ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.402
Committed: Tue Dec 20 10:34:10 2011 UTC (12 years, 7 months ago) by sf-exg
Content type: text/plain
Branch: MAIN
Changes since 1.401: +4 -4 lines
Log Message:
Fix typos.

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #ifndef _WIN32
189 # include <sys/time.h>
190 # include <sys/wait.h>
191 # include <unistd.h>
192 #else
193 # include <io.h>
194 # define WIN32_LEAN_AND_MEAN
195 # include <windows.h>
196 # ifndef EV_SELECT_IS_WINSOCKET
197 # define EV_SELECT_IS_WINSOCKET 1
198 # endif
199 # undef EV_AVOID_STDIO
200 #endif
201
202 /* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208 #define _DARWIN_UNLIMITED_SELECT 1
209
210 /* this block tries to deduce configuration from header-defined symbols and defaults */
211
212 /* try to deduce the maximum number of signals on this platform */
213 #if defined (EV_NSIG)
214 /* use what's provided */
215 #elif defined (NSIG)
216 # define EV_NSIG (NSIG)
217 #elif defined(_NSIG)
218 # define EV_NSIG (_NSIG)
219 #elif defined (SIGMAX)
220 # define EV_NSIG (SIGMAX+1)
221 #elif defined (SIG_MAX)
222 # define EV_NSIG (SIG_MAX+1)
223 #elif defined (_SIG_MAX)
224 # define EV_NSIG (_SIG_MAX+1)
225 #elif defined (MAXSIG)
226 # define EV_NSIG (MAXSIG+1)
227 #elif defined (MAX_SIG)
228 # define EV_NSIG (MAX_SIG+1)
229 #elif defined (SIGARRAYSIZE)
230 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231 #elif defined (_sys_nsig)
232 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233 #else
234 # error "unable to find value for NSIG, please report"
235 /* to make it compile regardless, just remove the above line, */
236 /* but consider reporting it, too! :) */
237 # define EV_NSIG 65
238 #endif
239
240 #ifndef EV_USE_FLOOR
241 # define EV_USE_FLOOR 0
242 #endif
243
244 #ifndef EV_USE_CLOCK_SYSCALL
245 # if __linux && __GLIBC__ >= 2
246 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247 # else
248 # define EV_USE_CLOCK_SYSCALL 0
249 # endif
250 #endif
251
252 #ifndef EV_USE_MONOTONIC
253 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254 # define EV_USE_MONOTONIC EV_FEATURE_OS
255 # else
256 # define EV_USE_MONOTONIC 0
257 # endif
258 #endif
259
260 #ifndef EV_USE_REALTIME
261 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262 #endif
263
264 #ifndef EV_USE_NANOSLEEP
265 # if _POSIX_C_SOURCE >= 199309L
266 # define EV_USE_NANOSLEEP EV_FEATURE_OS
267 # else
268 # define EV_USE_NANOSLEEP 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_SELECT
273 # define EV_USE_SELECT EV_FEATURE_BACKENDS
274 #endif
275
276 #ifndef EV_USE_POLL
277 # ifdef _WIN32
278 # define EV_USE_POLL 0
279 # else
280 # define EV_USE_POLL EV_FEATURE_BACKENDS
281 # endif
282 #endif
283
284 #ifndef EV_USE_EPOLL
285 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
287 # else
288 # define EV_USE_EPOLL 0
289 # endif
290 #endif
291
292 #ifndef EV_USE_KQUEUE
293 # define EV_USE_KQUEUE 0
294 #endif
295
296 #ifndef EV_USE_PORT
297 # define EV_USE_PORT 0
298 #endif
299
300 #ifndef EV_USE_INOTIFY
301 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302 # define EV_USE_INOTIFY EV_FEATURE_OS
303 # else
304 # define EV_USE_INOTIFY 0
305 # endif
306 #endif
307
308 #ifndef EV_PID_HASHSIZE
309 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310 #endif
311
312 #ifndef EV_INOTIFY_HASHSIZE
313 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314 #endif
315
316 #ifndef EV_USE_EVENTFD
317 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318 # define EV_USE_EVENTFD EV_FEATURE_OS
319 # else
320 # define EV_USE_EVENTFD 0
321 # endif
322 #endif
323
324 #ifndef EV_USE_SIGNALFD
325 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326 # define EV_USE_SIGNALFD EV_FEATURE_OS
327 # else
328 # define EV_USE_SIGNALFD 0
329 # endif
330 #endif
331
332 #if 0 /* debugging */
333 # define EV_VERIFY 3
334 # define EV_USE_4HEAP 1
335 # define EV_HEAP_CACHE_AT 1
336 #endif
337
338 #ifndef EV_VERIFY
339 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340 #endif
341
342 #ifndef EV_USE_4HEAP
343 # define EV_USE_4HEAP EV_FEATURE_DATA
344 #endif
345
346 #ifndef EV_HEAP_CACHE_AT
347 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348 #endif
349
350 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351 /* which makes programs even slower. might work on other unices, too. */
352 #if EV_USE_CLOCK_SYSCALL
353 # include <syscall.h>
354 # ifdef SYS_clock_gettime
355 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356 # undef EV_USE_MONOTONIC
357 # define EV_USE_MONOTONIC 1
358 # else
359 # undef EV_USE_CLOCK_SYSCALL
360 # define EV_USE_CLOCK_SYSCALL 0
361 # endif
362 #endif
363
364 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
365
366 #ifdef _AIX
367 /* AIX has a completely broken poll.h header */
368 # undef EV_USE_POLL
369 # define EV_USE_POLL 0
370 #endif
371
372 #ifndef CLOCK_MONOTONIC
373 # undef EV_USE_MONOTONIC
374 # define EV_USE_MONOTONIC 0
375 #endif
376
377 #ifndef CLOCK_REALTIME
378 # undef EV_USE_REALTIME
379 # define EV_USE_REALTIME 0
380 #endif
381
382 #if !EV_STAT_ENABLE
383 # undef EV_USE_INOTIFY
384 # define EV_USE_INOTIFY 0
385 #endif
386
387 #if !EV_USE_NANOSLEEP
388 /* hp-ux has it in sys/time.h, which we unconditionally include above */
389 # if !defined(_WIN32) && !defined(__hpux)
390 # include <sys/select.h>
391 # endif
392 #endif
393
394 #if EV_USE_INOTIFY
395 # include <sys/statfs.h>
396 # include <sys/inotify.h>
397 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398 # ifndef IN_DONT_FOLLOW
399 # undef EV_USE_INOTIFY
400 # define EV_USE_INOTIFY 0
401 # endif
402 #endif
403
404 #if EV_SELECT_IS_WINSOCKET
405 # include <winsock.h>
406 #endif
407
408 #if EV_USE_EVENTFD
409 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410 # include <stdint.h>
411 # ifndef EFD_NONBLOCK
412 # define EFD_NONBLOCK O_NONBLOCK
413 # endif
414 # ifndef EFD_CLOEXEC
415 # ifdef O_CLOEXEC
416 # define EFD_CLOEXEC O_CLOEXEC
417 # else
418 # define EFD_CLOEXEC 02000000
419 # endif
420 # endif
421 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422 #endif
423
424 #if EV_USE_SIGNALFD
425 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426 # include <stdint.h>
427 # ifndef SFD_NONBLOCK
428 # define SFD_NONBLOCK O_NONBLOCK
429 # endif
430 # ifndef SFD_CLOEXEC
431 # ifdef O_CLOEXEC
432 # define SFD_CLOEXEC O_CLOEXEC
433 # else
434 # define SFD_CLOEXEC 02000000
435 # endif
436 # endif
437 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439 struct signalfd_siginfo
440 {
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443 };
444 #endif
445
446 /**/
447
448 #if EV_VERIFY >= 3
449 # define EV_FREQUENT_CHECK ev_verify (EV_A)
450 #else
451 # define EV_FREQUENT_CHECK do { } while (0)
452 #endif
453
454 /*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
460
461 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
462 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
463
464 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
466
467 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
468 /* ECB.H BEGIN */
469 /*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
497
498 #ifndef ECB_H
499 #define ECB_H
500
501 #ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
515 #else
516 #include <inttypes.h>
517 #endif
518
519 /* many compilers define _GNUC_ to some versions but then only implement
520 * what their idiot authors think are the "more important" extensions,
521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526 #ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531 #endif
532 #endif
533
534 /*****************************************************************************/
535
536 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539 #if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541 #endif
542
543 #ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__)
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #endif
562 #endif
563 #endif
564
565 #ifndef ECB_MEMORY_FENCE
566 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
567 #define ECB_MEMORY_FENCE __sync_synchronize ()
568 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
569 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
570 #elif _MSC_VER >= 1400 /* VC++ 2005 */
571 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
572 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
573 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
574 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
575 #elif defined(_WIN32)
576 #include <WinNT.h>
577 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
578 #endif
579 #endif
580
581 #ifndef ECB_MEMORY_FENCE
582 #if !ECB_AVOID_PTHREADS
583 /*
584 * if you get undefined symbol references to pthread_mutex_lock,
585 * or failure to find pthread.h, then you should implement
586 * the ECB_MEMORY_FENCE operations for your cpu/compiler
587 * OR provide pthread.h and link against the posix thread library
588 * of your system.
589 */
590 #include <pthread.h>
591 #define ECB_NEEDS_PTHREADS 1
592 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
593
594 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
595 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
596 #endif
597 #endif
598
599 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
600 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
601 #endif
602
603 #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
604 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
605 #endif
606
607 /*****************************************************************************/
608
609 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
610
611 #if __cplusplus
612 #define ecb_inline static inline
613 #elif ECB_GCC_VERSION(2,5)
614 #define ecb_inline static __inline__
615 #elif ECB_C99
616 #define ecb_inline static inline
617 #else
618 #define ecb_inline static
619 #endif
620
621 #if ECB_GCC_VERSION(3,3)
622 #define ecb_restrict __restrict__
623 #elif ECB_C99
624 #define ecb_restrict restrict
625 #else
626 #define ecb_restrict
627 #endif
628
629 typedef int ecb_bool;
630
631 #define ECB_CONCAT_(a, b) a ## b
632 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
633 #define ECB_STRINGIFY_(a) # a
634 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
635
636 #define ecb_function_ ecb_inline
637
638 #if ECB_GCC_VERSION(3,1)
639 #define ecb_attribute(attrlist) __attribute__(attrlist)
640 #define ecb_is_constant(expr) __builtin_constant_p (expr)
641 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
642 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
643 #else
644 #define ecb_attribute(attrlist)
645 #define ecb_is_constant(expr) 0
646 #define ecb_expect(expr,value) (expr)
647 #define ecb_prefetch(addr,rw,locality)
648 #endif
649
650 /* no emulation for ecb_decltype */
651 #if ECB_GCC_VERSION(4,5)
652 #define ecb_decltype(x) __decltype(x)
653 #elif ECB_GCC_VERSION(3,0)
654 #define ecb_decltype(x) __typeof(x)
655 #endif
656
657 #define ecb_noinline ecb_attribute ((__noinline__))
658 #define ecb_noreturn ecb_attribute ((__noreturn__))
659 #define ecb_unused ecb_attribute ((__unused__))
660 #define ecb_const ecb_attribute ((__const__))
661 #define ecb_pure ecb_attribute ((__pure__))
662
663 #if ECB_GCC_VERSION(4,3)
664 #define ecb_artificial ecb_attribute ((__artificial__))
665 #define ecb_hot ecb_attribute ((__hot__))
666 #define ecb_cold ecb_attribute ((__cold__))
667 #else
668 #define ecb_artificial
669 #define ecb_hot
670 #define ecb_cold
671 #endif
672
673 /* put around conditional expressions if you are very sure that the */
674 /* expression is mostly true or mostly false. note that these return */
675 /* booleans, not the expression. */
676 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
677 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
678 /* for compatibility to the rest of the world */
679 #define ecb_likely(expr) ecb_expect_true (expr)
680 #define ecb_unlikely(expr) ecb_expect_false (expr)
681
682 /* count trailing zero bits and count # of one bits */
683 #if ECB_GCC_VERSION(3,4)
684 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
685 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
686 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
687 #define ecb_ctz32(x) __builtin_ctz (x)
688 #define ecb_ctz64(x) __builtin_ctzll (x)
689 #define ecb_popcount32(x) __builtin_popcount (x)
690 /* no popcountll */
691 #else
692 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
693 ecb_function_ int
694 ecb_ctz32 (uint32_t x)
695 {
696 int r = 0;
697
698 x &= ~x + 1; /* this isolates the lowest bit */
699
700 #if ECB_branchless_on_i386
701 r += !!(x & 0xaaaaaaaa) << 0;
702 r += !!(x & 0xcccccccc) << 1;
703 r += !!(x & 0xf0f0f0f0) << 2;
704 r += !!(x & 0xff00ff00) << 3;
705 r += !!(x & 0xffff0000) << 4;
706 #else
707 if (x & 0xaaaaaaaa) r += 1;
708 if (x & 0xcccccccc) r += 2;
709 if (x & 0xf0f0f0f0) r += 4;
710 if (x & 0xff00ff00) r += 8;
711 if (x & 0xffff0000) r += 16;
712 #endif
713
714 return r;
715 }
716
717 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
718 ecb_function_ int
719 ecb_ctz64 (uint64_t x)
720 {
721 int shift = x & 0xffffffffU ? 0 : 32;
722 return ecb_ctz32 (x >> shift) + shift;
723 }
724
725 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
726 ecb_function_ int
727 ecb_popcount32 (uint32_t x)
728 {
729 x -= (x >> 1) & 0x55555555;
730 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
731 x = ((x >> 4) + x) & 0x0f0f0f0f;
732 x *= 0x01010101;
733
734 return x >> 24;
735 }
736
737 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
738 ecb_function_ int ecb_ld32 (uint32_t x)
739 {
740 int r = 0;
741
742 if (x >> 16) { x >>= 16; r += 16; }
743 if (x >> 8) { x >>= 8; r += 8; }
744 if (x >> 4) { x >>= 4; r += 4; }
745 if (x >> 2) { x >>= 2; r += 2; }
746 if (x >> 1) { r += 1; }
747
748 return r;
749 }
750
751 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
752 ecb_function_ int ecb_ld64 (uint64_t x)
753 {
754 int r = 0;
755
756 if (x >> 32) { x >>= 32; r += 32; }
757
758 return r + ecb_ld32 (x);
759 }
760 #endif
761
762 /* popcount64 is only available on 64 bit cpus as gcc builtin */
763 /* so for this version we are lazy */
764 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
765 ecb_function_ int
766 ecb_popcount64 (uint64_t x)
767 {
768 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
769 }
770
771 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
772 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
773 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
774 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
775 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
776 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
777 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
778 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
779
780 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
781 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
782 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
783 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
784 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
785 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
786 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
787 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
788
789 #if ECB_GCC_VERSION(4,3)
790 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
791 #define ecb_bswap32(x) __builtin_bswap32 (x)
792 #define ecb_bswap64(x) __builtin_bswap64 (x)
793 #else
794 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
795 ecb_function_ uint16_t
796 ecb_bswap16 (uint16_t x)
797 {
798 return ecb_rotl16 (x, 8);
799 }
800
801 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
802 ecb_function_ uint32_t
803 ecb_bswap32 (uint32_t x)
804 {
805 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
806 }
807
808 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
809 ecb_function_ uint64_t
810 ecb_bswap64 (uint64_t x)
811 {
812 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
813 }
814 #endif
815
816 #if ECB_GCC_VERSION(4,5)
817 #define ecb_unreachable() __builtin_unreachable ()
818 #else
819 /* this seems to work fine, but gcc always emits a warning for it :/ */
820 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
821 ecb_function_ void ecb_unreachable (void) { }
822 #endif
823
824 /* try to tell the compiler that some condition is definitely true */
825 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
826
827 ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
828 ecb_function_ unsigned char
829 ecb_byteorder_helper (void)
830 {
831 const uint32_t u = 0x11223344;
832 return *(unsigned char *)&u;
833 }
834
835 ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
836 ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
837 ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
838 ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
839
840 #if ECB_GCC_VERSION(3,0) || ECB_C99
841 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
842 #else
843 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
844 #endif
845
846 #if __cplusplus
847 template<typename T>
848 static inline T ecb_div_rd (T val, T div)
849 {
850 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
851 }
852 template<typename T>
853 static inline T ecb_div_ru (T val, T div)
854 {
855 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
856 }
857 #else
858 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
859 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
860 #endif
861
862 #if ecb_cplusplus_does_not_suck
863 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
864 template<typename T, int N>
865 static inline int ecb_array_length (const T (&arr)[N])
866 {
867 return N;
868 }
869 #else
870 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
871 #endif
872
873 #endif
874
875 /* ECB.H END */
876
877 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
878 /* if your architecture doesn't need memory fences, e.g. because it is
879 * single-cpu/core, or if you use libev in a project that doesn't use libev
880 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
881 * libev, in which cases the memory fences become nops.
882 * alternatively, you can remove this #error and link against libpthread,
883 * which will then provide the memory fences.
884 */
885 # error "memory fences not defined for your architecture, please report"
886 #endif
887
888 #ifndef ECB_MEMORY_FENCE
889 # define ECB_MEMORY_FENCE do { } while (0)
890 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
891 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
892 #endif
893
894 #define expect_false(cond) ecb_expect_false (cond)
895 #define expect_true(cond) ecb_expect_true (cond)
896 #define noinline ecb_noinline
897
898 #define inline_size ecb_inline
899
900 #if EV_FEATURE_CODE
901 # define inline_speed ecb_inline
902 #else
903 # define inline_speed static noinline
904 #endif
905
906 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
907
908 #if EV_MINPRI == EV_MAXPRI
909 # define ABSPRI(w) (((W)w), 0)
910 #else
911 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
912 #endif
913
914 #define EMPTY /* required for microsofts broken pseudo-c compiler */
915 #define EMPTY2(a,b) /* used to suppress some warnings */
916
917 typedef ev_watcher *W;
918 typedef ev_watcher_list *WL;
919 typedef ev_watcher_time *WT;
920
921 #define ev_active(w) ((W)(w))->active
922 #define ev_at(w) ((WT)(w))->at
923
924 #if EV_USE_REALTIME
925 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
926 /* giving it a reasonably high chance of working on typical architectures */
927 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
928 #endif
929
930 #if EV_USE_MONOTONIC
931 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
932 #endif
933
934 #ifndef EV_FD_TO_WIN32_HANDLE
935 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
936 #endif
937 #ifndef EV_WIN32_HANDLE_TO_FD
938 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
939 #endif
940 #ifndef EV_WIN32_CLOSE_FD
941 # define EV_WIN32_CLOSE_FD(fd) close (fd)
942 #endif
943
944 #ifdef _WIN32
945 # include "ev_win32.c"
946 #endif
947
948 /*****************************************************************************/
949
950 /* define a suitable floor function (only used by periodics atm) */
951
952 #if EV_USE_FLOOR
953 # include <math.h>
954 # define ev_floor(v) floor (v)
955 #else
956
957 #include <float.h>
958
959 /* a floor() replacement function, should be independent of ev_tstamp type */
960 static ev_tstamp noinline
961 ev_floor (ev_tstamp v)
962 {
963 /* the choice of shift factor is not terribly important */
964 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
965 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
966 #else
967 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
968 #endif
969
970 /* argument too large for an unsigned long? */
971 if (expect_false (v >= shift))
972 {
973 ev_tstamp f;
974
975 if (v == v - 1.)
976 return v; /* very large number */
977
978 f = shift * ev_floor (v * (1. / shift));
979 return f + ev_floor (v - f);
980 }
981
982 /* special treatment for negative args? */
983 if (expect_false (v < 0.))
984 {
985 ev_tstamp f = -ev_floor (-v);
986
987 return f - (f == v ? 0 : 1);
988 }
989
990 /* fits into an unsigned long */
991 return (unsigned long)v;
992 }
993
994 #endif
995
996 /*****************************************************************************/
997
998 #ifdef __linux
999 # include <sys/utsname.h>
1000 #endif
1001
1002 static unsigned int noinline ecb_cold
1003 ev_linux_version (void)
1004 {
1005 #ifdef __linux
1006 unsigned int v = 0;
1007 struct utsname buf;
1008 int i;
1009 char *p = buf.release;
1010
1011 if (uname (&buf))
1012 return 0;
1013
1014 for (i = 3+1; --i; )
1015 {
1016 unsigned int c = 0;
1017
1018 for (;;)
1019 {
1020 if (*p >= '0' && *p <= '9')
1021 c = c * 10 + *p++ - '0';
1022 else
1023 {
1024 p += *p == '.';
1025 break;
1026 }
1027 }
1028
1029 v = (v << 8) | c;
1030 }
1031
1032 return v;
1033 #else
1034 return 0;
1035 #endif
1036 }
1037
1038 /*****************************************************************************/
1039
1040 #if EV_AVOID_STDIO
1041 static void noinline ecb_cold
1042 ev_printerr (const char *msg)
1043 {
1044 write (STDERR_FILENO, msg, strlen (msg));
1045 }
1046 #endif
1047
1048 static void (*syserr_cb)(const char *msg);
1049
1050 void ecb_cold
1051 ev_set_syserr_cb (void (*cb)(const char *msg))
1052 {
1053 syserr_cb = cb;
1054 }
1055
1056 static void noinline ecb_cold
1057 ev_syserr (const char *msg)
1058 {
1059 if (!msg)
1060 msg = "(libev) system error";
1061
1062 if (syserr_cb)
1063 syserr_cb (msg);
1064 else
1065 {
1066 #if EV_AVOID_STDIO
1067 ev_printerr (msg);
1068 ev_printerr (": ");
1069 ev_printerr (strerror (errno));
1070 ev_printerr ("\n");
1071 #else
1072 perror (msg);
1073 #endif
1074 abort ();
1075 }
1076 }
1077
1078 static void *
1079 ev_realloc_emul (void *ptr, long size)
1080 {
1081 #if __GLIBC__
1082 return realloc (ptr, size);
1083 #else
1084 /* some systems, notably openbsd and darwin, fail to properly
1085 * implement realloc (x, 0) (as required by both ansi c-89 and
1086 * the single unix specification, so work around them here.
1087 */
1088
1089 if (size)
1090 return realloc (ptr, size);
1091
1092 free (ptr);
1093 return 0;
1094 #endif
1095 }
1096
1097 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1098
1099 void ecb_cold
1100 ev_set_allocator (void *(*cb)(void *ptr, long size))
1101 {
1102 alloc = cb;
1103 }
1104
1105 inline_speed void *
1106 ev_realloc (void *ptr, long size)
1107 {
1108 ptr = alloc (ptr, size);
1109
1110 if (!ptr && size)
1111 {
1112 #if EV_AVOID_STDIO
1113 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1114 #else
1115 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1116 #endif
1117 abort ();
1118 }
1119
1120 return ptr;
1121 }
1122
1123 #define ev_malloc(size) ev_realloc (0, (size))
1124 #define ev_free(ptr) ev_realloc ((ptr), 0)
1125
1126 /*****************************************************************************/
1127
1128 /* set in reify when reification needed */
1129 #define EV_ANFD_REIFY 1
1130
1131 /* file descriptor info structure */
1132 typedef struct
1133 {
1134 WL head;
1135 unsigned char events; /* the events watched for */
1136 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1137 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1138 unsigned char unused;
1139 #if EV_USE_EPOLL
1140 unsigned int egen; /* generation counter to counter epoll bugs */
1141 #endif
1142 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1143 SOCKET handle;
1144 #endif
1145 #if EV_USE_IOCP
1146 OVERLAPPED or, ow;
1147 #endif
1148 } ANFD;
1149
1150 /* stores the pending event set for a given watcher */
1151 typedef struct
1152 {
1153 W w;
1154 int events; /* the pending event set for the given watcher */
1155 } ANPENDING;
1156
1157 #if EV_USE_INOTIFY
1158 /* hash table entry per inotify-id */
1159 typedef struct
1160 {
1161 WL head;
1162 } ANFS;
1163 #endif
1164
1165 /* Heap Entry */
1166 #if EV_HEAP_CACHE_AT
1167 /* a heap element */
1168 typedef struct {
1169 ev_tstamp at;
1170 WT w;
1171 } ANHE;
1172
1173 #define ANHE_w(he) (he).w /* access watcher, read-write */
1174 #define ANHE_at(he) (he).at /* access cached at, read-only */
1175 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1176 #else
1177 /* a heap element */
1178 typedef WT ANHE;
1179
1180 #define ANHE_w(he) (he)
1181 #define ANHE_at(he) (he)->at
1182 #define ANHE_at_cache(he)
1183 #endif
1184
1185 #if EV_MULTIPLICITY
1186
1187 struct ev_loop
1188 {
1189 ev_tstamp ev_rt_now;
1190 #define ev_rt_now ((loop)->ev_rt_now)
1191 #define VAR(name,decl) decl;
1192 #include "ev_vars.h"
1193 #undef VAR
1194 };
1195 #include "ev_wrap.h"
1196
1197 static struct ev_loop default_loop_struct;
1198 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1199
1200 #else
1201
1202 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1203 #define VAR(name,decl) static decl;
1204 #include "ev_vars.h"
1205 #undef VAR
1206
1207 static int ev_default_loop_ptr;
1208
1209 #endif
1210
1211 #if EV_FEATURE_API
1212 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1213 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1214 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1215 #else
1216 # define EV_RELEASE_CB (void)0
1217 # define EV_ACQUIRE_CB (void)0
1218 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1219 #endif
1220
1221 #define EVBREAK_RECURSE 0x80
1222
1223 /*****************************************************************************/
1224
1225 #ifndef EV_HAVE_EV_TIME
1226 ev_tstamp
1227 ev_time (void)
1228 {
1229 #if EV_USE_REALTIME
1230 if (expect_true (have_realtime))
1231 {
1232 struct timespec ts;
1233 clock_gettime (CLOCK_REALTIME, &ts);
1234 return ts.tv_sec + ts.tv_nsec * 1e-9;
1235 }
1236 #endif
1237
1238 struct timeval tv;
1239 gettimeofday (&tv, 0);
1240 return tv.tv_sec + tv.tv_usec * 1e-6;
1241 }
1242 #endif
1243
1244 inline_size ev_tstamp
1245 get_clock (void)
1246 {
1247 #if EV_USE_MONOTONIC
1248 if (expect_true (have_monotonic))
1249 {
1250 struct timespec ts;
1251 clock_gettime (CLOCK_MONOTONIC, &ts);
1252 return ts.tv_sec + ts.tv_nsec * 1e-9;
1253 }
1254 #endif
1255
1256 return ev_time ();
1257 }
1258
1259 #if EV_MULTIPLICITY
1260 ev_tstamp
1261 ev_now (EV_P)
1262 {
1263 return ev_rt_now;
1264 }
1265 #endif
1266
1267 void
1268 ev_sleep (ev_tstamp delay)
1269 {
1270 if (delay > 0.)
1271 {
1272 #if EV_USE_NANOSLEEP
1273 struct timespec ts;
1274
1275 EV_TS_SET (ts, delay);
1276 nanosleep (&ts, 0);
1277 #elif defined(_WIN32)
1278 Sleep ((unsigned long)(delay * 1e3));
1279 #else
1280 struct timeval tv;
1281
1282 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1283 /* something not guaranteed by newer posix versions, but guaranteed */
1284 /* by older ones */
1285 EV_TV_SET (tv, delay);
1286 select (0, 0, 0, 0, &tv);
1287 #endif
1288 }
1289 }
1290
1291 /*****************************************************************************/
1292
1293 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1294
1295 /* find a suitable new size for the given array, */
1296 /* hopefully by rounding to a nice-to-malloc size */
1297 inline_size int
1298 array_nextsize (int elem, int cur, int cnt)
1299 {
1300 int ncur = cur + 1;
1301
1302 do
1303 ncur <<= 1;
1304 while (cnt > ncur);
1305
1306 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1307 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1308 {
1309 ncur *= elem;
1310 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1311 ncur = ncur - sizeof (void *) * 4;
1312 ncur /= elem;
1313 }
1314
1315 return ncur;
1316 }
1317
1318 static void * noinline ecb_cold
1319 array_realloc (int elem, void *base, int *cur, int cnt)
1320 {
1321 *cur = array_nextsize (elem, *cur, cnt);
1322 return ev_realloc (base, elem * *cur);
1323 }
1324
1325 #define array_init_zero(base,count) \
1326 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1327
1328 #define array_needsize(type,base,cur,cnt,init) \
1329 if (expect_false ((cnt) > (cur))) \
1330 { \
1331 int ecb_unused ocur_ = (cur); \
1332 (base) = (type *)array_realloc \
1333 (sizeof (type), (base), &(cur), (cnt)); \
1334 init ((base) + (ocur_), (cur) - ocur_); \
1335 }
1336
1337 #if 0
1338 #define array_slim(type,stem) \
1339 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1340 { \
1341 stem ## max = array_roundsize (stem ## cnt >> 1); \
1342 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1343 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1344 }
1345 #endif
1346
1347 #define array_free(stem, idx) \
1348 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1349
1350 /*****************************************************************************/
1351
1352 /* dummy callback for pending events */
1353 static void noinline
1354 pendingcb (EV_P_ ev_prepare *w, int revents)
1355 {
1356 }
1357
1358 void noinline
1359 ev_feed_event (EV_P_ void *w, int revents)
1360 {
1361 W w_ = (W)w;
1362 int pri = ABSPRI (w_);
1363
1364 if (expect_false (w_->pending))
1365 pendings [pri][w_->pending - 1].events |= revents;
1366 else
1367 {
1368 w_->pending = ++pendingcnt [pri];
1369 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1370 pendings [pri][w_->pending - 1].w = w_;
1371 pendings [pri][w_->pending - 1].events = revents;
1372 }
1373 }
1374
1375 inline_speed void
1376 feed_reverse (EV_P_ W w)
1377 {
1378 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1379 rfeeds [rfeedcnt++] = w;
1380 }
1381
1382 inline_size void
1383 feed_reverse_done (EV_P_ int revents)
1384 {
1385 do
1386 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1387 while (rfeedcnt);
1388 }
1389
1390 inline_speed void
1391 queue_events (EV_P_ W *events, int eventcnt, int type)
1392 {
1393 int i;
1394
1395 for (i = 0; i < eventcnt; ++i)
1396 ev_feed_event (EV_A_ events [i], type);
1397 }
1398
1399 /*****************************************************************************/
1400
1401 inline_speed void
1402 fd_event_nocheck (EV_P_ int fd, int revents)
1403 {
1404 ANFD *anfd = anfds + fd;
1405 ev_io *w;
1406
1407 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1408 {
1409 int ev = w->events & revents;
1410
1411 if (ev)
1412 ev_feed_event (EV_A_ (W)w, ev);
1413 }
1414 }
1415
1416 /* do not submit kernel events for fds that have reify set */
1417 /* because that means they changed while we were polling for new events */
1418 inline_speed void
1419 fd_event (EV_P_ int fd, int revents)
1420 {
1421 ANFD *anfd = anfds + fd;
1422
1423 if (expect_true (!anfd->reify))
1424 fd_event_nocheck (EV_A_ fd, revents);
1425 }
1426
1427 void
1428 ev_feed_fd_event (EV_P_ int fd, int revents)
1429 {
1430 if (fd >= 0 && fd < anfdmax)
1431 fd_event_nocheck (EV_A_ fd, revents);
1432 }
1433
1434 /* make sure the external fd watch events are in-sync */
1435 /* with the kernel/libev internal state */
1436 inline_size void
1437 fd_reify (EV_P)
1438 {
1439 int i;
1440
1441 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1442 for (i = 0; i < fdchangecnt; ++i)
1443 {
1444 int fd = fdchanges [i];
1445 ANFD *anfd = anfds + fd;
1446
1447 if (anfd->reify & EV__IOFDSET && anfd->head)
1448 {
1449 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1450
1451 if (handle != anfd->handle)
1452 {
1453 unsigned long arg;
1454
1455 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1456
1457 /* handle changed, but fd didn't - we need to do it in two steps */
1458 backend_modify (EV_A_ fd, anfd->events, 0);
1459 anfd->events = 0;
1460 anfd->handle = handle;
1461 }
1462 }
1463 }
1464 #endif
1465
1466 for (i = 0; i < fdchangecnt; ++i)
1467 {
1468 int fd = fdchanges [i];
1469 ANFD *anfd = anfds + fd;
1470 ev_io *w;
1471
1472 unsigned char o_events = anfd->events;
1473 unsigned char o_reify = anfd->reify;
1474
1475 anfd->reify = 0;
1476
1477 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1478 {
1479 anfd->events = 0;
1480
1481 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1482 anfd->events |= (unsigned char)w->events;
1483
1484 if (o_events != anfd->events)
1485 o_reify = EV__IOFDSET; /* actually |= */
1486 }
1487
1488 if (o_reify & EV__IOFDSET)
1489 backend_modify (EV_A_ fd, o_events, anfd->events);
1490 }
1491
1492 fdchangecnt = 0;
1493 }
1494
1495 /* something about the given fd changed */
1496 inline_size void
1497 fd_change (EV_P_ int fd, int flags)
1498 {
1499 unsigned char reify = anfds [fd].reify;
1500 anfds [fd].reify |= flags;
1501
1502 if (expect_true (!reify))
1503 {
1504 ++fdchangecnt;
1505 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1506 fdchanges [fdchangecnt - 1] = fd;
1507 }
1508 }
1509
1510 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1511 inline_speed void ecb_cold
1512 fd_kill (EV_P_ int fd)
1513 {
1514 ev_io *w;
1515
1516 while ((w = (ev_io *)anfds [fd].head))
1517 {
1518 ev_io_stop (EV_A_ w);
1519 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1520 }
1521 }
1522
1523 /* check whether the given fd is actually valid, for error recovery */
1524 inline_size int ecb_cold
1525 fd_valid (int fd)
1526 {
1527 #ifdef _WIN32
1528 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1529 #else
1530 return fcntl (fd, F_GETFD) != -1;
1531 #endif
1532 }
1533
1534 /* called on EBADF to verify fds */
1535 static void noinline ecb_cold
1536 fd_ebadf (EV_P)
1537 {
1538 int fd;
1539
1540 for (fd = 0; fd < anfdmax; ++fd)
1541 if (anfds [fd].events)
1542 if (!fd_valid (fd) && errno == EBADF)
1543 fd_kill (EV_A_ fd);
1544 }
1545
1546 /* called on ENOMEM in select/poll to kill some fds and retry */
1547 static void noinline ecb_cold
1548 fd_enomem (EV_P)
1549 {
1550 int fd;
1551
1552 for (fd = anfdmax; fd--; )
1553 if (anfds [fd].events)
1554 {
1555 fd_kill (EV_A_ fd);
1556 break;
1557 }
1558 }
1559
1560 /* usually called after fork if backend needs to re-arm all fds from scratch */
1561 static void noinline
1562 fd_rearm_all (EV_P)
1563 {
1564 int fd;
1565
1566 for (fd = 0; fd < anfdmax; ++fd)
1567 if (anfds [fd].events)
1568 {
1569 anfds [fd].events = 0;
1570 anfds [fd].emask = 0;
1571 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1572 }
1573 }
1574
1575 /* used to prepare libev internal fd's */
1576 /* this is not fork-safe */
1577 inline_speed void
1578 fd_intern (int fd)
1579 {
1580 #ifdef _WIN32
1581 unsigned long arg = 1;
1582 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1583 #else
1584 fcntl (fd, F_SETFD, FD_CLOEXEC);
1585 fcntl (fd, F_SETFL, O_NONBLOCK);
1586 #endif
1587 }
1588
1589 /*****************************************************************************/
1590
1591 /*
1592 * the heap functions want a real array index. array index 0 is guaranteed to not
1593 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1594 * the branching factor of the d-tree.
1595 */
1596
1597 /*
1598 * at the moment we allow libev the luxury of two heaps,
1599 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1600 * which is more cache-efficient.
1601 * the difference is about 5% with 50000+ watchers.
1602 */
1603 #if EV_USE_4HEAP
1604
1605 #define DHEAP 4
1606 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1607 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1608 #define UPHEAP_DONE(p,k) ((p) == (k))
1609
1610 /* away from the root */
1611 inline_speed void
1612 downheap (ANHE *heap, int N, int k)
1613 {
1614 ANHE he = heap [k];
1615 ANHE *E = heap + N + HEAP0;
1616
1617 for (;;)
1618 {
1619 ev_tstamp minat;
1620 ANHE *minpos;
1621 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1622
1623 /* find minimum child */
1624 if (expect_true (pos + DHEAP - 1 < E))
1625 {
1626 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1627 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1628 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1629 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1630 }
1631 else if (pos < E)
1632 {
1633 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1634 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1635 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1636 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1637 }
1638 else
1639 break;
1640
1641 if (ANHE_at (he) <= minat)
1642 break;
1643
1644 heap [k] = *minpos;
1645 ev_active (ANHE_w (*minpos)) = k;
1646
1647 k = minpos - heap;
1648 }
1649
1650 heap [k] = he;
1651 ev_active (ANHE_w (he)) = k;
1652 }
1653
1654 #else /* 4HEAP */
1655
1656 #define HEAP0 1
1657 #define HPARENT(k) ((k) >> 1)
1658 #define UPHEAP_DONE(p,k) (!(p))
1659
1660 /* away from the root */
1661 inline_speed void
1662 downheap (ANHE *heap, int N, int k)
1663 {
1664 ANHE he = heap [k];
1665
1666 for (;;)
1667 {
1668 int c = k << 1;
1669
1670 if (c >= N + HEAP0)
1671 break;
1672
1673 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1674 ? 1 : 0;
1675
1676 if (ANHE_at (he) <= ANHE_at (heap [c]))
1677 break;
1678
1679 heap [k] = heap [c];
1680 ev_active (ANHE_w (heap [k])) = k;
1681
1682 k = c;
1683 }
1684
1685 heap [k] = he;
1686 ev_active (ANHE_w (he)) = k;
1687 }
1688 #endif
1689
1690 /* towards the root */
1691 inline_speed void
1692 upheap (ANHE *heap, int k)
1693 {
1694 ANHE he = heap [k];
1695
1696 for (;;)
1697 {
1698 int p = HPARENT (k);
1699
1700 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1701 break;
1702
1703 heap [k] = heap [p];
1704 ev_active (ANHE_w (heap [k])) = k;
1705 k = p;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710 }
1711
1712 /* move an element suitably so it is in a correct place */
1713 inline_size void
1714 adjustheap (ANHE *heap, int N, int k)
1715 {
1716 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1717 upheap (heap, k);
1718 else
1719 downheap (heap, N, k);
1720 }
1721
1722 /* rebuild the heap: this function is used only once and executed rarely */
1723 inline_size void
1724 reheap (ANHE *heap, int N)
1725 {
1726 int i;
1727
1728 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1729 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1730 for (i = 0; i < N; ++i)
1731 upheap (heap, i + HEAP0);
1732 }
1733
1734 /*****************************************************************************/
1735
1736 /* associate signal watchers to a signal signal */
1737 typedef struct
1738 {
1739 EV_ATOMIC_T pending;
1740 #if EV_MULTIPLICITY
1741 EV_P;
1742 #endif
1743 WL head;
1744 } ANSIG;
1745
1746 static ANSIG signals [EV_NSIG - 1];
1747
1748 /*****************************************************************************/
1749
1750 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1751
1752 static void noinline ecb_cold
1753 evpipe_init (EV_P)
1754 {
1755 if (!ev_is_active (&pipe_w))
1756 {
1757 # if EV_USE_EVENTFD
1758 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1759 if (evfd < 0 && errno == EINVAL)
1760 evfd = eventfd (0, 0);
1761
1762 if (evfd >= 0)
1763 {
1764 evpipe [0] = -1;
1765 fd_intern (evfd); /* doing it twice doesn't hurt */
1766 ev_io_set (&pipe_w, evfd, EV_READ);
1767 }
1768 else
1769 # endif
1770 {
1771 while (pipe (evpipe))
1772 ev_syserr ("(libev) error creating signal/async pipe");
1773
1774 fd_intern (evpipe [0]);
1775 fd_intern (evpipe [1]);
1776 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1777 }
1778
1779 ev_io_start (EV_A_ &pipe_w);
1780 ev_unref (EV_A); /* watcher should not keep loop alive */
1781 }
1782 }
1783
1784 inline_speed void
1785 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1786 {
1787 if (expect_true (*flag))
1788 return;
1789
1790 *flag = 1;
1791
1792 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1793
1794 pipe_write_skipped = 1;
1795
1796 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1797
1798 if (pipe_write_wanted)
1799 {
1800 int old_errno;
1801
1802 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1803
1804 old_errno = errno; /* save errno because write will clobber it */
1805
1806 #if EV_USE_EVENTFD
1807 if (evfd >= 0)
1808 {
1809 uint64_t counter = 1;
1810 write (evfd, &counter, sizeof (uint64_t));
1811 }
1812 else
1813 #endif
1814 {
1815 /* win32 people keep sending patches that change this write() to send() */
1816 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1817 /* so when you think this write should be a send instead, please find out */
1818 /* where your send() is from - it's definitely not the microsoft send, and */
1819 /* tell me. thank you. */
1820 write (evpipe [1], &(evpipe [1]), 1);
1821 }
1822
1823 errno = old_errno;
1824 }
1825 }
1826
1827 /* called whenever the libev signal pipe */
1828 /* got some events (signal, async) */
1829 static void
1830 pipecb (EV_P_ ev_io *iow, int revents)
1831 {
1832 int i;
1833
1834 if (revents & EV_READ)
1835 {
1836 #if EV_USE_EVENTFD
1837 if (evfd >= 0)
1838 {
1839 uint64_t counter;
1840 read (evfd, &counter, sizeof (uint64_t));
1841 }
1842 else
1843 #endif
1844 {
1845 char dummy;
1846 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1847 read (evpipe [0], &dummy, 1);
1848 }
1849 }
1850
1851 pipe_write_skipped = 0;
1852
1853 #if EV_SIGNAL_ENABLE
1854 if (sig_pending)
1855 {
1856 sig_pending = 0;
1857
1858 for (i = EV_NSIG - 1; i--; )
1859 if (expect_false (signals [i].pending))
1860 ev_feed_signal_event (EV_A_ i + 1);
1861 }
1862 #endif
1863
1864 #if EV_ASYNC_ENABLE
1865 if (async_pending)
1866 {
1867 async_pending = 0;
1868
1869 for (i = asynccnt; i--; )
1870 if (asyncs [i]->sent)
1871 {
1872 asyncs [i]->sent = 0;
1873 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1874 }
1875 }
1876 #endif
1877 }
1878
1879 /*****************************************************************************/
1880
1881 void
1882 ev_feed_signal (int signum)
1883 {
1884 #if EV_MULTIPLICITY
1885 EV_P = signals [signum - 1].loop;
1886
1887 if (!EV_A)
1888 return;
1889 #endif
1890
1891 if (!ev_active (&pipe_w))
1892 return;
1893
1894 signals [signum - 1].pending = 1;
1895 evpipe_write (EV_A_ &sig_pending);
1896 }
1897
1898 static void
1899 ev_sighandler (int signum)
1900 {
1901 #ifdef _WIN32
1902 signal (signum, ev_sighandler);
1903 #endif
1904
1905 ev_feed_signal (signum);
1906 }
1907
1908 void noinline
1909 ev_feed_signal_event (EV_P_ int signum)
1910 {
1911 WL w;
1912
1913 if (expect_false (signum <= 0 || signum > EV_NSIG))
1914 return;
1915
1916 --signum;
1917
1918 #if EV_MULTIPLICITY
1919 /* it is permissible to try to feed a signal to the wrong loop */
1920 /* or, likely more useful, feeding a signal nobody is waiting for */
1921
1922 if (expect_false (signals [signum].loop != EV_A))
1923 return;
1924 #endif
1925
1926 signals [signum].pending = 0;
1927
1928 for (w = signals [signum].head; w; w = w->next)
1929 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1930 }
1931
1932 #if EV_USE_SIGNALFD
1933 static void
1934 sigfdcb (EV_P_ ev_io *iow, int revents)
1935 {
1936 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1937
1938 for (;;)
1939 {
1940 ssize_t res = read (sigfd, si, sizeof (si));
1941
1942 /* not ISO-C, as res might be -1, but works with SuS */
1943 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1944 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1945
1946 if (res < (ssize_t)sizeof (si))
1947 break;
1948 }
1949 }
1950 #endif
1951
1952 #endif
1953
1954 /*****************************************************************************/
1955
1956 #if EV_CHILD_ENABLE
1957 static WL childs [EV_PID_HASHSIZE];
1958
1959 static ev_signal childev;
1960
1961 #ifndef WIFCONTINUED
1962 # define WIFCONTINUED(status) 0
1963 #endif
1964
1965 /* handle a single child status event */
1966 inline_speed void
1967 child_reap (EV_P_ int chain, int pid, int status)
1968 {
1969 ev_child *w;
1970 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1971
1972 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1973 {
1974 if ((w->pid == pid || !w->pid)
1975 && (!traced || (w->flags & 1)))
1976 {
1977 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1978 w->rpid = pid;
1979 w->rstatus = status;
1980 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1981 }
1982 }
1983 }
1984
1985 #ifndef WCONTINUED
1986 # define WCONTINUED 0
1987 #endif
1988
1989 /* called on sigchld etc., calls waitpid */
1990 static void
1991 childcb (EV_P_ ev_signal *sw, int revents)
1992 {
1993 int pid, status;
1994
1995 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1996 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1997 if (!WCONTINUED
1998 || errno != EINVAL
1999 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2000 return;
2001
2002 /* make sure we are called again until all children have been reaped */
2003 /* we need to do it this way so that the callback gets called before we continue */
2004 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2005
2006 child_reap (EV_A_ pid, pid, status);
2007 if ((EV_PID_HASHSIZE) > 1)
2008 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2009 }
2010
2011 #endif
2012
2013 /*****************************************************************************/
2014
2015 #if EV_USE_IOCP
2016 # include "ev_iocp.c"
2017 #endif
2018 #if EV_USE_PORT
2019 # include "ev_port.c"
2020 #endif
2021 #if EV_USE_KQUEUE
2022 # include "ev_kqueue.c"
2023 #endif
2024 #if EV_USE_EPOLL
2025 # include "ev_epoll.c"
2026 #endif
2027 #if EV_USE_POLL
2028 # include "ev_poll.c"
2029 #endif
2030 #if EV_USE_SELECT
2031 # include "ev_select.c"
2032 #endif
2033
2034 int ecb_cold
2035 ev_version_major (void)
2036 {
2037 return EV_VERSION_MAJOR;
2038 }
2039
2040 int ecb_cold
2041 ev_version_minor (void)
2042 {
2043 return EV_VERSION_MINOR;
2044 }
2045
2046 /* return true if we are running with elevated privileges and should ignore env variables */
2047 int inline_size ecb_cold
2048 enable_secure (void)
2049 {
2050 #ifdef _WIN32
2051 return 0;
2052 #else
2053 return getuid () != geteuid ()
2054 || getgid () != getegid ();
2055 #endif
2056 }
2057
2058 unsigned int ecb_cold
2059 ev_supported_backends (void)
2060 {
2061 unsigned int flags = 0;
2062
2063 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2064 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2065 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2066 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2067 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2068
2069 return flags;
2070 }
2071
2072 unsigned int ecb_cold
2073 ev_recommended_backends (void)
2074 {
2075 unsigned int flags = ev_supported_backends ();
2076
2077 #ifndef __NetBSD__
2078 /* kqueue is borked on everything but netbsd apparently */
2079 /* it usually doesn't work correctly on anything but sockets and pipes */
2080 flags &= ~EVBACKEND_KQUEUE;
2081 #endif
2082 #ifdef __APPLE__
2083 /* only select works correctly on that "unix-certified" platform */
2084 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2085 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2086 #endif
2087 #ifdef __FreeBSD__
2088 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2089 #endif
2090
2091 return flags;
2092 }
2093
2094 unsigned int ecb_cold
2095 ev_embeddable_backends (void)
2096 {
2097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2098
2099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2100 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2101 flags &= ~EVBACKEND_EPOLL;
2102
2103 return flags;
2104 }
2105
2106 unsigned int
2107 ev_backend (EV_P)
2108 {
2109 return backend;
2110 }
2111
2112 #if EV_FEATURE_API
2113 unsigned int
2114 ev_iteration (EV_P)
2115 {
2116 return loop_count;
2117 }
2118
2119 unsigned int
2120 ev_depth (EV_P)
2121 {
2122 return loop_depth;
2123 }
2124
2125 void
2126 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2127 {
2128 io_blocktime = interval;
2129 }
2130
2131 void
2132 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2133 {
2134 timeout_blocktime = interval;
2135 }
2136
2137 void
2138 ev_set_userdata (EV_P_ void *data)
2139 {
2140 userdata = data;
2141 }
2142
2143 void *
2144 ev_userdata (EV_P)
2145 {
2146 return userdata;
2147 }
2148
2149 void
2150 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2151 {
2152 invoke_cb = invoke_pending_cb;
2153 }
2154
2155 void
2156 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2157 {
2158 release_cb = release;
2159 acquire_cb = acquire;
2160 }
2161 #endif
2162
2163 /* initialise a loop structure, must be zero-initialised */
2164 static void noinline ecb_cold
2165 loop_init (EV_P_ unsigned int flags)
2166 {
2167 if (!backend)
2168 {
2169 origflags = flags;
2170
2171 #if EV_USE_REALTIME
2172 if (!have_realtime)
2173 {
2174 struct timespec ts;
2175
2176 if (!clock_gettime (CLOCK_REALTIME, &ts))
2177 have_realtime = 1;
2178 }
2179 #endif
2180
2181 #if EV_USE_MONOTONIC
2182 if (!have_monotonic)
2183 {
2184 struct timespec ts;
2185
2186 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2187 have_monotonic = 1;
2188 }
2189 #endif
2190
2191 /* pid check not overridable via env */
2192 #ifndef _WIN32
2193 if (flags & EVFLAG_FORKCHECK)
2194 curpid = getpid ();
2195 #endif
2196
2197 if (!(flags & EVFLAG_NOENV)
2198 && !enable_secure ()
2199 && getenv ("LIBEV_FLAGS"))
2200 flags = atoi (getenv ("LIBEV_FLAGS"));
2201
2202 ev_rt_now = ev_time ();
2203 mn_now = get_clock ();
2204 now_floor = mn_now;
2205 rtmn_diff = ev_rt_now - mn_now;
2206 #if EV_FEATURE_API
2207 invoke_cb = ev_invoke_pending;
2208 #endif
2209
2210 io_blocktime = 0.;
2211 timeout_blocktime = 0.;
2212 backend = 0;
2213 backend_fd = -1;
2214 sig_pending = 0;
2215 #if EV_ASYNC_ENABLE
2216 async_pending = 0;
2217 #endif
2218 pipe_write_skipped = 0;
2219 pipe_write_wanted = 0;
2220 #if EV_USE_INOTIFY
2221 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2222 #endif
2223 #if EV_USE_SIGNALFD
2224 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2225 #endif
2226
2227 if (!(flags & EVBACKEND_MASK))
2228 flags |= ev_recommended_backends ();
2229
2230 #if EV_USE_IOCP
2231 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2232 #endif
2233 #if EV_USE_PORT
2234 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2235 #endif
2236 #if EV_USE_KQUEUE
2237 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2238 #endif
2239 #if EV_USE_EPOLL
2240 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2241 #endif
2242 #if EV_USE_POLL
2243 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2244 #endif
2245 #if EV_USE_SELECT
2246 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2247 #endif
2248
2249 ev_prepare_init (&pending_w, pendingcb);
2250
2251 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2252 ev_init (&pipe_w, pipecb);
2253 ev_set_priority (&pipe_w, EV_MAXPRI);
2254 #endif
2255 }
2256 }
2257
2258 /* free up a loop structure */
2259 void ecb_cold
2260 ev_loop_destroy (EV_P)
2261 {
2262 int i;
2263
2264 #if EV_MULTIPLICITY
2265 /* mimic free (0) */
2266 if (!EV_A)
2267 return;
2268 #endif
2269
2270 #if EV_CLEANUP_ENABLE
2271 /* queue cleanup watchers (and execute them) */
2272 if (expect_false (cleanupcnt))
2273 {
2274 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2275 EV_INVOKE_PENDING;
2276 }
2277 #endif
2278
2279 #if EV_CHILD_ENABLE
2280 if (ev_is_active (&childev))
2281 {
2282 ev_ref (EV_A); /* child watcher */
2283 ev_signal_stop (EV_A_ &childev);
2284 }
2285 #endif
2286
2287 if (ev_is_active (&pipe_w))
2288 {
2289 /*ev_ref (EV_A);*/
2290 /*ev_io_stop (EV_A_ &pipe_w);*/
2291
2292 #if EV_USE_EVENTFD
2293 if (evfd >= 0)
2294 close (evfd);
2295 #endif
2296
2297 if (evpipe [0] >= 0)
2298 {
2299 EV_WIN32_CLOSE_FD (evpipe [0]);
2300 EV_WIN32_CLOSE_FD (evpipe [1]);
2301 }
2302 }
2303
2304 #if EV_USE_SIGNALFD
2305 if (ev_is_active (&sigfd_w))
2306 close (sigfd);
2307 #endif
2308
2309 #if EV_USE_INOTIFY
2310 if (fs_fd >= 0)
2311 close (fs_fd);
2312 #endif
2313
2314 if (backend_fd >= 0)
2315 close (backend_fd);
2316
2317 #if EV_USE_IOCP
2318 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2319 #endif
2320 #if EV_USE_PORT
2321 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2322 #endif
2323 #if EV_USE_KQUEUE
2324 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2325 #endif
2326 #if EV_USE_EPOLL
2327 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2328 #endif
2329 #if EV_USE_POLL
2330 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2331 #endif
2332 #if EV_USE_SELECT
2333 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2334 #endif
2335
2336 for (i = NUMPRI; i--; )
2337 {
2338 array_free (pending, [i]);
2339 #if EV_IDLE_ENABLE
2340 array_free (idle, [i]);
2341 #endif
2342 }
2343
2344 ev_free (anfds); anfds = 0; anfdmax = 0;
2345
2346 /* have to use the microsoft-never-gets-it-right macro */
2347 array_free (rfeed, EMPTY);
2348 array_free (fdchange, EMPTY);
2349 array_free (timer, EMPTY);
2350 #if EV_PERIODIC_ENABLE
2351 array_free (periodic, EMPTY);
2352 #endif
2353 #if EV_FORK_ENABLE
2354 array_free (fork, EMPTY);
2355 #endif
2356 #if EV_CLEANUP_ENABLE
2357 array_free (cleanup, EMPTY);
2358 #endif
2359 array_free (prepare, EMPTY);
2360 array_free (check, EMPTY);
2361 #if EV_ASYNC_ENABLE
2362 array_free (async, EMPTY);
2363 #endif
2364
2365 backend = 0;
2366
2367 #if EV_MULTIPLICITY
2368 if (ev_is_default_loop (EV_A))
2369 #endif
2370 ev_default_loop_ptr = 0;
2371 #if EV_MULTIPLICITY
2372 else
2373 ev_free (EV_A);
2374 #endif
2375 }
2376
2377 #if EV_USE_INOTIFY
2378 inline_size void infy_fork (EV_P);
2379 #endif
2380
2381 inline_size void
2382 loop_fork (EV_P)
2383 {
2384 #if EV_USE_PORT
2385 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2386 #endif
2387 #if EV_USE_KQUEUE
2388 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2389 #endif
2390 #if EV_USE_EPOLL
2391 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2392 #endif
2393 #if EV_USE_INOTIFY
2394 infy_fork (EV_A);
2395 #endif
2396
2397 if (ev_is_active (&pipe_w))
2398 {
2399 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2400
2401 ev_ref (EV_A);
2402 ev_io_stop (EV_A_ &pipe_w);
2403
2404 #if EV_USE_EVENTFD
2405 if (evfd >= 0)
2406 close (evfd);
2407 #endif
2408
2409 if (evpipe [0] >= 0)
2410 {
2411 EV_WIN32_CLOSE_FD (evpipe [0]);
2412 EV_WIN32_CLOSE_FD (evpipe [1]);
2413 }
2414
2415 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2416 evpipe_init (EV_A);
2417 /* now iterate over everything, in case we missed something */
2418 pipecb (EV_A_ &pipe_w, EV_READ);
2419 #endif
2420 }
2421
2422 postfork = 0;
2423 }
2424
2425 #if EV_MULTIPLICITY
2426
2427 struct ev_loop * ecb_cold
2428 ev_loop_new (unsigned int flags)
2429 {
2430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2431
2432 memset (EV_A, 0, sizeof (struct ev_loop));
2433 loop_init (EV_A_ flags);
2434
2435 if (ev_backend (EV_A))
2436 return EV_A;
2437
2438 ev_free (EV_A);
2439 return 0;
2440 }
2441
2442 #endif /* multiplicity */
2443
2444 #if EV_VERIFY
2445 static void noinline ecb_cold
2446 verify_watcher (EV_P_ W w)
2447 {
2448 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2449
2450 if (w->pending)
2451 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2452 }
2453
2454 static void noinline ecb_cold
2455 verify_heap (EV_P_ ANHE *heap, int N)
2456 {
2457 int i;
2458
2459 for (i = HEAP0; i < N + HEAP0; ++i)
2460 {
2461 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2462 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2463 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2464
2465 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2466 }
2467 }
2468
2469 static void noinline ecb_cold
2470 array_verify (EV_P_ W *ws, int cnt)
2471 {
2472 while (cnt--)
2473 {
2474 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2475 verify_watcher (EV_A_ ws [cnt]);
2476 }
2477 }
2478 #endif
2479
2480 #if EV_FEATURE_API
2481 void ecb_cold
2482 ev_verify (EV_P)
2483 {
2484 #if EV_VERIFY
2485 int i;
2486 WL w;
2487
2488 assert (activecnt >= -1);
2489
2490 assert (fdchangemax >= fdchangecnt);
2491 for (i = 0; i < fdchangecnt; ++i)
2492 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2493
2494 assert (anfdmax >= 0);
2495 for (i = 0; i < anfdmax; ++i)
2496 for (w = anfds [i].head; w; w = w->next)
2497 {
2498 verify_watcher (EV_A_ (W)w);
2499 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2500 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2501 }
2502
2503 assert (timermax >= timercnt);
2504 verify_heap (EV_A_ timers, timercnt);
2505
2506 #if EV_PERIODIC_ENABLE
2507 assert (periodicmax >= periodiccnt);
2508 verify_heap (EV_A_ periodics, periodiccnt);
2509 #endif
2510
2511 for (i = NUMPRI; i--; )
2512 {
2513 assert (pendingmax [i] >= pendingcnt [i]);
2514 #if EV_IDLE_ENABLE
2515 assert (idleall >= 0);
2516 assert (idlemax [i] >= idlecnt [i]);
2517 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2518 #endif
2519 }
2520
2521 #if EV_FORK_ENABLE
2522 assert (forkmax >= forkcnt);
2523 array_verify (EV_A_ (W *)forks, forkcnt);
2524 #endif
2525
2526 #if EV_CLEANUP_ENABLE
2527 assert (cleanupmax >= cleanupcnt);
2528 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2529 #endif
2530
2531 #if EV_ASYNC_ENABLE
2532 assert (asyncmax >= asynccnt);
2533 array_verify (EV_A_ (W *)asyncs, asynccnt);
2534 #endif
2535
2536 #if EV_PREPARE_ENABLE
2537 assert (preparemax >= preparecnt);
2538 array_verify (EV_A_ (W *)prepares, preparecnt);
2539 #endif
2540
2541 #if EV_CHECK_ENABLE
2542 assert (checkmax >= checkcnt);
2543 array_verify (EV_A_ (W *)checks, checkcnt);
2544 #endif
2545
2546 # if 0
2547 #if EV_CHILD_ENABLE
2548 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2549 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2550 #endif
2551 # endif
2552 #endif
2553 }
2554 #endif
2555
2556 #if EV_MULTIPLICITY
2557 struct ev_loop * ecb_cold
2558 #else
2559 int
2560 #endif
2561 ev_default_loop (unsigned int flags)
2562 {
2563 if (!ev_default_loop_ptr)
2564 {
2565 #if EV_MULTIPLICITY
2566 EV_P = ev_default_loop_ptr = &default_loop_struct;
2567 #else
2568 ev_default_loop_ptr = 1;
2569 #endif
2570
2571 loop_init (EV_A_ flags);
2572
2573 if (ev_backend (EV_A))
2574 {
2575 #if EV_CHILD_ENABLE
2576 ev_signal_init (&childev, childcb, SIGCHLD);
2577 ev_set_priority (&childev, EV_MAXPRI);
2578 ev_signal_start (EV_A_ &childev);
2579 ev_unref (EV_A); /* child watcher should not keep loop alive */
2580 #endif
2581 }
2582 else
2583 ev_default_loop_ptr = 0;
2584 }
2585
2586 return ev_default_loop_ptr;
2587 }
2588
2589 void
2590 ev_loop_fork (EV_P)
2591 {
2592 postfork = 1; /* must be in line with ev_default_fork */
2593 }
2594
2595 /*****************************************************************************/
2596
2597 void
2598 ev_invoke (EV_P_ void *w, int revents)
2599 {
2600 EV_CB_INVOKE ((W)w, revents);
2601 }
2602
2603 unsigned int
2604 ev_pending_count (EV_P)
2605 {
2606 int pri;
2607 unsigned int count = 0;
2608
2609 for (pri = NUMPRI; pri--; )
2610 count += pendingcnt [pri];
2611
2612 return count;
2613 }
2614
2615 void noinline
2616 ev_invoke_pending (EV_P)
2617 {
2618 int pri;
2619
2620 for (pri = NUMPRI; pri--; )
2621 while (pendingcnt [pri])
2622 {
2623 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2624
2625 p->w->pending = 0;
2626 EV_CB_INVOKE (p->w, p->events);
2627 EV_FREQUENT_CHECK;
2628 }
2629 }
2630
2631 #if EV_IDLE_ENABLE
2632 /* make idle watchers pending. this handles the "call-idle */
2633 /* only when higher priorities are idle" logic */
2634 inline_size void
2635 idle_reify (EV_P)
2636 {
2637 if (expect_false (idleall))
2638 {
2639 int pri;
2640
2641 for (pri = NUMPRI; pri--; )
2642 {
2643 if (pendingcnt [pri])
2644 break;
2645
2646 if (idlecnt [pri])
2647 {
2648 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2649 break;
2650 }
2651 }
2652 }
2653 }
2654 #endif
2655
2656 /* make timers pending */
2657 inline_size void
2658 timers_reify (EV_P)
2659 {
2660 EV_FREQUENT_CHECK;
2661
2662 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2663 {
2664 do
2665 {
2666 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2667
2668 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2669
2670 /* first reschedule or stop timer */
2671 if (w->repeat)
2672 {
2673 ev_at (w) += w->repeat;
2674 if (ev_at (w) < mn_now)
2675 ev_at (w) = mn_now;
2676
2677 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2678
2679 ANHE_at_cache (timers [HEAP0]);
2680 downheap (timers, timercnt, HEAP0);
2681 }
2682 else
2683 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2684
2685 EV_FREQUENT_CHECK;
2686 feed_reverse (EV_A_ (W)w);
2687 }
2688 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2689
2690 feed_reverse_done (EV_A_ EV_TIMER);
2691 }
2692 }
2693
2694 #if EV_PERIODIC_ENABLE
2695
2696 static void noinline
2697 periodic_recalc (EV_P_ ev_periodic *w)
2698 {
2699 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2700 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2701
2702 /* the above almost always errs on the low side */
2703 while (at <= ev_rt_now)
2704 {
2705 ev_tstamp nat = at + w->interval;
2706
2707 /* when resolution fails us, we use ev_rt_now */
2708 if (expect_false (nat == at))
2709 {
2710 at = ev_rt_now;
2711 break;
2712 }
2713
2714 at = nat;
2715 }
2716
2717 ev_at (w) = at;
2718 }
2719
2720 /* make periodics pending */
2721 inline_size void
2722 periodics_reify (EV_P)
2723 {
2724 EV_FREQUENT_CHECK;
2725
2726 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2727 {
2728 int feed_count = 0;
2729
2730 do
2731 {
2732 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2733
2734 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2735
2736 /* first reschedule or stop timer */
2737 if (w->reschedule_cb)
2738 {
2739 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2740
2741 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2742
2743 ANHE_at_cache (periodics [HEAP0]);
2744 downheap (periodics, periodiccnt, HEAP0);
2745 }
2746 else if (w->interval)
2747 {
2748 periodic_recalc (EV_A_ w);
2749 ANHE_at_cache (periodics [HEAP0]);
2750 downheap (periodics, periodiccnt, HEAP0);
2751 }
2752 else
2753 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2754
2755 EV_FREQUENT_CHECK;
2756 feed_reverse (EV_A_ (W)w);
2757 }
2758 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2759
2760 feed_reverse_done (EV_A_ EV_PERIODIC);
2761 }
2762 }
2763
2764 /* simply recalculate all periodics */
2765 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2766 static void noinline ecb_cold
2767 periodics_reschedule (EV_P)
2768 {
2769 int i;
2770
2771 /* adjust periodics after time jump */
2772 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2773 {
2774 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2775
2776 if (w->reschedule_cb)
2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2778 else if (w->interval)
2779 periodic_recalc (EV_A_ w);
2780
2781 ANHE_at_cache (periodics [i]);
2782 }
2783
2784 reheap (periodics, periodiccnt);
2785 }
2786 #endif
2787
2788 /* adjust all timers by a given offset */
2789 static void noinline ecb_cold
2790 timers_reschedule (EV_P_ ev_tstamp adjust)
2791 {
2792 int i;
2793
2794 for (i = 0; i < timercnt; ++i)
2795 {
2796 ANHE *he = timers + i + HEAP0;
2797 ANHE_w (*he)->at += adjust;
2798 ANHE_at_cache (*he);
2799 }
2800 }
2801
2802 /* fetch new monotonic and realtime times from the kernel */
2803 /* also detect if there was a timejump, and act accordingly */
2804 inline_speed void
2805 time_update (EV_P_ ev_tstamp max_block)
2806 {
2807 #if EV_USE_MONOTONIC
2808 if (expect_true (have_monotonic))
2809 {
2810 int i;
2811 ev_tstamp odiff = rtmn_diff;
2812
2813 mn_now = get_clock ();
2814
2815 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2816 /* interpolate in the meantime */
2817 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2818 {
2819 ev_rt_now = rtmn_diff + mn_now;
2820 return;
2821 }
2822
2823 now_floor = mn_now;
2824 ev_rt_now = ev_time ();
2825
2826 /* loop a few times, before making important decisions.
2827 * on the choice of "4": one iteration isn't enough,
2828 * in case we get preempted during the calls to
2829 * ev_time and get_clock. a second call is almost guaranteed
2830 * to succeed in that case, though. and looping a few more times
2831 * doesn't hurt either as we only do this on time-jumps or
2832 * in the unlikely event of having been preempted here.
2833 */
2834 for (i = 4; --i; )
2835 {
2836 ev_tstamp diff;
2837 rtmn_diff = ev_rt_now - mn_now;
2838
2839 diff = odiff - rtmn_diff;
2840
2841 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2842 return; /* all is well */
2843
2844 ev_rt_now = ev_time ();
2845 mn_now = get_clock ();
2846 now_floor = mn_now;
2847 }
2848
2849 /* no timer adjustment, as the monotonic clock doesn't jump */
2850 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2851 # if EV_PERIODIC_ENABLE
2852 periodics_reschedule (EV_A);
2853 # endif
2854 }
2855 else
2856 #endif
2857 {
2858 ev_rt_now = ev_time ();
2859
2860 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2861 {
2862 /* adjust timers. this is easy, as the offset is the same for all of them */
2863 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2864 #if EV_PERIODIC_ENABLE
2865 periodics_reschedule (EV_A);
2866 #endif
2867 }
2868
2869 mn_now = ev_rt_now;
2870 }
2871 }
2872
2873 void
2874 ev_run (EV_P_ int flags)
2875 {
2876 #if EV_FEATURE_API
2877 ++loop_depth;
2878 #endif
2879
2880 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2881
2882 loop_done = EVBREAK_CANCEL;
2883
2884 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2885
2886 do
2887 {
2888 #if EV_VERIFY >= 2
2889 ev_verify (EV_A);
2890 #endif
2891
2892 #ifndef _WIN32
2893 if (expect_false (curpid)) /* penalise the forking check even more */
2894 if (expect_false (getpid () != curpid))
2895 {
2896 curpid = getpid ();
2897 postfork = 1;
2898 }
2899 #endif
2900
2901 #if EV_FORK_ENABLE
2902 /* we might have forked, so queue fork handlers */
2903 if (expect_false (postfork))
2904 if (forkcnt)
2905 {
2906 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2907 EV_INVOKE_PENDING;
2908 }
2909 #endif
2910
2911 #if EV_PREPARE_ENABLE
2912 /* queue prepare watchers (and execute them) */
2913 if (expect_false (preparecnt))
2914 {
2915 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2916 EV_INVOKE_PENDING;
2917 }
2918 #endif
2919
2920 if (expect_false (loop_done))
2921 break;
2922
2923 /* we might have forked, so reify kernel state if necessary */
2924 if (expect_false (postfork))
2925 loop_fork (EV_A);
2926
2927 /* update fd-related kernel structures */
2928 fd_reify (EV_A);
2929
2930 /* calculate blocking time */
2931 {
2932 ev_tstamp waittime = 0.;
2933 ev_tstamp sleeptime = 0.;
2934
2935 /* remember old timestamp for io_blocktime calculation */
2936 ev_tstamp prev_mn_now = mn_now;
2937
2938 /* update time to cancel out callback processing overhead */
2939 time_update (EV_A_ 1e100);
2940
2941 /* from now on, we want a pipe-wake-up */
2942 pipe_write_wanted = 1;
2943
2944 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2945
2946 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2947 {
2948 waittime = MAX_BLOCKTIME;
2949
2950 if (timercnt)
2951 {
2952 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2953 if (waittime > to) waittime = to;
2954 }
2955
2956 #if EV_PERIODIC_ENABLE
2957 if (periodiccnt)
2958 {
2959 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2960 if (waittime > to) waittime = to;
2961 }
2962 #endif
2963
2964 /* don't let timeouts decrease the waittime below timeout_blocktime */
2965 if (expect_false (waittime < timeout_blocktime))
2966 waittime = timeout_blocktime;
2967
2968 /* at this point, we NEED to wait, so we have to ensure */
2969 /* to pass a minimum nonzero value to the backend */
2970 if (expect_false (waittime < backend_mintime))
2971 waittime = backend_mintime;
2972
2973 /* extra check because io_blocktime is commonly 0 */
2974 if (expect_false (io_blocktime))
2975 {
2976 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2977
2978 if (sleeptime > waittime - backend_mintime)
2979 sleeptime = waittime - backend_mintime;
2980
2981 if (expect_true (sleeptime > 0.))
2982 {
2983 ev_sleep (sleeptime);
2984 waittime -= sleeptime;
2985 }
2986 }
2987 }
2988
2989 #if EV_FEATURE_API
2990 ++loop_count;
2991 #endif
2992 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2993 backend_poll (EV_A_ waittime);
2994 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2995
2996 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
2997
2998 if (pipe_write_skipped)
2999 {
3000 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3001 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3002 }
3003
3004
3005 /* update ev_rt_now, do magic */
3006 time_update (EV_A_ waittime + sleeptime);
3007 }
3008
3009 /* queue pending timers and reschedule them */
3010 timers_reify (EV_A); /* relative timers called last */
3011 #if EV_PERIODIC_ENABLE
3012 periodics_reify (EV_A); /* absolute timers called first */
3013 #endif
3014
3015 #if EV_IDLE_ENABLE
3016 /* queue idle watchers unless other events are pending */
3017 idle_reify (EV_A);
3018 #endif
3019
3020 #if EV_CHECK_ENABLE
3021 /* queue check watchers, to be executed first */
3022 if (expect_false (checkcnt))
3023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3024 #endif
3025
3026 EV_INVOKE_PENDING;
3027 }
3028 while (expect_true (
3029 activecnt
3030 && !loop_done
3031 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3032 ));
3033
3034 if (loop_done == EVBREAK_ONE)
3035 loop_done = EVBREAK_CANCEL;
3036
3037 #if EV_FEATURE_API
3038 --loop_depth;
3039 #endif
3040 }
3041
3042 void
3043 ev_break (EV_P_ int how)
3044 {
3045 loop_done = how;
3046 }
3047
3048 void
3049 ev_ref (EV_P)
3050 {
3051 ++activecnt;
3052 }
3053
3054 void
3055 ev_unref (EV_P)
3056 {
3057 --activecnt;
3058 }
3059
3060 void
3061 ev_now_update (EV_P)
3062 {
3063 time_update (EV_A_ 1e100);
3064 }
3065
3066 void
3067 ev_suspend (EV_P)
3068 {
3069 ev_now_update (EV_A);
3070 }
3071
3072 void
3073 ev_resume (EV_P)
3074 {
3075 ev_tstamp mn_prev = mn_now;
3076
3077 ev_now_update (EV_A);
3078 timers_reschedule (EV_A_ mn_now - mn_prev);
3079 #if EV_PERIODIC_ENABLE
3080 /* TODO: really do this? */
3081 periodics_reschedule (EV_A);
3082 #endif
3083 }
3084
3085 /*****************************************************************************/
3086 /* singly-linked list management, used when the expected list length is short */
3087
3088 inline_size void
3089 wlist_add (WL *head, WL elem)
3090 {
3091 elem->next = *head;
3092 *head = elem;
3093 }
3094
3095 inline_size void
3096 wlist_del (WL *head, WL elem)
3097 {
3098 while (*head)
3099 {
3100 if (expect_true (*head == elem))
3101 {
3102 *head = elem->next;
3103 break;
3104 }
3105
3106 head = &(*head)->next;
3107 }
3108 }
3109
3110 /* internal, faster, version of ev_clear_pending */
3111 inline_speed void
3112 clear_pending (EV_P_ W w)
3113 {
3114 if (w->pending)
3115 {
3116 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3117 w->pending = 0;
3118 }
3119 }
3120
3121 int
3122 ev_clear_pending (EV_P_ void *w)
3123 {
3124 W w_ = (W)w;
3125 int pending = w_->pending;
3126
3127 if (expect_true (pending))
3128 {
3129 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3130 p->w = (W)&pending_w;
3131 w_->pending = 0;
3132 return p->events;
3133 }
3134 else
3135 return 0;
3136 }
3137
3138 inline_size void
3139 pri_adjust (EV_P_ W w)
3140 {
3141 int pri = ev_priority (w);
3142 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3143 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3144 ev_set_priority (w, pri);
3145 }
3146
3147 inline_speed void
3148 ev_start (EV_P_ W w, int active)
3149 {
3150 pri_adjust (EV_A_ w);
3151 w->active = active;
3152 ev_ref (EV_A);
3153 }
3154
3155 inline_size void
3156 ev_stop (EV_P_ W w)
3157 {
3158 ev_unref (EV_A);
3159 w->active = 0;
3160 }
3161
3162 /*****************************************************************************/
3163
3164 void noinline
3165 ev_io_start (EV_P_ ev_io *w)
3166 {
3167 int fd = w->fd;
3168
3169 if (expect_false (ev_is_active (w)))
3170 return;
3171
3172 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3173 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3174
3175 EV_FREQUENT_CHECK;
3176
3177 ev_start (EV_A_ (W)w, 1);
3178 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3179 wlist_add (&anfds[fd].head, (WL)w);
3180
3181 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3182 w->events &= ~EV__IOFDSET;
3183
3184 EV_FREQUENT_CHECK;
3185 }
3186
3187 void noinline
3188 ev_io_stop (EV_P_ ev_io *w)
3189 {
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3195
3196 EV_FREQUENT_CHECK;
3197
3198 wlist_del (&anfds[w->fd].head, (WL)w);
3199 ev_stop (EV_A_ (W)w);
3200
3201 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3202
3203 EV_FREQUENT_CHECK;
3204 }
3205
3206 void noinline
3207 ev_timer_start (EV_P_ ev_timer *w)
3208 {
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 ev_at (w) += mn_now;
3213
3214 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3215
3216 EV_FREQUENT_CHECK;
3217
3218 ++timercnt;
3219 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3220 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3221 ANHE_w (timers [ev_active (w)]) = (WT)w;
3222 ANHE_at_cache (timers [ev_active (w)]);
3223 upheap (timers, ev_active (w));
3224
3225 EV_FREQUENT_CHECK;
3226
3227 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3228 }
3229
3230 void noinline
3231 ev_timer_stop (EV_P_ ev_timer *w)
3232 {
3233 clear_pending (EV_A_ (W)w);
3234 if (expect_false (!ev_is_active (w)))
3235 return;
3236
3237 EV_FREQUENT_CHECK;
3238
3239 {
3240 int active = ev_active (w);
3241
3242 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3243
3244 --timercnt;
3245
3246 if (expect_true (active < timercnt + HEAP0))
3247 {
3248 timers [active] = timers [timercnt + HEAP0];
3249 adjustheap (timers, timercnt, active);
3250 }
3251 }
3252
3253 ev_at (w) -= mn_now;
3254
3255 ev_stop (EV_A_ (W)w);
3256
3257 EV_FREQUENT_CHECK;
3258 }
3259
3260 void noinline
3261 ev_timer_again (EV_P_ ev_timer *w)
3262 {
3263 EV_FREQUENT_CHECK;
3264
3265 if (ev_is_active (w))
3266 {
3267 if (w->repeat)
3268 {
3269 ev_at (w) = mn_now + w->repeat;
3270 ANHE_at_cache (timers [ev_active (w)]);
3271 adjustheap (timers, timercnt, ev_active (w));
3272 }
3273 else
3274 ev_timer_stop (EV_A_ w);
3275 }
3276 else if (w->repeat)
3277 {
3278 ev_at (w) = w->repeat;
3279 ev_timer_start (EV_A_ w);
3280 }
3281
3282 EV_FREQUENT_CHECK;
3283 }
3284
3285 ev_tstamp
3286 ev_timer_remaining (EV_P_ ev_timer *w)
3287 {
3288 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3289 }
3290
3291 #if EV_PERIODIC_ENABLE
3292 void noinline
3293 ev_periodic_start (EV_P_ ev_periodic *w)
3294 {
3295 if (expect_false (ev_is_active (w)))
3296 return;
3297
3298 if (w->reschedule_cb)
3299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3300 else if (w->interval)
3301 {
3302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3303 periodic_recalc (EV_A_ w);
3304 }
3305 else
3306 ev_at (w) = w->offset;
3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++periodiccnt;
3311 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3312 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3313 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3314 ANHE_at_cache (periodics [ev_active (w)]);
3315 upheap (periodics, ev_active (w));
3316
3317 EV_FREQUENT_CHECK;
3318
3319 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3320 }
3321
3322 void noinline
3323 ev_periodic_stop (EV_P_ ev_periodic *w)
3324 {
3325 clear_pending (EV_A_ (W)w);
3326 if (expect_false (!ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
3334 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3335
3336 --periodiccnt;
3337
3338 if (expect_true (active < periodiccnt + HEAP0))
3339 {
3340 periodics [active] = periodics [periodiccnt + HEAP0];
3341 adjustheap (periodics, periodiccnt, active);
3342 }
3343 }
3344
3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
3348 }
3349
3350 void noinline
3351 ev_periodic_again (EV_P_ ev_periodic *w)
3352 {
3353 /* TODO: use adjustheap and recalculation */
3354 ev_periodic_stop (EV_A_ w);
3355 ev_periodic_start (EV_A_ w);
3356 }
3357 #endif
3358
3359 #ifndef SA_RESTART
3360 # define SA_RESTART 0
3361 #endif
3362
3363 #if EV_SIGNAL_ENABLE
3364
3365 void noinline
3366 ev_signal_start (EV_P_ ev_signal *w)
3367 {
3368 if (expect_false (ev_is_active (w)))
3369 return;
3370
3371 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3372
3373 #if EV_MULTIPLICITY
3374 assert (("libev: a signal must not be attached to two different loops",
3375 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3376
3377 signals [w->signum - 1].loop = EV_A;
3378 #endif
3379
3380 EV_FREQUENT_CHECK;
3381
3382 #if EV_USE_SIGNALFD
3383 if (sigfd == -2)
3384 {
3385 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3386 if (sigfd < 0 && errno == EINVAL)
3387 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3388
3389 if (sigfd >= 0)
3390 {
3391 fd_intern (sigfd); /* doing it twice will not hurt */
3392
3393 sigemptyset (&sigfd_set);
3394
3395 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3396 ev_set_priority (&sigfd_w, EV_MAXPRI);
3397 ev_io_start (EV_A_ &sigfd_w);
3398 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3399 }
3400 }
3401
3402 if (sigfd >= 0)
3403 {
3404 /* TODO: check .head */
3405 sigaddset (&sigfd_set, w->signum);
3406 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3407
3408 signalfd (sigfd, &sigfd_set, 0);
3409 }
3410 #endif
3411
3412 ev_start (EV_A_ (W)w, 1);
3413 wlist_add (&signals [w->signum - 1].head, (WL)w);
3414
3415 if (!((WL)w)->next)
3416 # if EV_USE_SIGNALFD
3417 if (sigfd < 0) /*TODO*/
3418 # endif
3419 {
3420 # ifdef _WIN32
3421 evpipe_init (EV_A);
3422
3423 signal (w->signum, ev_sighandler);
3424 # else
3425 struct sigaction sa;
3426
3427 evpipe_init (EV_A);
3428
3429 sa.sa_handler = ev_sighandler;
3430 sigfillset (&sa.sa_mask);
3431 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3432 sigaction (w->signum, &sa, 0);
3433
3434 if (origflags & EVFLAG_NOSIGMASK)
3435 {
3436 sigemptyset (&sa.sa_mask);
3437 sigaddset (&sa.sa_mask, w->signum);
3438 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3439 }
3440 #endif
3441 }
3442
3443 EV_FREQUENT_CHECK;
3444 }
3445
3446 void noinline
3447 ev_signal_stop (EV_P_ ev_signal *w)
3448 {
3449 clear_pending (EV_A_ (W)w);
3450 if (expect_false (!ev_is_active (w)))
3451 return;
3452
3453 EV_FREQUENT_CHECK;
3454
3455 wlist_del (&signals [w->signum - 1].head, (WL)w);
3456 ev_stop (EV_A_ (W)w);
3457
3458 if (!signals [w->signum - 1].head)
3459 {
3460 #if EV_MULTIPLICITY
3461 signals [w->signum - 1].loop = 0; /* unattach from signal */
3462 #endif
3463 #if EV_USE_SIGNALFD
3464 if (sigfd >= 0)
3465 {
3466 sigset_t ss;
3467
3468 sigemptyset (&ss);
3469 sigaddset (&ss, w->signum);
3470 sigdelset (&sigfd_set, w->signum);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 sigprocmask (SIG_UNBLOCK, &ss, 0);
3474 }
3475 else
3476 #endif
3477 signal (w->signum, SIG_DFL);
3478 }
3479
3480 EV_FREQUENT_CHECK;
3481 }
3482
3483 #endif
3484
3485 #if EV_CHILD_ENABLE
3486
3487 void
3488 ev_child_start (EV_P_ ev_child *w)
3489 {
3490 #if EV_MULTIPLICITY
3491 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3492 #endif
3493 if (expect_false (ev_is_active (w)))
3494 return;
3495
3496 EV_FREQUENT_CHECK;
3497
3498 ev_start (EV_A_ (W)w, 1);
3499 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500
3501 EV_FREQUENT_CHECK;
3502 }
3503
3504 void
3505 ev_child_stop (EV_P_ ev_child *w)
3506 {
3507 clear_pending (EV_A_ (W)w);
3508 if (expect_false (!ev_is_active (w)))
3509 return;
3510
3511 EV_FREQUENT_CHECK;
3512
3513 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
3517 }
3518
3519 #endif
3520
3521 #if EV_STAT_ENABLE
3522
3523 # ifdef _WIN32
3524 # undef lstat
3525 # define lstat(a,b) _stati64 (a,b)
3526 # endif
3527
3528 #define DEF_STAT_INTERVAL 5.0074891
3529 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3530 #define MIN_STAT_INTERVAL 0.1074891
3531
3532 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3533
3534 #if EV_USE_INOTIFY
3535
3536 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3537 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3538
3539 static void noinline
3540 infy_add (EV_P_ ev_stat *w)
3541 {
3542 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3543
3544 if (w->wd >= 0)
3545 {
3546 struct statfs sfs;
3547
3548 /* now local changes will be tracked by inotify, but remote changes won't */
3549 /* unless the filesystem is known to be local, we therefore still poll */
3550 /* also do poll on <2.6.25, but with normal frequency */
3551
3552 if (!fs_2625)
3553 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3554 else if (!statfs (w->path, &sfs)
3555 && (sfs.f_type == 0x1373 /* devfs */
3556 || sfs.f_type == 0xEF53 /* ext2/3 */
3557 || sfs.f_type == 0x3153464a /* jfs */
3558 || sfs.f_type == 0x52654973 /* reiser3 */
3559 || sfs.f_type == 0x01021994 /* tempfs */
3560 || sfs.f_type == 0x58465342 /* xfs */))
3561 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3562 else
3563 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3564 }
3565 else
3566 {
3567 /* can't use inotify, continue to stat */
3568 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3569
3570 /* if path is not there, monitor some parent directory for speedup hints */
3571 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3572 /* but an efficiency issue only */
3573 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3574 {
3575 char path [4096];
3576 strcpy (path, w->path);
3577
3578 do
3579 {
3580 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3581 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3582
3583 char *pend = strrchr (path, '/');
3584
3585 if (!pend || pend == path)
3586 break;
3587
3588 *pend = 0;
3589 w->wd = inotify_add_watch (fs_fd, path, mask);
3590 }
3591 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3592 }
3593 }
3594
3595 if (w->wd >= 0)
3596 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3597
3598 /* now re-arm timer, if required */
3599 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3600 ev_timer_again (EV_A_ &w->timer);
3601 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3602 }
3603
3604 static void noinline
3605 infy_del (EV_P_ ev_stat *w)
3606 {
3607 int slot;
3608 int wd = w->wd;
3609
3610 if (wd < 0)
3611 return;
3612
3613 w->wd = -2;
3614 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3615 wlist_del (&fs_hash [slot].head, (WL)w);
3616
3617 /* remove this watcher, if others are watching it, they will rearm */
3618 inotify_rm_watch (fs_fd, wd);
3619 }
3620
3621 static void noinline
3622 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3623 {
3624 if (slot < 0)
3625 /* overflow, need to check for all hash slots */
3626 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3627 infy_wd (EV_A_ slot, wd, ev);
3628 else
3629 {
3630 WL w_;
3631
3632 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3633 {
3634 ev_stat *w = (ev_stat *)w_;
3635 w_ = w_->next; /* lets us remove this watcher and all before it */
3636
3637 if (w->wd == wd || wd == -1)
3638 {
3639 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3640 {
3641 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3642 w->wd = -1;
3643 infy_add (EV_A_ w); /* re-add, no matter what */
3644 }
3645
3646 stat_timer_cb (EV_A_ &w->timer, 0);
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 infy_cb (EV_P_ ev_io *w, int revents)
3654 {
3655 char buf [EV_INOTIFY_BUFSIZE];
3656 int ofs;
3657 int len = read (fs_fd, buf, sizeof (buf));
3658
3659 for (ofs = 0; ofs < len; )
3660 {
3661 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3662 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3663 ofs += sizeof (struct inotify_event) + ev->len;
3664 }
3665 }
3666
3667 inline_size void ecb_cold
3668 ev_check_2625 (EV_P)
3669 {
3670 /* kernels < 2.6.25 are borked
3671 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3672 */
3673 if (ev_linux_version () < 0x020619)
3674 return;
3675
3676 fs_2625 = 1;
3677 }
3678
3679 inline_size int
3680 infy_newfd (void)
3681 {
3682 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3683 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3684 if (fd >= 0)
3685 return fd;
3686 #endif
3687 return inotify_init ();
3688 }
3689
3690 inline_size void
3691 infy_init (EV_P)
3692 {
3693 if (fs_fd != -2)
3694 return;
3695
3696 fs_fd = -1;
3697
3698 ev_check_2625 (EV_A);
3699
3700 fs_fd = infy_newfd ();
3701
3702 if (fs_fd >= 0)
3703 {
3704 fd_intern (fs_fd);
3705 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3706 ev_set_priority (&fs_w, EV_MAXPRI);
3707 ev_io_start (EV_A_ &fs_w);
3708 ev_unref (EV_A);
3709 }
3710 }
3711
3712 inline_size void
3713 infy_fork (EV_P)
3714 {
3715 int slot;
3716
3717 if (fs_fd < 0)
3718 return;
3719
3720 ev_ref (EV_A);
3721 ev_io_stop (EV_A_ &fs_w);
3722 close (fs_fd);
3723 fs_fd = infy_newfd ();
3724
3725 if (fs_fd >= 0)
3726 {
3727 fd_intern (fs_fd);
3728 ev_io_set (&fs_w, fs_fd, EV_READ);
3729 ev_io_start (EV_A_ &fs_w);
3730 ev_unref (EV_A);
3731 }
3732
3733 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3734 {
3735 WL w_ = fs_hash [slot].head;
3736 fs_hash [slot].head = 0;
3737
3738 while (w_)
3739 {
3740 ev_stat *w = (ev_stat *)w_;
3741 w_ = w_->next; /* lets us add this watcher */
3742
3743 w->wd = -1;
3744
3745 if (fs_fd >= 0)
3746 infy_add (EV_A_ w); /* re-add, no matter what */
3747 else
3748 {
3749 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3750 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3751 ev_timer_again (EV_A_ &w->timer);
3752 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3753 }
3754 }
3755 }
3756 }
3757
3758 #endif
3759
3760 #ifdef _WIN32
3761 # define EV_LSTAT(p,b) _stati64 (p, b)
3762 #else
3763 # define EV_LSTAT(p,b) lstat (p, b)
3764 #endif
3765
3766 void
3767 ev_stat_stat (EV_P_ ev_stat *w)
3768 {
3769 if (lstat (w->path, &w->attr) < 0)
3770 w->attr.st_nlink = 0;
3771 else if (!w->attr.st_nlink)
3772 w->attr.st_nlink = 1;
3773 }
3774
3775 static void noinline
3776 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3777 {
3778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3779
3780 ev_statdata prev = w->attr;
3781 ev_stat_stat (EV_A_ w);
3782
3783 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3784 if (
3785 prev.st_dev != w->attr.st_dev
3786 || prev.st_ino != w->attr.st_ino
3787 || prev.st_mode != w->attr.st_mode
3788 || prev.st_nlink != w->attr.st_nlink
3789 || prev.st_uid != w->attr.st_uid
3790 || prev.st_gid != w->attr.st_gid
3791 || prev.st_rdev != w->attr.st_rdev
3792 || prev.st_size != w->attr.st_size
3793 || prev.st_atime != w->attr.st_atime
3794 || prev.st_mtime != w->attr.st_mtime
3795 || prev.st_ctime != w->attr.st_ctime
3796 ) {
3797 /* we only update w->prev on actual differences */
3798 /* in case we test more often than invoke the callback, */
3799 /* to ensure that prev is always different to attr */
3800 w->prev = prev;
3801
3802 #if EV_USE_INOTIFY
3803 if (fs_fd >= 0)
3804 {
3805 infy_del (EV_A_ w);
3806 infy_add (EV_A_ w);
3807 ev_stat_stat (EV_A_ w); /* avoid race... */
3808 }
3809 #endif
3810
3811 ev_feed_event (EV_A_ w, EV_STAT);
3812 }
3813 }
3814
3815 void
3816 ev_stat_start (EV_P_ ev_stat *w)
3817 {
3818 if (expect_false (ev_is_active (w)))
3819 return;
3820
3821 ev_stat_stat (EV_A_ w);
3822
3823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3824 w->interval = MIN_STAT_INTERVAL;
3825
3826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3827 ev_set_priority (&w->timer, ev_priority (w));
3828
3829 #if EV_USE_INOTIFY
3830 infy_init (EV_A);
3831
3832 if (fs_fd >= 0)
3833 infy_add (EV_A_ w);
3834 else
3835 #endif
3836 {
3837 ev_timer_again (EV_A_ &w->timer);
3838 ev_unref (EV_A);
3839 }
3840
3841 ev_start (EV_A_ (W)w, 1);
3842
3843 EV_FREQUENT_CHECK;
3844 }
3845
3846 void
3847 ev_stat_stop (EV_P_ ev_stat *w)
3848 {
3849 clear_pending (EV_A_ (W)w);
3850 if (expect_false (!ev_is_active (w)))
3851 return;
3852
3853 EV_FREQUENT_CHECK;
3854
3855 #if EV_USE_INOTIFY
3856 infy_del (EV_A_ w);
3857 #endif
3858
3859 if (ev_is_active (&w->timer))
3860 {
3861 ev_ref (EV_A);
3862 ev_timer_stop (EV_A_ &w->timer);
3863 }
3864
3865 ev_stop (EV_A_ (W)w);
3866
3867 EV_FREQUENT_CHECK;
3868 }
3869 #endif
3870
3871 #if EV_IDLE_ENABLE
3872 void
3873 ev_idle_start (EV_P_ ev_idle *w)
3874 {
3875 if (expect_false (ev_is_active (w)))
3876 return;
3877
3878 pri_adjust (EV_A_ (W)w);
3879
3880 EV_FREQUENT_CHECK;
3881
3882 {
3883 int active = ++idlecnt [ABSPRI (w)];
3884
3885 ++idleall;
3886 ev_start (EV_A_ (W)w, active);
3887
3888 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3889 idles [ABSPRI (w)][active - 1] = w;
3890 }
3891
3892 EV_FREQUENT_CHECK;
3893 }
3894
3895 void
3896 ev_idle_stop (EV_P_ ev_idle *w)
3897 {
3898 clear_pending (EV_A_ (W)w);
3899 if (expect_false (!ev_is_active (w)))
3900 return;
3901
3902 EV_FREQUENT_CHECK;
3903
3904 {
3905 int active = ev_active (w);
3906
3907 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3908 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3909
3910 ev_stop (EV_A_ (W)w);
3911 --idleall;
3912 }
3913
3914 EV_FREQUENT_CHECK;
3915 }
3916 #endif
3917
3918 #if EV_PREPARE_ENABLE
3919 void
3920 ev_prepare_start (EV_P_ ev_prepare *w)
3921 {
3922 if (expect_false (ev_is_active (w)))
3923 return;
3924
3925 EV_FREQUENT_CHECK;
3926
3927 ev_start (EV_A_ (W)w, ++preparecnt);
3928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3929 prepares [preparecnt - 1] = w;
3930
3931 EV_FREQUENT_CHECK;
3932 }
3933
3934 void
3935 ev_prepare_stop (EV_P_ ev_prepare *w)
3936 {
3937 clear_pending (EV_A_ (W)w);
3938 if (expect_false (!ev_is_active (w)))
3939 return;
3940
3941 EV_FREQUENT_CHECK;
3942
3943 {
3944 int active = ev_active (w);
3945
3946 prepares [active - 1] = prepares [--preparecnt];
3947 ev_active (prepares [active - 1]) = active;
3948 }
3949
3950 ev_stop (EV_A_ (W)w);
3951
3952 EV_FREQUENT_CHECK;
3953 }
3954 #endif
3955
3956 #if EV_CHECK_ENABLE
3957 void
3958 ev_check_start (EV_P_ ev_check *w)
3959 {
3960 if (expect_false (ev_is_active (w)))
3961 return;
3962
3963 EV_FREQUENT_CHECK;
3964
3965 ev_start (EV_A_ (W)w, ++checkcnt);
3966 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3967 checks [checkcnt - 1] = w;
3968
3969 EV_FREQUENT_CHECK;
3970 }
3971
3972 void
3973 ev_check_stop (EV_P_ ev_check *w)
3974 {
3975 clear_pending (EV_A_ (W)w);
3976 if (expect_false (!ev_is_active (w)))
3977 return;
3978
3979 EV_FREQUENT_CHECK;
3980
3981 {
3982 int active = ev_active (w);
3983
3984 checks [active - 1] = checks [--checkcnt];
3985 ev_active (checks [active - 1]) = active;
3986 }
3987
3988 ev_stop (EV_A_ (W)w);
3989
3990 EV_FREQUENT_CHECK;
3991 }
3992 #endif
3993
3994 #if EV_EMBED_ENABLE
3995 void noinline
3996 ev_embed_sweep (EV_P_ ev_embed *w)
3997 {
3998 ev_run (w->other, EVRUN_NOWAIT);
3999 }
4000
4001 static void
4002 embed_io_cb (EV_P_ ev_io *io, int revents)
4003 {
4004 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4005
4006 if (ev_cb (w))
4007 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4008 else
4009 ev_run (w->other, EVRUN_NOWAIT);
4010 }
4011
4012 static void
4013 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4014 {
4015 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4016
4017 {
4018 EV_P = w->other;
4019
4020 while (fdchangecnt)
4021 {
4022 fd_reify (EV_A);
4023 ev_run (EV_A_ EVRUN_NOWAIT);
4024 }
4025 }
4026 }
4027
4028 static void
4029 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4030 {
4031 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4032
4033 ev_embed_stop (EV_A_ w);
4034
4035 {
4036 EV_P = w->other;
4037
4038 ev_loop_fork (EV_A);
4039 ev_run (EV_A_ EVRUN_NOWAIT);
4040 }
4041
4042 ev_embed_start (EV_A_ w);
4043 }
4044
4045 #if 0
4046 static void
4047 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4048 {
4049 ev_idle_stop (EV_A_ idle);
4050 }
4051 #endif
4052
4053 void
4054 ev_embed_start (EV_P_ ev_embed *w)
4055 {
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 {
4060 EV_P = w->other;
4061 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4062 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4063 }
4064
4065 EV_FREQUENT_CHECK;
4066
4067 ev_set_priority (&w->io, ev_priority (w));
4068 ev_io_start (EV_A_ &w->io);
4069
4070 ev_prepare_init (&w->prepare, embed_prepare_cb);
4071 ev_set_priority (&w->prepare, EV_MINPRI);
4072 ev_prepare_start (EV_A_ &w->prepare);
4073
4074 ev_fork_init (&w->fork, embed_fork_cb);
4075 ev_fork_start (EV_A_ &w->fork);
4076
4077 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4078
4079 ev_start (EV_A_ (W)w, 1);
4080
4081 EV_FREQUENT_CHECK;
4082 }
4083
4084 void
4085 ev_embed_stop (EV_P_ ev_embed *w)
4086 {
4087 clear_pending (EV_A_ (W)w);
4088 if (expect_false (!ev_is_active (w)))
4089 return;
4090
4091 EV_FREQUENT_CHECK;
4092
4093 ev_io_stop (EV_A_ &w->io);
4094 ev_prepare_stop (EV_A_ &w->prepare);
4095 ev_fork_stop (EV_A_ &w->fork);
4096
4097 ev_stop (EV_A_ (W)w);
4098
4099 EV_FREQUENT_CHECK;
4100 }
4101 #endif
4102
4103 #if EV_FORK_ENABLE
4104 void
4105 ev_fork_start (EV_P_ ev_fork *w)
4106 {
4107 if (expect_false (ev_is_active (w)))
4108 return;
4109
4110 EV_FREQUENT_CHECK;
4111
4112 ev_start (EV_A_ (W)w, ++forkcnt);
4113 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4114 forks [forkcnt - 1] = w;
4115
4116 EV_FREQUENT_CHECK;
4117 }
4118
4119 void
4120 ev_fork_stop (EV_P_ ev_fork *w)
4121 {
4122 clear_pending (EV_A_ (W)w);
4123 if (expect_false (!ev_is_active (w)))
4124 return;
4125
4126 EV_FREQUENT_CHECK;
4127
4128 {
4129 int active = ev_active (w);
4130
4131 forks [active - 1] = forks [--forkcnt];
4132 ev_active (forks [active - 1]) = active;
4133 }
4134
4135 ev_stop (EV_A_ (W)w);
4136
4137 EV_FREQUENT_CHECK;
4138 }
4139 #endif
4140
4141 #if EV_CLEANUP_ENABLE
4142 void
4143 ev_cleanup_start (EV_P_ ev_cleanup *w)
4144 {
4145 if (expect_false (ev_is_active (w)))
4146 return;
4147
4148 EV_FREQUENT_CHECK;
4149
4150 ev_start (EV_A_ (W)w, ++cleanupcnt);
4151 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4152 cleanups [cleanupcnt - 1] = w;
4153
4154 /* cleanup watchers should never keep a refcount on the loop */
4155 ev_unref (EV_A);
4156 EV_FREQUENT_CHECK;
4157 }
4158
4159 void
4160 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4161 {
4162 clear_pending (EV_A_ (W)w);
4163 if (expect_false (!ev_is_active (w)))
4164 return;
4165
4166 EV_FREQUENT_CHECK;
4167 ev_ref (EV_A);
4168
4169 {
4170 int active = ev_active (w);
4171
4172 cleanups [active - 1] = cleanups [--cleanupcnt];
4173 ev_active (cleanups [active - 1]) = active;
4174 }
4175
4176 ev_stop (EV_A_ (W)w);
4177
4178 EV_FREQUENT_CHECK;
4179 }
4180 #endif
4181
4182 #if EV_ASYNC_ENABLE
4183 void
4184 ev_async_start (EV_P_ ev_async *w)
4185 {
4186 if (expect_false (ev_is_active (w)))
4187 return;
4188
4189 w->sent = 0;
4190
4191 evpipe_init (EV_A);
4192
4193 EV_FREQUENT_CHECK;
4194
4195 ev_start (EV_A_ (W)w, ++asynccnt);
4196 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4197 asyncs [asynccnt - 1] = w;
4198
4199 EV_FREQUENT_CHECK;
4200 }
4201
4202 void
4203 ev_async_stop (EV_P_ ev_async *w)
4204 {
4205 clear_pending (EV_A_ (W)w);
4206 if (expect_false (!ev_is_active (w)))
4207 return;
4208
4209 EV_FREQUENT_CHECK;
4210
4211 {
4212 int active = ev_active (w);
4213
4214 asyncs [active - 1] = asyncs [--asynccnt];
4215 ev_active (asyncs [active - 1]) = active;
4216 }
4217
4218 ev_stop (EV_A_ (W)w);
4219
4220 EV_FREQUENT_CHECK;
4221 }
4222
4223 void
4224 ev_async_send (EV_P_ ev_async *w)
4225 {
4226 w->sent = 1;
4227 evpipe_write (EV_A_ &async_pending);
4228 }
4229 #endif
4230
4231 /*****************************************************************************/
4232
4233 struct ev_once
4234 {
4235 ev_io io;
4236 ev_timer to;
4237 void (*cb)(int revents, void *arg);
4238 void *arg;
4239 };
4240
4241 static void
4242 once_cb (EV_P_ struct ev_once *once, int revents)
4243 {
4244 void (*cb)(int revents, void *arg) = once->cb;
4245 void *arg = once->arg;
4246
4247 ev_io_stop (EV_A_ &once->io);
4248 ev_timer_stop (EV_A_ &once->to);
4249 ev_free (once);
4250
4251 cb (revents, arg);
4252 }
4253
4254 static void
4255 once_cb_io (EV_P_ ev_io *w, int revents)
4256 {
4257 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4258
4259 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4260 }
4261
4262 static void
4263 once_cb_to (EV_P_ ev_timer *w, int revents)
4264 {
4265 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4266
4267 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4268 }
4269
4270 void
4271 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4272 {
4273 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4274
4275 if (expect_false (!once))
4276 {
4277 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4278 return;
4279 }
4280
4281 once->cb = cb;
4282 once->arg = arg;
4283
4284 ev_init (&once->io, once_cb_io);
4285 if (fd >= 0)
4286 {
4287 ev_io_set (&once->io, fd, events);
4288 ev_io_start (EV_A_ &once->io);
4289 }
4290
4291 ev_init (&once->to, once_cb_to);
4292 if (timeout >= 0.)
4293 {
4294 ev_timer_set (&once->to, timeout, 0.);
4295 ev_timer_start (EV_A_ &once->to);
4296 }
4297 }
4298
4299 /*****************************************************************************/
4300
4301 #if EV_WALK_ENABLE
4302 void ecb_cold
4303 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4304 {
4305 int i, j;
4306 ev_watcher_list *wl, *wn;
4307
4308 if (types & (EV_IO | EV_EMBED))
4309 for (i = 0; i < anfdmax; ++i)
4310 for (wl = anfds [i].head; wl; )
4311 {
4312 wn = wl->next;
4313
4314 #if EV_EMBED_ENABLE
4315 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4316 {
4317 if (types & EV_EMBED)
4318 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4319 }
4320 else
4321 #endif
4322 #if EV_USE_INOTIFY
4323 if (ev_cb ((ev_io *)wl) == infy_cb)
4324 ;
4325 else
4326 #endif
4327 if ((ev_io *)wl != &pipe_w)
4328 if (types & EV_IO)
4329 cb (EV_A_ EV_IO, wl);
4330
4331 wl = wn;
4332 }
4333
4334 if (types & (EV_TIMER | EV_STAT))
4335 for (i = timercnt + HEAP0; i-- > HEAP0; )
4336 #if EV_STAT_ENABLE
4337 /*TODO: timer is not always active*/
4338 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4339 {
4340 if (types & EV_STAT)
4341 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4342 }
4343 else
4344 #endif
4345 if (types & EV_TIMER)
4346 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4347
4348 #if EV_PERIODIC_ENABLE
4349 if (types & EV_PERIODIC)
4350 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4351 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4352 #endif
4353
4354 #if EV_IDLE_ENABLE
4355 if (types & EV_IDLE)
4356 for (j = NUMPRI; j--; )
4357 for (i = idlecnt [j]; i--; )
4358 cb (EV_A_ EV_IDLE, idles [j][i]);
4359 #endif
4360
4361 #if EV_FORK_ENABLE
4362 if (types & EV_FORK)
4363 for (i = forkcnt; i--; )
4364 if (ev_cb (forks [i]) != embed_fork_cb)
4365 cb (EV_A_ EV_FORK, forks [i]);
4366 #endif
4367
4368 #if EV_ASYNC_ENABLE
4369 if (types & EV_ASYNC)
4370 for (i = asynccnt; i--; )
4371 cb (EV_A_ EV_ASYNC, asyncs [i]);
4372 #endif
4373
4374 #if EV_PREPARE_ENABLE
4375 if (types & EV_PREPARE)
4376 for (i = preparecnt; i--; )
4377 # if EV_EMBED_ENABLE
4378 if (ev_cb (prepares [i]) != embed_prepare_cb)
4379 # endif
4380 cb (EV_A_ EV_PREPARE, prepares [i]);
4381 #endif
4382
4383 #if EV_CHECK_ENABLE
4384 if (types & EV_CHECK)
4385 for (i = checkcnt; i--; )
4386 cb (EV_A_ EV_CHECK, checks [i]);
4387 #endif
4388
4389 #if EV_SIGNAL_ENABLE
4390 if (types & EV_SIGNAL)
4391 for (i = 0; i < EV_NSIG - 1; ++i)
4392 for (wl = signals [i].head; wl; )
4393 {
4394 wn = wl->next;
4395 cb (EV_A_ EV_SIGNAL, wl);
4396 wl = wn;
4397 }
4398 #endif
4399
4400 #if EV_CHILD_ENABLE
4401 if (types & EV_CHILD)
4402 for (i = (EV_PID_HASHSIZE); i--; )
4403 for (wl = childs [i]; wl; )
4404 {
4405 wn = wl->next;
4406 cb (EV_A_ EV_CHILD, wl);
4407 wl = wn;
4408 }
4409 #endif
4410 /* EV_STAT 0x00001000 /* stat data changed */
4411 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4412 }
4413 #endif
4414
4415 #if EV_MULTIPLICITY
4416 #include "ev_wrap.h"
4417 #endif
4418