ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.373
Committed: Sun Feb 20 02:56:23 2011 UTC (13 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.372: +85 -26 lines
Log Message:
new floor(), better periodic recalc

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 EV_CPP(extern "C" {)
189
190 #ifndef _WIN32
191 # include <sys/time.h>
192 # include <sys/wait.h>
193 # include <unistd.h>
194 #else
195 # include <io.h>
196 # define WIN32_LEAN_AND_MEAN
197 # include <windows.h>
198 # ifndef EV_SELECT_IS_WINSOCKET
199 # define EV_SELECT_IS_WINSOCKET 1
200 # endif
201 # undef EV_AVOID_STDIO
202 #endif
203
204 /* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210 #define _DARWIN_UNLIMITED_SELECT 1
211
212 /* this block tries to deduce configuration from header-defined symbols and defaults */
213
214 /* try to deduce the maximum number of signals on this platform */
215 #if defined (EV_NSIG)
216 /* use what's provided */
217 #elif defined (NSIG)
218 # define EV_NSIG (NSIG)
219 #elif defined(_NSIG)
220 # define EV_NSIG (_NSIG)
221 #elif defined (SIGMAX)
222 # define EV_NSIG (SIGMAX+1)
223 #elif defined (SIG_MAX)
224 # define EV_NSIG (SIG_MAX+1)
225 #elif defined (_SIG_MAX)
226 # define EV_NSIG (_SIG_MAX+1)
227 #elif defined (MAXSIG)
228 # define EV_NSIG (MAXSIG+1)
229 #elif defined (MAX_SIG)
230 # define EV_NSIG (MAX_SIG+1)
231 #elif defined (SIGARRAYSIZE)
232 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 #elif defined (_sys_nsig)
234 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235 #else
236 # error "unable to find value for NSIG, please report"
237 /* to make it compile regardless, just remove the above line, */
238 /* but consider reporting it, too! :) */
239 # define EV_NSIG 65
240 #endif
241
242 #ifndef EV_USE_FLOOR
243 # define EV_USE_FLOOR 0
244 #endif
245
246 #ifndef EV_USE_CLOCK_SYSCALL
247 # if __linux && __GLIBC__ >= 2
248 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 # else
250 # define EV_USE_CLOCK_SYSCALL 0
251 # endif
252 #endif
253
254 #ifndef EV_USE_MONOTONIC
255 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 # define EV_USE_MONOTONIC EV_FEATURE_OS
257 # else
258 # define EV_USE_MONOTONIC 0
259 # endif
260 #endif
261
262 #ifndef EV_USE_REALTIME
263 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 #endif
265
266 #ifndef EV_USE_NANOSLEEP
267 # if _POSIX_C_SOURCE >= 199309L
268 # define EV_USE_NANOSLEEP EV_FEATURE_OS
269 # else
270 # define EV_USE_NANOSLEEP 0
271 # endif
272 #endif
273
274 #ifndef EV_USE_SELECT
275 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 #endif
277
278 #ifndef EV_USE_POLL
279 # ifdef _WIN32
280 # define EV_USE_POLL 0
281 # else
282 # define EV_USE_POLL EV_FEATURE_BACKENDS
283 # endif
284 #endif
285
286 #ifndef EV_USE_EPOLL
287 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 # else
290 # define EV_USE_EPOLL 0
291 # endif
292 #endif
293
294 #ifndef EV_USE_KQUEUE
295 # define EV_USE_KQUEUE 0
296 #endif
297
298 #ifndef EV_USE_PORT
299 # define EV_USE_PORT 0
300 #endif
301
302 #ifndef EV_USE_INOTIFY
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 # define EV_USE_INOTIFY EV_FEATURE_OS
305 # else
306 # define EV_USE_INOTIFY 0
307 # endif
308 #endif
309
310 #ifndef EV_PID_HASHSIZE
311 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 #endif
313
314 #ifndef EV_INOTIFY_HASHSIZE
315 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 #endif
317
318 #ifndef EV_USE_EVENTFD
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 # define EV_USE_EVENTFD EV_FEATURE_OS
321 # else
322 # define EV_USE_EVENTFD 0
323 # endif
324 #endif
325
326 #ifndef EV_USE_SIGNALFD
327 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 # define EV_USE_SIGNALFD EV_FEATURE_OS
329 # else
330 # define EV_USE_SIGNALFD 0
331 # endif
332 #endif
333
334 #if 0 /* debugging */
335 # define EV_VERIFY 3
336 # define EV_USE_4HEAP 1
337 # define EV_HEAP_CACHE_AT 1
338 #endif
339
340 #ifndef EV_VERIFY
341 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 #endif
343
344 #ifndef EV_USE_4HEAP
345 # define EV_USE_4HEAP EV_FEATURE_DATA
346 #endif
347
348 #ifndef EV_HEAP_CACHE_AT
349 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 #endif
351
352 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353 /* which makes programs even slower. might work on other unices, too. */
354 #if EV_USE_CLOCK_SYSCALL
355 # include <syscall.h>
356 # ifdef SYS_clock_gettime
357 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358 # undef EV_USE_MONOTONIC
359 # define EV_USE_MONOTONIC 1
360 # else
361 # undef EV_USE_CLOCK_SYSCALL
362 # define EV_USE_CLOCK_SYSCALL 0
363 # endif
364 #endif
365
366 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368 #ifdef _AIX
369 /* AIX has a completely broken poll.h header */
370 # undef EV_USE_POLL
371 # define EV_USE_POLL 0
372 #endif
373
374 #ifndef CLOCK_MONOTONIC
375 # undef EV_USE_MONOTONIC
376 # define EV_USE_MONOTONIC 0
377 #endif
378
379 #ifndef CLOCK_REALTIME
380 # undef EV_USE_REALTIME
381 # define EV_USE_REALTIME 0
382 #endif
383
384 #if !EV_STAT_ENABLE
385 # undef EV_USE_INOTIFY
386 # define EV_USE_INOTIFY 0
387 #endif
388
389 #if !EV_USE_NANOSLEEP
390 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391 # if !defined(_WIN32) && !defined(__hpux)
392 # include <sys/select.h>
393 # endif
394 #endif
395
396 #if EV_USE_INOTIFY
397 # include <sys/statfs.h>
398 # include <sys/inotify.h>
399 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400 # ifndef IN_DONT_FOLLOW
401 # undef EV_USE_INOTIFY
402 # define EV_USE_INOTIFY 0
403 # endif
404 #endif
405
406 #if EV_SELECT_IS_WINSOCKET
407 # include <winsock.h>
408 #endif
409
410 #if EV_USE_EVENTFD
411 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 # include <stdint.h>
413 # ifndef EFD_NONBLOCK
414 # define EFD_NONBLOCK O_NONBLOCK
415 # endif
416 # ifndef EFD_CLOEXEC
417 # ifdef O_CLOEXEC
418 # define EFD_CLOEXEC O_CLOEXEC
419 # else
420 # define EFD_CLOEXEC 02000000
421 # endif
422 # endif
423 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 #endif
425
426 #if EV_USE_SIGNALFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef SFD_NONBLOCK
430 # define SFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef SFD_CLOEXEC
433 # ifdef O_CLOEXEC
434 # define SFD_CLOEXEC O_CLOEXEC
435 # else
436 # define SFD_CLOEXEC 02000000
437 # endif
438 # endif
439 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441 struct signalfd_siginfo
442 {
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445 };
446 #endif
447
448 /**/
449
450 #if EV_VERIFY >= 3
451 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 #else
453 # define EV_FREQUENT_CHECK do { } while (0)
454 #endif
455
456 /*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469 #if __GNUC__ >= 4
470 # define expect(expr,value) __builtin_expect ((expr),(value))
471 # define noinline __attribute__ ((noinline))
472 #else
473 # define expect(expr,value) (expr)
474 # define noinline
475 # if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476 # define inline
477 # endif
478 #endif
479
480 #define expect_false(expr) expect ((expr) != 0, 0)
481 #define expect_true(expr) expect ((expr) != 0, 1)
482 #define inline_size static inline
483
484 #if EV_FEATURE_CODE
485 # define inline_speed static inline
486 #else
487 # define inline_speed static noinline
488 #endif
489
490 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492 #if EV_MINPRI == EV_MAXPRI
493 # define ABSPRI(w) (((W)w), 0)
494 #else
495 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496 #endif
497
498 #define EMPTY /* required for microsofts broken pseudo-c compiler */
499 #define EMPTY2(a,b) /* used to suppress some warnings */
500
501 typedef ev_watcher *W;
502 typedef ev_watcher_list *WL;
503 typedef ev_watcher_time *WT;
504
505 #define ev_active(w) ((W)(w))->active
506 #define ev_at(w) ((WT)(w))->at
507
508 #if EV_USE_REALTIME
509 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
510 /* giving it a reasonably high chance of working on typical architectures */
511 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512 #endif
513
514 #if EV_USE_MONOTONIC
515 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516 #endif
517
518 #ifndef EV_FD_TO_WIN32_HANDLE
519 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520 #endif
521 #ifndef EV_WIN32_HANDLE_TO_FD
522 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523 #endif
524 #ifndef EV_WIN32_CLOSE_FD
525 # define EV_WIN32_CLOSE_FD(fd) close (fd)
526 #endif
527
528 #ifdef _WIN32
529 # include "ev_win32.c"
530 #endif
531
532 /*****************************************************************************/
533
534 /* define a suitable floor function (only used by periodics atm) */
535
536 #if EV_USE_FLOOR
537 # include <math.h>
538 # define ev_floor(v) floor (v)
539 #else
540
541 #include <float.h>
542
543 /* a floor() replacement function, should be independent of ev_tstamp type */
544 static ev_tstamp noinline
545 ev_floor (ev_tstamp v)
546 {
547 /* the choice of shift factor is not terribly important */
548 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550 #else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552 #endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576 }
577
578 #endif
579
580 /*****************************************************************************/
581
582 #ifdef __linux
583 # include <sys/utsname.h>
584 #endif
585
586 static unsigned int noinline
587 ev_linux_version (void)
588 {
589 #ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617 #else
618 return 0;
619 #endif
620 }
621
622 /*****************************************************************************/
623
624 #if EV_AVOID_STDIO
625 static void noinline
626 ev_printerr (const char *msg)
627 {
628 write (STDERR_FILENO, msg, strlen (msg));
629 }
630 #endif
631
632 static void (*syserr_cb)(const char *msg);
633
634 void
635 ev_set_syserr_cb (void (*cb)(const char *msg))
636 {
637 syserr_cb = cb;
638 }
639
640 static void noinline
641 ev_syserr (const char *msg)
642 {
643 if (!msg)
644 msg = "(libev) system error";
645
646 if (syserr_cb)
647 syserr_cb (msg);
648 else
649 {
650 #if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655 #else
656 perror (msg);
657 #endif
658 abort ();
659 }
660 }
661
662 static void *
663 ev_realloc_emul (void *ptr, long size)
664 {
665 #if __GLIBC__
666 return realloc (ptr, size);
667 #else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678 #endif
679 }
680
681 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682
683 void
684 ev_set_allocator (void *(*cb)(void *ptr, long size))
685 {
686 alloc = cb;
687 }
688
689 inline_speed void *
690 ev_realloc (void *ptr, long size)
691 {
692 ptr = alloc (ptr, size);
693
694 if (!ptr && size)
695 {
696 #if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698 #else
699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700 #endif
701 abort ();
702 }
703
704 return ptr;
705 }
706
707 #define ev_malloc(size) ev_realloc (0, (size))
708 #define ev_free(ptr) ev_realloc ((ptr), 0)
709
710 /*****************************************************************************/
711
712 /* set in reify when reification needed */
713 #define EV_ANFD_REIFY 1
714
715 /* file descriptor info structure */
716 typedef struct
717 {
718 WL head;
719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
722 unsigned char unused;
723 #if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725 #endif
726 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 SOCKET handle;
728 #endif
729 #if EV_USE_IOCP
730 OVERLAPPED or, ow;
731 #endif
732 } ANFD;
733
734 /* stores the pending event set for a given watcher */
735 typedef struct
736 {
737 W w;
738 int events; /* the pending event set for the given watcher */
739 } ANPENDING;
740
741 #if EV_USE_INOTIFY
742 /* hash table entry per inotify-id */
743 typedef struct
744 {
745 WL head;
746 } ANFS;
747 #endif
748
749 /* Heap Entry */
750 #if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760 #else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767 #endif
768
769 #if EV_MULTIPLICITY
770
771 struct ev_loop
772 {
773 ev_tstamp ev_rt_now;
774 #define ev_rt_now ((loop)->ev_rt_now)
775 #define VAR(name,decl) decl;
776 #include "ev_vars.h"
777 #undef VAR
778 };
779 #include "ev_wrap.h"
780
781 static struct ev_loop default_loop_struct;
782 struct ev_loop *ev_default_loop_ptr;
783
784 #else
785
786 ev_tstamp ev_rt_now;
787 #define VAR(name,decl) static decl;
788 #include "ev_vars.h"
789 #undef VAR
790
791 static int ev_default_loop_ptr;
792
793 #endif
794
795 #if EV_FEATURE_API
796 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798 # define EV_INVOKE_PENDING invoke_cb (EV_A)
799 #else
800 # define EV_RELEASE_CB (void)0
801 # define EV_ACQUIRE_CB (void)0
802 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803 #endif
804
805 #define EVBREAK_RECURSE 0x80
806
807 /*****************************************************************************/
808
809 #ifndef EV_HAVE_EV_TIME
810 ev_tstamp
811 ev_time (void)
812 {
813 #if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
816 struct timespec ts;
817 clock_gettime (CLOCK_REALTIME, &ts);
818 return ts.tv_sec + ts.tv_nsec * 1e-9;
819 }
820 #endif
821
822 struct timeval tv;
823 gettimeofday (&tv, 0);
824 return tv.tv_sec + tv.tv_usec * 1e-6;
825 }
826 #endif
827
828 inline_size ev_tstamp
829 get_clock (void)
830 {
831 #if EV_USE_MONOTONIC
832 if (expect_true (have_monotonic))
833 {
834 struct timespec ts;
835 clock_gettime (CLOCK_MONOTONIC, &ts);
836 return ts.tv_sec + ts.tv_nsec * 1e-9;
837 }
838 #endif
839
840 return ev_time ();
841 }
842
843 #if EV_MULTIPLICITY
844 ev_tstamp
845 ev_now (EV_P)
846 {
847 return ev_rt_now;
848 }
849 #endif
850
851 void
852 ev_sleep (ev_tstamp delay)
853 {
854 if (delay > 0.)
855 {
856 #if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861 #elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863 #else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871 #endif
872 }
873 }
874
875 inline_speed int
876 ev_timeout_to_ms (ev_tstamp timeout)
877 {
878 int ms = timeout * 1000. + .999999;
879
880 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881 }
882
883 /*****************************************************************************/
884
885 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
886
887 /* find a suitable new size for the given array, */
888 /* hopefully by rounding to a nice-to-malloc size */
889 inline_size int
890 array_nextsize (int elem, int cur, int cnt)
891 {
892 int ncur = cur + 1;
893
894 do
895 ncur <<= 1;
896 while (cnt > ncur);
897
898 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
899 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
900 {
901 ncur *= elem;
902 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
903 ncur = ncur - sizeof (void *) * 4;
904 ncur /= elem;
905 }
906
907 return ncur;
908 }
909
910 static noinline void *
911 array_realloc (int elem, void *base, int *cur, int cnt)
912 {
913 *cur = array_nextsize (elem, *cur, cnt);
914 return ev_realloc (base, elem * *cur);
915 }
916
917 #define array_init_zero(base,count) \
918 memset ((void *)(base), 0, sizeof (*(base)) * (count))
919
920 #define array_needsize(type,base,cur,cnt,init) \
921 if (expect_false ((cnt) > (cur))) \
922 { \
923 int ocur_ = (cur); \
924 (base) = (type *)array_realloc \
925 (sizeof (type), (base), &(cur), (cnt)); \
926 init ((base) + (ocur_), (cur) - ocur_); \
927 }
928
929 #if 0
930 #define array_slim(type,stem) \
931 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
932 { \
933 stem ## max = array_roundsize (stem ## cnt >> 1); \
934 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
935 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
936 }
937 #endif
938
939 #define array_free(stem, idx) \
940 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
941
942 /*****************************************************************************/
943
944 /* dummy callback for pending events */
945 static void noinline
946 pendingcb (EV_P_ ev_prepare *w, int revents)
947 {
948 }
949
950 void noinline
951 ev_feed_event (EV_P_ void *w, int revents)
952 {
953 W w_ = (W)w;
954 int pri = ABSPRI (w_);
955
956 if (expect_false (w_->pending))
957 pendings [pri][w_->pending - 1].events |= revents;
958 else
959 {
960 w_->pending = ++pendingcnt [pri];
961 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
962 pendings [pri][w_->pending - 1].w = w_;
963 pendings [pri][w_->pending - 1].events = revents;
964 }
965 }
966
967 inline_speed void
968 feed_reverse (EV_P_ W w)
969 {
970 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971 rfeeds [rfeedcnt++] = w;
972 }
973
974 inline_size void
975 feed_reverse_done (EV_P_ int revents)
976 {
977 do
978 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979 while (rfeedcnt);
980 }
981
982 inline_speed void
983 queue_events (EV_P_ W *events, int eventcnt, int type)
984 {
985 int i;
986
987 for (i = 0; i < eventcnt; ++i)
988 ev_feed_event (EV_A_ events [i], type);
989 }
990
991 /*****************************************************************************/
992
993 inline_speed void
994 fd_event_nocheck (EV_P_ int fd, int revents)
995 {
996 ANFD *anfd = anfds + fd;
997 ev_io *w;
998
999 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1000 {
1001 int ev = w->events & revents;
1002
1003 if (ev)
1004 ev_feed_event (EV_A_ (W)w, ev);
1005 }
1006 }
1007
1008 /* do not submit kernel events for fds that have reify set */
1009 /* because that means they changed while we were polling for new events */
1010 inline_speed void
1011 fd_event (EV_P_ int fd, int revents)
1012 {
1013 ANFD *anfd = anfds + fd;
1014
1015 if (expect_true (!anfd->reify))
1016 fd_event_nocheck (EV_A_ fd, revents);
1017 }
1018
1019 void
1020 ev_feed_fd_event (EV_P_ int fd, int revents)
1021 {
1022 if (fd >= 0 && fd < anfdmax)
1023 fd_event_nocheck (EV_A_ fd, revents);
1024 }
1025
1026 /* make sure the external fd watch events are in-sync */
1027 /* with the kernel/libev internal state */
1028 inline_size void
1029 fd_reify (EV_P)
1030 {
1031 int i;
1032
1033 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1034 for (i = 0; i < fdchangecnt; ++i)
1035 {
1036 int fd = fdchanges [i];
1037 ANFD *anfd = anfds + fd;
1038
1039 if (anfd->reify & EV__IOFDSET)
1040 {
1041 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042
1043 if (handle != anfd->handle)
1044 {
1045 unsigned long arg;
1046
1047 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048
1049 /* handle changed, but fd didn't - we need to do it in two steps */
1050 backend_modify (EV_A_ fd, anfd->events, 0);
1051 anfd->events = 0;
1052 anfd->handle = handle;
1053 }
1054 }
1055 }
1056 #endif
1057
1058 for (i = 0; i < fdchangecnt; ++i)
1059 {
1060 int fd = fdchanges [i];
1061 ANFD *anfd = anfds + fd;
1062 ev_io *w;
1063
1064 unsigned char o_events = anfd->events;
1065 unsigned char o_reify = anfd->reify;
1066
1067 anfd->reify = 0;
1068
1069 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1070 {
1071 anfd->events = 0;
1072
1073 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1074 anfd->events |= (unsigned char)w->events;
1075
1076 if (o_events != anfd->events)
1077 o_reify = EV__IOFDSET; /* actually |= */
1078 }
1079
1080 if (o_reify & EV__IOFDSET)
1081 backend_modify (EV_A_ fd, o_events, anfd->events);
1082 }
1083
1084 fdchangecnt = 0;
1085 }
1086
1087 /* something about the given fd changed */
1088 inline_size void
1089 fd_change (EV_P_ int fd, int flags)
1090 {
1091 unsigned char reify = anfds [fd].reify;
1092 anfds [fd].reify |= flags;
1093
1094 if (expect_true (!reify))
1095 {
1096 ++fdchangecnt;
1097 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1098 fdchanges [fdchangecnt - 1] = fd;
1099 }
1100 }
1101
1102 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103 inline_speed void
1104 fd_kill (EV_P_ int fd)
1105 {
1106 ev_io *w;
1107
1108 while ((w = (ev_io *)anfds [fd].head))
1109 {
1110 ev_io_stop (EV_A_ w);
1111 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1112 }
1113 }
1114
1115 /* check whether the given fd is actually valid, for error recovery */
1116 inline_size int
1117 fd_valid (int fd)
1118 {
1119 #ifdef _WIN32
1120 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1121 #else
1122 return fcntl (fd, F_GETFD) != -1;
1123 #endif
1124 }
1125
1126 /* called on EBADF to verify fds */
1127 static void noinline
1128 fd_ebadf (EV_P)
1129 {
1130 int fd;
1131
1132 for (fd = 0; fd < anfdmax; ++fd)
1133 if (anfds [fd].events)
1134 if (!fd_valid (fd) && errno == EBADF)
1135 fd_kill (EV_A_ fd);
1136 }
1137
1138 /* called on ENOMEM in select/poll to kill some fds and retry */
1139 static void noinline
1140 fd_enomem (EV_P)
1141 {
1142 int fd;
1143
1144 for (fd = anfdmax; fd--; )
1145 if (anfds [fd].events)
1146 {
1147 fd_kill (EV_A_ fd);
1148 break;
1149 }
1150 }
1151
1152 /* usually called after fork if backend needs to re-arm all fds from scratch */
1153 static void noinline
1154 fd_rearm_all (EV_P)
1155 {
1156 int fd;
1157
1158 for (fd = 0; fd < anfdmax; ++fd)
1159 if (anfds [fd].events)
1160 {
1161 anfds [fd].events = 0;
1162 anfds [fd].emask = 0;
1163 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1164 }
1165 }
1166
1167 /* used to prepare libev internal fd's */
1168 /* this is not fork-safe */
1169 inline_speed void
1170 fd_intern (int fd)
1171 {
1172 #ifdef _WIN32
1173 unsigned long arg = 1;
1174 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1175 #else
1176 fcntl (fd, F_SETFD, FD_CLOEXEC);
1177 fcntl (fd, F_SETFL, O_NONBLOCK);
1178 #endif
1179 }
1180
1181 /*****************************************************************************/
1182
1183 /*
1184 * the heap functions want a real array index. array index 0 is guaranteed to not
1185 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1186 * the branching factor of the d-tree.
1187 */
1188
1189 /*
1190 * at the moment we allow libev the luxury of two heaps,
1191 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1192 * which is more cache-efficient.
1193 * the difference is about 5% with 50000+ watchers.
1194 */
1195 #if EV_USE_4HEAP
1196
1197 #define DHEAP 4
1198 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1199 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1200 #define UPHEAP_DONE(p,k) ((p) == (k))
1201
1202 /* away from the root */
1203 inline_speed void
1204 downheap (ANHE *heap, int N, int k)
1205 {
1206 ANHE he = heap [k];
1207 ANHE *E = heap + N + HEAP0;
1208
1209 for (;;)
1210 {
1211 ev_tstamp minat;
1212 ANHE *minpos;
1213 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1214
1215 /* find minimum child */
1216 if (expect_true (pos + DHEAP - 1 < E))
1217 {
1218 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1219 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1220 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1221 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1222 }
1223 else if (pos < E)
1224 {
1225 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1226 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1227 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1228 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1229 }
1230 else
1231 break;
1232
1233 if (ANHE_at (he) <= minat)
1234 break;
1235
1236 heap [k] = *minpos;
1237 ev_active (ANHE_w (*minpos)) = k;
1238
1239 k = minpos - heap;
1240 }
1241
1242 heap [k] = he;
1243 ev_active (ANHE_w (he)) = k;
1244 }
1245
1246 #else /* 4HEAP */
1247
1248 #define HEAP0 1
1249 #define HPARENT(k) ((k) >> 1)
1250 #define UPHEAP_DONE(p,k) (!(p))
1251
1252 /* away from the root */
1253 inline_speed void
1254 downheap (ANHE *heap, int N, int k)
1255 {
1256 ANHE he = heap [k];
1257
1258 for (;;)
1259 {
1260 int c = k << 1;
1261
1262 if (c >= N + HEAP0)
1263 break;
1264
1265 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1266 ? 1 : 0;
1267
1268 if (ANHE_at (he) <= ANHE_at (heap [c]))
1269 break;
1270
1271 heap [k] = heap [c];
1272 ev_active (ANHE_w (heap [k])) = k;
1273
1274 k = c;
1275 }
1276
1277 heap [k] = he;
1278 ev_active (ANHE_w (he)) = k;
1279 }
1280 #endif
1281
1282 /* towards the root */
1283 inline_speed void
1284 upheap (ANHE *heap, int k)
1285 {
1286 ANHE he = heap [k];
1287
1288 for (;;)
1289 {
1290 int p = HPARENT (k);
1291
1292 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 break;
1294
1295 heap [k] = heap [p];
1296 ev_active (ANHE_w (heap [k])) = k;
1297 k = p;
1298 }
1299
1300 heap [k] = he;
1301 ev_active (ANHE_w (he)) = k;
1302 }
1303
1304 /* move an element suitably so it is in a correct place */
1305 inline_size void
1306 adjustheap (ANHE *heap, int N, int k)
1307 {
1308 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1309 upheap (heap, k);
1310 else
1311 downheap (heap, N, k);
1312 }
1313
1314 /* rebuild the heap: this function is used only once and executed rarely */
1315 inline_size void
1316 reheap (ANHE *heap, int N)
1317 {
1318 int i;
1319
1320 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322 for (i = 0; i < N; ++i)
1323 upheap (heap, i + HEAP0);
1324 }
1325
1326 /*****************************************************************************/
1327
1328 /* associate signal watchers to a signal signal */
1329 typedef struct
1330 {
1331 EV_ATOMIC_T pending;
1332 #if EV_MULTIPLICITY
1333 EV_P;
1334 #endif
1335 WL head;
1336 } ANSIG;
1337
1338 static ANSIG signals [EV_NSIG - 1];
1339
1340 /*****************************************************************************/
1341
1342 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343
1344 static void noinline
1345 evpipe_init (EV_P)
1346 {
1347 if (!ev_is_active (&pipe_w))
1348 {
1349 # if EV_USE_EVENTFD
1350 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351 if (evfd < 0 && errno == EINVAL)
1352 evfd = eventfd (0, 0);
1353
1354 if (evfd >= 0)
1355 {
1356 evpipe [0] = -1;
1357 fd_intern (evfd); /* doing it twice doesn't hurt */
1358 ev_io_set (&pipe_w, evfd, EV_READ);
1359 }
1360 else
1361 # endif
1362 {
1363 while (pipe (evpipe))
1364 ev_syserr ("(libev) error creating signal/async pipe");
1365
1366 fd_intern (evpipe [0]);
1367 fd_intern (evpipe [1]);
1368 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1369 }
1370
1371 ev_io_start (EV_A_ &pipe_w);
1372 ev_unref (EV_A); /* watcher should not keep loop alive */
1373 }
1374 }
1375
1376 inline_size void
1377 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1378 {
1379 if (!*flag)
1380 {
1381 int old_errno = errno; /* save errno because write might clobber it */
1382 char dummy;
1383
1384 *flag = 1;
1385
1386 #if EV_USE_EVENTFD
1387 if (evfd >= 0)
1388 {
1389 uint64_t counter = 1;
1390 write (evfd, &counter, sizeof (uint64_t));
1391 }
1392 else
1393 #endif
1394 /* win32 people keep sending patches that change this write() to send() */
1395 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396 /* so when you think this write should be a send instead, please find out */
1397 /* where your send() is from - it's definitely not the microsoft send, and */
1398 /* tell me. thank you. */
1399 write (evpipe [1], &dummy, 1);
1400
1401 errno = old_errno;
1402 }
1403 }
1404
1405 /* called whenever the libev signal pipe */
1406 /* got some events (signal, async) */
1407 static void
1408 pipecb (EV_P_ ev_io *iow, int revents)
1409 {
1410 int i;
1411
1412 #if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 {
1415 uint64_t counter;
1416 read (evfd, &counter, sizeof (uint64_t));
1417 }
1418 else
1419 #endif
1420 {
1421 char dummy;
1422 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1423 read (evpipe [0], &dummy, 1);
1424 }
1425
1426 #if EV_SIGNAL_ENABLE
1427 if (sig_pending)
1428 {
1429 sig_pending = 0;
1430
1431 for (i = EV_NSIG - 1; i--; )
1432 if (expect_false (signals [i].pending))
1433 ev_feed_signal_event (EV_A_ i + 1);
1434 }
1435 #endif
1436
1437 #if EV_ASYNC_ENABLE
1438 if (async_pending)
1439 {
1440 async_pending = 0;
1441
1442 for (i = asynccnt; i--; )
1443 if (asyncs [i]->sent)
1444 {
1445 asyncs [i]->sent = 0;
1446 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1447 }
1448 }
1449 #endif
1450 }
1451
1452 /*****************************************************************************/
1453
1454 void
1455 ev_feed_signal (int signum)
1456 {
1457 #if EV_MULTIPLICITY
1458 EV_P = signals [signum - 1].loop;
1459
1460 if (!EV_A)
1461 return;
1462 #endif
1463
1464 signals [signum - 1].pending = 1;
1465 evpipe_write (EV_A_ &sig_pending);
1466 }
1467
1468 static void
1469 ev_sighandler (int signum)
1470 {
1471 #ifdef _WIN32
1472 signal (signum, ev_sighandler);
1473 #endif
1474
1475 ev_feed_signal (signum);
1476 }
1477
1478 void noinline
1479 ev_feed_signal_event (EV_P_ int signum)
1480 {
1481 WL w;
1482
1483 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484 return;
1485
1486 --signum;
1487
1488 #if EV_MULTIPLICITY
1489 /* it is permissible to try to feed a signal to the wrong loop */
1490 /* or, likely more useful, feeding a signal nobody is waiting for */
1491
1492 if (expect_false (signals [signum].loop != EV_A))
1493 return;
1494 #endif
1495
1496 signals [signum].pending = 0;
1497
1498 for (w = signals [signum].head; w; w = w->next)
1499 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1500 }
1501
1502 #if EV_USE_SIGNALFD
1503 static void
1504 sigfdcb (EV_P_ ev_io *iow, int revents)
1505 {
1506 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507
1508 for (;;)
1509 {
1510 ssize_t res = read (sigfd, si, sizeof (si));
1511
1512 /* not ISO-C, as res might be -1, but works with SuS */
1513 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515
1516 if (res < (ssize_t)sizeof (si))
1517 break;
1518 }
1519 }
1520 #endif
1521
1522 #endif
1523
1524 /*****************************************************************************/
1525
1526 #if EV_CHILD_ENABLE
1527 static WL childs [EV_PID_HASHSIZE];
1528
1529 static ev_signal childev;
1530
1531 #ifndef WIFCONTINUED
1532 # define WIFCONTINUED(status) 0
1533 #endif
1534
1535 /* handle a single child status event */
1536 inline_speed void
1537 child_reap (EV_P_ int chain, int pid, int status)
1538 {
1539 ev_child *w;
1540 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1541
1542 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1543 {
1544 if ((w->pid == pid || !w->pid)
1545 && (!traced || (w->flags & 1)))
1546 {
1547 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1548 w->rpid = pid;
1549 w->rstatus = status;
1550 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1551 }
1552 }
1553 }
1554
1555 #ifndef WCONTINUED
1556 # define WCONTINUED 0
1557 #endif
1558
1559 /* called on sigchld etc., calls waitpid */
1560 static void
1561 childcb (EV_P_ ev_signal *sw, int revents)
1562 {
1563 int pid, status;
1564
1565 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1566 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1567 if (!WCONTINUED
1568 || errno != EINVAL
1569 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1570 return;
1571
1572 /* make sure we are called again until all children have been reaped */
1573 /* we need to do it this way so that the callback gets called before we continue */
1574 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1575
1576 child_reap (EV_A_ pid, pid, status);
1577 if ((EV_PID_HASHSIZE) > 1)
1578 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1579 }
1580
1581 #endif
1582
1583 /*****************************************************************************/
1584
1585 #if EV_USE_IOCP
1586 # include "ev_iocp.c"
1587 #endif
1588 #if EV_USE_PORT
1589 # include "ev_port.c"
1590 #endif
1591 #if EV_USE_KQUEUE
1592 # include "ev_kqueue.c"
1593 #endif
1594 #if EV_USE_EPOLL
1595 # include "ev_epoll.c"
1596 #endif
1597 #if EV_USE_POLL
1598 # include "ev_poll.c"
1599 #endif
1600 #if EV_USE_SELECT
1601 # include "ev_select.c"
1602 #endif
1603
1604 int
1605 ev_version_major (void)
1606 {
1607 return EV_VERSION_MAJOR;
1608 }
1609
1610 int
1611 ev_version_minor (void)
1612 {
1613 return EV_VERSION_MINOR;
1614 }
1615
1616 /* return true if we are running with elevated privileges and should ignore env variables */
1617 int inline_size
1618 enable_secure (void)
1619 {
1620 #ifdef _WIN32
1621 return 0;
1622 #else
1623 return getuid () != geteuid ()
1624 || getgid () != getegid ();
1625 #endif
1626 }
1627
1628 unsigned int
1629 ev_supported_backends (void)
1630 {
1631 unsigned int flags = 0;
1632
1633 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1634 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1635 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1636 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1637 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1638
1639 return flags;
1640 }
1641
1642 unsigned int
1643 ev_recommended_backends (void)
1644 {
1645 unsigned int flags = ev_supported_backends ();
1646
1647 #ifndef __NetBSD__
1648 /* kqueue is borked on everything but netbsd apparently */
1649 /* it usually doesn't work correctly on anything but sockets and pipes */
1650 flags &= ~EVBACKEND_KQUEUE;
1651 #endif
1652 #ifdef __APPLE__
1653 /* only select works correctly on that "unix-certified" platform */
1654 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656 #endif
1657 #ifdef __FreeBSD__
1658 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1659 #endif
1660
1661 return flags;
1662 }
1663
1664 unsigned int
1665 ev_embeddable_backends (void)
1666 {
1667 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1668
1669 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1670 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1671 flags &= ~EVBACKEND_EPOLL;
1672
1673 return flags;
1674 }
1675
1676 unsigned int
1677 ev_backend (EV_P)
1678 {
1679 return backend;
1680 }
1681
1682 #if EV_FEATURE_API
1683 unsigned int
1684 ev_iteration (EV_P)
1685 {
1686 return loop_count;
1687 }
1688
1689 unsigned int
1690 ev_depth (EV_P)
1691 {
1692 return loop_depth;
1693 }
1694
1695 void
1696 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1697 {
1698 io_blocktime = interval;
1699 }
1700
1701 void
1702 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1703 {
1704 timeout_blocktime = interval;
1705 }
1706
1707 void
1708 ev_set_userdata (EV_P_ void *data)
1709 {
1710 userdata = data;
1711 }
1712
1713 void *
1714 ev_userdata (EV_P)
1715 {
1716 return userdata;
1717 }
1718
1719 void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720 {
1721 invoke_cb = invoke_pending_cb;
1722 }
1723
1724 void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725 {
1726 release_cb = release;
1727 acquire_cb = acquire;
1728 }
1729 #endif
1730
1731 /* initialise a loop structure, must be zero-initialised */
1732 static void noinline
1733 loop_init (EV_P_ unsigned int flags)
1734 {
1735 if (!backend)
1736 {
1737 origflags = flags;
1738
1739 #if EV_USE_REALTIME
1740 if (!have_realtime)
1741 {
1742 struct timespec ts;
1743
1744 if (!clock_gettime (CLOCK_REALTIME, &ts))
1745 have_realtime = 1;
1746 }
1747 #endif
1748
1749 #if EV_USE_MONOTONIC
1750 if (!have_monotonic)
1751 {
1752 struct timespec ts;
1753
1754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1755 have_monotonic = 1;
1756 }
1757 #endif
1758
1759 /* pid check not overridable via env */
1760 #ifndef _WIN32
1761 if (flags & EVFLAG_FORKCHECK)
1762 curpid = getpid ();
1763 #endif
1764
1765 if (!(flags & EVFLAG_NOENV)
1766 && !enable_secure ()
1767 && getenv ("LIBEV_FLAGS"))
1768 flags = atoi (getenv ("LIBEV_FLAGS"));
1769
1770 ev_rt_now = ev_time ();
1771 mn_now = get_clock ();
1772 now_floor = mn_now;
1773 rtmn_diff = ev_rt_now - mn_now;
1774 #if EV_FEATURE_API
1775 invoke_cb = ev_invoke_pending;
1776 #endif
1777
1778 io_blocktime = 0.;
1779 timeout_blocktime = 0.;
1780 backend = 0;
1781 backend_fd = -1;
1782 sig_pending = 0;
1783 #if EV_ASYNC_ENABLE
1784 async_pending = 0;
1785 #endif
1786 #if EV_USE_INOTIFY
1787 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1788 #endif
1789 #if EV_USE_SIGNALFD
1790 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1791 #endif
1792
1793 if (!(flags & EVBACKEND_MASK))
1794 flags |= ev_recommended_backends ();
1795
1796 #if EV_USE_IOCP
1797 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1798 #endif
1799 #if EV_USE_PORT
1800 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1801 #endif
1802 #if EV_USE_KQUEUE
1803 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1804 #endif
1805 #if EV_USE_EPOLL
1806 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1807 #endif
1808 #if EV_USE_POLL
1809 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1810 #endif
1811 #if EV_USE_SELECT
1812 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1813 #endif
1814
1815 ev_prepare_init (&pending_w, pendingcb);
1816
1817 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1818 ev_init (&pipe_w, pipecb);
1819 ev_set_priority (&pipe_w, EV_MAXPRI);
1820 #endif
1821 }
1822 }
1823
1824 /* free up a loop structure */
1825 void
1826 ev_loop_destroy (EV_P)
1827 {
1828 int i;
1829
1830 #if EV_MULTIPLICITY
1831 /* mimic free (0) */
1832 if (!EV_A)
1833 return;
1834 #endif
1835
1836 #if EV_CLEANUP_ENABLE
1837 /* queue cleanup watchers (and execute them) */
1838 if (expect_false (cleanupcnt))
1839 {
1840 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841 EV_INVOKE_PENDING;
1842 }
1843 #endif
1844
1845 #if EV_CHILD_ENABLE
1846 if (ev_is_active (&childev))
1847 {
1848 ev_ref (EV_A); /* child watcher */
1849 ev_signal_stop (EV_A_ &childev);
1850 }
1851 #endif
1852
1853 if (ev_is_active (&pipe_w))
1854 {
1855 /*ev_ref (EV_A);*/
1856 /*ev_io_stop (EV_A_ &pipe_w);*/
1857
1858 #if EV_USE_EVENTFD
1859 if (evfd >= 0)
1860 close (evfd);
1861 #endif
1862
1863 if (evpipe [0] >= 0)
1864 {
1865 EV_WIN32_CLOSE_FD (evpipe [0]);
1866 EV_WIN32_CLOSE_FD (evpipe [1]);
1867 }
1868 }
1869
1870 #if EV_USE_SIGNALFD
1871 if (ev_is_active (&sigfd_w))
1872 close (sigfd);
1873 #endif
1874
1875 #if EV_USE_INOTIFY
1876 if (fs_fd >= 0)
1877 close (fs_fd);
1878 #endif
1879
1880 if (backend_fd >= 0)
1881 close (backend_fd);
1882
1883 #if EV_USE_IOCP
1884 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885 #endif
1886 #if EV_USE_PORT
1887 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1888 #endif
1889 #if EV_USE_KQUEUE
1890 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1891 #endif
1892 #if EV_USE_EPOLL
1893 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1894 #endif
1895 #if EV_USE_POLL
1896 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1897 #endif
1898 #if EV_USE_SELECT
1899 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1900 #endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 array_free (pending, [i]);
1905 #if EV_IDLE_ENABLE
1906 array_free (idle, [i]);
1907 #endif
1908 }
1909
1910 ev_free (anfds); anfds = 0; anfdmax = 0;
1911
1912 /* have to use the microsoft-never-gets-it-right macro */
1913 array_free (rfeed, EMPTY);
1914 array_free (fdchange, EMPTY);
1915 array_free (timer, EMPTY);
1916 #if EV_PERIODIC_ENABLE
1917 array_free (periodic, EMPTY);
1918 #endif
1919 #if EV_FORK_ENABLE
1920 array_free (fork, EMPTY);
1921 #endif
1922 #if EV_CLEANUP_ENABLE
1923 array_free (cleanup, EMPTY);
1924 #endif
1925 array_free (prepare, EMPTY);
1926 array_free (check, EMPTY);
1927 #if EV_ASYNC_ENABLE
1928 array_free (async, EMPTY);
1929 #endif
1930
1931 backend = 0;
1932
1933 #if EV_MULTIPLICITY
1934 if (ev_is_default_loop (EV_A))
1935 #endif
1936 ev_default_loop_ptr = 0;
1937 #if EV_MULTIPLICITY
1938 else
1939 ev_free (EV_A);
1940 #endif
1941 }
1942
1943 #if EV_USE_INOTIFY
1944 inline_size void infy_fork (EV_P);
1945 #endif
1946
1947 inline_size void
1948 loop_fork (EV_P)
1949 {
1950 #if EV_USE_PORT
1951 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1952 #endif
1953 #if EV_USE_KQUEUE
1954 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1955 #endif
1956 #if EV_USE_EPOLL
1957 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1958 #endif
1959 #if EV_USE_INOTIFY
1960 infy_fork (EV_A);
1961 #endif
1962
1963 if (ev_is_active (&pipe_w))
1964 {
1965 /* this "locks" the handlers against writing to the pipe */
1966 /* while we modify the fd vars */
1967 sig_pending = 1;
1968 #if EV_ASYNC_ENABLE
1969 async_pending = 1;
1970 #endif
1971
1972 ev_ref (EV_A);
1973 ev_io_stop (EV_A_ &pipe_w);
1974
1975 #if EV_USE_EVENTFD
1976 if (evfd >= 0)
1977 close (evfd);
1978 #endif
1979
1980 if (evpipe [0] >= 0)
1981 {
1982 EV_WIN32_CLOSE_FD (evpipe [0]);
1983 EV_WIN32_CLOSE_FD (evpipe [1]);
1984 }
1985
1986 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1987 evpipe_init (EV_A);
1988 /* now iterate over everything, in case we missed something */
1989 pipecb (EV_A_ &pipe_w, EV_READ);
1990 #endif
1991 }
1992
1993 postfork = 0;
1994 }
1995
1996 #if EV_MULTIPLICITY
1997
1998 struct ev_loop *
1999 ev_loop_new (unsigned int flags)
2000 {
2001 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002
2003 memset (EV_A, 0, sizeof (struct ev_loop));
2004 loop_init (EV_A_ flags);
2005
2006 if (ev_backend (EV_A))
2007 return EV_A;
2008
2009 ev_free (EV_A);
2010 return 0;
2011 }
2012
2013 #endif /* multiplicity */
2014
2015 #if EV_VERIFY
2016 static void noinline
2017 verify_watcher (EV_P_ W w)
2018 {
2019 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020
2021 if (w->pending)
2022 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023 }
2024
2025 static void noinline
2026 verify_heap (EV_P_ ANHE *heap, int N)
2027 {
2028 int i;
2029
2030 for (i = HEAP0; i < N + HEAP0; ++i)
2031 {
2032 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035
2036 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037 }
2038 }
2039
2040 static void noinline
2041 array_verify (EV_P_ W *ws, int cnt)
2042 {
2043 while (cnt--)
2044 {
2045 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 verify_watcher (EV_A_ ws [cnt]);
2047 }
2048 }
2049 #endif
2050
2051 #if EV_FEATURE_API
2052 void
2053 ev_verify (EV_P)
2054 {
2055 #if EV_VERIFY
2056 int i;
2057 WL w;
2058
2059 assert (activecnt >= -1);
2060
2061 assert (fdchangemax >= fdchangecnt);
2062 for (i = 0; i < fdchangecnt; ++i)
2063 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064
2065 assert (anfdmax >= 0);
2066 for (i = 0; i < anfdmax; ++i)
2067 for (w = anfds [i].head; w; w = w->next)
2068 {
2069 verify_watcher (EV_A_ (W)w);
2070 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2071 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2072 }
2073
2074 assert (timermax >= timercnt);
2075 verify_heap (EV_A_ timers, timercnt);
2076
2077 #if EV_PERIODIC_ENABLE
2078 assert (periodicmax >= periodiccnt);
2079 verify_heap (EV_A_ periodics, periodiccnt);
2080 #endif
2081
2082 for (i = NUMPRI; i--; )
2083 {
2084 assert (pendingmax [i] >= pendingcnt [i]);
2085 #if EV_IDLE_ENABLE
2086 assert (idleall >= 0);
2087 assert (idlemax [i] >= idlecnt [i]);
2088 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089 #endif
2090 }
2091
2092 #if EV_FORK_ENABLE
2093 assert (forkmax >= forkcnt);
2094 array_verify (EV_A_ (W *)forks, forkcnt);
2095 #endif
2096
2097 #if EV_CLEANUP_ENABLE
2098 assert (cleanupmax >= cleanupcnt);
2099 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100 #endif
2101
2102 #if EV_ASYNC_ENABLE
2103 assert (asyncmax >= asynccnt);
2104 array_verify (EV_A_ (W *)asyncs, asynccnt);
2105 #endif
2106
2107 #if EV_PREPARE_ENABLE
2108 assert (preparemax >= preparecnt);
2109 array_verify (EV_A_ (W *)prepares, preparecnt);
2110 #endif
2111
2112 #if EV_CHECK_ENABLE
2113 assert (checkmax >= checkcnt);
2114 array_verify (EV_A_ (W *)checks, checkcnt);
2115 #endif
2116
2117 # if 0
2118 #if EV_CHILD_ENABLE
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121 #endif
2122 # endif
2123 #endif
2124 }
2125 #endif
2126
2127 #if EV_MULTIPLICITY
2128 struct ev_loop *
2129 #else
2130 int
2131 #endif
2132 ev_default_loop (unsigned int flags)
2133 {
2134 if (!ev_default_loop_ptr)
2135 {
2136 #if EV_MULTIPLICITY
2137 EV_P = ev_default_loop_ptr = &default_loop_struct;
2138 #else
2139 ev_default_loop_ptr = 1;
2140 #endif
2141
2142 loop_init (EV_A_ flags);
2143
2144 if (ev_backend (EV_A))
2145 {
2146 #if EV_CHILD_ENABLE
2147 ev_signal_init (&childev, childcb, SIGCHLD);
2148 ev_set_priority (&childev, EV_MAXPRI);
2149 ev_signal_start (EV_A_ &childev);
2150 ev_unref (EV_A); /* child watcher should not keep loop alive */
2151 #endif
2152 }
2153 else
2154 ev_default_loop_ptr = 0;
2155 }
2156
2157 return ev_default_loop_ptr;
2158 }
2159
2160 void
2161 ev_loop_fork (EV_P)
2162 {
2163 postfork = 1; /* must be in line with ev_default_fork */
2164 }
2165
2166 /*****************************************************************************/
2167
2168 void
2169 ev_invoke (EV_P_ void *w, int revents)
2170 {
2171 EV_CB_INVOKE ((W)w, revents);
2172 }
2173
2174 unsigned int
2175 ev_pending_count (EV_P)
2176 {
2177 int pri;
2178 unsigned int count = 0;
2179
2180 for (pri = NUMPRI; pri--; )
2181 count += pendingcnt [pri];
2182
2183 return count;
2184 }
2185
2186 void noinline
2187 ev_invoke_pending (EV_P)
2188 {
2189 int pri;
2190
2191 for (pri = NUMPRI; pri--; )
2192 while (pendingcnt [pri])
2193 {
2194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2195
2196 p->w->pending = 0;
2197 EV_CB_INVOKE (p->w, p->events);
2198 EV_FREQUENT_CHECK;
2199 }
2200 }
2201
2202 #if EV_IDLE_ENABLE
2203 /* make idle watchers pending. this handles the "call-idle */
2204 /* only when higher priorities are idle" logic */
2205 inline_size void
2206 idle_reify (EV_P)
2207 {
2208 if (expect_false (idleall))
2209 {
2210 int pri;
2211
2212 for (pri = NUMPRI; pri--; )
2213 {
2214 if (pendingcnt [pri])
2215 break;
2216
2217 if (idlecnt [pri])
2218 {
2219 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2220 break;
2221 }
2222 }
2223 }
2224 }
2225 #endif
2226
2227 /* make timers pending */
2228 inline_size void
2229 timers_reify (EV_P)
2230 {
2231 EV_FREQUENT_CHECK;
2232
2233 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2234 {
2235 do
2236 {
2237 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238
2239 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240
2241 /* first reschedule or stop timer */
2242 if (w->repeat)
2243 {
2244 ev_at (w) += w->repeat;
2245 if (ev_at (w) < mn_now)
2246 ev_at (w) = mn_now;
2247
2248 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2249
2250 ANHE_at_cache (timers [HEAP0]);
2251 downheap (timers, timercnt, HEAP0);
2252 }
2253 else
2254 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255
2256 EV_FREQUENT_CHECK;
2257 feed_reverse (EV_A_ (W)w);
2258 }
2259 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2260
2261 feed_reverse_done (EV_A_ EV_TIMER);
2262 }
2263 }
2264
2265 #if EV_PERIODIC_ENABLE
2266
2267 static void noinline
2268 periodic_recalc (EV_P_ ev_periodic *w)
2269 {
2270 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272
2273 /* the above almost always errs on the low side */
2274 while (at <= ev_rt_now)
2275 {
2276 ev_tstamp nat = at + w->interval;
2277
2278 /* when resolution fails us, we use ev_rt_now */
2279 if (expect_false (nat == at))
2280 {
2281 at = ev_rt_now;
2282 break;
2283 }
2284
2285 at = nat;
2286 }
2287
2288 ev_at (w) = at;
2289 }
2290
2291 /* make periodics pending */
2292 inline_size void
2293 periodics_reify (EV_P)
2294 {
2295 EV_FREQUENT_CHECK;
2296
2297 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2298 {
2299 int feed_count = 0;
2300
2301 do
2302 {
2303 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304
2305 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306
2307 /* first reschedule or stop timer */
2308 if (w->reschedule_cb)
2309 {
2310 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311
2312 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313
2314 ANHE_at_cache (periodics [HEAP0]);
2315 downheap (periodics, periodiccnt, HEAP0);
2316 }
2317 else if (w->interval)
2318 {
2319 periodic_recalc (EV_A_ w);
2320 ANHE_at_cache (periodics [HEAP0]);
2321 downheap (periodics, periodiccnt, HEAP0);
2322 }
2323 else
2324 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325
2326 EV_FREQUENT_CHECK;
2327 feed_reverse (EV_A_ (W)w);
2328 }
2329 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2330
2331 feed_reverse_done (EV_A_ EV_PERIODIC);
2332 }
2333 }
2334
2335 /* simply recalculate all periodics */
2336 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2337 static void noinline
2338 periodics_reschedule (EV_P)
2339 {
2340 int i;
2341
2342 /* adjust periodics after time jump */
2343 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2344 {
2345 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2346
2347 if (w->reschedule_cb)
2348 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2349 else if (w->interval)
2350 periodic_recalc (EV_A_ w);
2351
2352 ANHE_at_cache (periodics [i]);
2353 }
2354
2355 reheap (periodics, periodiccnt);
2356 }
2357 #endif
2358
2359 /* adjust all timers by a given offset */
2360 static void noinline
2361 timers_reschedule (EV_P_ ev_tstamp adjust)
2362 {
2363 int i;
2364
2365 for (i = 0; i < timercnt; ++i)
2366 {
2367 ANHE *he = timers + i + HEAP0;
2368 ANHE_w (*he)->at += adjust;
2369 ANHE_at_cache (*he);
2370 }
2371 }
2372
2373 /* fetch new monotonic and realtime times from the kernel */
2374 /* also detect if there was a timejump, and act accordingly */
2375 inline_speed void
2376 time_update (EV_P_ ev_tstamp max_block)
2377 {
2378 #if EV_USE_MONOTONIC
2379 if (expect_true (have_monotonic))
2380 {
2381 int i;
2382 ev_tstamp odiff = rtmn_diff;
2383
2384 mn_now = get_clock ();
2385
2386 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2387 /* interpolate in the meantime */
2388 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2389 {
2390 ev_rt_now = rtmn_diff + mn_now;
2391 return;
2392 }
2393
2394 now_floor = mn_now;
2395 ev_rt_now = ev_time ();
2396
2397 /* loop a few times, before making important decisions.
2398 * on the choice of "4": one iteration isn't enough,
2399 * in case we get preempted during the calls to
2400 * ev_time and get_clock. a second call is almost guaranteed
2401 * to succeed in that case, though. and looping a few more times
2402 * doesn't hurt either as we only do this on time-jumps or
2403 * in the unlikely event of having been preempted here.
2404 */
2405 for (i = 4; --i; )
2406 {
2407 ev_tstamp diff;
2408 rtmn_diff = ev_rt_now - mn_now;
2409
2410 diff = odiff - rtmn_diff;
2411
2412 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2413 return; /* all is well */
2414
2415 ev_rt_now = ev_time ();
2416 mn_now = get_clock ();
2417 now_floor = mn_now;
2418 }
2419
2420 /* no timer adjustment, as the monotonic clock doesn't jump */
2421 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2422 # if EV_PERIODIC_ENABLE
2423 periodics_reschedule (EV_A);
2424 # endif
2425 }
2426 else
2427 #endif
2428 {
2429 ev_rt_now = ev_time ();
2430
2431 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2432 {
2433 /* adjust timers. this is easy, as the offset is the same for all of them */
2434 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2435 #if EV_PERIODIC_ENABLE
2436 periodics_reschedule (EV_A);
2437 #endif
2438 }
2439
2440 mn_now = ev_rt_now;
2441 }
2442 }
2443
2444 void
2445 ev_run (EV_P_ int flags)
2446 {
2447 #if EV_FEATURE_API
2448 ++loop_depth;
2449 #endif
2450
2451 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452
2453 loop_done = EVBREAK_CANCEL;
2454
2455 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2456
2457 do
2458 {
2459 #if EV_VERIFY >= 2
2460 ev_verify (EV_A);
2461 #endif
2462
2463 #ifndef _WIN32
2464 if (expect_false (curpid)) /* penalise the forking check even more */
2465 if (expect_false (getpid () != curpid))
2466 {
2467 curpid = getpid ();
2468 postfork = 1;
2469 }
2470 #endif
2471
2472 #if EV_FORK_ENABLE
2473 /* we might have forked, so queue fork handlers */
2474 if (expect_false (postfork))
2475 if (forkcnt)
2476 {
2477 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2478 EV_INVOKE_PENDING;
2479 }
2480 #endif
2481
2482 #if EV_PREPARE_ENABLE
2483 /* queue prepare watchers (and execute them) */
2484 if (expect_false (preparecnt))
2485 {
2486 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2487 EV_INVOKE_PENDING;
2488 }
2489 #endif
2490
2491 if (expect_false (loop_done))
2492 break;
2493
2494 /* we might have forked, so reify kernel state if necessary */
2495 if (expect_false (postfork))
2496 loop_fork (EV_A);
2497
2498 /* update fd-related kernel structures */
2499 fd_reify (EV_A);
2500
2501 /* calculate blocking time */
2502 {
2503 ev_tstamp waittime = 0.;
2504 ev_tstamp sleeptime = 0.;
2505
2506 /* remember old timestamp for io_blocktime calculation */
2507 ev_tstamp prev_mn_now = mn_now;
2508
2509 /* update time to cancel out callback processing overhead */
2510 time_update (EV_A_ 1e100);
2511
2512 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2513 {
2514 waittime = MAX_BLOCKTIME;
2515
2516 if (timercnt)
2517 {
2518 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2519 if (waittime > to) waittime = to;
2520 }
2521
2522 #if EV_PERIODIC_ENABLE
2523 if (periodiccnt)
2524 {
2525 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2526 if (waittime > to) waittime = to;
2527 }
2528 #endif
2529
2530 /* don't let timeouts decrease the waittime below timeout_blocktime */
2531 if (expect_false (waittime < timeout_blocktime))
2532 waittime = timeout_blocktime;
2533
2534 /* extra check because io_blocktime is commonly 0 */
2535 if (expect_false (io_blocktime))
2536 {
2537 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538
2539 if (sleeptime > waittime - backend_fudge)
2540 sleeptime = waittime - backend_fudge;
2541
2542 if (expect_true (sleeptime > 0.))
2543 {
2544 ev_sleep (sleeptime);
2545 waittime -= sleeptime;
2546 }
2547 }
2548 }
2549
2550 #if EV_FEATURE_API
2551 ++loop_count;
2552 #endif
2553 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2554 backend_poll (EV_A_ waittime);
2555 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2556
2557 /* update ev_rt_now, do magic */
2558 time_update (EV_A_ waittime + sleeptime);
2559 }
2560
2561 /* queue pending timers and reschedule them */
2562 timers_reify (EV_A); /* relative timers called last */
2563 #if EV_PERIODIC_ENABLE
2564 periodics_reify (EV_A); /* absolute timers called first */
2565 #endif
2566
2567 #if EV_IDLE_ENABLE
2568 /* queue idle watchers unless other events are pending */
2569 idle_reify (EV_A);
2570 #endif
2571
2572 #if EV_CHECK_ENABLE
2573 /* queue check watchers, to be executed first */
2574 if (expect_false (checkcnt))
2575 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576 #endif
2577
2578 EV_INVOKE_PENDING;
2579 }
2580 while (expect_true (
2581 activecnt
2582 && !loop_done
2583 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2584 ));
2585
2586 if (loop_done == EVBREAK_ONE)
2587 loop_done = EVBREAK_CANCEL;
2588
2589 #if EV_FEATURE_API
2590 --loop_depth;
2591 #endif
2592 }
2593
2594 void
2595 ev_break (EV_P_ int how)
2596 {
2597 loop_done = how;
2598 }
2599
2600 void
2601 ev_ref (EV_P)
2602 {
2603 ++activecnt;
2604 }
2605
2606 void
2607 ev_unref (EV_P)
2608 {
2609 --activecnt;
2610 }
2611
2612 void
2613 ev_now_update (EV_P)
2614 {
2615 time_update (EV_A_ 1e100);
2616 }
2617
2618 void
2619 ev_suspend (EV_P)
2620 {
2621 ev_now_update (EV_A);
2622 }
2623
2624 void
2625 ev_resume (EV_P)
2626 {
2627 ev_tstamp mn_prev = mn_now;
2628
2629 ev_now_update (EV_A);
2630 timers_reschedule (EV_A_ mn_now - mn_prev);
2631 #if EV_PERIODIC_ENABLE
2632 /* TODO: really do this? */
2633 periodics_reschedule (EV_A);
2634 #endif
2635 }
2636
2637 /*****************************************************************************/
2638 /* singly-linked list management, used when the expected list length is short */
2639
2640 inline_size void
2641 wlist_add (WL *head, WL elem)
2642 {
2643 elem->next = *head;
2644 *head = elem;
2645 }
2646
2647 inline_size void
2648 wlist_del (WL *head, WL elem)
2649 {
2650 while (*head)
2651 {
2652 if (expect_true (*head == elem))
2653 {
2654 *head = elem->next;
2655 break;
2656 }
2657
2658 head = &(*head)->next;
2659 }
2660 }
2661
2662 /* internal, faster, version of ev_clear_pending */
2663 inline_speed void
2664 clear_pending (EV_P_ W w)
2665 {
2666 if (w->pending)
2667 {
2668 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2669 w->pending = 0;
2670 }
2671 }
2672
2673 int
2674 ev_clear_pending (EV_P_ void *w)
2675 {
2676 W w_ = (W)w;
2677 int pending = w_->pending;
2678
2679 if (expect_true (pending))
2680 {
2681 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 p->w = (W)&pending_w;
2683 w_->pending = 0;
2684 return p->events;
2685 }
2686 else
2687 return 0;
2688 }
2689
2690 inline_size void
2691 pri_adjust (EV_P_ W w)
2692 {
2693 int pri = ev_priority (w);
2694 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2695 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2696 ev_set_priority (w, pri);
2697 }
2698
2699 inline_speed void
2700 ev_start (EV_P_ W w, int active)
2701 {
2702 pri_adjust (EV_A_ w);
2703 w->active = active;
2704 ev_ref (EV_A);
2705 }
2706
2707 inline_size void
2708 ev_stop (EV_P_ W w)
2709 {
2710 ev_unref (EV_A);
2711 w->active = 0;
2712 }
2713
2714 /*****************************************************************************/
2715
2716 void noinline
2717 ev_io_start (EV_P_ ev_io *w)
2718 {
2719 int fd = w->fd;
2720
2721 if (expect_false (ev_is_active (w)))
2722 return;
2723
2724 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726
2727 EV_FREQUENT_CHECK;
2728
2729 ev_start (EV_A_ (W)w, 1);
2730 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2731 wlist_add (&anfds[fd].head, (WL)w);
2732
2733 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2734 w->events &= ~EV__IOFDSET;
2735
2736 EV_FREQUENT_CHECK;
2737 }
2738
2739 void noinline
2740 ev_io_stop (EV_P_ ev_io *w)
2741 {
2742 clear_pending (EV_A_ (W)w);
2743 if (expect_false (!ev_is_active (w)))
2744 return;
2745
2746 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747
2748 EV_FREQUENT_CHECK;
2749
2750 wlist_del (&anfds[w->fd].head, (WL)w);
2751 ev_stop (EV_A_ (W)w);
2752
2753 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2754
2755 EV_FREQUENT_CHECK;
2756 }
2757
2758 void noinline
2759 ev_timer_start (EV_P_ ev_timer *w)
2760 {
2761 if (expect_false (ev_is_active (w)))
2762 return;
2763
2764 ev_at (w) += mn_now;
2765
2766 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2767
2768 EV_FREQUENT_CHECK;
2769
2770 ++timercnt;
2771 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2772 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2773 ANHE_w (timers [ev_active (w)]) = (WT)w;
2774 ANHE_at_cache (timers [ev_active (w)]);
2775 upheap (timers, ev_active (w));
2776
2777 EV_FREQUENT_CHECK;
2778
2779 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2780 }
2781
2782 void noinline
2783 ev_timer_stop (EV_P_ ev_timer *w)
2784 {
2785 clear_pending (EV_A_ (W)w);
2786 if (expect_false (!ev_is_active (w)))
2787 return;
2788
2789 EV_FREQUENT_CHECK;
2790
2791 {
2792 int active = ev_active (w);
2793
2794 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2795
2796 --timercnt;
2797
2798 if (expect_true (active < timercnt + HEAP0))
2799 {
2800 timers [active] = timers [timercnt + HEAP0];
2801 adjustheap (timers, timercnt, active);
2802 }
2803 }
2804
2805 ev_at (w) -= mn_now;
2806
2807 ev_stop (EV_A_ (W)w);
2808
2809 EV_FREQUENT_CHECK;
2810 }
2811
2812 void noinline
2813 ev_timer_again (EV_P_ ev_timer *w)
2814 {
2815 EV_FREQUENT_CHECK;
2816
2817 if (ev_is_active (w))
2818 {
2819 if (w->repeat)
2820 {
2821 ev_at (w) = mn_now + w->repeat;
2822 ANHE_at_cache (timers [ev_active (w)]);
2823 adjustheap (timers, timercnt, ev_active (w));
2824 }
2825 else
2826 ev_timer_stop (EV_A_ w);
2827 }
2828 else if (w->repeat)
2829 {
2830 ev_at (w) = w->repeat;
2831 ev_timer_start (EV_A_ w);
2832 }
2833
2834 EV_FREQUENT_CHECK;
2835 }
2836
2837 ev_tstamp
2838 ev_timer_remaining (EV_P_ ev_timer *w)
2839 {
2840 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2841 }
2842
2843 #if EV_PERIODIC_ENABLE
2844 void noinline
2845 ev_periodic_start (EV_P_ ev_periodic *w)
2846 {
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 if (w->reschedule_cb)
2851 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2852 else if (w->interval)
2853 {
2854 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2855 periodic_recalc (EV_A_ w);
2856 }
2857 else
2858 ev_at (w) = w->offset;
2859
2860 EV_FREQUENT_CHECK;
2861
2862 ++periodiccnt;
2863 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2864 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2865 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2866 ANHE_at_cache (periodics [ev_active (w)]);
2867 upheap (periodics, ev_active (w));
2868
2869 EV_FREQUENT_CHECK;
2870
2871 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2872 }
2873
2874 void noinline
2875 ev_periodic_stop (EV_P_ ev_periodic *w)
2876 {
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2887
2888 --periodiccnt;
2889
2890 if (expect_true (active < periodiccnt + HEAP0))
2891 {
2892 periodics [active] = periodics [periodiccnt + HEAP0];
2893 adjustheap (periodics, periodiccnt, active);
2894 }
2895 }
2896
2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
2900 }
2901
2902 void noinline
2903 ev_periodic_again (EV_P_ ev_periodic *w)
2904 {
2905 /* TODO: use adjustheap and recalculation */
2906 ev_periodic_stop (EV_A_ w);
2907 ev_periodic_start (EV_A_ w);
2908 }
2909 #endif
2910
2911 #ifndef SA_RESTART
2912 # define SA_RESTART 0
2913 #endif
2914
2915 #if EV_SIGNAL_ENABLE
2916
2917 void noinline
2918 ev_signal_start (EV_P_ ev_signal *w)
2919 {
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2924
2925 #if EV_MULTIPLICITY
2926 assert (("libev: a signal must not be attached to two different loops",
2927 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2928
2929 signals [w->signum - 1].loop = EV_A;
2930 #endif
2931
2932 EV_FREQUENT_CHECK;
2933
2934 #if EV_USE_SIGNALFD
2935 if (sigfd == -2)
2936 {
2937 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2938 if (sigfd < 0 && errno == EINVAL)
2939 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2940
2941 if (sigfd >= 0)
2942 {
2943 fd_intern (sigfd); /* doing it twice will not hurt */
2944
2945 sigemptyset (&sigfd_set);
2946
2947 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948 ev_set_priority (&sigfd_w, EV_MAXPRI);
2949 ev_io_start (EV_A_ &sigfd_w);
2950 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951 }
2952 }
2953
2954 if (sigfd >= 0)
2955 {
2956 /* TODO: check .head */
2957 sigaddset (&sigfd_set, w->signum);
2958 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959
2960 signalfd (sigfd, &sigfd_set, 0);
2961 }
2962 #endif
2963
2964 ev_start (EV_A_ (W)w, 1);
2965 wlist_add (&signals [w->signum - 1].head, (WL)w);
2966
2967 if (!((WL)w)->next)
2968 # if EV_USE_SIGNALFD
2969 if (sigfd < 0) /*TODO*/
2970 # endif
2971 {
2972 # ifdef _WIN32
2973 evpipe_init (EV_A);
2974
2975 signal (w->signum, ev_sighandler);
2976 # else
2977 struct sigaction sa;
2978
2979 evpipe_init (EV_A);
2980
2981 sa.sa_handler = ev_sighandler;
2982 sigfillset (&sa.sa_mask);
2983 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2984 sigaction (w->signum, &sa, 0);
2985
2986 if (origflags & EVFLAG_NOSIGMASK)
2987 {
2988 sigemptyset (&sa.sa_mask);
2989 sigaddset (&sa.sa_mask, w->signum);
2990 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991 }
2992 #endif
2993 }
2994
2995 EV_FREQUENT_CHECK;
2996 }
2997
2998 void noinline
2999 ev_signal_stop (EV_P_ ev_signal *w)
3000 {
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 wlist_del (&signals [w->signum - 1].head, (WL)w);
3008 ev_stop (EV_A_ (W)w);
3009
3010 if (!signals [w->signum - 1].head)
3011 {
3012 #if EV_MULTIPLICITY
3013 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014 #endif
3015 #if EV_USE_SIGNALFD
3016 if (sigfd >= 0)
3017 {
3018 sigset_t ss;
3019
3020 sigemptyset (&ss);
3021 sigaddset (&ss, w->signum);
3022 sigdelset (&sigfd_set, w->signum);
3023
3024 signalfd (sigfd, &sigfd_set, 0);
3025 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 }
3027 else
3028 #endif
3029 signal (w->signum, SIG_DFL);
3030 }
3031
3032 EV_FREQUENT_CHECK;
3033 }
3034
3035 #endif
3036
3037 #if EV_CHILD_ENABLE
3038
3039 void
3040 ev_child_start (EV_P_ ev_child *w)
3041 {
3042 #if EV_MULTIPLICITY
3043 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3044 #endif
3045 if (expect_false (ev_is_active (w)))
3046 return;
3047
3048 EV_FREQUENT_CHECK;
3049
3050 ev_start (EV_A_ (W)w, 1);
3051 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3052
3053 EV_FREQUENT_CHECK;
3054 }
3055
3056 void
3057 ev_child_stop (EV_P_ ev_child *w)
3058 {
3059 clear_pending (EV_A_ (W)w);
3060 if (expect_false (!ev_is_active (w)))
3061 return;
3062
3063 EV_FREQUENT_CHECK;
3064
3065 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3066 ev_stop (EV_A_ (W)w);
3067
3068 EV_FREQUENT_CHECK;
3069 }
3070
3071 #endif
3072
3073 #if EV_STAT_ENABLE
3074
3075 # ifdef _WIN32
3076 # undef lstat
3077 # define lstat(a,b) _stati64 (a,b)
3078 # endif
3079
3080 #define DEF_STAT_INTERVAL 5.0074891
3081 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3082 #define MIN_STAT_INTERVAL 0.1074891
3083
3084 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3085
3086 #if EV_USE_INOTIFY
3087
3088 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3090
3091 static void noinline
3092 infy_add (EV_P_ ev_stat *w)
3093 {
3094 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3095
3096 if (w->wd >= 0)
3097 {
3098 struct statfs sfs;
3099
3100 /* now local changes will be tracked by inotify, but remote changes won't */
3101 /* unless the filesystem is known to be local, we therefore still poll */
3102 /* also do poll on <2.6.25, but with normal frequency */
3103
3104 if (!fs_2625)
3105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106 else if (!statfs (w->path, &sfs)
3107 && (sfs.f_type == 0x1373 /* devfs */
3108 || sfs.f_type == 0xEF53 /* ext2/3 */
3109 || sfs.f_type == 0x3153464a /* jfs */
3110 || sfs.f_type == 0x52654973 /* reiser3 */
3111 || sfs.f_type == 0x01021994 /* tempfs */
3112 || sfs.f_type == 0x58465342 /* xfs */))
3113 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114 else
3115 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3116 }
3117 else
3118 {
3119 /* can't use inotify, continue to stat */
3120 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3121
3122 /* if path is not there, monitor some parent directory for speedup hints */
3123 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3124 /* but an efficiency issue only */
3125 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3126 {
3127 char path [4096];
3128 strcpy (path, w->path);
3129
3130 do
3131 {
3132 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3133 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3134
3135 char *pend = strrchr (path, '/');
3136
3137 if (!pend || pend == path)
3138 break;
3139
3140 *pend = 0;
3141 w->wd = inotify_add_watch (fs_fd, path, mask);
3142 }
3143 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3144 }
3145 }
3146
3147 if (w->wd >= 0)
3148 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149
3150 /* now re-arm timer, if required */
3151 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152 ev_timer_again (EV_A_ &w->timer);
3153 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3154 }
3155
3156 static void noinline
3157 infy_del (EV_P_ ev_stat *w)
3158 {
3159 int slot;
3160 int wd = w->wd;
3161
3162 if (wd < 0)
3163 return;
3164
3165 w->wd = -2;
3166 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3167 wlist_del (&fs_hash [slot].head, (WL)w);
3168
3169 /* remove this watcher, if others are watching it, they will rearm */
3170 inotify_rm_watch (fs_fd, wd);
3171 }
3172
3173 static void noinline
3174 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3175 {
3176 if (slot < 0)
3177 /* overflow, need to check for all hash slots */
3178 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3179 infy_wd (EV_A_ slot, wd, ev);
3180 else
3181 {
3182 WL w_;
3183
3184 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3185 {
3186 ev_stat *w = (ev_stat *)w_;
3187 w_ = w_->next; /* lets us remove this watcher and all before it */
3188
3189 if (w->wd == wd || wd == -1)
3190 {
3191 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3192 {
3193 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3194 w->wd = -1;
3195 infy_add (EV_A_ w); /* re-add, no matter what */
3196 }
3197
3198 stat_timer_cb (EV_A_ &w->timer, 0);
3199 }
3200 }
3201 }
3202 }
3203
3204 static void
3205 infy_cb (EV_P_ ev_io *w, int revents)
3206 {
3207 char buf [EV_INOTIFY_BUFSIZE];
3208 int ofs;
3209 int len = read (fs_fd, buf, sizeof (buf));
3210
3211 for (ofs = 0; ofs < len; )
3212 {
3213 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3214 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215 ofs += sizeof (struct inotify_event) + ev->len;
3216 }
3217 }
3218
3219 inline_size void
3220 ev_check_2625 (EV_P)
3221 {
3222 /* kernels < 2.6.25 are borked
3223 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224 */
3225 if (ev_linux_version () < 0x020619)
3226 return;
3227
3228 fs_2625 = 1;
3229 }
3230
3231 inline_size int
3232 infy_newfd (void)
3233 {
3234 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236 if (fd >= 0)
3237 return fd;
3238 #endif
3239 return inotify_init ();
3240 }
3241
3242 inline_size void
3243 infy_init (EV_P)
3244 {
3245 if (fs_fd != -2)
3246 return;
3247
3248 fs_fd = -1;
3249
3250 ev_check_2625 (EV_A);
3251
3252 fs_fd = infy_newfd ();
3253
3254 if (fs_fd >= 0)
3255 {
3256 fd_intern (fs_fd);
3257 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3258 ev_set_priority (&fs_w, EV_MAXPRI);
3259 ev_io_start (EV_A_ &fs_w);
3260 ev_unref (EV_A);
3261 }
3262 }
3263
3264 inline_size void
3265 infy_fork (EV_P)
3266 {
3267 int slot;
3268
3269 if (fs_fd < 0)
3270 return;
3271
3272 ev_ref (EV_A);
3273 ev_io_stop (EV_A_ &fs_w);
3274 close (fs_fd);
3275 fs_fd = infy_newfd ();
3276
3277 if (fs_fd >= 0)
3278 {
3279 fd_intern (fs_fd);
3280 ev_io_set (&fs_w, fs_fd, EV_READ);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284
3285 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3286 {
3287 WL w_ = fs_hash [slot].head;
3288 fs_hash [slot].head = 0;
3289
3290 while (w_)
3291 {
3292 ev_stat *w = (ev_stat *)w_;
3293 w_ = w_->next; /* lets us add this watcher */
3294
3295 w->wd = -1;
3296
3297 if (fs_fd >= 0)
3298 infy_add (EV_A_ w); /* re-add, no matter what */
3299 else
3300 {
3301 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3303 ev_timer_again (EV_A_ &w->timer);
3304 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305 }
3306 }
3307 }
3308 }
3309
3310 #endif
3311
3312 #ifdef _WIN32
3313 # define EV_LSTAT(p,b) _stati64 (p, b)
3314 #else
3315 # define EV_LSTAT(p,b) lstat (p, b)
3316 #endif
3317
3318 void
3319 ev_stat_stat (EV_P_ ev_stat *w)
3320 {
3321 if (lstat (w->path, &w->attr) < 0)
3322 w->attr.st_nlink = 0;
3323 else if (!w->attr.st_nlink)
3324 w->attr.st_nlink = 1;
3325 }
3326
3327 static void noinline
3328 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3329 {
3330 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3331
3332 ev_statdata prev = w->attr;
3333 ev_stat_stat (EV_A_ w);
3334
3335 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3336 if (
3337 prev.st_dev != w->attr.st_dev
3338 || prev.st_ino != w->attr.st_ino
3339 || prev.st_mode != w->attr.st_mode
3340 || prev.st_nlink != w->attr.st_nlink
3341 || prev.st_uid != w->attr.st_uid
3342 || prev.st_gid != w->attr.st_gid
3343 || prev.st_rdev != w->attr.st_rdev
3344 || prev.st_size != w->attr.st_size
3345 || prev.st_atime != w->attr.st_atime
3346 || prev.st_mtime != w->attr.st_mtime
3347 || prev.st_ctime != w->attr.st_ctime
3348 ) {
3349 /* we only update w->prev on actual differences */
3350 /* in case we test more often than invoke the callback, */
3351 /* to ensure that prev is always different to attr */
3352 w->prev = prev;
3353
3354 #if EV_USE_INOTIFY
3355 if (fs_fd >= 0)
3356 {
3357 infy_del (EV_A_ w);
3358 infy_add (EV_A_ w);
3359 ev_stat_stat (EV_A_ w); /* avoid race... */
3360 }
3361 #endif
3362
3363 ev_feed_event (EV_A_ w, EV_STAT);
3364 }
3365 }
3366
3367 void
3368 ev_stat_start (EV_P_ ev_stat *w)
3369 {
3370 if (expect_false (ev_is_active (w)))
3371 return;
3372
3373 ev_stat_stat (EV_A_ w);
3374
3375 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3376 w->interval = MIN_STAT_INTERVAL;
3377
3378 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3379 ev_set_priority (&w->timer, ev_priority (w));
3380
3381 #if EV_USE_INOTIFY
3382 infy_init (EV_A);
3383
3384 if (fs_fd >= 0)
3385 infy_add (EV_A_ w);
3386 else
3387 #endif
3388 {
3389 ev_timer_again (EV_A_ &w->timer);
3390 ev_unref (EV_A);
3391 }
3392
3393 ev_start (EV_A_ (W)w, 1);
3394
3395 EV_FREQUENT_CHECK;
3396 }
3397
3398 void
3399 ev_stat_stop (EV_P_ ev_stat *w)
3400 {
3401 clear_pending (EV_A_ (W)w);
3402 if (expect_false (!ev_is_active (w)))
3403 return;
3404
3405 EV_FREQUENT_CHECK;
3406
3407 #if EV_USE_INOTIFY
3408 infy_del (EV_A_ w);
3409 #endif
3410
3411 if (ev_is_active (&w->timer))
3412 {
3413 ev_ref (EV_A);
3414 ev_timer_stop (EV_A_ &w->timer);
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420 }
3421 #endif
3422
3423 #if EV_IDLE_ENABLE
3424 void
3425 ev_idle_start (EV_P_ ev_idle *w)
3426 {
3427 if (expect_false (ev_is_active (w)))
3428 return;
3429
3430 pri_adjust (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
3433
3434 {
3435 int active = ++idlecnt [ABSPRI (w)];
3436
3437 ++idleall;
3438 ev_start (EV_A_ (W)w, active);
3439
3440 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3441 idles [ABSPRI (w)][active - 1] = w;
3442 }
3443
3444 EV_FREQUENT_CHECK;
3445 }
3446
3447 void
3448 ev_idle_stop (EV_P_ ev_idle *w)
3449 {
3450 clear_pending (EV_A_ (W)w);
3451 if (expect_false (!ev_is_active (w)))
3452 return;
3453
3454 EV_FREQUENT_CHECK;
3455
3456 {
3457 int active = ev_active (w);
3458
3459 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3460 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3461
3462 ev_stop (EV_A_ (W)w);
3463 --idleall;
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467 }
3468 #endif
3469
3470 #if EV_PREPARE_ENABLE
3471 void
3472 ev_prepare_start (EV_P_ ev_prepare *w)
3473 {
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 EV_FREQUENT_CHECK;
3478
3479 ev_start (EV_A_ (W)w, ++preparecnt);
3480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3481 prepares [preparecnt - 1] = w;
3482
3483 EV_FREQUENT_CHECK;
3484 }
3485
3486 void
3487 ev_prepare_stop (EV_P_ ev_prepare *w)
3488 {
3489 clear_pending (EV_A_ (W)w);
3490 if (expect_false (!ev_is_active (w)))
3491 return;
3492
3493 EV_FREQUENT_CHECK;
3494
3495 {
3496 int active = ev_active (w);
3497
3498 prepares [active - 1] = prepares [--preparecnt];
3499 ev_active (prepares [active - 1]) = active;
3500 }
3501
3502 ev_stop (EV_A_ (W)w);
3503
3504 EV_FREQUENT_CHECK;
3505 }
3506 #endif
3507
3508 #if EV_CHECK_ENABLE
3509 void
3510 ev_check_start (EV_P_ ev_check *w)
3511 {
3512 if (expect_false (ev_is_active (w)))
3513 return;
3514
3515 EV_FREQUENT_CHECK;
3516
3517 ev_start (EV_A_ (W)w, ++checkcnt);
3518 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3519 checks [checkcnt - 1] = w;
3520
3521 EV_FREQUENT_CHECK;
3522 }
3523
3524 void
3525 ev_check_stop (EV_P_ ev_check *w)
3526 {
3527 clear_pending (EV_A_ (W)w);
3528 if (expect_false (!ev_is_active (w)))
3529 return;
3530
3531 EV_FREQUENT_CHECK;
3532
3533 {
3534 int active = ev_active (w);
3535
3536 checks [active - 1] = checks [--checkcnt];
3537 ev_active (checks [active - 1]) = active;
3538 }
3539
3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
3543 }
3544 #endif
3545
3546 #if EV_EMBED_ENABLE
3547 void noinline
3548 ev_embed_sweep (EV_P_ ev_embed *w)
3549 {
3550 ev_run (w->other, EVRUN_NOWAIT);
3551 }
3552
3553 static void
3554 embed_io_cb (EV_P_ ev_io *io, int revents)
3555 {
3556 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3557
3558 if (ev_cb (w))
3559 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3560 else
3561 ev_run (w->other, EVRUN_NOWAIT);
3562 }
3563
3564 static void
3565 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3566 {
3567 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3568
3569 {
3570 EV_P = w->other;
3571
3572 while (fdchangecnt)
3573 {
3574 fd_reify (EV_A);
3575 ev_run (EV_A_ EVRUN_NOWAIT);
3576 }
3577 }
3578 }
3579
3580 static void
3581 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582 {
3583 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584
3585 ev_embed_stop (EV_A_ w);
3586
3587 {
3588 EV_P = w->other;
3589
3590 ev_loop_fork (EV_A);
3591 ev_run (EV_A_ EVRUN_NOWAIT);
3592 }
3593
3594 ev_embed_start (EV_A_ w);
3595 }
3596
3597 #if 0
3598 static void
3599 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3600 {
3601 ev_idle_stop (EV_A_ idle);
3602 }
3603 #endif
3604
3605 void
3606 ev_embed_start (EV_P_ ev_embed *w)
3607 {
3608 if (expect_false (ev_is_active (w)))
3609 return;
3610
3611 {
3612 EV_P = w->other;
3613 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3615 }
3616
3617 EV_FREQUENT_CHECK;
3618
3619 ev_set_priority (&w->io, ev_priority (w));
3620 ev_io_start (EV_A_ &w->io);
3621
3622 ev_prepare_init (&w->prepare, embed_prepare_cb);
3623 ev_set_priority (&w->prepare, EV_MINPRI);
3624 ev_prepare_start (EV_A_ &w->prepare);
3625
3626 ev_fork_init (&w->fork, embed_fork_cb);
3627 ev_fork_start (EV_A_ &w->fork);
3628
3629 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3630
3631 ev_start (EV_A_ (W)w, 1);
3632
3633 EV_FREQUENT_CHECK;
3634 }
3635
3636 void
3637 ev_embed_stop (EV_P_ ev_embed *w)
3638 {
3639 clear_pending (EV_A_ (W)w);
3640 if (expect_false (!ev_is_active (w)))
3641 return;
3642
3643 EV_FREQUENT_CHECK;
3644
3645 ev_io_stop (EV_A_ &w->io);
3646 ev_prepare_stop (EV_A_ &w->prepare);
3647 ev_fork_stop (EV_A_ &w->fork);
3648
3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
3652 }
3653 #endif
3654
3655 #if EV_FORK_ENABLE
3656 void
3657 ev_fork_start (EV_P_ ev_fork *w)
3658 {
3659 if (expect_false (ev_is_active (w)))
3660 return;
3661
3662 EV_FREQUENT_CHECK;
3663
3664 ev_start (EV_A_ (W)w, ++forkcnt);
3665 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3666 forks [forkcnt - 1] = w;
3667
3668 EV_FREQUENT_CHECK;
3669 }
3670
3671 void
3672 ev_fork_stop (EV_P_ ev_fork *w)
3673 {
3674 clear_pending (EV_A_ (W)w);
3675 if (expect_false (!ev_is_active (w)))
3676 return;
3677
3678 EV_FREQUENT_CHECK;
3679
3680 {
3681 int active = ev_active (w);
3682
3683 forks [active - 1] = forks [--forkcnt];
3684 ev_active (forks [active - 1]) = active;
3685 }
3686
3687 ev_stop (EV_A_ (W)w);
3688
3689 EV_FREQUENT_CHECK;
3690 }
3691 #endif
3692
3693 #if EV_CLEANUP_ENABLE
3694 void
3695 ev_cleanup_start (EV_P_ ev_cleanup *w)
3696 {
3697 if (expect_false (ev_is_active (w)))
3698 return;
3699
3700 EV_FREQUENT_CHECK;
3701
3702 ev_start (EV_A_ (W)w, ++cleanupcnt);
3703 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704 cleanups [cleanupcnt - 1] = w;
3705
3706 /* cleanup watchers should never keep a refcount on the loop */
3707 ev_unref (EV_A);
3708 EV_FREQUENT_CHECK;
3709 }
3710
3711 void
3712 ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713 {
3714 clear_pending (EV_A_ (W)w);
3715 if (expect_false (!ev_is_active (w)))
3716 return;
3717
3718 EV_FREQUENT_CHECK;
3719 ev_ref (EV_A);
3720
3721 {
3722 int active = ev_active (w);
3723
3724 cleanups [active - 1] = cleanups [--cleanupcnt];
3725 ev_active (cleanups [active - 1]) = active;
3726 }
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731 }
3732 #endif
3733
3734 #if EV_ASYNC_ENABLE
3735 void
3736 ev_async_start (EV_P_ ev_async *w)
3737 {
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 w->sent = 0;
3742
3743 evpipe_init (EV_A);
3744
3745 EV_FREQUENT_CHECK;
3746
3747 ev_start (EV_A_ (W)w, ++asynccnt);
3748 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3749 asyncs [asynccnt - 1] = w;
3750
3751 EV_FREQUENT_CHECK;
3752 }
3753
3754 void
3755 ev_async_stop (EV_P_ ev_async *w)
3756 {
3757 clear_pending (EV_A_ (W)w);
3758 if (expect_false (!ev_is_active (w)))
3759 return;
3760
3761 EV_FREQUENT_CHECK;
3762
3763 {
3764 int active = ev_active (w);
3765
3766 asyncs [active - 1] = asyncs [--asynccnt];
3767 ev_active (asyncs [active - 1]) = active;
3768 }
3769
3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
3773 }
3774
3775 void
3776 ev_async_send (EV_P_ ev_async *w)
3777 {
3778 w->sent = 1;
3779 evpipe_write (EV_A_ &async_pending);
3780 }
3781 #endif
3782
3783 /*****************************************************************************/
3784
3785 struct ev_once
3786 {
3787 ev_io io;
3788 ev_timer to;
3789 void (*cb)(int revents, void *arg);
3790 void *arg;
3791 };
3792
3793 static void
3794 once_cb (EV_P_ struct ev_once *once, int revents)
3795 {
3796 void (*cb)(int revents, void *arg) = once->cb;
3797 void *arg = once->arg;
3798
3799 ev_io_stop (EV_A_ &once->io);
3800 ev_timer_stop (EV_A_ &once->to);
3801 ev_free (once);
3802
3803 cb (revents, arg);
3804 }
3805
3806 static void
3807 once_cb_io (EV_P_ ev_io *w, int revents)
3808 {
3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3812 }
3813
3814 static void
3815 once_cb_to (EV_P_ ev_timer *w, int revents)
3816 {
3817 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818
3819 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3820 }
3821
3822 void
3823 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3824 {
3825 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3826
3827 if (expect_false (!once))
3828 {
3829 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3830 return;
3831 }
3832
3833 once->cb = cb;
3834 once->arg = arg;
3835
3836 ev_init (&once->io, once_cb_io);
3837 if (fd >= 0)
3838 {
3839 ev_io_set (&once->io, fd, events);
3840 ev_io_start (EV_A_ &once->io);
3841 }
3842
3843 ev_init (&once->to, once_cb_to);
3844 if (timeout >= 0.)
3845 {
3846 ev_timer_set (&once->to, timeout, 0.);
3847 ev_timer_start (EV_A_ &once->to);
3848 }
3849 }
3850
3851 /*****************************************************************************/
3852
3853 #if EV_WALK_ENABLE
3854 void
3855 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856 {
3857 int i, j;
3858 ev_watcher_list *wl, *wn;
3859
3860 if (types & (EV_IO | EV_EMBED))
3861 for (i = 0; i < anfdmax; ++i)
3862 for (wl = anfds [i].head; wl; )
3863 {
3864 wn = wl->next;
3865
3866 #if EV_EMBED_ENABLE
3867 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868 {
3869 if (types & EV_EMBED)
3870 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871 }
3872 else
3873 #endif
3874 #if EV_USE_INOTIFY
3875 if (ev_cb ((ev_io *)wl) == infy_cb)
3876 ;
3877 else
3878 #endif
3879 if ((ev_io *)wl != &pipe_w)
3880 if (types & EV_IO)
3881 cb (EV_A_ EV_IO, wl);
3882
3883 wl = wn;
3884 }
3885
3886 if (types & (EV_TIMER | EV_STAT))
3887 for (i = timercnt + HEAP0; i-- > HEAP0; )
3888 #if EV_STAT_ENABLE
3889 /*TODO: timer is not always active*/
3890 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3891 {
3892 if (types & EV_STAT)
3893 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3894 }
3895 else
3896 #endif
3897 if (types & EV_TIMER)
3898 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3899
3900 #if EV_PERIODIC_ENABLE
3901 if (types & EV_PERIODIC)
3902 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904 #endif
3905
3906 #if EV_IDLE_ENABLE
3907 if (types & EV_IDLE)
3908 for (j = NUMPRI; i--; )
3909 for (i = idlecnt [j]; i--; )
3910 cb (EV_A_ EV_IDLE, idles [j][i]);
3911 #endif
3912
3913 #if EV_FORK_ENABLE
3914 if (types & EV_FORK)
3915 for (i = forkcnt; i--; )
3916 if (ev_cb (forks [i]) != embed_fork_cb)
3917 cb (EV_A_ EV_FORK, forks [i]);
3918 #endif
3919
3920 #if EV_ASYNC_ENABLE
3921 if (types & EV_ASYNC)
3922 for (i = asynccnt; i--; )
3923 cb (EV_A_ EV_ASYNC, asyncs [i]);
3924 #endif
3925
3926 #if EV_PREPARE_ENABLE
3927 if (types & EV_PREPARE)
3928 for (i = preparecnt; i--; )
3929 # if EV_EMBED_ENABLE
3930 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931 # endif
3932 cb (EV_A_ EV_PREPARE, prepares [i]);
3933 #endif
3934
3935 #if EV_CHECK_ENABLE
3936 if (types & EV_CHECK)
3937 for (i = checkcnt; i--; )
3938 cb (EV_A_ EV_CHECK, checks [i]);
3939 #endif
3940
3941 #if EV_SIGNAL_ENABLE
3942 if (types & EV_SIGNAL)
3943 for (i = 0; i < EV_NSIG - 1; ++i)
3944 for (wl = signals [i].head; wl; )
3945 {
3946 wn = wl->next;
3947 cb (EV_A_ EV_SIGNAL, wl);
3948 wl = wn;
3949 }
3950 #endif
3951
3952 #if EV_CHILD_ENABLE
3953 if (types & EV_CHILD)
3954 for (i = (EV_PID_HASHSIZE); i--; )
3955 for (wl = childs [i]; wl; )
3956 {
3957 wn = wl->next;
3958 cb (EV_A_ EV_CHILD, wl);
3959 wl = wn;
3960 }
3961 #endif
3962 /* EV_STAT 0x00001000 /* stat data changed */
3963 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964 }
3965 #endif
3966
3967 #if EV_MULTIPLICITY
3968 #include "ev_wrap.h"
3969 #endif
3970
3971 EV_CPP(})
3972