ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.415
Committed: Fri Mar 30 17:43:55 2012 UTC (12 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.414: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # ifndef EV_SELECT_IS_WINSOCKET
208 # define EV_SELECT_IS_WINSOCKET 1
209 # endif
210 # undef EV_AVOID_STDIO
211 #endif
212
213 /* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219 #define _DARWIN_UNLIMITED_SELECT 1
220
221 /* this block tries to deduce configuration from header-defined symbols and defaults */
222
223 /* try to deduce the maximum number of signals on this platform */
224 #if defined (EV_NSIG)
225 /* use what's provided */
226 #elif defined (NSIG)
227 # define EV_NSIG (NSIG)
228 #elif defined(_NSIG)
229 # define EV_NSIG (_NSIG)
230 #elif defined (SIGMAX)
231 # define EV_NSIG (SIGMAX+1)
232 #elif defined (SIG_MAX)
233 # define EV_NSIG (SIG_MAX+1)
234 #elif defined (_SIG_MAX)
235 # define EV_NSIG (_SIG_MAX+1)
236 #elif defined (MAXSIG)
237 # define EV_NSIG (MAXSIG+1)
238 #elif defined (MAX_SIG)
239 # define EV_NSIG (MAX_SIG+1)
240 #elif defined (SIGARRAYSIZE)
241 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 #elif defined (_sys_nsig)
243 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244 #else
245 # error "unable to find value for NSIG, please report"
246 /* to make it compile regardless, just remove the above line, */
247 /* but consider reporting it, too! :) */
248 # define EV_NSIG 65
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ >= 2
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #ifndef EV_USE_MONOTONIC
264 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 # else
267 # define EV_USE_MONOTONIC 0
268 # endif
269 #endif
270
271 #ifndef EV_USE_REALTIME
272 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 #endif
274
275 #ifndef EV_USE_NANOSLEEP
276 # if _POSIX_C_SOURCE >= 199309L
277 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 # else
279 # define EV_USE_NANOSLEEP 0
280 # endif
281 #endif
282
283 #ifndef EV_USE_SELECT
284 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 #endif
286
287 #ifndef EV_USE_POLL
288 # ifdef _WIN32
289 # define EV_USE_POLL 0
290 # else
291 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 # endif
293 #endif
294
295 #ifndef EV_USE_EPOLL
296 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 # else
299 # define EV_USE_EPOLL 0
300 # endif
301 #endif
302
303 #ifndef EV_USE_KQUEUE
304 # define EV_USE_KQUEUE 0
305 #endif
306
307 #ifndef EV_USE_PORT
308 # define EV_USE_PORT 0
309 #endif
310
311 #ifndef EV_USE_INOTIFY
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 # define EV_USE_INOTIFY EV_FEATURE_OS
314 # else
315 # define EV_USE_INOTIFY 0
316 # endif
317 #endif
318
319 #ifndef EV_PID_HASHSIZE
320 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 #endif
322
323 #ifndef EV_INOTIFY_HASHSIZE
324 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 #endif
326
327 #ifndef EV_USE_EVENTFD
328 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 # define EV_USE_EVENTFD EV_FEATURE_OS
330 # else
331 # define EV_USE_EVENTFD 0
332 # endif
333 #endif
334
335 #ifndef EV_USE_SIGNALFD
336 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 # else
339 # define EV_USE_SIGNALFD 0
340 # endif
341 #endif
342
343 #if 0 /* debugging */
344 # define EV_VERIFY 3
345 # define EV_USE_4HEAP 1
346 # define EV_HEAP_CACHE_AT 1
347 #endif
348
349 #ifndef EV_VERIFY
350 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 #endif
352
353 #ifndef EV_USE_4HEAP
354 # define EV_USE_4HEAP EV_FEATURE_DATA
355 #endif
356
357 #ifndef EV_HEAP_CACHE_AT
358 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 #endif
360
361 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362 /* which makes programs even slower. might work on other unices, too. */
363 #if EV_USE_CLOCK_SYSCALL
364 # include <syscall.h>
365 # ifdef SYS_clock_gettime
366 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367 # undef EV_USE_MONOTONIC
368 # define EV_USE_MONOTONIC 1
369 # else
370 # undef EV_USE_CLOCK_SYSCALL
371 # define EV_USE_CLOCK_SYSCALL 0
372 # endif
373 #endif
374
375 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377 #ifdef _AIX
378 /* AIX has a completely broken poll.h header */
379 # undef EV_USE_POLL
380 # define EV_USE_POLL 0
381 #endif
382
383 #ifndef CLOCK_MONOTONIC
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 0
386 #endif
387
388 #ifndef CLOCK_REALTIME
389 # undef EV_USE_REALTIME
390 # define EV_USE_REALTIME 0
391 #endif
392
393 #if !EV_STAT_ENABLE
394 # undef EV_USE_INOTIFY
395 # define EV_USE_INOTIFY 0
396 #endif
397
398 #if !EV_USE_NANOSLEEP
399 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 # if !defined(_WIN32) && !defined(__hpux)
401 # include <sys/select.h>
402 # endif
403 #endif
404
405 #if EV_USE_INOTIFY
406 # include <sys/statfs.h>
407 # include <sys/inotify.h>
408 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409 # ifndef IN_DONT_FOLLOW
410 # undef EV_USE_INOTIFY
411 # define EV_USE_INOTIFY 0
412 # endif
413 #endif
414
415 #if EV_SELECT_IS_WINSOCKET
416 # include <winsock.h>
417 #endif
418
419 #if EV_USE_EVENTFD
420 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 # include <stdint.h>
422 # ifndef EFD_NONBLOCK
423 # define EFD_NONBLOCK O_NONBLOCK
424 # endif
425 # ifndef EFD_CLOEXEC
426 # ifdef O_CLOEXEC
427 # define EFD_CLOEXEC O_CLOEXEC
428 # else
429 # define EFD_CLOEXEC 02000000
430 # endif
431 # endif
432 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 #endif
434
435 #if EV_USE_SIGNALFD
436 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437 # include <stdint.h>
438 # ifndef SFD_NONBLOCK
439 # define SFD_NONBLOCK O_NONBLOCK
440 # endif
441 # ifndef SFD_CLOEXEC
442 # ifdef O_CLOEXEC
443 # define SFD_CLOEXEC O_CLOEXEC
444 # else
445 # define SFD_CLOEXEC 02000000
446 # endif
447 # endif
448 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450 struct signalfd_siginfo
451 {
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454 };
455 #endif
456
457 /**/
458
459 #if EV_VERIFY >= 3
460 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 #else
462 # define EV_FREQUENT_CHECK do { } while (0)
463 #endif
464
465 /*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479 /* ECB.H BEGIN */
480 /*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509 #ifndef ECB_H
510 #define ECB_H
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #else
527 #include <inttypes.h>
528 #endif
529
530 /* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537 #ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543 #endif
544
545 /*****************************************************************************/
546
547 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550 #if ECB_NO_THREADS
551 # define ECB_NO_SMP 1
552 #endif
553
554 #if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556 #endif
557
558 #ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586 #endif
587
588 #ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #elif __xlC__
607 #define ECB_MEMORY_FENCE __sync ()
608 #endif
609 #endif
610
611 #ifndef ECB_MEMORY_FENCE
612 #if !ECB_AVOID_PTHREADS
613 /*
614 * if you get undefined symbol references to pthread_mutex_lock,
615 * or failure to find pthread.h, then you should implement
616 * the ECB_MEMORY_FENCE operations for your cpu/compiler
617 * OR provide pthread.h and link against the posix thread library
618 * of your system.
619 */
620 #include <pthread.h>
621 #define ECB_NEEDS_PTHREADS 1
622 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
623
624 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
625 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
626 #endif
627 #endif
628
629 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
631 #endif
632
633 #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
634 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
635 #endif
636
637 /*****************************************************************************/
638
639 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
640
641 #if __cplusplus
642 #define ecb_inline static inline
643 #elif ECB_GCC_VERSION(2,5)
644 #define ecb_inline static __inline__
645 #elif ECB_C99
646 #define ecb_inline static inline
647 #else
648 #define ecb_inline static
649 #endif
650
651 #if ECB_GCC_VERSION(3,3)
652 #define ecb_restrict __restrict__
653 #elif ECB_C99
654 #define ecb_restrict restrict
655 #else
656 #define ecb_restrict
657 #endif
658
659 typedef int ecb_bool;
660
661 #define ECB_CONCAT_(a, b) a ## b
662 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
663 #define ECB_STRINGIFY_(a) # a
664 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
665
666 #define ecb_function_ ecb_inline
667
668 #if ECB_GCC_VERSION(3,1)
669 #define ecb_attribute(attrlist) __attribute__(attrlist)
670 #define ecb_is_constant(expr) __builtin_constant_p (expr)
671 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
672 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
673 #else
674 #define ecb_attribute(attrlist)
675 #define ecb_is_constant(expr) 0
676 #define ecb_expect(expr,value) (expr)
677 #define ecb_prefetch(addr,rw,locality)
678 #endif
679
680 /* no emulation for ecb_decltype */
681 #if ECB_GCC_VERSION(4,5)
682 #define ecb_decltype(x) __decltype(x)
683 #elif ECB_GCC_VERSION(3,0)
684 #define ecb_decltype(x) __typeof(x)
685 #endif
686
687 #define ecb_noinline ecb_attribute ((__noinline__))
688 #define ecb_noreturn ecb_attribute ((__noreturn__))
689 #define ecb_unused ecb_attribute ((__unused__))
690 #define ecb_const ecb_attribute ((__const__))
691 #define ecb_pure ecb_attribute ((__pure__))
692
693 #if ECB_GCC_VERSION(4,3)
694 #define ecb_artificial ecb_attribute ((__artificial__))
695 #define ecb_hot ecb_attribute ((__hot__))
696 #define ecb_cold ecb_attribute ((__cold__))
697 #else
698 #define ecb_artificial
699 #define ecb_hot
700 #define ecb_cold
701 #endif
702
703 /* put around conditional expressions if you are very sure that the */
704 /* expression is mostly true or mostly false. note that these return */
705 /* booleans, not the expression. */
706 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
707 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
708 /* for compatibility to the rest of the world */
709 #define ecb_likely(expr) ecb_expect_true (expr)
710 #define ecb_unlikely(expr) ecb_expect_false (expr)
711
712 /* count trailing zero bits and count # of one bits */
713 #if ECB_GCC_VERSION(3,4)
714 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
715 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
716 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
717 #define ecb_ctz32(x) __builtin_ctz (x)
718 #define ecb_ctz64(x) __builtin_ctzll (x)
719 #define ecb_popcount32(x) __builtin_popcount (x)
720 /* no popcountll */
721 #else
722 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
723 ecb_function_ int
724 ecb_ctz32 (uint32_t x)
725 {
726 int r = 0;
727
728 x &= ~x + 1; /* this isolates the lowest bit */
729
730 #if ECB_branchless_on_i386
731 r += !!(x & 0xaaaaaaaa) << 0;
732 r += !!(x & 0xcccccccc) << 1;
733 r += !!(x & 0xf0f0f0f0) << 2;
734 r += !!(x & 0xff00ff00) << 3;
735 r += !!(x & 0xffff0000) << 4;
736 #else
737 if (x & 0xaaaaaaaa) r += 1;
738 if (x & 0xcccccccc) r += 2;
739 if (x & 0xf0f0f0f0) r += 4;
740 if (x & 0xff00ff00) r += 8;
741 if (x & 0xffff0000) r += 16;
742 #endif
743
744 return r;
745 }
746
747 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
748 ecb_function_ int
749 ecb_ctz64 (uint64_t x)
750 {
751 int shift = x & 0xffffffffU ? 0 : 32;
752 return ecb_ctz32 (x >> shift) + shift;
753 }
754
755 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
756 ecb_function_ int
757 ecb_popcount32 (uint32_t x)
758 {
759 x -= (x >> 1) & 0x55555555;
760 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
761 x = ((x >> 4) + x) & 0x0f0f0f0f;
762 x *= 0x01010101;
763
764 return x >> 24;
765 }
766
767 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
768 ecb_function_ int ecb_ld32 (uint32_t x)
769 {
770 int r = 0;
771
772 if (x >> 16) { x >>= 16; r += 16; }
773 if (x >> 8) { x >>= 8; r += 8; }
774 if (x >> 4) { x >>= 4; r += 4; }
775 if (x >> 2) { x >>= 2; r += 2; }
776 if (x >> 1) { r += 1; }
777
778 return r;
779 }
780
781 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
782 ecb_function_ int ecb_ld64 (uint64_t x)
783 {
784 int r = 0;
785
786 if (x >> 32) { x >>= 32; r += 32; }
787
788 return r + ecb_ld32 (x);
789 }
790 #endif
791
792 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
793 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
794 {
795 return ( (x * 0x0802U & 0x22110U)
796 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
797 }
798
799 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
800 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
801 {
802 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
803 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
804 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
805 x = ( x >> 8 ) | ( x << 8);
806
807 return x;
808 }
809
810 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
811 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
812 {
813 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
814 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
815 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
816 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
817 x = ( x >> 16 ) | ( x << 16);
818
819 return x;
820 }
821
822 /* popcount64 is only available on 64 bit cpus as gcc builtin */
823 /* so for this version we are lazy */
824 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
825 ecb_function_ int
826 ecb_popcount64 (uint64_t x)
827 {
828 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
829 }
830
831 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
832 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
833 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
834 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
835 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
836 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
837 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
838 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
839
840 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
841 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
842 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
843 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
844 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
845 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
846 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
847 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
848
849 #if ECB_GCC_VERSION(4,3)
850 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
851 #define ecb_bswap32(x) __builtin_bswap32 (x)
852 #define ecb_bswap64(x) __builtin_bswap64 (x)
853 #else
854 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t
856 ecb_bswap16 (uint16_t x)
857 {
858 return ecb_rotl16 (x, 8);
859 }
860
861 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
862 ecb_function_ uint32_t
863 ecb_bswap32 (uint32_t x)
864 {
865 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
866 }
867
868 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
869 ecb_function_ uint64_t
870 ecb_bswap64 (uint64_t x)
871 {
872 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
873 }
874 #endif
875
876 #if ECB_GCC_VERSION(4,5)
877 #define ecb_unreachable() __builtin_unreachable ()
878 #else
879 /* this seems to work fine, but gcc always emits a warning for it :/ */
880 ecb_inline void ecb_unreachable (void) ecb_noreturn;
881 ecb_inline void ecb_unreachable (void) { }
882 #endif
883
884 /* try to tell the compiler that some condition is definitely true */
885 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
886
887 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
888 ecb_inline unsigned char
889 ecb_byteorder_helper (void)
890 {
891 const uint32_t u = 0x11223344;
892 return *(unsigned char *)&u;
893 }
894
895 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
896 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
897 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
898 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
899
900 #if ECB_GCC_VERSION(3,0) || ECB_C99
901 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
902 #else
903 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
904 #endif
905
906 #if __cplusplus
907 template<typename T>
908 static inline T ecb_div_rd (T val, T div)
909 {
910 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
911 }
912 template<typename T>
913 static inline T ecb_div_ru (T val, T div)
914 {
915 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
916 }
917 #else
918 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
919 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
920 #endif
921
922 #if ecb_cplusplus_does_not_suck
923 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
924 template<typename T, int N>
925 static inline int ecb_array_length (const T (&arr)[N])
926 {
927 return N;
928 }
929 #else
930 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
931 #endif
932
933 #endif
934
935 /* ECB.H END */
936
937 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
938 /* if your architecture doesn't need memory fences, e.g. because it is
939 * single-cpu/core, or if you use libev in a project that doesn't use libev
940 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
941 * libev, in which cases the memory fences become nops.
942 * alternatively, you can remove this #error and link against libpthread,
943 * which will then provide the memory fences.
944 */
945 # error "memory fences not defined for your architecture, please report"
946 #endif
947
948 #ifndef ECB_MEMORY_FENCE
949 # define ECB_MEMORY_FENCE do { } while (0)
950 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
951 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
952 #endif
953
954 #define expect_false(cond) ecb_expect_false (cond)
955 #define expect_true(cond) ecb_expect_true (cond)
956 #define noinline ecb_noinline
957
958 #define inline_size ecb_inline
959
960 #if EV_FEATURE_CODE
961 # define inline_speed ecb_inline
962 #else
963 # define inline_speed static noinline
964 #endif
965
966 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
967
968 #if EV_MINPRI == EV_MAXPRI
969 # define ABSPRI(w) (((W)w), 0)
970 #else
971 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
972 #endif
973
974 #define EMPTY /* required for microsofts broken pseudo-c compiler */
975 #define EMPTY2(a,b) /* used to suppress some warnings */
976
977 typedef ev_watcher *W;
978 typedef ev_watcher_list *WL;
979 typedef ev_watcher_time *WT;
980
981 #define ev_active(w) ((W)(w))->active
982 #define ev_at(w) ((WT)(w))->at
983
984 #if EV_USE_REALTIME
985 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
986 /* giving it a reasonably high chance of working on typical architectures */
987 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
988 #endif
989
990 #if EV_USE_MONOTONIC
991 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
992 #endif
993
994 #ifndef EV_FD_TO_WIN32_HANDLE
995 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
996 #endif
997 #ifndef EV_WIN32_HANDLE_TO_FD
998 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
999 #endif
1000 #ifndef EV_WIN32_CLOSE_FD
1001 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1002 #endif
1003
1004 #ifdef _WIN32
1005 # include "ev_win32.c"
1006 #endif
1007
1008 /*****************************************************************************/
1009
1010 /* define a suitable floor function (only used by periodics atm) */
1011
1012 #if EV_USE_FLOOR
1013 # include <math.h>
1014 # define ev_floor(v) floor (v)
1015 #else
1016
1017 #include <float.h>
1018
1019 /* a floor() replacement function, should be independent of ev_tstamp type */
1020 static ev_tstamp noinline
1021 ev_floor (ev_tstamp v)
1022 {
1023 /* the choice of shift factor is not terribly important */
1024 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1026 #else
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1028 #endif
1029
1030 /* argument too large for an unsigned long? */
1031 if (expect_false (v >= shift))
1032 {
1033 ev_tstamp f;
1034
1035 if (v == v - 1.)
1036 return v; /* very large number */
1037
1038 f = shift * ev_floor (v * (1. / shift));
1039 return f + ev_floor (v - f);
1040 }
1041
1042 /* special treatment for negative args? */
1043 if (expect_false (v < 0.))
1044 {
1045 ev_tstamp f = -ev_floor (-v);
1046
1047 return f - (f == v ? 0 : 1);
1048 }
1049
1050 /* fits into an unsigned long */
1051 return (unsigned long)v;
1052 }
1053
1054 #endif
1055
1056 /*****************************************************************************/
1057
1058 #ifdef __linux
1059 # include <sys/utsname.h>
1060 #endif
1061
1062 static unsigned int noinline ecb_cold
1063 ev_linux_version (void)
1064 {
1065 #ifdef __linux
1066 unsigned int v = 0;
1067 struct utsname buf;
1068 int i;
1069 char *p = buf.release;
1070
1071 if (uname (&buf))
1072 return 0;
1073
1074 for (i = 3+1; --i; )
1075 {
1076 unsigned int c = 0;
1077
1078 for (;;)
1079 {
1080 if (*p >= '0' && *p <= '9')
1081 c = c * 10 + *p++ - '0';
1082 else
1083 {
1084 p += *p == '.';
1085 break;
1086 }
1087 }
1088
1089 v = (v << 8) | c;
1090 }
1091
1092 return v;
1093 #else
1094 return 0;
1095 #endif
1096 }
1097
1098 /*****************************************************************************/
1099
1100 #if EV_AVOID_STDIO
1101 static void noinline ecb_cold
1102 ev_printerr (const char *msg)
1103 {
1104 write (STDERR_FILENO, msg, strlen (msg));
1105 }
1106 #endif
1107
1108 static void (*syserr_cb)(const char *msg);
1109
1110 void ecb_cold
1111 ev_set_syserr_cb (void (*cb)(const char *msg))
1112 {
1113 syserr_cb = cb;
1114 }
1115
1116 static void noinline ecb_cold
1117 ev_syserr (const char *msg)
1118 {
1119 if (!msg)
1120 msg = "(libev) system error";
1121
1122 if (syserr_cb)
1123 syserr_cb (msg);
1124 else
1125 {
1126 #if EV_AVOID_STDIO
1127 ev_printerr (msg);
1128 ev_printerr (": ");
1129 ev_printerr (strerror (errno));
1130 ev_printerr ("\n");
1131 #else
1132 perror (msg);
1133 #endif
1134 abort ();
1135 }
1136 }
1137
1138 static void *
1139 ev_realloc_emul (void *ptr, long size)
1140 {
1141 #if __GLIBC__
1142 return realloc (ptr, size);
1143 #else
1144 /* some systems, notably openbsd and darwin, fail to properly
1145 * implement realloc (x, 0) (as required by both ansi c-89 and
1146 * the single unix specification, so work around them here.
1147 */
1148
1149 if (size)
1150 return realloc (ptr, size);
1151
1152 free (ptr);
1153 return 0;
1154 #endif
1155 }
1156
1157 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1158
1159 void ecb_cold
1160 ev_set_allocator (void *(*cb)(void *ptr, long size))
1161 {
1162 alloc = cb;
1163 }
1164
1165 inline_speed void *
1166 ev_realloc (void *ptr, long size)
1167 {
1168 ptr = alloc (ptr, size);
1169
1170 if (!ptr && size)
1171 {
1172 #if EV_AVOID_STDIO
1173 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1174 #else
1175 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1176 #endif
1177 abort ();
1178 }
1179
1180 return ptr;
1181 }
1182
1183 #define ev_malloc(size) ev_realloc (0, (size))
1184 #define ev_free(ptr) ev_realloc ((ptr), 0)
1185
1186 /*****************************************************************************/
1187
1188 /* set in reify when reification needed */
1189 #define EV_ANFD_REIFY 1
1190
1191 /* file descriptor info structure */
1192 typedef struct
1193 {
1194 WL head;
1195 unsigned char events; /* the events watched for */
1196 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1197 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1198 unsigned char unused;
1199 #if EV_USE_EPOLL
1200 unsigned int egen; /* generation counter to counter epoll bugs */
1201 #endif
1202 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1203 SOCKET handle;
1204 #endif
1205 #if EV_USE_IOCP
1206 OVERLAPPED or, ow;
1207 #endif
1208 } ANFD;
1209
1210 /* stores the pending event set for a given watcher */
1211 typedef struct
1212 {
1213 W w;
1214 int events; /* the pending event set for the given watcher */
1215 } ANPENDING;
1216
1217 #if EV_USE_INOTIFY
1218 /* hash table entry per inotify-id */
1219 typedef struct
1220 {
1221 WL head;
1222 } ANFS;
1223 #endif
1224
1225 /* Heap Entry */
1226 #if EV_HEAP_CACHE_AT
1227 /* a heap element */
1228 typedef struct {
1229 ev_tstamp at;
1230 WT w;
1231 } ANHE;
1232
1233 #define ANHE_w(he) (he).w /* access watcher, read-write */
1234 #define ANHE_at(he) (he).at /* access cached at, read-only */
1235 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1236 #else
1237 /* a heap element */
1238 typedef WT ANHE;
1239
1240 #define ANHE_w(he) (he)
1241 #define ANHE_at(he) (he)->at
1242 #define ANHE_at_cache(he)
1243 #endif
1244
1245 #if EV_MULTIPLICITY
1246
1247 struct ev_loop
1248 {
1249 ev_tstamp ev_rt_now;
1250 #define ev_rt_now ((loop)->ev_rt_now)
1251 #define VAR(name,decl) decl;
1252 #include "ev_vars.h"
1253 #undef VAR
1254 };
1255 #include "ev_wrap.h"
1256
1257 static struct ev_loop default_loop_struct;
1258 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1259
1260 #else
1261
1262 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1263 #define VAR(name,decl) static decl;
1264 #include "ev_vars.h"
1265 #undef VAR
1266
1267 static int ev_default_loop_ptr;
1268
1269 #endif
1270
1271 #if EV_FEATURE_API
1272 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1273 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1274 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1275 #else
1276 # define EV_RELEASE_CB (void)0
1277 # define EV_ACQUIRE_CB (void)0
1278 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1279 #endif
1280
1281 #define EVBREAK_RECURSE 0x80
1282
1283 /*****************************************************************************/
1284
1285 #ifndef EV_HAVE_EV_TIME
1286 ev_tstamp
1287 ev_time (void)
1288 {
1289 #if EV_USE_REALTIME
1290 if (expect_true (have_realtime))
1291 {
1292 struct timespec ts;
1293 clock_gettime (CLOCK_REALTIME, &ts);
1294 return ts.tv_sec + ts.tv_nsec * 1e-9;
1295 }
1296 #endif
1297
1298 struct timeval tv;
1299 gettimeofday (&tv, 0);
1300 return tv.tv_sec + tv.tv_usec * 1e-6;
1301 }
1302 #endif
1303
1304 inline_size ev_tstamp
1305 get_clock (void)
1306 {
1307 #if EV_USE_MONOTONIC
1308 if (expect_true (have_monotonic))
1309 {
1310 struct timespec ts;
1311 clock_gettime (CLOCK_MONOTONIC, &ts);
1312 return ts.tv_sec + ts.tv_nsec * 1e-9;
1313 }
1314 #endif
1315
1316 return ev_time ();
1317 }
1318
1319 #if EV_MULTIPLICITY
1320 ev_tstamp
1321 ev_now (EV_P)
1322 {
1323 return ev_rt_now;
1324 }
1325 #endif
1326
1327 void
1328 ev_sleep (ev_tstamp delay)
1329 {
1330 if (delay > 0.)
1331 {
1332 #if EV_USE_NANOSLEEP
1333 struct timespec ts;
1334
1335 EV_TS_SET (ts, delay);
1336 nanosleep (&ts, 0);
1337 #elif defined(_WIN32)
1338 Sleep ((unsigned long)(delay * 1e3));
1339 #else
1340 struct timeval tv;
1341
1342 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1343 /* something not guaranteed by newer posix versions, but guaranteed */
1344 /* by older ones */
1345 EV_TV_SET (tv, delay);
1346 select (0, 0, 0, 0, &tv);
1347 #endif
1348 }
1349 }
1350
1351 /*****************************************************************************/
1352
1353 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1354
1355 /* find a suitable new size for the given array, */
1356 /* hopefully by rounding to a nice-to-malloc size */
1357 inline_size int
1358 array_nextsize (int elem, int cur, int cnt)
1359 {
1360 int ncur = cur + 1;
1361
1362 do
1363 ncur <<= 1;
1364 while (cnt > ncur);
1365
1366 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1367 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1368 {
1369 ncur *= elem;
1370 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1371 ncur = ncur - sizeof (void *) * 4;
1372 ncur /= elem;
1373 }
1374
1375 return ncur;
1376 }
1377
1378 static void * noinline ecb_cold
1379 array_realloc (int elem, void *base, int *cur, int cnt)
1380 {
1381 *cur = array_nextsize (elem, *cur, cnt);
1382 return ev_realloc (base, elem * *cur);
1383 }
1384
1385 #define array_init_zero(base,count) \
1386 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1387
1388 #define array_needsize(type,base,cur,cnt,init) \
1389 if (expect_false ((cnt) > (cur))) \
1390 { \
1391 int ecb_unused ocur_ = (cur); \
1392 (base) = (type *)array_realloc \
1393 (sizeof (type), (base), &(cur), (cnt)); \
1394 init ((base) + (ocur_), (cur) - ocur_); \
1395 }
1396
1397 #if 0
1398 #define array_slim(type,stem) \
1399 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1400 { \
1401 stem ## max = array_roundsize (stem ## cnt >> 1); \
1402 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1403 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1404 }
1405 #endif
1406
1407 #define array_free(stem, idx) \
1408 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1409
1410 /*****************************************************************************/
1411
1412 /* dummy callback for pending events */
1413 static void noinline
1414 pendingcb (EV_P_ ev_prepare *w, int revents)
1415 {
1416 }
1417
1418 void noinline
1419 ev_feed_event (EV_P_ void *w, int revents)
1420 {
1421 W w_ = (W)w;
1422 int pri = ABSPRI (w_);
1423
1424 if (expect_false (w_->pending))
1425 pendings [pri][w_->pending - 1].events |= revents;
1426 else
1427 {
1428 w_->pending = ++pendingcnt [pri];
1429 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1430 pendings [pri][w_->pending - 1].w = w_;
1431 pendings [pri][w_->pending - 1].events = revents;
1432 }
1433 }
1434
1435 inline_speed void
1436 feed_reverse (EV_P_ W w)
1437 {
1438 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1439 rfeeds [rfeedcnt++] = w;
1440 }
1441
1442 inline_size void
1443 feed_reverse_done (EV_P_ int revents)
1444 {
1445 do
1446 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1447 while (rfeedcnt);
1448 }
1449
1450 inline_speed void
1451 queue_events (EV_P_ W *events, int eventcnt, int type)
1452 {
1453 int i;
1454
1455 for (i = 0; i < eventcnt; ++i)
1456 ev_feed_event (EV_A_ events [i], type);
1457 }
1458
1459 /*****************************************************************************/
1460
1461 inline_speed void
1462 fd_event_nocheck (EV_P_ int fd, int revents)
1463 {
1464 ANFD *anfd = anfds + fd;
1465 ev_io *w;
1466
1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1468 {
1469 int ev = w->events & revents;
1470
1471 if (ev)
1472 ev_feed_event (EV_A_ (W)w, ev);
1473 }
1474 }
1475
1476 /* do not submit kernel events for fds that have reify set */
1477 /* because that means they changed while we were polling for new events */
1478 inline_speed void
1479 fd_event (EV_P_ int fd, int revents)
1480 {
1481 ANFD *anfd = anfds + fd;
1482
1483 if (expect_true (!anfd->reify))
1484 fd_event_nocheck (EV_A_ fd, revents);
1485 }
1486
1487 void
1488 ev_feed_fd_event (EV_P_ int fd, int revents)
1489 {
1490 if (fd >= 0 && fd < anfdmax)
1491 fd_event_nocheck (EV_A_ fd, revents);
1492 }
1493
1494 /* make sure the external fd watch events are in-sync */
1495 /* with the kernel/libev internal state */
1496 inline_size void
1497 fd_reify (EV_P)
1498 {
1499 int i;
1500
1501 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1502 for (i = 0; i < fdchangecnt; ++i)
1503 {
1504 int fd = fdchanges [i];
1505 ANFD *anfd = anfds + fd;
1506
1507 if (anfd->reify & EV__IOFDSET && anfd->head)
1508 {
1509 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1510
1511 if (handle != anfd->handle)
1512 {
1513 unsigned long arg;
1514
1515 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1516
1517 /* handle changed, but fd didn't - we need to do it in two steps */
1518 backend_modify (EV_A_ fd, anfd->events, 0);
1519 anfd->events = 0;
1520 anfd->handle = handle;
1521 }
1522 }
1523 }
1524 #endif
1525
1526 for (i = 0; i < fdchangecnt; ++i)
1527 {
1528 int fd = fdchanges [i];
1529 ANFD *anfd = anfds + fd;
1530 ev_io *w;
1531
1532 unsigned char o_events = anfd->events;
1533 unsigned char o_reify = anfd->reify;
1534
1535 anfd->reify = 0;
1536
1537 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1538 {
1539 anfd->events = 0;
1540
1541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1542 anfd->events |= (unsigned char)w->events;
1543
1544 if (o_events != anfd->events)
1545 o_reify = EV__IOFDSET; /* actually |= */
1546 }
1547
1548 if (o_reify & EV__IOFDSET)
1549 backend_modify (EV_A_ fd, o_events, anfd->events);
1550 }
1551
1552 fdchangecnt = 0;
1553 }
1554
1555 /* something about the given fd changed */
1556 inline_size void
1557 fd_change (EV_P_ int fd, int flags)
1558 {
1559 unsigned char reify = anfds [fd].reify;
1560 anfds [fd].reify |= flags;
1561
1562 if (expect_true (!reify))
1563 {
1564 ++fdchangecnt;
1565 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1566 fdchanges [fdchangecnt - 1] = fd;
1567 }
1568 }
1569
1570 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1571 inline_speed void ecb_cold
1572 fd_kill (EV_P_ int fd)
1573 {
1574 ev_io *w;
1575
1576 while ((w = (ev_io *)anfds [fd].head))
1577 {
1578 ev_io_stop (EV_A_ w);
1579 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1580 }
1581 }
1582
1583 /* check whether the given fd is actually valid, for error recovery */
1584 inline_size int ecb_cold
1585 fd_valid (int fd)
1586 {
1587 #ifdef _WIN32
1588 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1589 #else
1590 return fcntl (fd, F_GETFD) != -1;
1591 #endif
1592 }
1593
1594 /* called on EBADF to verify fds */
1595 static void noinline ecb_cold
1596 fd_ebadf (EV_P)
1597 {
1598 int fd;
1599
1600 for (fd = 0; fd < anfdmax; ++fd)
1601 if (anfds [fd].events)
1602 if (!fd_valid (fd) && errno == EBADF)
1603 fd_kill (EV_A_ fd);
1604 }
1605
1606 /* called on ENOMEM in select/poll to kill some fds and retry */
1607 static void noinline ecb_cold
1608 fd_enomem (EV_P)
1609 {
1610 int fd;
1611
1612 for (fd = anfdmax; fd--; )
1613 if (anfds [fd].events)
1614 {
1615 fd_kill (EV_A_ fd);
1616 break;
1617 }
1618 }
1619
1620 /* usually called after fork if backend needs to re-arm all fds from scratch */
1621 static void noinline
1622 fd_rearm_all (EV_P)
1623 {
1624 int fd;
1625
1626 for (fd = 0; fd < anfdmax; ++fd)
1627 if (anfds [fd].events)
1628 {
1629 anfds [fd].events = 0;
1630 anfds [fd].emask = 0;
1631 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1632 }
1633 }
1634
1635 /* used to prepare libev internal fd's */
1636 /* this is not fork-safe */
1637 inline_speed void
1638 fd_intern (int fd)
1639 {
1640 #ifdef _WIN32
1641 unsigned long arg = 1;
1642 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1643 #else
1644 fcntl (fd, F_SETFD, FD_CLOEXEC);
1645 fcntl (fd, F_SETFL, O_NONBLOCK);
1646 #endif
1647 }
1648
1649 /*****************************************************************************/
1650
1651 /*
1652 * the heap functions want a real array index. array index 0 is guaranteed to not
1653 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1654 * the branching factor of the d-tree.
1655 */
1656
1657 /*
1658 * at the moment we allow libev the luxury of two heaps,
1659 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1660 * which is more cache-efficient.
1661 * the difference is about 5% with 50000+ watchers.
1662 */
1663 #if EV_USE_4HEAP
1664
1665 #define DHEAP 4
1666 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1667 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1668 #define UPHEAP_DONE(p,k) ((p) == (k))
1669
1670 /* away from the root */
1671 inline_speed void
1672 downheap (ANHE *heap, int N, int k)
1673 {
1674 ANHE he = heap [k];
1675 ANHE *E = heap + N + HEAP0;
1676
1677 for (;;)
1678 {
1679 ev_tstamp minat;
1680 ANHE *minpos;
1681 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1682
1683 /* find minimum child */
1684 if (expect_true (pos + DHEAP - 1 < E))
1685 {
1686 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1690 }
1691 else if (pos < E)
1692 {
1693 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1694 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1695 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1696 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1697 }
1698 else
1699 break;
1700
1701 if (ANHE_at (he) <= minat)
1702 break;
1703
1704 heap [k] = *minpos;
1705 ev_active (ANHE_w (*minpos)) = k;
1706
1707 k = minpos - heap;
1708 }
1709
1710 heap [k] = he;
1711 ev_active (ANHE_w (he)) = k;
1712 }
1713
1714 #else /* 4HEAP */
1715
1716 #define HEAP0 1
1717 #define HPARENT(k) ((k) >> 1)
1718 #define UPHEAP_DONE(p,k) (!(p))
1719
1720 /* away from the root */
1721 inline_speed void
1722 downheap (ANHE *heap, int N, int k)
1723 {
1724 ANHE he = heap [k];
1725
1726 for (;;)
1727 {
1728 int c = k << 1;
1729
1730 if (c >= N + HEAP0)
1731 break;
1732
1733 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1734 ? 1 : 0;
1735
1736 if (ANHE_at (he) <= ANHE_at (heap [c]))
1737 break;
1738
1739 heap [k] = heap [c];
1740 ev_active (ANHE_w (heap [k])) = k;
1741
1742 k = c;
1743 }
1744
1745 heap [k] = he;
1746 ev_active (ANHE_w (he)) = k;
1747 }
1748 #endif
1749
1750 /* towards the root */
1751 inline_speed void
1752 upheap (ANHE *heap, int k)
1753 {
1754 ANHE he = heap [k];
1755
1756 for (;;)
1757 {
1758 int p = HPARENT (k);
1759
1760 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1761 break;
1762
1763 heap [k] = heap [p];
1764 ev_active (ANHE_w (heap [k])) = k;
1765 k = p;
1766 }
1767
1768 heap [k] = he;
1769 ev_active (ANHE_w (he)) = k;
1770 }
1771
1772 /* move an element suitably so it is in a correct place */
1773 inline_size void
1774 adjustheap (ANHE *heap, int N, int k)
1775 {
1776 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1777 upheap (heap, k);
1778 else
1779 downheap (heap, N, k);
1780 }
1781
1782 /* rebuild the heap: this function is used only once and executed rarely */
1783 inline_size void
1784 reheap (ANHE *heap, int N)
1785 {
1786 int i;
1787
1788 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1789 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1790 for (i = 0; i < N; ++i)
1791 upheap (heap, i + HEAP0);
1792 }
1793
1794 /*****************************************************************************/
1795
1796 /* associate signal watchers to a signal signal */
1797 typedef struct
1798 {
1799 EV_ATOMIC_T pending;
1800 #if EV_MULTIPLICITY
1801 EV_P;
1802 #endif
1803 WL head;
1804 } ANSIG;
1805
1806 static ANSIG signals [EV_NSIG - 1];
1807
1808 /*****************************************************************************/
1809
1810 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1811
1812 static void noinline ecb_cold
1813 evpipe_init (EV_P)
1814 {
1815 if (!ev_is_active (&pipe_w))
1816 {
1817 # if EV_USE_EVENTFD
1818 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1819 if (evfd < 0 && errno == EINVAL)
1820 evfd = eventfd (0, 0);
1821
1822 if (evfd >= 0)
1823 {
1824 evpipe [0] = -1;
1825 fd_intern (evfd); /* doing it twice doesn't hurt */
1826 ev_io_set (&pipe_w, evfd, EV_READ);
1827 }
1828 else
1829 # endif
1830 {
1831 while (pipe (evpipe))
1832 ev_syserr ("(libev) error creating signal/async pipe");
1833
1834 fd_intern (evpipe [0]);
1835 fd_intern (evpipe [1]);
1836 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1837 }
1838
1839 ev_io_start (EV_A_ &pipe_w);
1840 ev_unref (EV_A); /* watcher should not keep loop alive */
1841 }
1842 }
1843
1844 inline_speed void
1845 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1846 {
1847 if (expect_true (*flag))
1848 return;
1849
1850 *flag = 1;
1851
1852 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1853
1854 pipe_write_skipped = 1;
1855
1856 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1857
1858 if (pipe_write_wanted)
1859 {
1860 int old_errno;
1861
1862 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1863
1864 old_errno = errno; /* save errno because write will clobber it */
1865
1866 #if EV_USE_EVENTFD
1867 if (evfd >= 0)
1868 {
1869 uint64_t counter = 1;
1870 write (evfd, &counter, sizeof (uint64_t));
1871 }
1872 else
1873 #endif
1874 {
1875 /* win32 people keep sending patches that change this write() to send() */
1876 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1877 /* so when you think this write should be a send instead, please find out */
1878 /* where your send() is from - it's definitely not the microsoft send, and */
1879 /* tell me. thank you. */
1880 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1881 /* check the ev documentation on how to use this flag */
1882 write (evpipe [1], &(evpipe [1]), 1);
1883 }
1884
1885 errno = old_errno;
1886 }
1887 }
1888
1889 /* called whenever the libev signal pipe */
1890 /* got some events (signal, async) */
1891 static void
1892 pipecb (EV_P_ ev_io *iow, int revents)
1893 {
1894 int i;
1895
1896 if (revents & EV_READ)
1897 {
1898 #if EV_USE_EVENTFD
1899 if (evfd >= 0)
1900 {
1901 uint64_t counter;
1902 read (evfd, &counter, sizeof (uint64_t));
1903 }
1904 else
1905 #endif
1906 {
1907 char dummy;
1908 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1909 read (evpipe [0], &dummy, 1);
1910 }
1911 }
1912
1913 pipe_write_skipped = 0;
1914
1915 #if EV_SIGNAL_ENABLE
1916 if (sig_pending)
1917 {
1918 sig_pending = 0;
1919
1920 for (i = EV_NSIG - 1; i--; )
1921 if (expect_false (signals [i].pending))
1922 ev_feed_signal_event (EV_A_ i + 1);
1923 }
1924 #endif
1925
1926 #if EV_ASYNC_ENABLE
1927 if (async_pending)
1928 {
1929 async_pending = 0;
1930
1931 for (i = asynccnt; i--; )
1932 if (asyncs [i]->sent)
1933 {
1934 asyncs [i]->sent = 0;
1935 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1936 }
1937 }
1938 #endif
1939 }
1940
1941 /*****************************************************************************/
1942
1943 void
1944 ev_feed_signal (int signum)
1945 {
1946 #if EV_MULTIPLICITY
1947 EV_P = signals [signum - 1].loop;
1948
1949 if (!EV_A)
1950 return;
1951 #endif
1952
1953 if (!ev_active (&pipe_w))
1954 return;
1955
1956 signals [signum - 1].pending = 1;
1957 evpipe_write (EV_A_ &sig_pending);
1958 }
1959
1960 static void
1961 ev_sighandler (int signum)
1962 {
1963 #ifdef _WIN32
1964 signal (signum, ev_sighandler);
1965 #endif
1966
1967 ev_feed_signal (signum);
1968 }
1969
1970 void noinline
1971 ev_feed_signal_event (EV_P_ int signum)
1972 {
1973 WL w;
1974
1975 if (expect_false (signum <= 0 || signum > EV_NSIG))
1976 return;
1977
1978 --signum;
1979
1980 #if EV_MULTIPLICITY
1981 /* it is permissible to try to feed a signal to the wrong loop */
1982 /* or, likely more useful, feeding a signal nobody is waiting for */
1983
1984 if (expect_false (signals [signum].loop != EV_A))
1985 return;
1986 #endif
1987
1988 signals [signum].pending = 0;
1989
1990 for (w = signals [signum].head; w; w = w->next)
1991 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1992 }
1993
1994 #if EV_USE_SIGNALFD
1995 static void
1996 sigfdcb (EV_P_ ev_io *iow, int revents)
1997 {
1998 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1999
2000 for (;;)
2001 {
2002 ssize_t res = read (sigfd, si, sizeof (si));
2003
2004 /* not ISO-C, as res might be -1, but works with SuS */
2005 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2006 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2007
2008 if (res < (ssize_t)sizeof (si))
2009 break;
2010 }
2011 }
2012 #endif
2013
2014 #endif
2015
2016 /*****************************************************************************/
2017
2018 #if EV_CHILD_ENABLE
2019 static WL childs [EV_PID_HASHSIZE];
2020
2021 static ev_signal childev;
2022
2023 #ifndef WIFCONTINUED
2024 # define WIFCONTINUED(status) 0
2025 #endif
2026
2027 /* handle a single child status event */
2028 inline_speed void
2029 child_reap (EV_P_ int chain, int pid, int status)
2030 {
2031 ev_child *w;
2032 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2033
2034 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2035 {
2036 if ((w->pid == pid || !w->pid)
2037 && (!traced || (w->flags & 1)))
2038 {
2039 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2040 w->rpid = pid;
2041 w->rstatus = status;
2042 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2043 }
2044 }
2045 }
2046
2047 #ifndef WCONTINUED
2048 # define WCONTINUED 0
2049 #endif
2050
2051 /* called on sigchld etc., calls waitpid */
2052 static void
2053 childcb (EV_P_ ev_signal *sw, int revents)
2054 {
2055 int pid, status;
2056
2057 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2058 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2059 if (!WCONTINUED
2060 || errno != EINVAL
2061 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2062 return;
2063
2064 /* make sure we are called again until all children have been reaped */
2065 /* we need to do it this way so that the callback gets called before we continue */
2066 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2067
2068 child_reap (EV_A_ pid, pid, status);
2069 if ((EV_PID_HASHSIZE) > 1)
2070 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2071 }
2072
2073 #endif
2074
2075 /*****************************************************************************/
2076
2077 #if EV_USE_IOCP
2078 # include "ev_iocp.c"
2079 #endif
2080 #if EV_USE_PORT
2081 # include "ev_port.c"
2082 #endif
2083 #if EV_USE_KQUEUE
2084 # include "ev_kqueue.c"
2085 #endif
2086 #if EV_USE_EPOLL
2087 # include "ev_epoll.c"
2088 #endif
2089 #if EV_USE_POLL
2090 # include "ev_poll.c"
2091 #endif
2092 #if EV_USE_SELECT
2093 # include "ev_select.c"
2094 #endif
2095
2096 int ecb_cold
2097 ev_version_major (void)
2098 {
2099 return EV_VERSION_MAJOR;
2100 }
2101
2102 int ecb_cold
2103 ev_version_minor (void)
2104 {
2105 return EV_VERSION_MINOR;
2106 }
2107
2108 /* return true if we are running with elevated privileges and should ignore env variables */
2109 int inline_size ecb_cold
2110 enable_secure (void)
2111 {
2112 #ifdef _WIN32
2113 return 0;
2114 #else
2115 return getuid () != geteuid ()
2116 || getgid () != getegid ();
2117 #endif
2118 }
2119
2120 unsigned int ecb_cold
2121 ev_supported_backends (void)
2122 {
2123 unsigned int flags = 0;
2124
2125 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2126 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2127 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2128 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2129 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2130
2131 return flags;
2132 }
2133
2134 unsigned int ecb_cold
2135 ev_recommended_backends (void)
2136 {
2137 unsigned int flags = ev_supported_backends ();
2138
2139 #ifndef __NetBSD__
2140 /* kqueue is borked on everything but netbsd apparently */
2141 /* it usually doesn't work correctly on anything but sockets and pipes */
2142 flags &= ~EVBACKEND_KQUEUE;
2143 #endif
2144 #ifdef __APPLE__
2145 /* only select works correctly on that "unix-certified" platform */
2146 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2147 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2148 #endif
2149 #ifdef __FreeBSD__
2150 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2151 #endif
2152
2153 return flags;
2154 }
2155
2156 unsigned int ecb_cold
2157 ev_embeddable_backends (void)
2158 {
2159 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2160
2161 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2162 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2163 flags &= ~EVBACKEND_EPOLL;
2164
2165 return flags;
2166 }
2167
2168 unsigned int
2169 ev_backend (EV_P)
2170 {
2171 return backend;
2172 }
2173
2174 #if EV_FEATURE_API
2175 unsigned int
2176 ev_iteration (EV_P)
2177 {
2178 return loop_count;
2179 }
2180
2181 unsigned int
2182 ev_depth (EV_P)
2183 {
2184 return loop_depth;
2185 }
2186
2187 void
2188 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2189 {
2190 io_blocktime = interval;
2191 }
2192
2193 void
2194 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2195 {
2196 timeout_blocktime = interval;
2197 }
2198
2199 void
2200 ev_set_userdata (EV_P_ void *data)
2201 {
2202 userdata = data;
2203 }
2204
2205 void *
2206 ev_userdata (EV_P)
2207 {
2208 return userdata;
2209 }
2210
2211 void
2212 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2213 {
2214 invoke_cb = invoke_pending_cb;
2215 }
2216
2217 void
2218 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2219 {
2220 release_cb = release;
2221 acquire_cb = acquire;
2222 }
2223 #endif
2224
2225 /* initialise a loop structure, must be zero-initialised */
2226 static void noinline ecb_cold
2227 loop_init (EV_P_ unsigned int flags)
2228 {
2229 if (!backend)
2230 {
2231 origflags = flags;
2232
2233 #if EV_USE_REALTIME
2234 if (!have_realtime)
2235 {
2236 struct timespec ts;
2237
2238 if (!clock_gettime (CLOCK_REALTIME, &ts))
2239 have_realtime = 1;
2240 }
2241 #endif
2242
2243 #if EV_USE_MONOTONIC
2244 if (!have_monotonic)
2245 {
2246 struct timespec ts;
2247
2248 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2249 have_monotonic = 1;
2250 }
2251 #endif
2252
2253 /* pid check not overridable via env */
2254 #ifndef _WIN32
2255 if (flags & EVFLAG_FORKCHECK)
2256 curpid = getpid ();
2257 #endif
2258
2259 if (!(flags & EVFLAG_NOENV)
2260 && !enable_secure ()
2261 && getenv ("LIBEV_FLAGS"))
2262 flags = atoi (getenv ("LIBEV_FLAGS"));
2263
2264 ev_rt_now = ev_time ();
2265 mn_now = get_clock ();
2266 now_floor = mn_now;
2267 rtmn_diff = ev_rt_now - mn_now;
2268 #if EV_FEATURE_API
2269 invoke_cb = ev_invoke_pending;
2270 #endif
2271
2272 io_blocktime = 0.;
2273 timeout_blocktime = 0.;
2274 backend = 0;
2275 backend_fd = -1;
2276 sig_pending = 0;
2277 #if EV_ASYNC_ENABLE
2278 async_pending = 0;
2279 #endif
2280 pipe_write_skipped = 0;
2281 pipe_write_wanted = 0;
2282 #if EV_USE_INOTIFY
2283 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2284 #endif
2285 #if EV_USE_SIGNALFD
2286 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2287 #endif
2288
2289 if (!(flags & EVBACKEND_MASK))
2290 flags |= ev_recommended_backends ();
2291
2292 #if EV_USE_IOCP
2293 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2294 #endif
2295 #if EV_USE_PORT
2296 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2297 #endif
2298 #if EV_USE_KQUEUE
2299 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2300 #endif
2301 #if EV_USE_EPOLL
2302 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2303 #endif
2304 #if EV_USE_POLL
2305 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2306 #endif
2307 #if EV_USE_SELECT
2308 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2309 #endif
2310
2311 ev_prepare_init (&pending_w, pendingcb);
2312
2313 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2314 ev_init (&pipe_w, pipecb);
2315 ev_set_priority (&pipe_w, EV_MAXPRI);
2316 #endif
2317 }
2318 }
2319
2320 /* free up a loop structure */
2321 void ecb_cold
2322 ev_loop_destroy (EV_P)
2323 {
2324 int i;
2325
2326 #if EV_MULTIPLICITY
2327 /* mimic free (0) */
2328 if (!EV_A)
2329 return;
2330 #endif
2331
2332 #if EV_CLEANUP_ENABLE
2333 /* queue cleanup watchers (and execute them) */
2334 if (expect_false (cleanupcnt))
2335 {
2336 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2337 EV_INVOKE_PENDING;
2338 }
2339 #endif
2340
2341 #if EV_CHILD_ENABLE
2342 if (ev_is_active (&childev))
2343 {
2344 ev_ref (EV_A); /* child watcher */
2345 ev_signal_stop (EV_A_ &childev);
2346 }
2347 #endif
2348
2349 if (ev_is_active (&pipe_w))
2350 {
2351 /*ev_ref (EV_A);*/
2352 /*ev_io_stop (EV_A_ &pipe_w);*/
2353
2354 #if EV_USE_EVENTFD
2355 if (evfd >= 0)
2356 close (evfd);
2357 #endif
2358
2359 if (evpipe [0] >= 0)
2360 {
2361 EV_WIN32_CLOSE_FD (evpipe [0]);
2362 EV_WIN32_CLOSE_FD (evpipe [1]);
2363 }
2364 }
2365
2366 #if EV_USE_SIGNALFD
2367 if (ev_is_active (&sigfd_w))
2368 close (sigfd);
2369 #endif
2370
2371 #if EV_USE_INOTIFY
2372 if (fs_fd >= 0)
2373 close (fs_fd);
2374 #endif
2375
2376 if (backend_fd >= 0)
2377 close (backend_fd);
2378
2379 #if EV_USE_IOCP
2380 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2381 #endif
2382 #if EV_USE_PORT
2383 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2384 #endif
2385 #if EV_USE_KQUEUE
2386 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2387 #endif
2388 #if EV_USE_EPOLL
2389 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2390 #endif
2391 #if EV_USE_POLL
2392 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2393 #endif
2394 #if EV_USE_SELECT
2395 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2396 #endif
2397
2398 for (i = NUMPRI; i--; )
2399 {
2400 array_free (pending, [i]);
2401 #if EV_IDLE_ENABLE
2402 array_free (idle, [i]);
2403 #endif
2404 }
2405
2406 ev_free (anfds); anfds = 0; anfdmax = 0;
2407
2408 /* have to use the microsoft-never-gets-it-right macro */
2409 array_free (rfeed, EMPTY);
2410 array_free (fdchange, EMPTY);
2411 array_free (timer, EMPTY);
2412 #if EV_PERIODIC_ENABLE
2413 array_free (periodic, EMPTY);
2414 #endif
2415 #if EV_FORK_ENABLE
2416 array_free (fork, EMPTY);
2417 #endif
2418 #if EV_CLEANUP_ENABLE
2419 array_free (cleanup, EMPTY);
2420 #endif
2421 array_free (prepare, EMPTY);
2422 array_free (check, EMPTY);
2423 #if EV_ASYNC_ENABLE
2424 array_free (async, EMPTY);
2425 #endif
2426
2427 backend = 0;
2428
2429 #if EV_MULTIPLICITY
2430 if (ev_is_default_loop (EV_A))
2431 #endif
2432 ev_default_loop_ptr = 0;
2433 #if EV_MULTIPLICITY
2434 else
2435 ev_free (EV_A);
2436 #endif
2437 }
2438
2439 #if EV_USE_INOTIFY
2440 inline_size void infy_fork (EV_P);
2441 #endif
2442
2443 inline_size void
2444 loop_fork (EV_P)
2445 {
2446 #if EV_USE_PORT
2447 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2448 #endif
2449 #if EV_USE_KQUEUE
2450 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2451 #endif
2452 #if EV_USE_EPOLL
2453 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2454 #endif
2455 #if EV_USE_INOTIFY
2456 infy_fork (EV_A);
2457 #endif
2458
2459 if (ev_is_active (&pipe_w))
2460 {
2461 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2462
2463 ev_ref (EV_A);
2464 ev_io_stop (EV_A_ &pipe_w);
2465
2466 #if EV_USE_EVENTFD
2467 if (evfd >= 0)
2468 close (evfd);
2469 #endif
2470
2471 if (evpipe [0] >= 0)
2472 {
2473 EV_WIN32_CLOSE_FD (evpipe [0]);
2474 EV_WIN32_CLOSE_FD (evpipe [1]);
2475 }
2476
2477 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2478 evpipe_init (EV_A);
2479 /* now iterate over everything, in case we missed something */
2480 pipecb (EV_A_ &pipe_w, EV_READ);
2481 #endif
2482 }
2483
2484 postfork = 0;
2485 }
2486
2487 #if EV_MULTIPLICITY
2488
2489 struct ev_loop * ecb_cold
2490 ev_loop_new (unsigned int flags)
2491 {
2492 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2493
2494 memset (EV_A, 0, sizeof (struct ev_loop));
2495 loop_init (EV_A_ flags);
2496
2497 if (ev_backend (EV_A))
2498 return EV_A;
2499
2500 ev_free (EV_A);
2501 return 0;
2502 }
2503
2504 #endif /* multiplicity */
2505
2506 #if EV_VERIFY
2507 static void noinline ecb_cold
2508 verify_watcher (EV_P_ W w)
2509 {
2510 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2511
2512 if (w->pending)
2513 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2514 }
2515
2516 static void noinline ecb_cold
2517 verify_heap (EV_P_ ANHE *heap, int N)
2518 {
2519 int i;
2520
2521 for (i = HEAP0; i < N + HEAP0; ++i)
2522 {
2523 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2524 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2525 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2526
2527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2528 }
2529 }
2530
2531 static void noinline ecb_cold
2532 array_verify (EV_P_ W *ws, int cnt)
2533 {
2534 while (cnt--)
2535 {
2536 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2537 verify_watcher (EV_A_ ws [cnt]);
2538 }
2539 }
2540 #endif
2541
2542 #if EV_FEATURE_API
2543 void ecb_cold
2544 ev_verify (EV_P)
2545 {
2546 #if EV_VERIFY
2547 int i;
2548 WL w;
2549
2550 assert (activecnt >= -1);
2551
2552 assert (fdchangemax >= fdchangecnt);
2553 for (i = 0; i < fdchangecnt; ++i)
2554 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2555
2556 assert (anfdmax >= 0);
2557 for (i = 0; i < anfdmax; ++i)
2558 for (w = anfds [i].head; w; w = w->next)
2559 {
2560 verify_watcher (EV_A_ (W)w);
2561 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2562 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2563 }
2564
2565 assert (timermax >= timercnt);
2566 verify_heap (EV_A_ timers, timercnt);
2567
2568 #if EV_PERIODIC_ENABLE
2569 assert (periodicmax >= periodiccnt);
2570 verify_heap (EV_A_ periodics, periodiccnt);
2571 #endif
2572
2573 for (i = NUMPRI; i--; )
2574 {
2575 assert (pendingmax [i] >= pendingcnt [i]);
2576 #if EV_IDLE_ENABLE
2577 assert (idleall >= 0);
2578 assert (idlemax [i] >= idlecnt [i]);
2579 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2580 #endif
2581 }
2582
2583 #if EV_FORK_ENABLE
2584 assert (forkmax >= forkcnt);
2585 array_verify (EV_A_ (W *)forks, forkcnt);
2586 #endif
2587
2588 #if EV_CLEANUP_ENABLE
2589 assert (cleanupmax >= cleanupcnt);
2590 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2591 #endif
2592
2593 #if EV_ASYNC_ENABLE
2594 assert (asyncmax >= asynccnt);
2595 array_verify (EV_A_ (W *)asyncs, asynccnt);
2596 #endif
2597
2598 #if EV_PREPARE_ENABLE
2599 assert (preparemax >= preparecnt);
2600 array_verify (EV_A_ (W *)prepares, preparecnt);
2601 #endif
2602
2603 #if EV_CHECK_ENABLE
2604 assert (checkmax >= checkcnt);
2605 array_verify (EV_A_ (W *)checks, checkcnt);
2606 #endif
2607
2608 # if 0
2609 #if EV_CHILD_ENABLE
2610 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2611 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2612 #endif
2613 # endif
2614 #endif
2615 }
2616 #endif
2617
2618 #if EV_MULTIPLICITY
2619 struct ev_loop * ecb_cold
2620 #else
2621 int
2622 #endif
2623 ev_default_loop (unsigned int flags)
2624 {
2625 if (!ev_default_loop_ptr)
2626 {
2627 #if EV_MULTIPLICITY
2628 EV_P = ev_default_loop_ptr = &default_loop_struct;
2629 #else
2630 ev_default_loop_ptr = 1;
2631 #endif
2632
2633 loop_init (EV_A_ flags);
2634
2635 if (ev_backend (EV_A))
2636 {
2637 #if EV_CHILD_ENABLE
2638 ev_signal_init (&childev, childcb, SIGCHLD);
2639 ev_set_priority (&childev, EV_MAXPRI);
2640 ev_signal_start (EV_A_ &childev);
2641 ev_unref (EV_A); /* child watcher should not keep loop alive */
2642 #endif
2643 }
2644 else
2645 ev_default_loop_ptr = 0;
2646 }
2647
2648 return ev_default_loop_ptr;
2649 }
2650
2651 void
2652 ev_loop_fork (EV_P)
2653 {
2654 postfork = 1; /* must be in line with ev_default_fork */
2655 }
2656
2657 /*****************************************************************************/
2658
2659 void
2660 ev_invoke (EV_P_ void *w, int revents)
2661 {
2662 EV_CB_INVOKE ((W)w, revents);
2663 }
2664
2665 unsigned int
2666 ev_pending_count (EV_P)
2667 {
2668 int pri;
2669 unsigned int count = 0;
2670
2671 for (pri = NUMPRI; pri--; )
2672 count += pendingcnt [pri];
2673
2674 return count;
2675 }
2676
2677 void noinline
2678 ev_invoke_pending (EV_P)
2679 {
2680 int pri;
2681
2682 for (pri = NUMPRI; pri--; )
2683 while (pendingcnt [pri])
2684 {
2685 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2686
2687 p->w->pending = 0;
2688 EV_CB_INVOKE (p->w, p->events);
2689 EV_FREQUENT_CHECK;
2690 }
2691 }
2692
2693 #if EV_IDLE_ENABLE
2694 /* make idle watchers pending. this handles the "call-idle */
2695 /* only when higher priorities are idle" logic */
2696 inline_size void
2697 idle_reify (EV_P)
2698 {
2699 if (expect_false (idleall))
2700 {
2701 int pri;
2702
2703 for (pri = NUMPRI; pri--; )
2704 {
2705 if (pendingcnt [pri])
2706 break;
2707
2708 if (idlecnt [pri])
2709 {
2710 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2711 break;
2712 }
2713 }
2714 }
2715 }
2716 #endif
2717
2718 /* make timers pending */
2719 inline_size void
2720 timers_reify (EV_P)
2721 {
2722 EV_FREQUENT_CHECK;
2723
2724 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2725 {
2726 do
2727 {
2728 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2729
2730 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2731
2732 /* first reschedule or stop timer */
2733 if (w->repeat)
2734 {
2735 ev_at (w) += w->repeat;
2736 if (ev_at (w) < mn_now)
2737 ev_at (w) = mn_now;
2738
2739 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2740
2741 ANHE_at_cache (timers [HEAP0]);
2742 downheap (timers, timercnt, HEAP0);
2743 }
2744 else
2745 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2746
2747 EV_FREQUENT_CHECK;
2748 feed_reverse (EV_A_ (W)w);
2749 }
2750 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2751
2752 feed_reverse_done (EV_A_ EV_TIMER);
2753 }
2754 }
2755
2756 #if EV_PERIODIC_ENABLE
2757
2758 static void noinline
2759 periodic_recalc (EV_P_ ev_periodic *w)
2760 {
2761 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2762 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2763
2764 /* the above almost always errs on the low side */
2765 while (at <= ev_rt_now)
2766 {
2767 ev_tstamp nat = at + w->interval;
2768
2769 /* when resolution fails us, we use ev_rt_now */
2770 if (expect_false (nat == at))
2771 {
2772 at = ev_rt_now;
2773 break;
2774 }
2775
2776 at = nat;
2777 }
2778
2779 ev_at (w) = at;
2780 }
2781
2782 /* make periodics pending */
2783 inline_size void
2784 periodics_reify (EV_P)
2785 {
2786 EV_FREQUENT_CHECK;
2787
2788 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2789 {
2790 int feed_count = 0;
2791
2792 do
2793 {
2794 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2795
2796 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2797
2798 /* first reschedule or stop timer */
2799 if (w->reschedule_cb)
2800 {
2801 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2802
2803 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2804
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else if (w->interval)
2809 {
2810 periodic_recalc (EV_A_ w);
2811 ANHE_at_cache (periodics [HEAP0]);
2812 downheap (periodics, periodiccnt, HEAP0);
2813 }
2814 else
2815 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2816
2817 EV_FREQUENT_CHECK;
2818 feed_reverse (EV_A_ (W)w);
2819 }
2820 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2821
2822 feed_reverse_done (EV_A_ EV_PERIODIC);
2823 }
2824 }
2825
2826 /* simply recalculate all periodics */
2827 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2828 static void noinline ecb_cold
2829 periodics_reschedule (EV_P)
2830 {
2831 int i;
2832
2833 /* adjust periodics after time jump */
2834 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2835 {
2836 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2837
2838 if (w->reschedule_cb)
2839 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2840 else if (w->interval)
2841 periodic_recalc (EV_A_ w);
2842
2843 ANHE_at_cache (periodics [i]);
2844 }
2845
2846 reheap (periodics, periodiccnt);
2847 }
2848 #endif
2849
2850 /* adjust all timers by a given offset */
2851 static void noinline ecb_cold
2852 timers_reschedule (EV_P_ ev_tstamp adjust)
2853 {
2854 int i;
2855
2856 for (i = 0; i < timercnt; ++i)
2857 {
2858 ANHE *he = timers + i + HEAP0;
2859 ANHE_w (*he)->at += adjust;
2860 ANHE_at_cache (*he);
2861 }
2862 }
2863
2864 /* fetch new monotonic and realtime times from the kernel */
2865 /* also detect if there was a timejump, and act accordingly */
2866 inline_speed void
2867 time_update (EV_P_ ev_tstamp max_block)
2868 {
2869 #if EV_USE_MONOTONIC
2870 if (expect_true (have_monotonic))
2871 {
2872 int i;
2873 ev_tstamp odiff = rtmn_diff;
2874
2875 mn_now = get_clock ();
2876
2877 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2878 /* interpolate in the meantime */
2879 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2880 {
2881 ev_rt_now = rtmn_diff + mn_now;
2882 return;
2883 }
2884
2885 now_floor = mn_now;
2886 ev_rt_now = ev_time ();
2887
2888 /* loop a few times, before making important decisions.
2889 * on the choice of "4": one iteration isn't enough,
2890 * in case we get preempted during the calls to
2891 * ev_time and get_clock. a second call is almost guaranteed
2892 * to succeed in that case, though. and looping a few more times
2893 * doesn't hurt either as we only do this on time-jumps or
2894 * in the unlikely event of having been preempted here.
2895 */
2896 for (i = 4; --i; )
2897 {
2898 ev_tstamp diff;
2899 rtmn_diff = ev_rt_now - mn_now;
2900
2901 diff = odiff - rtmn_diff;
2902
2903 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2904 return; /* all is well */
2905
2906 ev_rt_now = ev_time ();
2907 mn_now = get_clock ();
2908 now_floor = mn_now;
2909 }
2910
2911 /* no timer adjustment, as the monotonic clock doesn't jump */
2912 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2913 # if EV_PERIODIC_ENABLE
2914 periodics_reschedule (EV_A);
2915 # endif
2916 }
2917 else
2918 #endif
2919 {
2920 ev_rt_now = ev_time ();
2921
2922 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2923 {
2924 /* adjust timers. this is easy, as the offset is the same for all of them */
2925 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2926 #if EV_PERIODIC_ENABLE
2927 periodics_reschedule (EV_A);
2928 #endif
2929 }
2930
2931 mn_now = ev_rt_now;
2932 }
2933 }
2934
2935 void
2936 ev_run (EV_P_ int flags)
2937 {
2938 #if EV_FEATURE_API
2939 ++loop_depth;
2940 #endif
2941
2942 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2943
2944 loop_done = EVBREAK_CANCEL;
2945
2946 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2947
2948 do
2949 {
2950 #if EV_VERIFY >= 2
2951 ev_verify (EV_A);
2952 #endif
2953
2954 #ifndef _WIN32
2955 if (expect_false (curpid)) /* penalise the forking check even more */
2956 if (expect_false (getpid () != curpid))
2957 {
2958 curpid = getpid ();
2959 postfork = 1;
2960 }
2961 #endif
2962
2963 #if EV_FORK_ENABLE
2964 /* we might have forked, so queue fork handlers */
2965 if (expect_false (postfork))
2966 if (forkcnt)
2967 {
2968 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2969 EV_INVOKE_PENDING;
2970 }
2971 #endif
2972
2973 #if EV_PREPARE_ENABLE
2974 /* queue prepare watchers (and execute them) */
2975 if (expect_false (preparecnt))
2976 {
2977 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2978 EV_INVOKE_PENDING;
2979 }
2980 #endif
2981
2982 if (expect_false (loop_done))
2983 break;
2984
2985 /* we might have forked, so reify kernel state if necessary */
2986 if (expect_false (postfork))
2987 loop_fork (EV_A);
2988
2989 /* update fd-related kernel structures */
2990 fd_reify (EV_A);
2991
2992 /* calculate blocking time */
2993 {
2994 ev_tstamp waittime = 0.;
2995 ev_tstamp sleeptime = 0.;
2996
2997 /* remember old timestamp for io_blocktime calculation */
2998 ev_tstamp prev_mn_now = mn_now;
2999
3000 /* update time to cancel out callback processing overhead */
3001 time_update (EV_A_ 1e100);
3002
3003 /* from now on, we want a pipe-wake-up */
3004 pipe_write_wanted = 1;
3005
3006 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3007
3008 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3009 {
3010 waittime = MAX_BLOCKTIME;
3011
3012 if (timercnt)
3013 {
3014 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3015 if (waittime > to) waittime = to;
3016 }
3017
3018 #if EV_PERIODIC_ENABLE
3019 if (periodiccnt)
3020 {
3021 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3022 if (waittime > to) waittime = to;
3023 }
3024 #endif
3025
3026 /* don't let timeouts decrease the waittime below timeout_blocktime */
3027 if (expect_false (waittime < timeout_blocktime))
3028 waittime = timeout_blocktime;
3029
3030 /* at this point, we NEED to wait, so we have to ensure */
3031 /* to pass a minimum nonzero value to the backend */
3032 if (expect_false (waittime < backend_mintime))
3033 waittime = backend_mintime;
3034
3035 /* extra check because io_blocktime is commonly 0 */
3036 if (expect_false (io_blocktime))
3037 {
3038 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3039
3040 if (sleeptime > waittime - backend_mintime)
3041 sleeptime = waittime - backend_mintime;
3042
3043 if (expect_true (sleeptime > 0.))
3044 {
3045 ev_sleep (sleeptime);
3046 waittime -= sleeptime;
3047 }
3048 }
3049 }
3050
3051 #if EV_FEATURE_API
3052 ++loop_count;
3053 #endif
3054 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3055 backend_poll (EV_A_ waittime);
3056 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3057
3058 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3059
3060 if (pipe_write_skipped)
3061 {
3062 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3063 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3064 }
3065
3066
3067 /* update ev_rt_now, do magic */
3068 time_update (EV_A_ waittime + sleeptime);
3069 }
3070
3071 /* queue pending timers and reschedule them */
3072 timers_reify (EV_A); /* relative timers called last */
3073 #if EV_PERIODIC_ENABLE
3074 periodics_reify (EV_A); /* absolute timers called first */
3075 #endif
3076
3077 #if EV_IDLE_ENABLE
3078 /* queue idle watchers unless other events are pending */
3079 idle_reify (EV_A);
3080 #endif
3081
3082 #if EV_CHECK_ENABLE
3083 /* queue check watchers, to be executed first */
3084 if (expect_false (checkcnt))
3085 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3086 #endif
3087
3088 EV_INVOKE_PENDING;
3089 }
3090 while (expect_true (
3091 activecnt
3092 && !loop_done
3093 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3094 ));
3095
3096 if (loop_done == EVBREAK_ONE)
3097 loop_done = EVBREAK_CANCEL;
3098
3099 #if EV_FEATURE_API
3100 --loop_depth;
3101 #endif
3102 }
3103
3104 void
3105 ev_break (EV_P_ int how)
3106 {
3107 loop_done = how;
3108 }
3109
3110 void
3111 ev_ref (EV_P)
3112 {
3113 ++activecnt;
3114 }
3115
3116 void
3117 ev_unref (EV_P)
3118 {
3119 --activecnt;
3120 }
3121
3122 void
3123 ev_now_update (EV_P)
3124 {
3125 time_update (EV_A_ 1e100);
3126 }
3127
3128 void
3129 ev_suspend (EV_P)
3130 {
3131 ev_now_update (EV_A);
3132 }
3133
3134 void
3135 ev_resume (EV_P)
3136 {
3137 ev_tstamp mn_prev = mn_now;
3138
3139 ev_now_update (EV_A);
3140 timers_reschedule (EV_A_ mn_now - mn_prev);
3141 #if EV_PERIODIC_ENABLE
3142 /* TODO: really do this? */
3143 periodics_reschedule (EV_A);
3144 #endif
3145 }
3146
3147 /*****************************************************************************/
3148 /* singly-linked list management, used when the expected list length is short */
3149
3150 inline_size void
3151 wlist_add (WL *head, WL elem)
3152 {
3153 elem->next = *head;
3154 *head = elem;
3155 }
3156
3157 inline_size void
3158 wlist_del (WL *head, WL elem)
3159 {
3160 while (*head)
3161 {
3162 if (expect_true (*head == elem))
3163 {
3164 *head = elem->next;
3165 break;
3166 }
3167
3168 head = &(*head)->next;
3169 }
3170 }
3171
3172 /* internal, faster, version of ev_clear_pending */
3173 inline_speed void
3174 clear_pending (EV_P_ W w)
3175 {
3176 if (w->pending)
3177 {
3178 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3179 w->pending = 0;
3180 }
3181 }
3182
3183 int
3184 ev_clear_pending (EV_P_ void *w)
3185 {
3186 W w_ = (W)w;
3187 int pending = w_->pending;
3188
3189 if (expect_true (pending))
3190 {
3191 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3192 p->w = (W)&pending_w;
3193 w_->pending = 0;
3194 return p->events;
3195 }
3196 else
3197 return 0;
3198 }
3199
3200 inline_size void
3201 pri_adjust (EV_P_ W w)
3202 {
3203 int pri = ev_priority (w);
3204 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3205 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3206 ev_set_priority (w, pri);
3207 }
3208
3209 inline_speed void
3210 ev_start (EV_P_ W w, int active)
3211 {
3212 pri_adjust (EV_A_ w);
3213 w->active = active;
3214 ev_ref (EV_A);
3215 }
3216
3217 inline_size void
3218 ev_stop (EV_P_ W w)
3219 {
3220 ev_unref (EV_A);
3221 w->active = 0;
3222 }
3223
3224 /*****************************************************************************/
3225
3226 void noinline
3227 ev_io_start (EV_P_ ev_io *w)
3228 {
3229 int fd = w->fd;
3230
3231 if (expect_false (ev_is_active (w)))
3232 return;
3233
3234 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3235 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3236
3237 EV_FREQUENT_CHECK;
3238
3239 ev_start (EV_A_ (W)w, 1);
3240 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3241 wlist_add (&anfds[fd].head, (WL)w);
3242
3243 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3244 w->events &= ~EV__IOFDSET;
3245
3246 EV_FREQUENT_CHECK;
3247 }
3248
3249 void noinline
3250 ev_io_stop (EV_P_ ev_io *w)
3251 {
3252 clear_pending (EV_A_ (W)w);
3253 if (expect_false (!ev_is_active (w)))
3254 return;
3255
3256 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3257
3258 EV_FREQUENT_CHECK;
3259
3260 wlist_del (&anfds[w->fd].head, (WL)w);
3261 ev_stop (EV_A_ (W)w);
3262
3263 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3264
3265 EV_FREQUENT_CHECK;
3266 }
3267
3268 void noinline
3269 ev_timer_start (EV_P_ ev_timer *w)
3270 {
3271 if (expect_false (ev_is_active (w)))
3272 return;
3273
3274 ev_at (w) += mn_now;
3275
3276 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3277
3278 EV_FREQUENT_CHECK;
3279
3280 ++timercnt;
3281 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3282 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3283 ANHE_w (timers [ev_active (w)]) = (WT)w;
3284 ANHE_at_cache (timers [ev_active (w)]);
3285 upheap (timers, ev_active (w));
3286
3287 EV_FREQUENT_CHECK;
3288
3289 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3290 }
3291
3292 void noinline
3293 ev_timer_stop (EV_P_ ev_timer *w)
3294 {
3295 clear_pending (EV_A_ (W)w);
3296 if (expect_false (!ev_is_active (w)))
3297 return;
3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ev_active (w);
3303
3304 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3305
3306 --timercnt;
3307
3308 if (expect_true (active < timercnt + HEAP0))
3309 {
3310 timers [active] = timers [timercnt + HEAP0];
3311 adjustheap (timers, timercnt, active);
3312 }
3313 }
3314
3315 ev_at (w) -= mn_now;
3316
3317 ev_stop (EV_A_ (W)w);
3318
3319 EV_FREQUENT_CHECK;
3320 }
3321
3322 void noinline
3323 ev_timer_again (EV_P_ ev_timer *w)
3324 {
3325 EV_FREQUENT_CHECK;
3326
3327 clear_pending (EV_A_ (W)w);
3328
3329 if (ev_is_active (w))
3330 {
3331 if (w->repeat)
3332 {
3333 ev_at (w) = mn_now + w->repeat;
3334 ANHE_at_cache (timers [ev_active (w)]);
3335 adjustheap (timers, timercnt, ev_active (w));
3336 }
3337 else
3338 ev_timer_stop (EV_A_ w);
3339 }
3340 else if (w->repeat)
3341 {
3342 ev_at (w) = w->repeat;
3343 ev_timer_start (EV_A_ w);
3344 }
3345
3346 EV_FREQUENT_CHECK;
3347 }
3348
3349 ev_tstamp
3350 ev_timer_remaining (EV_P_ ev_timer *w)
3351 {
3352 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3353 }
3354
3355 #if EV_PERIODIC_ENABLE
3356 void noinline
3357 ev_periodic_start (EV_P_ ev_periodic *w)
3358 {
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 if (w->reschedule_cb)
3363 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3364 else if (w->interval)
3365 {
3366 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3367 periodic_recalc (EV_A_ w);
3368 }
3369 else
3370 ev_at (w) = w->offset;
3371
3372 EV_FREQUENT_CHECK;
3373
3374 ++periodiccnt;
3375 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3376 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3377 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3378 ANHE_at_cache (periodics [ev_active (w)]);
3379 upheap (periodics, ev_active (w));
3380
3381 EV_FREQUENT_CHECK;
3382
3383 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3384 }
3385
3386 void noinline
3387 ev_periodic_stop (EV_P_ ev_periodic *w)
3388 {
3389 clear_pending (EV_A_ (W)w);
3390 if (expect_false (!ev_is_active (w)))
3391 return;
3392
3393 EV_FREQUENT_CHECK;
3394
3395 {
3396 int active = ev_active (w);
3397
3398 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3399
3400 --periodiccnt;
3401
3402 if (expect_true (active < periodiccnt + HEAP0))
3403 {
3404 periodics [active] = periodics [periodiccnt + HEAP0];
3405 adjustheap (periodics, periodiccnt, active);
3406 }
3407 }
3408
3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
3412 }
3413
3414 void noinline
3415 ev_periodic_again (EV_P_ ev_periodic *w)
3416 {
3417 /* TODO: use adjustheap and recalculation */
3418 ev_periodic_stop (EV_A_ w);
3419 ev_periodic_start (EV_A_ w);
3420 }
3421 #endif
3422
3423 #ifndef SA_RESTART
3424 # define SA_RESTART 0
3425 #endif
3426
3427 #if EV_SIGNAL_ENABLE
3428
3429 void noinline
3430 ev_signal_start (EV_P_ ev_signal *w)
3431 {
3432 if (expect_false (ev_is_active (w)))
3433 return;
3434
3435 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3436
3437 #if EV_MULTIPLICITY
3438 assert (("libev: a signal must not be attached to two different loops",
3439 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3440
3441 signals [w->signum - 1].loop = EV_A;
3442 #endif
3443
3444 EV_FREQUENT_CHECK;
3445
3446 #if EV_USE_SIGNALFD
3447 if (sigfd == -2)
3448 {
3449 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3450 if (sigfd < 0 && errno == EINVAL)
3451 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3452
3453 if (sigfd >= 0)
3454 {
3455 fd_intern (sigfd); /* doing it twice will not hurt */
3456
3457 sigemptyset (&sigfd_set);
3458
3459 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3460 ev_set_priority (&sigfd_w, EV_MAXPRI);
3461 ev_io_start (EV_A_ &sigfd_w);
3462 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3463 }
3464 }
3465
3466 if (sigfd >= 0)
3467 {
3468 /* TODO: check .head */
3469 sigaddset (&sigfd_set, w->signum);
3470 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3471
3472 signalfd (sigfd, &sigfd_set, 0);
3473 }
3474 #endif
3475
3476 ev_start (EV_A_ (W)w, 1);
3477 wlist_add (&signals [w->signum - 1].head, (WL)w);
3478
3479 if (!((WL)w)->next)
3480 # if EV_USE_SIGNALFD
3481 if (sigfd < 0) /*TODO*/
3482 # endif
3483 {
3484 # ifdef _WIN32
3485 evpipe_init (EV_A);
3486
3487 signal (w->signum, ev_sighandler);
3488 # else
3489 struct sigaction sa;
3490
3491 evpipe_init (EV_A);
3492
3493 sa.sa_handler = ev_sighandler;
3494 sigfillset (&sa.sa_mask);
3495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3496 sigaction (w->signum, &sa, 0);
3497
3498 if (origflags & EVFLAG_NOSIGMASK)
3499 {
3500 sigemptyset (&sa.sa_mask);
3501 sigaddset (&sa.sa_mask, w->signum);
3502 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3503 }
3504 #endif
3505 }
3506
3507 EV_FREQUENT_CHECK;
3508 }
3509
3510 void noinline
3511 ev_signal_stop (EV_P_ ev_signal *w)
3512 {
3513 clear_pending (EV_A_ (W)w);
3514 if (expect_false (!ev_is_active (w)))
3515 return;
3516
3517 EV_FREQUENT_CHECK;
3518
3519 wlist_del (&signals [w->signum - 1].head, (WL)w);
3520 ev_stop (EV_A_ (W)w);
3521
3522 if (!signals [w->signum - 1].head)
3523 {
3524 #if EV_MULTIPLICITY
3525 signals [w->signum - 1].loop = 0; /* unattach from signal */
3526 #endif
3527 #if EV_USE_SIGNALFD
3528 if (sigfd >= 0)
3529 {
3530 sigset_t ss;
3531
3532 sigemptyset (&ss);
3533 sigaddset (&ss, w->signum);
3534 sigdelset (&sigfd_set, w->signum);
3535
3536 signalfd (sigfd, &sigfd_set, 0);
3537 sigprocmask (SIG_UNBLOCK, &ss, 0);
3538 }
3539 else
3540 #endif
3541 signal (w->signum, SIG_DFL);
3542 }
3543
3544 EV_FREQUENT_CHECK;
3545 }
3546
3547 #endif
3548
3549 #if EV_CHILD_ENABLE
3550
3551 void
3552 ev_child_start (EV_P_ ev_child *w)
3553 {
3554 #if EV_MULTIPLICITY
3555 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3556 #endif
3557 if (expect_false (ev_is_active (w)))
3558 return;
3559
3560 EV_FREQUENT_CHECK;
3561
3562 ev_start (EV_A_ (W)w, 1);
3563 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3564
3565 EV_FREQUENT_CHECK;
3566 }
3567
3568 void
3569 ev_child_stop (EV_P_ ev_child *w)
3570 {
3571 clear_pending (EV_A_ (W)w);
3572 if (expect_false (!ev_is_active (w)))
3573 return;
3574
3575 EV_FREQUENT_CHECK;
3576
3577 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
3581 }
3582
3583 #endif
3584
3585 #if EV_STAT_ENABLE
3586
3587 # ifdef _WIN32
3588 # undef lstat
3589 # define lstat(a,b) _stati64 (a,b)
3590 # endif
3591
3592 #define DEF_STAT_INTERVAL 5.0074891
3593 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3594 #define MIN_STAT_INTERVAL 0.1074891
3595
3596 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3597
3598 #if EV_USE_INOTIFY
3599
3600 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3601 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3602
3603 static void noinline
3604 infy_add (EV_P_ ev_stat *w)
3605 {
3606 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3607
3608 if (w->wd >= 0)
3609 {
3610 struct statfs sfs;
3611
3612 /* now local changes will be tracked by inotify, but remote changes won't */
3613 /* unless the filesystem is known to be local, we therefore still poll */
3614 /* also do poll on <2.6.25, but with normal frequency */
3615
3616 if (!fs_2625)
3617 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3618 else if (!statfs (w->path, &sfs)
3619 && (sfs.f_type == 0x1373 /* devfs */
3620 || sfs.f_type == 0xEF53 /* ext2/3 */
3621 || sfs.f_type == 0x3153464a /* jfs */
3622 || sfs.f_type == 0x52654973 /* reiser3 */
3623 || sfs.f_type == 0x01021994 /* tempfs */
3624 || sfs.f_type == 0x58465342 /* xfs */))
3625 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3626 else
3627 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3628 }
3629 else
3630 {
3631 /* can't use inotify, continue to stat */
3632 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3633
3634 /* if path is not there, monitor some parent directory for speedup hints */
3635 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3636 /* but an efficiency issue only */
3637 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3638 {
3639 char path [4096];
3640 strcpy (path, w->path);
3641
3642 do
3643 {
3644 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3645 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3646
3647 char *pend = strrchr (path, '/');
3648
3649 if (!pend || pend == path)
3650 break;
3651
3652 *pend = 0;
3653 w->wd = inotify_add_watch (fs_fd, path, mask);
3654 }
3655 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3656 }
3657 }
3658
3659 if (w->wd >= 0)
3660 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3661
3662 /* now re-arm timer, if required */
3663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3664 ev_timer_again (EV_A_ &w->timer);
3665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3666 }
3667
3668 static void noinline
3669 infy_del (EV_P_ ev_stat *w)
3670 {
3671 int slot;
3672 int wd = w->wd;
3673
3674 if (wd < 0)
3675 return;
3676
3677 w->wd = -2;
3678 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3679 wlist_del (&fs_hash [slot].head, (WL)w);
3680
3681 /* remove this watcher, if others are watching it, they will rearm */
3682 inotify_rm_watch (fs_fd, wd);
3683 }
3684
3685 static void noinline
3686 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3687 {
3688 if (slot < 0)
3689 /* overflow, need to check for all hash slots */
3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691 infy_wd (EV_A_ slot, wd, ev);
3692 else
3693 {
3694 WL w_;
3695
3696 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3697 {
3698 ev_stat *w = (ev_stat *)w_;
3699 w_ = w_->next; /* lets us remove this watcher and all before it */
3700
3701 if (w->wd == wd || wd == -1)
3702 {
3703 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3704 {
3705 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3706 w->wd = -1;
3707 infy_add (EV_A_ w); /* re-add, no matter what */
3708 }
3709
3710 stat_timer_cb (EV_A_ &w->timer, 0);
3711 }
3712 }
3713 }
3714 }
3715
3716 static void
3717 infy_cb (EV_P_ ev_io *w, int revents)
3718 {
3719 char buf [EV_INOTIFY_BUFSIZE];
3720 int ofs;
3721 int len = read (fs_fd, buf, sizeof (buf));
3722
3723 for (ofs = 0; ofs < len; )
3724 {
3725 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3726 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3727 ofs += sizeof (struct inotify_event) + ev->len;
3728 }
3729 }
3730
3731 inline_size void ecb_cold
3732 ev_check_2625 (EV_P)
3733 {
3734 /* kernels < 2.6.25 are borked
3735 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3736 */
3737 if (ev_linux_version () < 0x020619)
3738 return;
3739
3740 fs_2625 = 1;
3741 }
3742
3743 inline_size int
3744 infy_newfd (void)
3745 {
3746 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3747 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3748 if (fd >= 0)
3749 return fd;
3750 #endif
3751 return inotify_init ();
3752 }
3753
3754 inline_size void
3755 infy_init (EV_P)
3756 {
3757 if (fs_fd != -2)
3758 return;
3759
3760 fs_fd = -1;
3761
3762 ev_check_2625 (EV_A);
3763
3764 fs_fd = infy_newfd ();
3765
3766 if (fs_fd >= 0)
3767 {
3768 fd_intern (fs_fd);
3769 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3770 ev_set_priority (&fs_w, EV_MAXPRI);
3771 ev_io_start (EV_A_ &fs_w);
3772 ev_unref (EV_A);
3773 }
3774 }
3775
3776 inline_size void
3777 infy_fork (EV_P)
3778 {
3779 int slot;
3780
3781 if (fs_fd < 0)
3782 return;
3783
3784 ev_ref (EV_A);
3785 ev_io_stop (EV_A_ &fs_w);
3786 close (fs_fd);
3787 fs_fd = infy_newfd ();
3788
3789 if (fs_fd >= 0)
3790 {
3791 fd_intern (fs_fd);
3792 ev_io_set (&fs_w, fs_fd, EV_READ);
3793 ev_io_start (EV_A_ &fs_w);
3794 ev_unref (EV_A);
3795 }
3796
3797 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3798 {
3799 WL w_ = fs_hash [slot].head;
3800 fs_hash [slot].head = 0;
3801
3802 while (w_)
3803 {
3804 ev_stat *w = (ev_stat *)w_;
3805 w_ = w_->next; /* lets us add this watcher */
3806
3807 w->wd = -1;
3808
3809 if (fs_fd >= 0)
3810 infy_add (EV_A_ w); /* re-add, no matter what */
3811 else
3812 {
3813 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3814 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3815 ev_timer_again (EV_A_ &w->timer);
3816 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3817 }
3818 }
3819 }
3820 }
3821
3822 #endif
3823
3824 #ifdef _WIN32
3825 # define EV_LSTAT(p,b) _stati64 (p, b)
3826 #else
3827 # define EV_LSTAT(p,b) lstat (p, b)
3828 #endif
3829
3830 void
3831 ev_stat_stat (EV_P_ ev_stat *w)
3832 {
3833 if (lstat (w->path, &w->attr) < 0)
3834 w->attr.st_nlink = 0;
3835 else if (!w->attr.st_nlink)
3836 w->attr.st_nlink = 1;
3837 }
3838
3839 static void noinline
3840 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3841 {
3842 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3843
3844 ev_statdata prev = w->attr;
3845 ev_stat_stat (EV_A_ w);
3846
3847 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3848 if (
3849 prev.st_dev != w->attr.st_dev
3850 || prev.st_ino != w->attr.st_ino
3851 || prev.st_mode != w->attr.st_mode
3852 || prev.st_nlink != w->attr.st_nlink
3853 || prev.st_uid != w->attr.st_uid
3854 || prev.st_gid != w->attr.st_gid
3855 || prev.st_rdev != w->attr.st_rdev
3856 || prev.st_size != w->attr.st_size
3857 || prev.st_atime != w->attr.st_atime
3858 || prev.st_mtime != w->attr.st_mtime
3859 || prev.st_ctime != w->attr.st_ctime
3860 ) {
3861 /* we only update w->prev on actual differences */
3862 /* in case we test more often than invoke the callback, */
3863 /* to ensure that prev is always different to attr */
3864 w->prev = prev;
3865
3866 #if EV_USE_INOTIFY
3867 if (fs_fd >= 0)
3868 {
3869 infy_del (EV_A_ w);
3870 infy_add (EV_A_ w);
3871 ev_stat_stat (EV_A_ w); /* avoid race... */
3872 }
3873 #endif
3874
3875 ev_feed_event (EV_A_ w, EV_STAT);
3876 }
3877 }
3878
3879 void
3880 ev_stat_start (EV_P_ ev_stat *w)
3881 {
3882 if (expect_false (ev_is_active (w)))
3883 return;
3884
3885 ev_stat_stat (EV_A_ w);
3886
3887 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3888 w->interval = MIN_STAT_INTERVAL;
3889
3890 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3891 ev_set_priority (&w->timer, ev_priority (w));
3892
3893 #if EV_USE_INOTIFY
3894 infy_init (EV_A);
3895
3896 if (fs_fd >= 0)
3897 infy_add (EV_A_ w);
3898 else
3899 #endif
3900 {
3901 ev_timer_again (EV_A_ &w->timer);
3902 ev_unref (EV_A);
3903 }
3904
3905 ev_start (EV_A_ (W)w, 1);
3906
3907 EV_FREQUENT_CHECK;
3908 }
3909
3910 void
3911 ev_stat_stop (EV_P_ ev_stat *w)
3912 {
3913 clear_pending (EV_A_ (W)w);
3914 if (expect_false (!ev_is_active (w)))
3915 return;
3916
3917 EV_FREQUENT_CHECK;
3918
3919 #if EV_USE_INOTIFY
3920 infy_del (EV_A_ w);
3921 #endif
3922
3923 if (ev_is_active (&w->timer))
3924 {
3925 ev_ref (EV_A);
3926 ev_timer_stop (EV_A_ &w->timer);
3927 }
3928
3929 ev_stop (EV_A_ (W)w);
3930
3931 EV_FREQUENT_CHECK;
3932 }
3933 #endif
3934
3935 #if EV_IDLE_ENABLE
3936 void
3937 ev_idle_start (EV_P_ ev_idle *w)
3938 {
3939 if (expect_false (ev_is_active (w)))
3940 return;
3941
3942 pri_adjust (EV_A_ (W)w);
3943
3944 EV_FREQUENT_CHECK;
3945
3946 {
3947 int active = ++idlecnt [ABSPRI (w)];
3948
3949 ++idleall;
3950 ev_start (EV_A_ (W)w, active);
3951
3952 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3953 idles [ABSPRI (w)][active - 1] = w;
3954 }
3955
3956 EV_FREQUENT_CHECK;
3957 }
3958
3959 void
3960 ev_idle_stop (EV_P_ ev_idle *w)
3961 {
3962 clear_pending (EV_A_ (W)w);
3963 if (expect_false (!ev_is_active (w)))
3964 return;
3965
3966 EV_FREQUENT_CHECK;
3967
3968 {
3969 int active = ev_active (w);
3970
3971 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3972 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3973
3974 ev_stop (EV_A_ (W)w);
3975 --idleall;
3976 }
3977
3978 EV_FREQUENT_CHECK;
3979 }
3980 #endif
3981
3982 #if EV_PREPARE_ENABLE
3983 void
3984 ev_prepare_start (EV_P_ ev_prepare *w)
3985 {
3986 if (expect_false (ev_is_active (w)))
3987 return;
3988
3989 EV_FREQUENT_CHECK;
3990
3991 ev_start (EV_A_ (W)w, ++preparecnt);
3992 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3993 prepares [preparecnt - 1] = w;
3994
3995 EV_FREQUENT_CHECK;
3996 }
3997
3998 void
3999 ev_prepare_stop (EV_P_ ev_prepare *w)
4000 {
4001 clear_pending (EV_A_ (W)w);
4002 if (expect_false (!ev_is_active (w)))
4003 return;
4004
4005 EV_FREQUENT_CHECK;
4006
4007 {
4008 int active = ev_active (w);
4009
4010 prepares [active - 1] = prepares [--preparecnt];
4011 ev_active (prepares [active - 1]) = active;
4012 }
4013
4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
4017 }
4018 #endif
4019
4020 #if EV_CHECK_ENABLE
4021 void
4022 ev_check_start (EV_P_ ev_check *w)
4023 {
4024 if (expect_false (ev_is_active (w)))
4025 return;
4026
4027 EV_FREQUENT_CHECK;
4028
4029 ev_start (EV_A_ (W)w, ++checkcnt);
4030 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4031 checks [checkcnt - 1] = w;
4032
4033 EV_FREQUENT_CHECK;
4034 }
4035
4036 void
4037 ev_check_stop (EV_P_ ev_check *w)
4038 {
4039 clear_pending (EV_A_ (W)w);
4040 if (expect_false (!ev_is_active (w)))
4041 return;
4042
4043 EV_FREQUENT_CHECK;
4044
4045 {
4046 int active = ev_active (w);
4047
4048 checks [active - 1] = checks [--checkcnt];
4049 ev_active (checks [active - 1]) = active;
4050 }
4051
4052 ev_stop (EV_A_ (W)w);
4053
4054 EV_FREQUENT_CHECK;
4055 }
4056 #endif
4057
4058 #if EV_EMBED_ENABLE
4059 void noinline
4060 ev_embed_sweep (EV_P_ ev_embed *w)
4061 {
4062 ev_run (w->other, EVRUN_NOWAIT);
4063 }
4064
4065 static void
4066 embed_io_cb (EV_P_ ev_io *io, int revents)
4067 {
4068 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4069
4070 if (ev_cb (w))
4071 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4072 else
4073 ev_run (w->other, EVRUN_NOWAIT);
4074 }
4075
4076 static void
4077 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4078 {
4079 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4080
4081 {
4082 EV_P = w->other;
4083
4084 while (fdchangecnt)
4085 {
4086 fd_reify (EV_A);
4087 ev_run (EV_A_ EVRUN_NOWAIT);
4088 }
4089 }
4090 }
4091
4092 static void
4093 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4094 {
4095 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4096
4097 ev_embed_stop (EV_A_ w);
4098
4099 {
4100 EV_P = w->other;
4101
4102 ev_loop_fork (EV_A);
4103 ev_run (EV_A_ EVRUN_NOWAIT);
4104 }
4105
4106 ev_embed_start (EV_A_ w);
4107 }
4108
4109 #if 0
4110 static void
4111 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4112 {
4113 ev_idle_stop (EV_A_ idle);
4114 }
4115 #endif
4116
4117 void
4118 ev_embed_start (EV_P_ ev_embed *w)
4119 {
4120 if (expect_false (ev_is_active (w)))
4121 return;
4122
4123 {
4124 EV_P = w->other;
4125 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4126 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4127 }
4128
4129 EV_FREQUENT_CHECK;
4130
4131 ev_set_priority (&w->io, ev_priority (w));
4132 ev_io_start (EV_A_ &w->io);
4133
4134 ev_prepare_init (&w->prepare, embed_prepare_cb);
4135 ev_set_priority (&w->prepare, EV_MINPRI);
4136 ev_prepare_start (EV_A_ &w->prepare);
4137
4138 ev_fork_init (&w->fork, embed_fork_cb);
4139 ev_fork_start (EV_A_ &w->fork);
4140
4141 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4142
4143 ev_start (EV_A_ (W)w, 1);
4144
4145 EV_FREQUENT_CHECK;
4146 }
4147
4148 void
4149 ev_embed_stop (EV_P_ ev_embed *w)
4150 {
4151 clear_pending (EV_A_ (W)w);
4152 if (expect_false (!ev_is_active (w)))
4153 return;
4154
4155 EV_FREQUENT_CHECK;
4156
4157 ev_io_stop (EV_A_ &w->io);
4158 ev_prepare_stop (EV_A_ &w->prepare);
4159 ev_fork_stop (EV_A_ &w->fork);
4160
4161 ev_stop (EV_A_ (W)w);
4162
4163 EV_FREQUENT_CHECK;
4164 }
4165 #endif
4166
4167 #if EV_FORK_ENABLE
4168 void
4169 ev_fork_start (EV_P_ ev_fork *w)
4170 {
4171 if (expect_false (ev_is_active (w)))
4172 return;
4173
4174 EV_FREQUENT_CHECK;
4175
4176 ev_start (EV_A_ (W)w, ++forkcnt);
4177 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4178 forks [forkcnt - 1] = w;
4179
4180 EV_FREQUENT_CHECK;
4181 }
4182
4183 void
4184 ev_fork_stop (EV_P_ ev_fork *w)
4185 {
4186 clear_pending (EV_A_ (W)w);
4187 if (expect_false (!ev_is_active (w)))
4188 return;
4189
4190 EV_FREQUENT_CHECK;
4191
4192 {
4193 int active = ev_active (w);
4194
4195 forks [active - 1] = forks [--forkcnt];
4196 ev_active (forks [active - 1]) = active;
4197 }
4198
4199 ev_stop (EV_A_ (W)w);
4200
4201 EV_FREQUENT_CHECK;
4202 }
4203 #endif
4204
4205 #if EV_CLEANUP_ENABLE
4206 void
4207 ev_cleanup_start (EV_P_ ev_cleanup *w)
4208 {
4209 if (expect_false (ev_is_active (w)))
4210 return;
4211
4212 EV_FREQUENT_CHECK;
4213
4214 ev_start (EV_A_ (W)w, ++cleanupcnt);
4215 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4216 cleanups [cleanupcnt - 1] = w;
4217
4218 /* cleanup watchers should never keep a refcount on the loop */
4219 ev_unref (EV_A);
4220 EV_FREQUENT_CHECK;
4221 }
4222
4223 void
4224 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4225 {
4226 clear_pending (EV_A_ (W)w);
4227 if (expect_false (!ev_is_active (w)))
4228 return;
4229
4230 EV_FREQUENT_CHECK;
4231 ev_ref (EV_A);
4232
4233 {
4234 int active = ev_active (w);
4235
4236 cleanups [active - 1] = cleanups [--cleanupcnt];
4237 ev_active (cleanups [active - 1]) = active;
4238 }
4239
4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
4243 }
4244 #endif
4245
4246 #if EV_ASYNC_ENABLE
4247 void
4248 ev_async_start (EV_P_ ev_async *w)
4249 {
4250 if (expect_false (ev_is_active (w)))
4251 return;
4252
4253 w->sent = 0;
4254
4255 evpipe_init (EV_A);
4256
4257 EV_FREQUENT_CHECK;
4258
4259 ev_start (EV_A_ (W)w, ++asynccnt);
4260 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4261 asyncs [asynccnt - 1] = w;
4262
4263 EV_FREQUENT_CHECK;
4264 }
4265
4266 void
4267 ev_async_stop (EV_P_ ev_async *w)
4268 {
4269 clear_pending (EV_A_ (W)w);
4270 if (expect_false (!ev_is_active (w)))
4271 return;
4272
4273 EV_FREQUENT_CHECK;
4274
4275 {
4276 int active = ev_active (w);
4277
4278 asyncs [active - 1] = asyncs [--asynccnt];
4279 ev_active (asyncs [active - 1]) = active;
4280 }
4281
4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
4285 }
4286
4287 void
4288 ev_async_send (EV_P_ ev_async *w)
4289 {
4290 w->sent = 1;
4291 evpipe_write (EV_A_ &async_pending);
4292 }
4293 #endif
4294
4295 /*****************************************************************************/
4296
4297 struct ev_once
4298 {
4299 ev_io io;
4300 ev_timer to;
4301 void (*cb)(int revents, void *arg);
4302 void *arg;
4303 };
4304
4305 static void
4306 once_cb (EV_P_ struct ev_once *once, int revents)
4307 {
4308 void (*cb)(int revents, void *arg) = once->cb;
4309 void *arg = once->arg;
4310
4311 ev_io_stop (EV_A_ &once->io);
4312 ev_timer_stop (EV_A_ &once->to);
4313 ev_free (once);
4314
4315 cb (revents, arg);
4316 }
4317
4318 static void
4319 once_cb_io (EV_P_ ev_io *w, int revents)
4320 {
4321 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4322
4323 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4324 }
4325
4326 static void
4327 once_cb_to (EV_P_ ev_timer *w, int revents)
4328 {
4329 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4330
4331 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4332 }
4333
4334 void
4335 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4336 {
4337 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4338
4339 if (expect_false (!once))
4340 {
4341 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4342 return;
4343 }
4344
4345 once->cb = cb;
4346 once->arg = arg;
4347
4348 ev_init (&once->io, once_cb_io);
4349 if (fd >= 0)
4350 {
4351 ev_io_set (&once->io, fd, events);
4352 ev_io_start (EV_A_ &once->io);
4353 }
4354
4355 ev_init (&once->to, once_cb_to);
4356 if (timeout >= 0.)
4357 {
4358 ev_timer_set (&once->to, timeout, 0.);
4359 ev_timer_start (EV_A_ &once->to);
4360 }
4361 }
4362
4363 /*****************************************************************************/
4364
4365 #if EV_WALK_ENABLE
4366 void ecb_cold
4367 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4368 {
4369 int i, j;
4370 ev_watcher_list *wl, *wn;
4371
4372 if (types & (EV_IO | EV_EMBED))
4373 for (i = 0; i < anfdmax; ++i)
4374 for (wl = anfds [i].head; wl; )
4375 {
4376 wn = wl->next;
4377
4378 #if EV_EMBED_ENABLE
4379 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4380 {
4381 if (types & EV_EMBED)
4382 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4383 }
4384 else
4385 #endif
4386 #if EV_USE_INOTIFY
4387 if (ev_cb ((ev_io *)wl) == infy_cb)
4388 ;
4389 else
4390 #endif
4391 if ((ev_io *)wl != &pipe_w)
4392 if (types & EV_IO)
4393 cb (EV_A_ EV_IO, wl);
4394
4395 wl = wn;
4396 }
4397
4398 if (types & (EV_TIMER | EV_STAT))
4399 for (i = timercnt + HEAP0; i-- > HEAP0; )
4400 #if EV_STAT_ENABLE
4401 /*TODO: timer is not always active*/
4402 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4403 {
4404 if (types & EV_STAT)
4405 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4406 }
4407 else
4408 #endif
4409 if (types & EV_TIMER)
4410 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4411
4412 #if EV_PERIODIC_ENABLE
4413 if (types & EV_PERIODIC)
4414 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4415 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4416 #endif
4417
4418 #if EV_IDLE_ENABLE
4419 if (types & EV_IDLE)
4420 for (j = NUMPRI; j--; )
4421 for (i = idlecnt [j]; i--; )
4422 cb (EV_A_ EV_IDLE, idles [j][i]);
4423 #endif
4424
4425 #if EV_FORK_ENABLE
4426 if (types & EV_FORK)
4427 for (i = forkcnt; i--; )
4428 if (ev_cb (forks [i]) != embed_fork_cb)
4429 cb (EV_A_ EV_FORK, forks [i]);
4430 #endif
4431
4432 #if EV_ASYNC_ENABLE
4433 if (types & EV_ASYNC)
4434 for (i = asynccnt; i--; )
4435 cb (EV_A_ EV_ASYNC, asyncs [i]);
4436 #endif
4437
4438 #if EV_PREPARE_ENABLE
4439 if (types & EV_PREPARE)
4440 for (i = preparecnt; i--; )
4441 # if EV_EMBED_ENABLE
4442 if (ev_cb (prepares [i]) != embed_prepare_cb)
4443 # endif
4444 cb (EV_A_ EV_PREPARE, prepares [i]);
4445 #endif
4446
4447 #if EV_CHECK_ENABLE
4448 if (types & EV_CHECK)
4449 for (i = checkcnt; i--; )
4450 cb (EV_A_ EV_CHECK, checks [i]);
4451 #endif
4452
4453 #if EV_SIGNAL_ENABLE
4454 if (types & EV_SIGNAL)
4455 for (i = 0; i < EV_NSIG - 1; ++i)
4456 for (wl = signals [i].head; wl; )
4457 {
4458 wn = wl->next;
4459 cb (EV_A_ EV_SIGNAL, wl);
4460 wl = wn;
4461 }
4462 #endif
4463
4464 #if EV_CHILD_ENABLE
4465 if (types & EV_CHILD)
4466 for (i = (EV_PID_HASHSIZE); i--; )
4467 for (wl = childs [i]; wl; )
4468 {
4469 wn = wl->next;
4470 cb (EV_A_ EV_CHILD, wl);
4471 wl = wn;
4472 }
4473 #endif
4474 /* EV_STAT 0x00001000 /* stat data changed */
4475 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4476 }
4477 #endif
4478
4479 #if EV_MULTIPLICITY
4480 #include "ev_wrap.h"
4481 #endif
4482