2609 ev_ref (EV_A);
2610 }
2611
2612 inline_size void
2613 ev_stop (EV_P_ W w)
2614 {
2615 ev_unref (EV_A);
2616 w->active = 0;
2617 }
2618
2619 /*****************************************************************************/
2620
2621 void noinline
2622 ev_io_start (EV_P_ ev_io *w)
2623 {
2624 int fd = w->fd;
2625
2626 if (expect_false (ev_is_active (w)))
2627 return;
2628
2629 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2630 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2631
2632 EV_FREQUENT_CHECK;
2633
2634 ev_start (EV_A_ (W)w, 1);
2635 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2636 wlist_add (&anfds[fd].head, (WL)w);
2637
2638 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2639 w->events &= ~EV__IOFDSET;
2640
2641 EV_FREQUENT_CHECK;
2642 }
2643
2644 void noinline
2645 ev_io_stop (EV_P_ ev_io *w)
2646 {
2647 clear_pending (EV_A_ (W)w);
2648 if (expect_false (!ev_is_active (w)))
2649 return;
2650
2651 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2652
2653 EV_FREQUENT_CHECK;
2654
2655 wlist_del (&anfds[w->fd].head, (WL)w);
2656 ev_stop (EV_A_ (W)w);
2657
2658 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2659
2660 EV_FREQUENT_CHECK;
2661 }
2662
2663 void noinline
2664 ev_timer_start (EV_P_ ev_timer *w)
2665 {
2666 if (expect_false (ev_is_active (w)))
2667 return;
2668
2669 ev_at (w) += mn_now;
2670
2671 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2672
2673 EV_FREQUENT_CHECK;
2674
2675 ++timercnt;
2676 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2677 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2678 ANHE_w (timers [ev_active (w)]) = (WT)w;
2679 ANHE_at_cache (timers [ev_active (w)]);
2680 upheap (timers, ev_active (w));
2681
2682 EV_FREQUENT_CHECK;
2683
2684 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2685 }
2686
2687 void noinline
2688 ev_timer_stop (EV_P_ ev_timer *w)
2689 {
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 EV_FREQUENT_CHECK;
2695
2696 {
2697 int active = ev_active (w);
2698
2699 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2700
2701 --timercnt;
2702
2703 if (expect_true (active < timercnt + HEAP0))
2704 {
2705 timers [active] = timers [timercnt + HEAP0];
2706 adjustheap (timers, timercnt, active);
2707 }
2708 }
2709
2710 ev_at (w) -= mn_now;
2711
2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
2715 }
2716
2717 void noinline
2718 ev_timer_again (EV_P_ ev_timer *w)
2719 {
2720 EV_FREQUENT_CHECK;
2721
2722 if (ev_is_active (w))
2723 {
2724 if (w->repeat)
2725 {
2726 ev_at (w) = mn_now + w->repeat;
2727 ANHE_at_cache (timers [ev_active (w)]);
2728 adjustheap (timers, timercnt, ev_active (w));
2729 }
2730 else
2731 ev_timer_stop (EV_A_ w);
2732 }
2733 else if (w->repeat)
2734 {
2735 ev_at (w) = w->repeat;
2736 ev_timer_start (EV_A_ w);
2737 }
2738
2739 EV_FREQUENT_CHECK;
2740 }
2741
2742 ev_tstamp
2743 ev_timer_remaining (EV_P_ ev_timer *w)
2744 {
2745 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2746 }
2747
2748 #if EV_PERIODIC_ENABLE
2749 void noinline
2750 ev_periodic_start (EV_P_ ev_periodic *w)
2751 {
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 if (w->reschedule_cb)
2756 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2757 else if (w->interval)
2758 {
2759 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2760 /* this formula differs from the one in periodic_reify because we do not always round up */
2761 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2762 }
2763 else
2764 ev_at (w) = w->offset;
2765
2766 EV_FREQUENT_CHECK;
2767
2768 ++periodiccnt;
2769 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2770 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2771 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2772 ANHE_at_cache (periodics [ev_active (w)]);
2773 upheap (periodics, ev_active (w));
2774
2775 EV_FREQUENT_CHECK;
2776
2777 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2778 }
2779
2780 void noinline
2781 ev_periodic_stop (EV_P_ ev_periodic *w)
2782 {
2783 clear_pending (EV_A_ (W)w);
2784 if (expect_false (!ev_is_active (w)))
2785 return;
2786
2787 EV_FREQUENT_CHECK;
2788
2789 {
2790 int active = ev_active (w);
2791
2792 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2793
2794 --periodiccnt;
2795
2796 if (expect_true (active < periodiccnt + HEAP0))
2797 {
2798 periodics [active] = periodics [periodiccnt + HEAP0];
2799 adjustheap (periodics, periodiccnt, active);
2800 }
2801 }
2802
2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806 }
2807
2808 void noinline
2809 ev_periodic_again (EV_P_ ev_periodic *w)
2810 {
2811 /* TODO: use adjustheap and recalculation */
2812 ev_periodic_stop (EV_A_ w);
2813 ev_periodic_start (EV_A_ w);
2814 }
2815 #endif
2816
2817 #ifndef SA_RESTART
2818 # define SA_RESTART 0
2819 #endif
2820
2821 #if EV_SIGNAL_ENABLE
2822
2823 void noinline
2824 ev_signal_start (EV_P_ ev_signal *w)
2825 {
2826 if (expect_false (ev_is_active (w)))
2827 return;
2828
2829 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2830
2831 #if EV_MULTIPLICITY
2832 assert (("libev: a signal must not be attached to two different loops",
2833 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2834
2835 signals [w->signum - 1].loop = EV_A;
2836 #endif
2837
2838 EV_FREQUENT_CHECK;
2839
2840 #if EV_USE_SIGNALFD
2841 if (sigfd == -2)
2842 {
2843 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2844 if (sigfd < 0 && errno == EINVAL)
2845 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2846
2847 if (sigfd >= 0)
2848 {
2849 fd_intern (sigfd); /* doing it twice will not hurt */
2850
2851 sigemptyset (&sigfd_set);
2852
2853 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2854 ev_set_priority (&sigfd_w, EV_MAXPRI);
2855 ev_io_start (EV_A_ &sigfd_w);
2856 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2857 }
2858 }
2859
2860 if (sigfd >= 0)
2861 {
2862 /* TODO: check .head */
2863 sigaddset (&sigfd_set, w->signum);
2864 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2865
2866 signalfd (sigfd, &sigfd_set, 0);
2867 }
2868 #endif
2869
2870 ev_start (EV_A_ (W)w, 1);
2871 wlist_add (&signals [w->signum - 1].head, (WL)w);
2872
2873 if (!((WL)w)->next)
2874 # if EV_USE_SIGNALFD
2875 if (sigfd < 0) /*TODO*/
2876 # endif
2877 {
2878 # ifdef _WIN32
2879 evpipe_init (EV_A);
2880
2881 signal (w->signum, ev_sighandler);
2882 # else
2883 struct sigaction sa;
2884
2885 evpipe_init (EV_A);
2886
2887 sa.sa_handler = ev_sighandler;
2888 sigfillset (&sa.sa_mask);
2889 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2890 sigaction (w->signum, &sa, 0);
2891
2892 if (origflags & EVFLAG_NOSIGMASK)
2893 {
2894 sigemptyset (&sa.sa_mask);
2895 sigaddset (&sa.sa_mask, w->signum);
2896 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2897 }
2898 #endif
2899 }
2900
2901 EV_FREQUENT_CHECK;
2902 }
2903
2904 void noinline
2905 ev_signal_stop (EV_P_ ev_signal *w)
2906 {
2907 clear_pending (EV_A_ (W)w);
2908 if (expect_false (!ev_is_active (w)))
2909 return;
2910
2911 EV_FREQUENT_CHECK;
2912
2913 wlist_del (&signals [w->signum - 1].head, (WL)w);
2914 ev_stop (EV_A_ (W)w);
2915
2916 if (!signals [w->signum - 1].head)
2917 {
2918 #if EV_MULTIPLICITY
2919 signals [w->signum - 1].loop = 0; /* unattach from signal */
2920 #endif
2921 #if EV_USE_SIGNALFD
2922 if (sigfd >= 0)
2923 {
2924 sigset_t ss;
2925
2926 sigemptyset (&ss);
2927 sigaddset (&ss, w->signum);
2928 sigdelset (&sigfd_set, w->signum);
2929
2930 signalfd (sigfd, &sigfd_set, 0);
2931 sigprocmask (SIG_UNBLOCK, &ss, 0);
2932 }
2933 else
2934 #endif
2935 signal (w->signum, SIG_DFL);
2936 }
2937
2938 EV_FREQUENT_CHECK;
2939 }
2940
2941 #endif
2942
2943 #if EV_CHILD_ENABLE
2944
2945 void
2946 ev_child_start (EV_P_ ev_child *w)
2947 {
2948 #if EV_MULTIPLICITY
2949 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2950 #endif
2951 if (expect_false (ev_is_active (w)))
2952 return;
2953
2954 EV_FREQUENT_CHECK;
2955
2956 ev_start (EV_A_ (W)w, 1);
2957 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2958
2959 EV_FREQUENT_CHECK;
2960 }
2961
2962 void
2963 ev_child_stop (EV_P_ ev_child *w)
2964 {
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
2975 }
2976
2977 #endif
2978
2979 #if EV_STAT_ENABLE
2980
2981 # ifdef _WIN32
2982 # undef lstat
2983 # define lstat(a,b) _stati64 (a,b)
2984 # endif
2985
2986 #define DEF_STAT_INTERVAL 5.0074891
2987 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2988 #define MIN_STAT_INTERVAL 0.1074891
2989
2990 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2991
2992 #if EV_USE_INOTIFY
2993
2994 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2995 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2996
2997 static void noinline
2998 infy_add (EV_P_ ev_stat *w)
2999 {
3000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3001
3002 if (w->wd >= 0)
3003 {
3004 struct statfs sfs;
3005
3006 /* now local changes will be tracked by inotify, but remote changes won't */
3007 /* unless the filesystem is known to be local, we therefore still poll */
3008 /* also do poll on <2.6.25, but with normal frequency */
3009
3010 if (!fs_2625)
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012 else if (!statfs (w->path, &sfs)
3013 && (sfs.f_type == 0x1373 /* devfs */
3014 || sfs.f_type == 0xEF53 /* ext2/3 */
3015 || sfs.f_type == 0x3153464a /* jfs */
3016 || sfs.f_type == 0x52654973 /* reiser3 */
3017 || sfs.f_type == 0x01021994 /* tempfs */
3018 || sfs.f_type == 0x58465342 /* xfs */))
3019 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3020 else
3021 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3022 }
3023 else
3024 {
3025 /* can't use inotify, continue to stat */
3026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3027
3028 /* if path is not there, monitor some parent directory for speedup hints */
3029 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3030 /* but an efficiency issue only */
3031 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3032 {
3033 char path [4096];
3034 strcpy (path, w->path);
3035
3036 do
3037 {
3038 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3039 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3040
3041 char *pend = strrchr (path, '/');
3042
3043 if (!pend || pend == path)
3044 break;
3045
3046 *pend = 0;
3047 w->wd = inotify_add_watch (fs_fd, path, mask);
3048 }
3049 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3050 }
3051 }
3052
3053 if (w->wd >= 0)
3054 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3055
3056 /* now re-arm timer, if required */
3057 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3058 ev_timer_again (EV_A_ &w->timer);
3059 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3060 }
3061
3062 static void noinline
3063 infy_del (EV_P_ ev_stat *w)
3064 {
3065 int slot;
3066 int wd = w->wd;
3067
3068 if (wd < 0)
3069 return;
3070
3071 w->wd = -2;
3072 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3073 wlist_del (&fs_hash [slot].head, (WL)w);
3074
3075 /* remove this watcher, if others are watching it, they will rearm */
3076 inotify_rm_watch (fs_fd, wd);
3077 }
3078
3079 static void noinline
3080 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3081 {
3082 if (slot < 0)
3083 /* overflow, need to check for all hash slots */
3084 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3085 infy_wd (EV_A_ slot, wd, ev);
3086 else
3087 {
3088 WL w_;
3089
3090 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3091 {
3092 ev_stat *w = (ev_stat *)w_;
3093 w_ = w_->next; /* lets us remove this watcher and all before it */
3094
3095 if (w->wd == wd || wd == -1)
3096 {
3097 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3098 {
3099 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3100 w->wd = -1;
3101 infy_add (EV_A_ w); /* re-add, no matter what */
3102 }
3103
3104 stat_timer_cb (EV_A_ &w->timer, 0);
3105 }
3106 }
3107 }
3108 }
3109
3110 static void
3111 infy_cb (EV_P_ ev_io *w, int revents)
3112 {
3113 char buf [EV_INOTIFY_BUFSIZE];
3114 int ofs;
3115 int len = read (fs_fd, buf, sizeof (buf));
3116
3117 for (ofs = 0; ofs < len; )
3118 {
3119 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3120 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3121 ofs += sizeof (struct inotify_event) + ev->len;
3122 }
3123 }
3124
3125 inline_size void
3126 ev_check_2625 (EV_P)
3127 {
3128 /* kernels < 2.6.25 are borked
3129 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3130 */
3131 if (ev_linux_version () < 0x020619)
3132 return;
3133
3134 fs_2625 = 1;
3135 }
3136
3137 inline_size int
3138 infy_newfd (void)
3139 {
3140 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3141 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3142 if (fd >= 0)
3143 return fd;
3144 #endif
3145 return inotify_init ();
3146 }
3147
3148 inline_size void
3149 infy_init (EV_P)
3150 {
3151 if (fs_fd != -2)
3152 return;
3153
3154 fs_fd = -1;
3155
3156 ev_check_2625 (EV_A);
3157
3158 fs_fd = infy_newfd ();
3159
3160 if (fs_fd >= 0)
3161 {
3162 fd_intern (fs_fd);
3163 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3164 ev_set_priority (&fs_w, EV_MAXPRI);
3165 ev_io_start (EV_A_ &fs_w);
3166 ev_unref (EV_A);
3167 }
3168 }
3169
3170 inline_size void
3171 infy_fork (EV_P)
3172 {
3173 int slot;
3174
3175 if (fs_fd < 0)
3176 return;
3177
3178 ev_ref (EV_A);
3179 ev_io_stop (EV_A_ &fs_w);
3180 close (fs_fd);
3181 fs_fd = infy_newfd ();
3182
3183 if (fs_fd >= 0)
3184 {
3185 fd_intern (fs_fd);
3186 ev_io_set (&fs_w, fs_fd, EV_READ);
3187 ev_io_start (EV_A_ &fs_w);
3188 ev_unref (EV_A);
3189 }
3190
3191 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3192 {
3193 WL w_ = fs_hash [slot].head;
3194 fs_hash [slot].head = 0;
3195
3196 while (w_)
3197 {
3198 ev_stat *w = (ev_stat *)w_;
3199 w_ = w_->next; /* lets us add this watcher */
3200
3201 w->wd = -1;
3202
3203 if (fs_fd >= 0)
3204 infy_add (EV_A_ w); /* re-add, no matter what */
3205 else
3206 {
3207 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3208 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3209 ev_timer_again (EV_A_ &w->timer);
3210 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3211 }
3212 }
3213 }
3214 }
3215
3216 #endif
3217
3218 #ifdef _WIN32
3219 # define EV_LSTAT(p,b) _stati64 (p, b)
3220 #else
3221 # define EV_LSTAT(p,b) lstat (p, b)
3222 #endif
3223
3224 void
3225 ev_stat_stat (EV_P_ ev_stat *w)
3226 {
3227 if (lstat (w->path, &w->attr) < 0)
3228 w->attr.st_nlink = 0;
3229 else if (!w->attr.st_nlink)
3230 w->attr.st_nlink = 1;
3231 }
3232
3233 static void noinline
3234 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3235 {
3236 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3237
3238 ev_statdata prev = w->attr;
3239 ev_stat_stat (EV_A_ w);
3240
3241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3242 if (
3243 prev.st_dev != w->attr.st_dev
3244 || prev.st_ino != w->attr.st_ino
3245 || prev.st_mode != w->attr.st_mode
3246 || prev.st_nlink != w->attr.st_nlink
3247 || prev.st_uid != w->attr.st_uid
3248 || prev.st_gid != w->attr.st_gid
3249 || prev.st_rdev != w->attr.st_rdev
3250 || prev.st_size != w->attr.st_size
3251 || prev.st_atime != w->attr.st_atime
3252 || prev.st_mtime != w->attr.st_mtime
3253 || prev.st_ctime != w->attr.st_ctime
3254 ) {
3255 /* we only update w->prev on actual differences */
3256 /* in case we test more often than invoke the callback, */
3257 /* to ensure that prev is always different to attr */
3258 w->prev = prev;
3259
3260 #if EV_USE_INOTIFY
3261 if (fs_fd >= 0)
3262 {
3263 infy_del (EV_A_ w);
3264 infy_add (EV_A_ w);
3265 ev_stat_stat (EV_A_ w); /* avoid race... */
3266 }
3267 #endif
3268
3269 ev_feed_event (EV_A_ w, EV_STAT);
3270 }
3271 }
3272
3273 void
3274 ev_stat_start (EV_P_ ev_stat *w)
3275 {
3276 if (expect_false (ev_is_active (w)))
3277 return;
3278
3279 ev_stat_stat (EV_A_ w);
3280
3281 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3282 w->interval = MIN_STAT_INTERVAL;
3283
3284 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3285 ev_set_priority (&w->timer, ev_priority (w));
3286
3287 #if EV_USE_INOTIFY
3288 infy_init (EV_A);
3289
3290 if (fs_fd >= 0)
3291 infy_add (EV_A_ w);
3292 else
3293 #endif
3294 {
3295 ev_timer_again (EV_A_ &w->timer);
3296 ev_unref (EV_A);
3297 }
3298
3299 ev_start (EV_A_ (W)w, 1);
3300
3301 EV_FREQUENT_CHECK;
3302 }
3303
3304 void
3305 ev_stat_stop (EV_P_ ev_stat *w)
3306 {
3307 clear_pending (EV_A_ (W)w);
3308 if (expect_false (!ev_is_active (w)))
3309 return;
3310
3311 EV_FREQUENT_CHECK;
3312
3313 #if EV_USE_INOTIFY
3314 infy_del (EV_A_ w);
3315 #endif
3316
3317 if (ev_is_active (&w->timer))
3318 {
3319 ev_ref (EV_A);
3320 ev_timer_stop (EV_A_ &w->timer);
3321 }
3322
3323 ev_stop (EV_A_ (W)w);
3324
3325 EV_FREQUENT_CHECK;
3326 }
3327 #endif
3328
3329 #if EV_IDLE_ENABLE
3330 void
3331 ev_idle_start (EV_P_ ev_idle *w)
3332 {
3333 if (expect_false (ev_is_active (w)))
3334 return;
3335
3336 pri_adjust (EV_A_ (W)w);
3337
3338 EV_FREQUENT_CHECK;
3339
3340 {
3341 int active = ++idlecnt [ABSPRI (w)];
3342
3343 ++idleall;
3344 ev_start (EV_A_ (W)w, active);
3345
3346 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3347 idles [ABSPRI (w)][active - 1] = w;
3348 }
3349
3350 EV_FREQUENT_CHECK;
3351 }
3352
3353 void
3354 ev_idle_stop (EV_P_ ev_idle *w)
3355 {
3356 clear_pending (EV_A_ (W)w);
3357 if (expect_false (!ev_is_active (w)))
3358 return;
3359
3360 EV_FREQUENT_CHECK;
3361
3362 {
3363 int active = ev_active (w);
3364
3365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3366 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3367
3368 ev_stop (EV_A_ (W)w);
3369 --idleall;
3370 }
3371
3372 EV_FREQUENT_CHECK;
3373 }
3374 #endif
3375
3376 #if EV_PREPARE_ENABLE
3377 void
3378 ev_prepare_start (EV_P_ ev_prepare *w)
3379 {
3380 if (expect_false (ev_is_active (w)))
3381 return;
3382
3383 EV_FREQUENT_CHECK;
3384
3385 ev_start (EV_A_ (W)w, ++preparecnt);
3386 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3387 prepares [preparecnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
3390 }
3391
3392 void
3393 ev_prepare_stop (EV_P_ ev_prepare *w)
3394 {
3395 clear_pending (EV_A_ (W)w);
3396 if (expect_false (!ev_is_active (w)))
3397 return;
3398
3399 EV_FREQUENT_CHECK;
3400
3401 {
3402 int active = ev_active (w);
3403
3404 prepares [active - 1] = prepares [--preparecnt];
3405 ev_active (prepares [active - 1]) = active;
3406 }
3407
3408 ev_stop (EV_A_ (W)w);
3409
3410 EV_FREQUENT_CHECK;
3411 }
3412 #endif
3413
3414 #if EV_CHECK_ENABLE
3415 void
3416 ev_check_start (EV_P_ ev_check *w)
3417 {
3418 if (expect_false (ev_is_active (w)))
3419 return;
3420
3421 EV_FREQUENT_CHECK;
3422
3423 ev_start (EV_A_ (W)w, ++checkcnt);
3424 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3425 checks [checkcnt - 1] = w;
3426
3427 EV_FREQUENT_CHECK;
3428 }
3429
3430 void
3431 ev_check_stop (EV_P_ ev_check *w)
3432 {
3433 clear_pending (EV_A_ (W)w);
3434 if (expect_false (!ev_is_active (w)))
3435 return;
3436
3437 EV_FREQUENT_CHECK;
3438
3439 {
3440 int active = ev_active (w);
3441
3442 checks [active - 1] = checks [--checkcnt];
3443 ev_active (checks [active - 1]) = active;
3444 }
3445
3446 ev_stop (EV_A_ (W)w);
3447
3448 EV_FREQUENT_CHECK;
3449 }
3450 #endif
3451
3452 #if EV_EMBED_ENABLE
3453 void noinline
3454 ev_embed_sweep (EV_P_ ev_embed *w)
3455 {
3456 ev_run (w->other, EVRUN_NOWAIT);
3457 }
3458
3459 static void
3460 embed_io_cb (EV_P_ ev_io *io, int revents)
3461 {
3462 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3463
3464 if (ev_cb (w))
3465 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3466 else
3467 ev_run (w->other, EVRUN_NOWAIT);
3468 }
3469
3470 static void
3471 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3472 {
3473 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3474
3475 {
3476 EV_P = w->other;
3477
3478 while (fdchangecnt)
3479 {
3480 fd_reify (EV_A);
3481 ev_run (EV_A_ EVRUN_NOWAIT);
3482 }
3483 }
3484 }
3485
3486 static void
3487 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3488 {
3489 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3490
3491 ev_embed_stop (EV_A_ w);
3492
3493 {
3494 EV_P = w->other;
3495
3496 ev_loop_fork (EV_A);
3497 ev_run (EV_A_ EVRUN_NOWAIT);
3498 }
3499
3500 ev_embed_start (EV_A_ w);
3501 }
3502
3503 #if 0
3504 static void
3505 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3506 {
3507 ev_idle_stop (EV_A_ idle);
3508 }
3509 #endif
3510
3511 void
3512 ev_embed_start (EV_P_ ev_embed *w)
3513 {
3514 if (expect_false (ev_is_active (w)))
3515 return;
3516
3517 {
3518 EV_P = w->other;
3519 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3520 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3521 }
3522
3523 EV_FREQUENT_CHECK;
3524
3525 ev_set_priority (&w->io, ev_priority (w));
3526 ev_io_start (EV_A_ &w->io);
3527
3528 ev_prepare_init (&w->prepare, embed_prepare_cb);
3529 ev_set_priority (&w->prepare, EV_MINPRI);
3530 ev_prepare_start (EV_A_ &w->prepare);
3531
3532 ev_fork_init (&w->fork, embed_fork_cb);
3533 ev_fork_start (EV_A_ &w->fork);
3534
3535 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3536
3537 ev_start (EV_A_ (W)w, 1);
3538
3539 EV_FREQUENT_CHECK;
3540 }
3541
3542 void
3543 ev_embed_stop (EV_P_ ev_embed *w)
3544 {
3545 clear_pending (EV_A_ (W)w);
3546 if (expect_false (!ev_is_active (w)))
3547 return;
3548
3549 EV_FREQUENT_CHECK;
3550
3551 ev_io_stop (EV_A_ &w->io);
3552 ev_prepare_stop (EV_A_ &w->prepare);
3553 ev_fork_stop (EV_A_ &w->fork);
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558 }
3559 #endif
3560
3561 #if EV_FORK_ENABLE
3562 void
3563 ev_fork_start (EV_P_ ev_fork *w)
3564 {
3565 if (expect_false (ev_is_active (w)))
3566 return;
3567
3568 EV_FREQUENT_CHECK;
3569
3570 ev_start (EV_A_ (W)w, ++forkcnt);
3571 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3572 forks [forkcnt - 1] = w;
3573
3574 EV_FREQUENT_CHECK;
3575 }
3576
3577 void
3578 ev_fork_stop (EV_P_ ev_fork *w)
3579 {
3580 clear_pending (EV_A_ (W)w);
3581 if (expect_false (!ev_is_active (w)))
3582 return;
3583
3584 EV_FREQUENT_CHECK;
3585
3586 {
3587 int active = ev_active (w);
3588
3589 forks [active - 1] = forks [--forkcnt];
3590 ev_active (forks [active - 1]) = active;
3591 }
3592
3593 ev_stop (EV_A_ (W)w);
3594
3595 EV_FREQUENT_CHECK;
3596 }
3597 #endif
3598
3599 #if EV_CLEANUP_ENABLE
3600 void
3601 ev_cleanup_start (EV_P_ ev_cleanup *w)
3602 {
3603 if (expect_false (ev_is_active (w)))
3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 ev_start (EV_A_ (W)w, ++cleanupcnt);
3609 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3610 cleanups [cleanupcnt - 1] = w;
3611
3612 /* cleanup watchers should never keep a refcount on the loop */
3613 ev_unref (EV_A);
3614 EV_FREQUENT_CHECK;
3615 }
3616
3617 void
3618 ev_cleanup_stop (EV_P_ ev_cleanup *w)
3619 {
3620 clear_pending (EV_A_ (W)w);
3621 if (expect_false (!ev_is_active (w)))
3622 return;
3623
3624 EV_FREQUENT_CHECK;
3625 ev_ref (EV_A);
3626
3627 {
3628 int active = ev_active (w);
3629
3630 cleanups [active - 1] = cleanups [--cleanupcnt];
3631 ev_active (cleanups [active - 1]) = active;
3632 }
3633
3634 ev_stop (EV_A_ (W)w);
3635
3636 EV_FREQUENT_CHECK;
3637 }
3638 #endif
3639
3640 #if EV_ASYNC_ENABLE
3641 void
3642 ev_async_start (EV_P_ ev_async *w)
3643 {
3644 if (expect_false (ev_is_active (w)))
3645 return;
3646
3647 w->sent = 0;
3648
3649 evpipe_init (EV_A);
3650
3651 EV_FREQUENT_CHECK;
3652
3653 ev_start (EV_A_ (W)w, ++asynccnt);
3654 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3655 asyncs [asynccnt - 1] = w;
3656
3657 EV_FREQUENT_CHECK;
3658 }
3659
3660 void
3661 ev_async_stop (EV_P_ ev_async *w)
3662 {
3663 clear_pending (EV_A_ (W)w);
3664 if (expect_false (!ev_is_active (w)))
3665 return;
3666
3667 EV_FREQUENT_CHECK;
3668
3669 {
3670 int active = ev_active (w);
3671
3672 asyncs [active - 1] = asyncs [--asynccnt];
3673 ev_active (asyncs [active - 1]) = active;
3674 }
3675
3676 ev_stop (EV_A_ (W)w);
3677
3678 EV_FREQUENT_CHECK;
3679 }
3680
3681 void
3682 ev_async_send (EV_P_ ev_async *w)
3683 {
3684 w->sent = 1;
3685 evpipe_write (EV_A_ &async_pending);
3686 }
3687 #endif
3688
3689 /*****************************************************************************/
3690
3691 struct ev_once
3692 {
3693 ev_io io;
3694 ev_timer to;
3695 void (*cb)(int revents, void *arg);
3696 void *arg;
3697 };
3698
3699 static void
3700 once_cb (EV_P_ struct ev_once *once, int revents)
3701 {
3702 void (*cb)(int revents, void *arg) = once->cb;
3703 void *arg = once->arg;
3704
3705 ev_io_stop (EV_A_ &once->io);
3706 ev_timer_stop (EV_A_ &once->to);
3707 ev_free (once);
3708
3709 cb (revents, arg);
3710 }
3711
3712 static void
3713 once_cb_io (EV_P_ ev_io *w, int revents)
3714 {
3715 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3716
3717 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3718 }
3719
3720 static void
3721 once_cb_to (EV_P_ ev_timer *w, int revents)
3722 {
3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3726 }
3727
3728 void
3729 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3730 {
3731 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3732
3733 if (expect_false (!once))
3734 {
3735 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3736 return;
3737 }
3738
3739 once->cb = cb;
3740 once->arg = arg;
3741
3742 ev_init (&once->io, once_cb_io);
3743 if (fd >= 0)
3744 {
3745 ev_io_set (&once->io, fd, events);
3746 ev_io_start (EV_A_ &once->io);
3747 }
3748
3749 ev_init (&once->to, once_cb_to);
3750 if (timeout >= 0.)
3751 {
3752 ev_timer_set (&once->to, timeout, 0.);
3753 ev_timer_start (EV_A_ &once->to);
3754 }
3755 }
3756
3757 /*****************************************************************************/
3758
3759 #if EV_WALK_ENABLE
3760 void
3761 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3762 {
3763 int i, j;
3764 ev_watcher_list *wl, *wn;
3765
3766 if (types & (EV_IO | EV_EMBED))
3767 for (i = 0; i < anfdmax; ++i)
3768 for (wl = anfds [i].head; wl; )
3769 {
3770 wn = wl->next;
3771
3772 #if EV_EMBED_ENABLE
3773 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3774 {
3775 if (types & EV_EMBED)
3776 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3777 }
3778 else
3779 #endif
3780 #if EV_USE_INOTIFY
3781 if (ev_cb ((ev_io *)wl) == infy_cb)
3782 ;
3783 else
3784 #endif
3785 if ((ev_io *)wl != &pipe_w)
3786 if (types & EV_IO)
3787 cb (EV_A_ EV_IO, wl);
3788
3789 wl = wn;
3790 }
3791
3792 if (types & (EV_TIMER | EV_STAT))
3793 for (i = timercnt + HEAP0; i-- > HEAP0; )
3794 #if EV_STAT_ENABLE
3795 /*TODO: timer is not always active*/
3796 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3797 {
3798 if (types & EV_STAT)
3799 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3800 }
3801 else
3802 #endif
3803 if (types & EV_TIMER)
3804 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3805
3806 #if EV_PERIODIC_ENABLE
3807 if (types & EV_PERIODIC)
3808 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3809 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3810 #endif
3811
3812 #if EV_IDLE_ENABLE
3813 if (types & EV_IDLE)
3814 for (j = NUMPRI; i--; )
3815 for (i = idlecnt [j]; i--; )
3816 cb (EV_A_ EV_IDLE, idles [j][i]);
3817 #endif
3818
3819 #if EV_FORK_ENABLE
3820 if (types & EV_FORK)
3821 for (i = forkcnt; i--; )
3822 if (ev_cb (forks [i]) != embed_fork_cb)
3823 cb (EV_A_ EV_FORK, forks [i]);
3824 #endif
3825
3826 #if EV_ASYNC_ENABLE
3827 if (types & EV_ASYNC)
3828 for (i = asynccnt; i--; )
3829 cb (EV_A_ EV_ASYNC, asyncs [i]);
3830 #endif
3831
3832 #if EV_PREPARE_ENABLE
3833 if (types & EV_PREPARE)
3834 for (i = preparecnt; i--; )
3835 # if EV_EMBED_ENABLE
3836 if (ev_cb (prepares [i]) != embed_prepare_cb)
3837 # endif
3838 cb (EV_A_ EV_PREPARE, prepares [i]);
3839 #endif
3840
3841 #if EV_CHECK_ENABLE
3842 if (types & EV_CHECK)
3843 for (i = checkcnt; i--; )
3844 cb (EV_A_ EV_CHECK, checks [i]);
3845 #endif
3846
3847 #if EV_SIGNAL_ENABLE
3848 if (types & EV_SIGNAL)
3849 for (i = 0; i < EV_NSIG - 1; ++i)
3850 for (wl = signals [i].head; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_SIGNAL, wl);
3854 wl = wn;
3855 }
3856 #endif
3857
3858 #if EV_CHILD_ENABLE
3859 if (types & EV_CHILD)
3860 for (i = (EV_PID_HASHSIZE); i--; )
3861 for (wl = childs [i]; wl; )
3862 {
3863 wn = wl->next;
3864 cb (EV_A_ EV_CHILD, wl);
3865 wl = wn;
3866 }
3867 #endif
3868 /* EV_STAT 0x00001000 /* stat data changed */
3869 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3870 }
3871 #endif
3872
3873 #if EV_MULTIPLICITY
3874 #include "ev_wrap.h"
3875 #endif
3876
3877 EV_CPP(})
3878