ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.427
Committed: Sun May 6 19:29:59 2012 UTC (12 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.426: +18 -10 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # ifndef EV_SELECT_IS_WINSOCKET
208 # define EV_SELECT_IS_WINSOCKET 1
209 # endif
210 # undef EV_AVOID_STDIO
211 #endif
212
213 /* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219 #define _DARWIN_UNLIMITED_SELECT 1
220
221 /* this block tries to deduce configuration from header-defined symbols and defaults */
222
223 /* try to deduce the maximum number of signals on this platform */
224 #if defined EV_NSIG
225 /* use what's provided */
226 #elif defined NSIG
227 # define EV_NSIG (NSIG)
228 #elif defined _NSIG
229 # define EV_NSIG (_NSIG)
230 #elif defined SIGMAX
231 # define EV_NSIG (SIGMAX+1)
232 #elif defined SIG_MAX
233 # define EV_NSIG (SIG_MAX+1)
234 #elif defined _SIG_MAX
235 # define EV_NSIG (_SIG_MAX+1)
236 #elif defined MAXSIG
237 # define EV_NSIG (MAXSIG+1)
238 #elif defined MAX_SIG
239 # define EV_NSIG (MAX_SIG+1)
240 #elif defined SIGARRAYSIZE
241 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242 #elif defined _sys_nsig
243 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244 #else
245 # error "unable to find value for NSIG, please report"
246 /* to make it compile regardless, just remove the above line, */
247 /* but consider reporting it, too! :) */
248 # define EV_NSIG 65
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ >= 2
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #ifndef EV_USE_MONOTONIC
264 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265 # define EV_USE_MONOTONIC EV_FEATURE_OS
266 # else
267 # define EV_USE_MONOTONIC 0
268 # endif
269 #endif
270
271 #ifndef EV_USE_REALTIME
272 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273 #endif
274
275 #ifndef EV_USE_NANOSLEEP
276 # if _POSIX_C_SOURCE >= 199309L
277 # define EV_USE_NANOSLEEP EV_FEATURE_OS
278 # else
279 # define EV_USE_NANOSLEEP 0
280 # endif
281 #endif
282
283 #ifndef EV_USE_SELECT
284 # define EV_USE_SELECT EV_FEATURE_BACKENDS
285 #endif
286
287 #ifndef EV_USE_POLL
288 # ifdef _WIN32
289 # define EV_USE_POLL 0
290 # else
291 # define EV_USE_POLL EV_FEATURE_BACKENDS
292 # endif
293 #endif
294
295 #ifndef EV_USE_EPOLL
296 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
298 # else
299 # define EV_USE_EPOLL 0
300 # endif
301 #endif
302
303 #ifndef EV_USE_KQUEUE
304 # define EV_USE_KQUEUE 0
305 #endif
306
307 #ifndef EV_USE_PORT
308 # define EV_USE_PORT 0
309 #endif
310
311 #ifndef EV_USE_INOTIFY
312 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313 # define EV_USE_INOTIFY EV_FEATURE_OS
314 # else
315 # define EV_USE_INOTIFY 0
316 # endif
317 #endif
318
319 #ifndef EV_PID_HASHSIZE
320 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321 #endif
322
323 #ifndef EV_INOTIFY_HASHSIZE
324 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325 #endif
326
327 #ifndef EV_USE_EVENTFD
328 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329 # define EV_USE_EVENTFD EV_FEATURE_OS
330 # else
331 # define EV_USE_EVENTFD 0
332 # endif
333 #endif
334
335 #ifndef EV_USE_SIGNALFD
336 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337 # define EV_USE_SIGNALFD EV_FEATURE_OS
338 # else
339 # define EV_USE_SIGNALFD 0
340 # endif
341 #endif
342
343 #if 0 /* debugging */
344 # define EV_VERIFY 3
345 # define EV_USE_4HEAP 1
346 # define EV_HEAP_CACHE_AT 1
347 #endif
348
349 #ifndef EV_VERIFY
350 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351 #endif
352
353 #ifndef EV_USE_4HEAP
354 # define EV_USE_4HEAP EV_FEATURE_DATA
355 #endif
356
357 #ifndef EV_HEAP_CACHE_AT
358 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359 #endif
360
361 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362 /* which makes programs even slower. might work on other unices, too. */
363 #if EV_USE_CLOCK_SYSCALL
364 # include <sys/syscall.h>
365 # ifdef SYS_clock_gettime
366 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367 # undef EV_USE_MONOTONIC
368 # define EV_USE_MONOTONIC 1
369 # else
370 # undef EV_USE_CLOCK_SYSCALL
371 # define EV_USE_CLOCK_SYSCALL 0
372 # endif
373 #endif
374
375 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377 #ifdef _AIX
378 /* AIX has a completely broken poll.h header */
379 # undef EV_USE_POLL
380 # define EV_USE_POLL 0
381 #endif
382
383 #ifndef CLOCK_MONOTONIC
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 0
386 #endif
387
388 #ifndef CLOCK_REALTIME
389 # undef EV_USE_REALTIME
390 # define EV_USE_REALTIME 0
391 #endif
392
393 #if !EV_STAT_ENABLE
394 # undef EV_USE_INOTIFY
395 # define EV_USE_INOTIFY 0
396 #endif
397
398 #if !EV_USE_NANOSLEEP
399 /* hp-ux has it in sys/time.h, which we unconditionally include above */
400 # if !defined _WIN32 && !defined __hpux
401 # include <sys/select.h>
402 # endif
403 #endif
404
405 #if EV_USE_INOTIFY
406 # include <sys/statfs.h>
407 # include <sys/inotify.h>
408 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409 # ifndef IN_DONT_FOLLOW
410 # undef EV_USE_INOTIFY
411 # define EV_USE_INOTIFY 0
412 # endif
413 #endif
414
415 #if EV_SELECT_IS_WINSOCKET
416 # include <winsock.h>
417 #endif
418
419 #if EV_USE_EVENTFD
420 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421 # include <stdint.h>
422 # ifndef EFD_NONBLOCK
423 # define EFD_NONBLOCK O_NONBLOCK
424 # endif
425 # ifndef EFD_CLOEXEC
426 # ifdef O_CLOEXEC
427 # define EFD_CLOEXEC O_CLOEXEC
428 # else
429 # define EFD_CLOEXEC 02000000
430 # endif
431 # endif
432 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433 #endif
434
435 #if EV_USE_SIGNALFD
436 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437 # include <stdint.h>
438 # ifndef SFD_NONBLOCK
439 # define SFD_NONBLOCK O_NONBLOCK
440 # endif
441 # ifndef SFD_CLOEXEC
442 # ifdef O_CLOEXEC
443 # define SFD_CLOEXEC O_CLOEXEC
444 # else
445 # define SFD_CLOEXEC 02000000
446 # endif
447 # endif
448 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450 struct signalfd_siginfo
451 {
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454 };
455 #endif
456
457 /**/
458
459 #if EV_VERIFY >= 3
460 # define EV_FREQUENT_CHECK ev_verify (EV_A)
461 #else
462 # define EV_FREQUENT_CHECK do { } while (0)
463 #endif
464
465 /*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479 /* ECB.H BEGIN */
480 /*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509 #ifndef ECB_H
510 #define ECB_H
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #else
527 #include <inttypes.h>
528 #endif
529
530 /* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537 #ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543 #endif
544
545 /*****************************************************************************/
546
547 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550 #if ECB_NO_THREADS
551 # define ECB_NO_SMP 1
552 #endif
553
554 #if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556 #endif
557
558 #ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588 #endif
589
590 #ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611 #endif
612
613 #ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629 #endif
630
631 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633 #endif
634
635 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637 #endif
638
639 /*****************************************************************************/
640
641 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643 #if __cplusplus
644 #define ecb_inline static inline
645 #elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647 #elif ECB_C99
648 #define ecb_inline static inline
649 #else
650 #define ecb_inline static
651 #endif
652
653 #if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655 #elif ECB_C99
656 #define ecb_restrict restrict
657 #else
658 #define ecb_restrict
659 #endif
660
661 typedef int ecb_bool;
662
663 #define ECB_CONCAT_(a, b) a ## b
664 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665 #define ECB_STRINGIFY_(a) # a
666 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668 #define ecb_function_ ecb_inline
669
670 #if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675 #else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680 #endif
681
682 /* no emulation for ecb_decltype */
683 #if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685 #elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687 #endif
688
689 #define ecb_noinline ecb_attribute ((__noinline__))
690 #define ecb_noreturn ecb_attribute ((__noreturn__))
691 #define ecb_unused ecb_attribute ((__unused__))
692 #define ecb_const ecb_attribute ((__const__))
693 #define ecb_pure ecb_attribute ((__pure__))
694
695 #if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699 #else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703 #endif
704
705 /* put around conditional expressions if you are very sure that the */
706 /* expression is mostly true or mostly false. note that these return */
707 /* booleans, not the expression. */
708 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
709 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710 /* for compatibility to the rest of the world */
711 #define ecb_likely(expr) ecb_expect_true (expr)
712 #define ecb_unlikely(expr) ecb_expect_false (expr)
713
714 /* count trailing zero bits and count # of one bits */
715 #if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723 #else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732 #if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738 #else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744 #endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792 #endif
793
794 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796 {
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799 }
800
801 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803 {
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810 }
811
812 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814 {
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822 }
823
824 /* popcount64 is only available on 64 bit cpus as gcc builtin */
825 /* so for this version we are lazy */
826 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827 ecb_function_ int
828 ecb_popcount64 (uint64_t x)
829 {
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831 }
832
833 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851 #if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855 #else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876 #endif
877
878 #if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880 #else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884 #endif
885
886 /* try to tell the compiler that some condition is definitely true */
887 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890 ecb_inline unsigned char
891 ecb_byteorder_helper (void)
892 {
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895 }
896
897 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902 #if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904 #else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906 #endif
907
908 #if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919 #else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922 #endif
923
924 #if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931 #else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933 #endif
934
935 #endif
936
937 /* ECB.H END */
938
939 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940 /* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947 # error "memory fences not defined for your architecture, please report"
948 #endif
949
950 #ifndef ECB_MEMORY_FENCE
951 # define ECB_MEMORY_FENCE do { } while (0)
952 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954 #endif
955
956 #define expect_false(cond) ecb_expect_false (cond)
957 #define expect_true(cond) ecb_expect_true (cond)
958 #define noinline ecb_noinline
959
960 #define inline_size ecb_inline
961
962 #if EV_FEATURE_CODE
963 # define inline_speed ecb_inline
964 #else
965 # define inline_speed static noinline
966 #endif
967
968 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970 #if EV_MINPRI == EV_MAXPRI
971 # define ABSPRI(w) (((W)w), 0)
972 #else
973 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974 #endif
975
976 #define EMPTY /* required for microsofts broken pseudo-c compiler */
977 #define EMPTY2(a,b) /* used to suppress some warnings */
978
979 typedef ev_watcher *W;
980 typedef ev_watcher_list *WL;
981 typedef ev_watcher_time *WT;
982
983 #define ev_active(w) ((W)(w))->active
984 #define ev_at(w) ((WT)(w))->at
985
986 #if EV_USE_REALTIME
987 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
988 /* giving it a reasonably high chance of working on typical architectures */
989 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990 #endif
991
992 #if EV_USE_MONOTONIC
993 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994 #endif
995
996 #ifndef EV_FD_TO_WIN32_HANDLE
997 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998 #endif
999 #ifndef EV_WIN32_HANDLE_TO_FD
1000 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001 #endif
1002 #ifndef EV_WIN32_CLOSE_FD
1003 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1004 #endif
1005
1006 #ifdef _WIN32
1007 # include "ev_win32.c"
1008 #endif
1009
1010 /*****************************************************************************/
1011
1012 /* define a suitable floor function (only used by periodics atm) */
1013
1014 #if EV_USE_FLOOR
1015 # include <math.h>
1016 # define ev_floor(v) floor (v)
1017 #else
1018
1019 #include <float.h>
1020
1021 /* a floor() replacement function, should be independent of ev_tstamp type */
1022 static ev_tstamp noinline
1023 ev_floor (ev_tstamp v)
1024 {
1025 /* the choice of shift factor is not terribly important */
1026 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028 #else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030 #endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054 }
1055
1056 #endif
1057
1058 /*****************************************************************************/
1059
1060 #ifdef __linux
1061 # include <sys/utsname.h>
1062 #endif
1063
1064 static unsigned int noinline ecb_cold
1065 ev_linux_version (void)
1066 {
1067 #ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095 #else
1096 return 0;
1097 #endif
1098 }
1099
1100 /*****************************************************************************/
1101
1102 #if EV_AVOID_STDIO
1103 static void noinline ecb_cold
1104 ev_printerr (const char *msg)
1105 {
1106 write (STDERR_FILENO, msg, strlen (msg));
1107 }
1108 #endif
1109
1110 static void (*syserr_cb)(const char *msg) EV_THROW;
1111
1112 void ecb_cold
1113 ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1114 {
1115 syserr_cb = cb;
1116 }
1117
1118 static void noinline ecb_cold
1119 ev_syserr (const char *msg)
1120 {
1121 if (!msg)
1122 msg = "(libev) system error";
1123
1124 if (syserr_cb)
1125 syserr_cb (msg);
1126 else
1127 {
1128 #if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133 #else
1134 perror (msg);
1135 #endif
1136 abort ();
1137 }
1138 }
1139
1140 static void *
1141 ev_realloc_emul (void *ptr, long size)
1142 {
1143 #if __GLIBC__
1144 return realloc (ptr, size);
1145 #else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156 #endif
1157 }
1158
1159 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1160
1161 void ecb_cold
1162 ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1163 {
1164 alloc = cb;
1165 }
1166
1167 inline_speed void *
1168 ev_realloc (void *ptr, long size)
1169 {
1170 ptr = alloc (ptr, size);
1171
1172 if (!ptr && size)
1173 {
1174 #if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176 #else
1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178 #endif
1179 abort ();
1180 }
1181
1182 return ptr;
1183 }
1184
1185 #define ev_malloc(size) ev_realloc (0, (size))
1186 #define ev_free(ptr) ev_realloc ((ptr), 0)
1187
1188 /*****************************************************************************/
1189
1190 /* set in reify when reification needed */
1191 #define EV_ANFD_REIFY 1
1192
1193 /* file descriptor info structure */
1194 typedef struct
1195 {
1196 WL head;
1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1200 unsigned char unused;
1201 #if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203 #endif
1204 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1205 SOCKET handle;
1206 #endif
1207 #if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209 #endif
1210 } ANFD;
1211
1212 /* stores the pending event set for a given watcher */
1213 typedef struct
1214 {
1215 W w;
1216 int events; /* the pending event set for the given watcher */
1217 } ANPENDING;
1218
1219 #if EV_USE_INOTIFY
1220 /* hash table entry per inotify-id */
1221 typedef struct
1222 {
1223 WL head;
1224 } ANFS;
1225 #endif
1226
1227 /* Heap Entry */
1228 #if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238 #else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
1245 #endif
1246
1247 #if EV_MULTIPLICITY
1248
1249 struct ev_loop
1250 {
1251 ev_tstamp ev_rt_now;
1252 #define ev_rt_now ((loop)->ev_rt_now)
1253 #define VAR(name,decl) decl;
1254 #include "ev_vars.h"
1255 #undef VAR
1256 };
1257 #include "ev_wrap.h"
1258
1259 static struct ev_loop default_loop_struct;
1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1261
1262 #else
1263
1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1265 #define VAR(name,decl) static decl;
1266 #include "ev_vars.h"
1267 #undef VAR
1268
1269 static int ev_default_loop_ptr;
1270
1271 #endif
1272
1273 #if EV_FEATURE_API
1274 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1277 #else
1278 # define EV_RELEASE_CB (void)0
1279 # define EV_ACQUIRE_CB (void)0
1280 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281 #endif
1282
1283 #define EVBREAK_RECURSE 0x80
1284
1285 /*****************************************************************************/
1286
1287 #ifndef EV_HAVE_EV_TIME
1288 ev_tstamp
1289 ev_time (void) EV_THROW
1290 {
1291 #if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
1294 struct timespec ts;
1295 clock_gettime (CLOCK_REALTIME, &ts);
1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
1297 }
1298 #endif
1299
1300 struct timeval tv;
1301 gettimeofday (&tv, 0);
1302 return tv.tv_sec + tv.tv_usec * 1e-6;
1303 }
1304 #endif
1305
1306 inline_size ev_tstamp
1307 get_clock (void)
1308 {
1309 #if EV_USE_MONOTONIC
1310 if (expect_true (have_monotonic))
1311 {
1312 struct timespec ts;
1313 clock_gettime (CLOCK_MONOTONIC, &ts);
1314 return ts.tv_sec + ts.tv_nsec * 1e-9;
1315 }
1316 #endif
1317
1318 return ev_time ();
1319 }
1320
1321 #if EV_MULTIPLICITY
1322 ev_tstamp
1323 ev_now (EV_P) EV_THROW
1324 {
1325 return ev_rt_now;
1326 }
1327 #endif
1328
1329 void
1330 ev_sleep (ev_tstamp delay) EV_THROW
1331 {
1332 if (delay > 0.)
1333 {
1334 #if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339 #elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341 #else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349 #endif
1350 }
1351 }
1352
1353 /*****************************************************************************/
1354
1355 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357 /* find a suitable new size for the given array, */
1358 /* hopefully by rounding to a nice-to-malloc size */
1359 inline_size int
1360 array_nextsize (int elem, int cur, int cnt)
1361 {
1362 int ncur = cur + 1;
1363
1364 do
1365 ncur <<= 1;
1366 while (cnt > ncur);
1367
1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1370 {
1371 ncur *= elem;
1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1373 ncur = ncur - sizeof (void *) * 4;
1374 ncur /= elem;
1375 }
1376
1377 return ncur;
1378 }
1379
1380 static void * noinline ecb_cold
1381 array_realloc (int elem, void *base, int *cur, int cnt)
1382 {
1383 *cur = array_nextsize (elem, *cur, cnt);
1384 return ev_realloc (base, elem * *cur);
1385 }
1386
1387 #define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1389
1390 #define array_needsize(type,base,cur,cnt,init) \
1391 if (expect_false ((cnt) > (cur))) \
1392 { \
1393 int ecb_unused ocur_ = (cur); \
1394 (base) = (type *)array_realloc \
1395 (sizeof (type), (base), &(cur), (cnt)); \
1396 init ((base) + (ocur_), (cur) - ocur_); \
1397 }
1398
1399 #if 0
1400 #define array_slim(type,stem) \
1401 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1402 { \
1403 stem ## max = array_roundsize (stem ## cnt >> 1); \
1404 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1406 }
1407 #endif
1408
1409 #define array_free(stem, idx) \
1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1411
1412 /*****************************************************************************/
1413
1414 /* dummy callback for pending events */
1415 static void noinline
1416 pendingcb (EV_P_ ev_prepare *w, int revents)
1417 {
1418 }
1419
1420 void noinline
1421 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1422 {
1423 W w_ = (W)w;
1424 int pri = ABSPRI (w_);
1425
1426 if (expect_false (w_->pending))
1427 pendings [pri][w_->pending - 1].events |= revents;
1428 else
1429 {
1430 w_->pending = ++pendingcnt [pri];
1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1432 pendings [pri][w_->pending - 1].w = w_;
1433 pendings [pri][w_->pending - 1].events = revents;
1434 }
1435
1436 pendingpri = NUMPRI - 1;
1437 }
1438
1439 inline_speed void
1440 feed_reverse (EV_P_ W w)
1441 {
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444 }
1445
1446 inline_size void
1447 feed_reverse_done (EV_P_ int revents)
1448 {
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452 }
1453
1454 inline_speed void
1455 queue_events (EV_P_ W *events, int eventcnt, int type)
1456 {
1457 int i;
1458
1459 for (i = 0; i < eventcnt; ++i)
1460 ev_feed_event (EV_A_ events [i], type);
1461 }
1462
1463 /*****************************************************************************/
1464
1465 inline_speed void
1466 fd_event_nocheck (EV_P_ int fd, int revents)
1467 {
1468 ANFD *anfd = anfds + fd;
1469 ev_io *w;
1470
1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1472 {
1473 int ev = w->events & revents;
1474
1475 if (ev)
1476 ev_feed_event (EV_A_ (W)w, ev);
1477 }
1478 }
1479
1480 /* do not submit kernel events for fds that have reify set */
1481 /* because that means they changed while we were polling for new events */
1482 inline_speed void
1483 fd_event (EV_P_ int fd, int revents)
1484 {
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489 }
1490
1491 void
1492 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1493 {
1494 if (fd >= 0 && fd < anfdmax)
1495 fd_event_nocheck (EV_A_ fd, revents);
1496 }
1497
1498 /* make sure the external fd watch events are in-sync */
1499 /* with the kernel/libev internal state */
1500 inline_size void
1501 fd_reify (EV_P)
1502 {
1503 int i;
1504
1505 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528 #endif
1529
1530 for (i = 0; i < fdchangecnt; ++i)
1531 {
1532 int fd = fdchanges [i];
1533 ANFD *anfd = anfds + fd;
1534 ev_io *w;
1535
1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
1538
1539 anfd->reify = 0;
1540
1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1542 {
1543 anfd->events = 0;
1544
1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1546 anfd->events |= (unsigned char)w->events;
1547
1548 if (o_events != anfd->events)
1549 o_reify = EV__IOFDSET; /* actually |= */
1550 }
1551
1552 if (o_reify & EV__IOFDSET)
1553 backend_modify (EV_A_ fd, o_events, anfd->events);
1554 }
1555
1556 fdchangecnt = 0;
1557 }
1558
1559 /* something about the given fd changed */
1560 inline_size void
1561 fd_change (EV_P_ int fd, int flags)
1562 {
1563 unsigned char reify = anfds [fd].reify;
1564 anfds [fd].reify |= flags;
1565
1566 if (expect_true (!reify))
1567 {
1568 ++fdchangecnt;
1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1570 fdchanges [fdchangecnt - 1] = fd;
1571 }
1572 }
1573
1574 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575 inline_speed void ecb_cold
1576 fd_kill (EV_P_ int fd)
1577 {
1578 ev_io *w;
1579
1580 while ((w = (ev_io *)anfds [fd].head))
1581 {
1582 ev_io_stop (EV_A_ w);
1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1584 }
1585 }
1586
1587 /* check whether the given fd is actually valid, for error recovery */
1588 inline_size int ecb_cold
1589 fd_valid (int fd)
1590 {
1591 #ifdef _WIN32
1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1593 #else
1594 return fcntl (fd, F_GETFD) != -1;
1595 #endif
1596 }
1597
1598 /* called on EBADF to verify fds */
1599 static void noinline ecb_cold
1600 fd_ebadf (EV_P)
1601 {
1602 int fd;
1603
1604 for (fd = 0; fd < anfdmax; ++fd)
1605 if (anfds [fd].events)
1606 if (!fd_valid (fd) && errno == EBADF)
1607 fd_kill (EV_A_ fd);
1608 }
1609
1610 /* called on ENOMEM in select/poll to kill some fds and retry */
1611 static void noinline ecb_cold
1612 fd_enomem (EV_P)
1613 {
1614 int fd;
1615
1616 for (fd = anfdmax; fd--; )
1617 if (anfds [fd].events)
1618 {
1619 fd_kill (EV_A_ fd);
1620 break;
1621 }
1622 }
1623
1624 /* usually called after fork if backend needs to re-arm all fds from scratch */
1625 static void noinline
1626 fd_rearm_all (EV_P)
1627 {
1628 int fd;
1629
1630 for (fd = 0; fd < anfdmax; ++fd)
1631 if (anfds [fd].events)
1632 {
1633 anfds [fd].events = 0;
1634 anfds [fd].emask = 0;
1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1636 }
1637 }
1638
1639 /* used to prepare libev internal fd's */
1640 /* this is not fork-safe */
1641 inline_speed void
1642 fd_intern (int fd)
1643 {
1644 #ifdef _WIN32
1645 unsigned long arg = 1;
1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1647 #else
1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
1649 fcntl (fd, F_SETFL, O_NONBLOCK);
1650 #endif
1651 }
1652
1653 /*****************************************************************************/
1654
1655 /*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
1660
1661 /*
1662 * at the moment we allow libev the luxury of two heaps,
1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1664 * which is more cache-efficient.
1665 * the difference is about 5% with 50000+ watchers.
1666 */
1667 #if EV_USE_4HEAP
1668
1669 #define DHEAP 4
1670 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672 #define UPHEAP_DONE(p,k) ((p) == (k))
1673
1674 /* away from the root */
1675 inline_speed void
1676 downheap (ANHE *heap, int N, int k)
1677 {
1678 ANHE he = heap [k];
1679 ANHE *E = heap + N + HEAP0;
1680
1681 for (;;)
1682 {
1683 ev_tstamp minat;
1684 ANHE *minpos;
1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1686
1687 /* find minimum child */
1688 if (expect_true (pos + DHEAP - 1 < E))
1689 {
1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1694 }
1695 else if (pos < E)
1696 {
1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1701 }
1702 else
1703 break;
1704
1705 if (ANHE_at (he) <= minat)
1706 break;
1707
1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
1710
1711 k = minpos - heap;
1712 }
1713
1714 heap [k] = he;
1715 ev_active (ANHE_w (he)) = k;
1716 }
1717
1718 #else /* 4HEAP */
1719
1720 #define HEAP0 1
1721 #define HPARENT(k) ((k) >> 1)
1722 #define UPHEAP_DONE(p,k) (!(p))
1723
1724 /* away from the root */
1725 inline_speed void
1726 downheap (ANHE *heap, int N, int k)
1727 {
1728 ANHE he = heap [k];
1729
1730 for (;;)
1731 {
1732 int c = k << 1;
1733
1734 if (c >= N + HEAP0)
1735 break;
1736
1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1738 ? 1 : 0;
1739
1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
1741 break;
1742
1743 heap [k] = heap [c];
1744 ev_active (ANHE_w (heap [k])) = k;
1745
1746 k = c;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751 }
1752 #endif
1753
1754 /* towards the root */
1755 inline_speed void
1756 upheap (ANHE *heap, int k)
1757 {
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
1768 ev_active (ANHE_w (heap [k])) = k;
1769 k = p;
1770 }
1771
1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774 }
1775
1776 /* move an element suitably so it is in a correct place */
1777 inline_size void
1778 adjustheap (ANHE *heap, int N, int k)
1779 {
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1781 upheap (heap, k);
1782 else
1783 downheap (heap, N, k);
1784 }
1785
1786 /* rebuild the heap: this function is used only once and executed rarely */
1787 inline_size void
1788 reheap (ANHE *heap, int N)
1789 {
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
1796 }
1797
1798 /*****************************************************************************/
1799
1800 /* associate signal watchers to a signal signal */
1801 typedef struct
1802 {
1803 EV_ATOMIC_T pending;
1804 #if EV_MULTIPLICITY
1805 EV_P;
1806 #endif
1807 WL head;
1808 } ANSIG;
1809
1810 static ANSIG signals [EV_NSIG - 1];
1811
1812 /*****************************************************************************/
1813
1814 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1815
1816 static void noinline ecb_cold
1817 evpipe_init (EV_P)
1818 {
1819 if (!ev_is_active (&pipe_w))
1820 {
1821 # if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1827 {
1828 evpipe [0] = -1;
1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1830 ev_io_set (&pipe_w, evfd, EV_READ);
1831 }
1832 else
1833 # endif
1834 {
1835 while (pipe (evpipe))
1836 ev_syserr ("(libev) error creating signal/async pipe");
1837
1838 fd_intern (evpipe [0]);
1839 fd_intern (evpipe [1]);
1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1841 }
1842
1843 ev_io_start (EV_A_ &pipe_w);
1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1845 }
1846 }
1847
1848 inline_speed void
1849 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1850 {
1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1870 old_errno = errno; /* save errno because write will clobber it */
1871
1872 #if EV_USE_EVENTFD
1873 if (evfd >= 0)
1874 {
1875 uint64_t counter = 1;
1876 write (evfd, &counter, sizeof (uint64_t));
1877 }
1878 else
1879 #endif
1880 {
1881 #ifdef _WIN32
1882 WSABUF buf;
1883 DWORD sent;
1884 buf.buf = &buf;
1885 buf.len = 1;
1886 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1887 #else
1888 write (evpipe [1], &(evpipe [1]), 1);
1889 #endif
1890 }
1891
1892 errno = old_errno;
1893 }
1894 }
1895
1896 /* called whenever the libev signal pipe */
1897 /* got some events (signal, async) */
1898 static void
1899 pipecb (EV_P_ ev_io *iow, int revents)
1900 {
1901 int i;
1902
1903 if (revents & EV_READ)
1904 {
1905 #if EV_USE_EVENTFD
1906 if (evfd >= 0)
1907 {
1908 uint64_t counter;
1909 read (evfd, &counter, sizeof (uint64_t));
1910 }
1911 else
1912 #endif
1913 {
1914 char dummy[4];
1915 #ifdef _WIN32
1916 WSABUF buf;
1917 DWORD recvd;
1918 buf.buf = dummy;
1919 buf.len = sizeof (dummy);
1920 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1921 #else
1922 read (evpipe [0], &dummy, sizeof (dummy));
1923 #endif
1924 }
1925 }
1926
1927 pipe_write_skipped = 0;
1928
1929 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1930
1931 #if EV_SIGNAL_ENABLE
1932 if (sig_pending)
1933 {
1934 sig_pending = 0;
1935
1936 ECB_MEMORY_FENCE_RELEASE;
1937
1938 for (i = EV_NSIG - 1; i--; )
1939 if (expect_false (signals [i].pending))
1940 ev_feed_signal_event (EV_A_ i + 1);
1941 }
1942 #endif
1943
1944 #if EV_ASYNC_ENABLE
1945 if (async_pending)
1946 {
1947 async_pending = 0;
1948
1949 ECB_MEMORY_FENCE_RELEASE;
1950
1951 for (i = asynccnt; i--; )
1952 if (asyncs [i]->sent)
1953 {
1954 asyncs [i]->sent = 0;
1955 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1956 }
1957 }
1958 #endif
1959 }
1960
1961 /*****************************************************************************/
1962
1963 void
1964 ev_feed_signal (int signum) EV_THROW
1965 {
1966 #if EV_MULTIPLICITY
1967 EV_P = signals [signum - 1].loop;
1968
1969 if (!EV_A)
1970 return;
1971 #endif
1972
1973 if (!ev_active (&pipe_w))
1974 return;
1975
1976 signals [signum - 1].pending = 1;
1977 evpipe_write (EV_A_ &sig_pending);
1978 }
1979
1980 static void
1981 ev_sighandler (int signum)
1982 {
1983 #ifdef _WIN32
1984 signal (signum, ev_sighandler);
1985 #endif
1986
1987 ev_feed_signal (signum);
1988 }
1989
1990 void noinline
1991 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1992 {
1993 WL w;
1994
1995 if (expect_false (signum <= 0 || signum > EV_NSIG))
1996 return;
1997
1998 --signum;
1999
2000 #if EV_MULTIPLICITY
2001 /* it is permissible to try to feed a signal to the wrong loop */
2002 /* or, likely more useful, feeding a signal nobody is waiting for */
2003
2004 if (expect_false (signals [signum].loop != EV_A))
2005 return;
2006 #endif
2007
2008 signals [signum].pending = 0;
2009
2010 for (w = signals [signum].head; w; w = w->next)
2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2012 }
2013
2014 #if EV_USE_SIGNALFD
2015 static void
2016 sigfdcb (EV_P_ ev_io *iow, int revents)
2017 {
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031 }
2032 #endif
2033
2034 #endif
2035
2036 /*****************************************************************************/
2037
2038 #if EV_CHILD_ENABLE
2039 static WL childs [EV_PID_HASHSIZE];
2040
2041 static ev_signal childev;
2042
2043 #ifndef WIFCONTINUED
2044 # define WIFCONTINUED(status) 0
2045 #endif
2046
2047 /* handle a single child status event */
2048 inline_speed void
2049 child_reap (EV_P_ int chain, int pid, int status)
2050 {
2051 ev_child *w;
2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2053
2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2055 {
2056 if ((w->pid == pid || !w->pid)
2057 && (!traced || (w->flags & 1)))
2058 {
2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2060 w->rpid = pid;
2061 w->rstatus = status;
2062 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2063 }
2064 }
2065 }
2066
2067 #ifndef WCONTINUED
2068 # define WCONTINUED 0
2069 #endif
2070
2071 /* called on sigchld etc., calls waitpid */
2072 static void
2073 childcb (EV_P_ ev_signal *sw, int revents)
2074 {
2075 int pid, status;
2076
2077 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2078 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2079 if (!WCONTINUED
2080 || errno != EINVAL
2081 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2082 return;
2083
2084 /* make sure we are called again until all children have been reaped */
2085 /* we need to do it this way so that the callback gets called before we continue */
2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2087
2088 child_reap (EV_A_ pid, pid, status);
2089 if ((EV_PID_HASHSIZE) > 1)
2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2091 }
2092
2093 #endif
2094
2095 /*****************************************************************************/
2096
2097 #if EV_USE_IOCP
2098 # include "ev_iocp.c"
2099 #endif
2100 #if EV_USE_PORT
2101 # include "ev_port.c"
2102 #endif
2103 #if EV_USE_KQUEUE
2104 # include "ev_kqueue.c"
2105 #endif
2106 #if EV_USE_EPOLL
2107 # include "ev_epoll.c"
2108 #endif
2109 #if EV_USE_POLL
2110 # include "ev_poll.c"
2111 #endif
2112 #if EV_USE_SELECT
2113 # include "ev_select.c"
2114 #endif
2115
2116 int ecb_cold
2117 ev_version_major (void) EV_THROW
2118 {
2119 return EV_VERSION_MAJOR;
2120 }
2121
2122 int ecb_cold
2123 ev_version_minor (void) EV_THROW
2124 {
2125 return EV_VERSION_MINOR;
2126 }
2127
2128 /* return true if we are running with elevated privileges and should ignore env variables */
2129 int inline_size ecb_cold
2130 enable_secure (void)
2131 {
2132 #ifdef _WIN32
2133 return 0;
2134 #else
2135 return getuid () != geteuid ()
2136 || getgid () != getegid ();
2137 #endif
2138 }
2139
2140 unsigned int ecb_cold
2141 ev_supported_backends (void) EV_THROW
2142 {
2143 unsigned int flags = 0;
2144
2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2147 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2148 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2150
2151 return flags;
2152 }
2153
2154 unsigned int ecb_cold
2155 ev_recommended_backends (void) EV_THROW
2156 {
2157 unsigned int flags = ev_supported_backends ();
2158
2159 #ifndef __NetBSD__
2160 /* kqueue is borked on everything but netbsd apparently */
2161 /* it usually doesn't work correctly on anything but sockets and pipes */
2162 flags &= ~EVBACKEND_KQUEUE;
2163 #endif
2164 #ifdef __APPLE__
2165 /* only select works correctly on that "unix-certified" platform */
2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168 #endif
2169 #ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2171 #endif
2172
2173 return flags;
2174 }
2175
2176 unsigned int ecb_cold
2177 ev_embeddable_backends (void) EV_THROW
2178 {
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186 }
2187
2188 unsigned int
2189 ev_backend (EV_P) EV_THROW
2190 {
2191 return backend;
2192 }
2193
2194 #if EV_FEATURE_API
2195 unsigned int
2196 ev_iteration (EV_P) EV_THROW
2197 {
2198 return loop_count;
2199 }
2200
2201 unsigned int
2202 ev_depth (EV_P) EV_THROW
2203 {
2204 return loop_depth;
2205 }
2206
2207 void
2208 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2209 {
2210 io_blocktime = interval;
2211 }
2212
2213 void
2214 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2215 {
2216 timeout_blocktime = interval;
2217 }
2218
2219 void
2220 ev_set_userdata (EV_P_ void *data) EV_THROW
2221 {
2222 userdata = data;
2223 }
2224
2225 void *
2226 ev_userdata (EV_P) EV_THROW
2227 {
2228 return userdata;
2229 }
2230
2231 void
2232 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233 {
2234 invoke_cb = invoke_pending_cb;
2235 }
2236
2237 void
2238 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239 {
2240 release_cb = release;
2241 acquire_cb = acquire;
2242 }
2243 #endif
2244
2245 /* initialise a loop structure, must be zero-initialised */
2246 static void noinline ecb_cold
2247 loop_init (EV_P_ unsigned int flags) EV_THROW
2248 {
2249 if (!backend)
2250 {
2251 origflags = flags;
2252
2253 #if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261 #endif
2262
2263 #if EV_USE_MONOTONIC
2264 if (!have_monotonic)
2265 {
2266 struct timespec ts;
2267
2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2269 have_monotonic = 1;
2270 }
2271 #endif
2272
2273 /* pid check not overridable via env */
2274 #ifndef _WIN32
2275 if (flags & EVFLAG_FORKCHECK)
2276 curpid = getpid ();
2277 #endif
2278
2279 if (!(flags & EVFLAG_NOENV)
2280 && !enable_secure ()
2281 && getenv ("LIBEV_FLAGS"))
2282 flags = atoi (getenv ("LIBEV_FLAGS"));
2283
2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288 #if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290 #endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297 #if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299 #endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302 #if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304 #endif
2305 #if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307 #endif
2308
2309 if (!(flags & EVBACKEND_MASK))
2310 flags |= ev_recommended_backends ();
2311
2312 #if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314 #endif
2315 #if EV_USE_PORT
2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2317 #endif
2318 #if EV_USE_KQUEUE
2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2320 #endif
2321 #if EV_USE_EPOLL
2322 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2323 #endif
2324 #if EV_USE_POLL
2325 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2326 #endif
2327 #if EV_USE_SELECT
2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2329 #endif
2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2334 ev_init (&pipe_w, pipecb);
2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336 #endif
2337 }
2338 }
2339
2340 /* free up a loop structure */
2341 void ecb_cold
2342 ev_loop_destroy (EV_P)
2343 {
2344 int i;
2345
2346 #if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350 #endif
2351
2352 #if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359 #endif
2360
2361 #if EV_CHILD_ENABLE
2362 if (ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367 #endif
2368
2369 if (ev_is_active (&pipe_w))
2370 {
2371 /*ev_ref (EV_A);*/
2372 /*ev_io_stop (EV_A_ &pipe_w);*/
2373
2374 #if EV_USE_EVENTFD
2375 if (evfd >= 0)
2376 close (evfd);
2377 #endif
2378
2379 if (evpipe [0] >= 0)
2380 {
2381 EV_WIN32_CLOSE_FD (evpipe [0]);
2382 EV_WIN32_CLOSE_FD (evpipe [1]);
2383 }
2384 }
2385
2386 #if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389 #endif
2390
2391 #if EV_USE_INOTIFY
2392 if (fs_fd >= 0)
2393 close (fs_fd);
2394 #endif
2395
2396 if (backend_fd >= 0)
2397 close (backend_fd);
2398
2399 #if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401 #endif
2402 #if EV_USE_PORT
2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2404 #endif
2405 #if EV_USE_KQUEUE
2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2407 #endif
2408 #if EV_USE_EPOLL
2409 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2410 #endif
2411 #if EV_USE_POLL
2412 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2413 #endif
2414 #if EV_USE_SELECT
2415 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2416 #endif
2417
2418 for (i = NUMPRI; i--; )
2419 {
2420 array_free (pending, [i]);
2421 #if EV_IDLE_ENABLE
2422 array_free (idle, [i]);
2423 #endif
2424 }
2425
2426 ev_free (anfds); anfds = 0; anfdmax = 0;
2427
2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
2430 array_free (fdchange, EMPTY);
2431 array_free (timer, EMPTY);
2432 #if EV_PERIODIC_ENABLE
2433 array_free (periodic, EMPTY);
2434 #endif
2435 #if EV_FORK_ENABLE
2436 array_free (fork, EMPTY);
2437 #endif
2438 #if EV_CLEANUP_ENABLE
2439 array_free (cleanup, EMPTY);
2440 #endif
2441 array_free (prepare, EMPTY);
2442 array_free (check, EMPTY);
2443 #if EV_ASYNC_ENABLE
2444 array_free (async, EMPTY);
2445 #endif
2446
2447 backend = 0;
2448
2449 #if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451 #endif
2452 ev_default_loop_ptr = 0;
2453 #if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456 #endif
2457 }
2458
2459 #if EV_USE_INOTIFY
2460 inline_size void infy_fork (EV_P);
2461 #endif
2462
2463 inline_size void
2464 loop_fork (EV_P)
2465 {
2466 #if EV_USE_PORT
2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2468 #endif
2469 #if EV_USE_KQUEUE
2470 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2471 #endif
2472 #if EV_USE_EPOLL
2473 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2474 #endif
2475 #if EV_USE_INOTIFY
2476 infy_fork (EV_A);
2477 #endif
2478
2479 if (ev_is_active (&pipe_w))
2480 {
2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2482
2483 ev_ref (EV_A);
2484 ev_io_stop (EV_A_ &pipe_w);
2485
2486 #if EV_USE_EVENTFD
2487 if (evfd >= 0)
2488 close (evfd);
2489 #endif
2490
2491 if (evpipe [0] >= 0)
2492 {
2493 EV_WIN32_CLOSE_FD (evpipe [0]);
2494 EV_WIN32_CLOSE_FD (evpipe [1]);
2495 }
2496
2497 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2498 evpipe_init (EV_A);
2499 /* now iterate over everything, in case we missed something */
2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501 #endif
2502 }
2503
2504 postfork = 0;
2505 }
2506
2507 #if EV_MULTIPLICITY
2508
2509 struct ev_loop * ecb_cold
2510 ev_loop_new (unsigned int flags) EV_THROW
2511 {
2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2513
2514 memset (EV_A, 0, sizeof (struct ev_loop));
2515 loop_init (EV_A_ flags);
2516
2517 if (ev_backend (EV_A))
2518 return EV_A;
2519
2520 ev_free (EV_A);
2521 return 0;
2522 }
2523
2524 #endif /* multiplicity */
2525
2526 #if EV_VERIFY
2527 static void noinline ecb_cold
2528 verify_watcher (EV_P_ W w)
2529 {
2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2531
2532 if (w->pending)
2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2534 }
2535
2536 static void noinline ecb_cold
2537 verify_heap (EV_P_ ANHE *heap, int N)
2538 {
2539 int i;
2540
2541 for (i = HEAP0; i < N + HEAP0; ++i)
2542 {
2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2546
2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2548 }
2549 }
2550
2551 static void noinline ecb_cold
2552 array_verify (EV_P_ W *ws, int cnt)
2553 {
2554 while (cnt--)
2555 {
2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2557 verify_watcher (EV_A_ ws [cnt]);
2558 }
2559 }
2560 #endif
2561
2562 #if EV_FEATURE_API
2563 void ecb_cold
2564 ev_verify (EV_P) EV_THROW
2565 {
2566 #if EV_VERIFY
2567 int i, j;
2568 WL w, w2;
2569
2570 assert (activecnt >= -1);
2571
2572 assert (fdchangemax >= fdchangecnt);
2573 for (i = 0; i < fdchangecnt; ++i)
2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2575
2576 assert (anfdmax >= 0);
2577 for (i = j = 0; i < anfdmax; ++i)
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (++j & 1)
2583 w2 = w2->next;
2584
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2587 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2588 }
2589
2590 assert (timermax >= timercnt);
2591 verify_heap (EV_A_ timers, timercnt);
2592
2593 #if EV_PERIODIC_ENABLE
2594 assert (periodicmax >= periodiccnt);
2595 verify_heap (EV_A_ periodics, periodiccnt);
2596 #endif
2597
2598 for (i = NUMPRI; i--; )
2599 {
2600 assert (pendingmax [i] >= pendingcnt [i]);
2601 #if EV_IDLE_ENABLE
2602 assert (idleall >= 0);
2603 assert (idlemax [i] >= idlecnt [i]);
2604 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2605 #endif
2606 }
2607
2608 #if EV_FORK_ENABLE
2609 assert (forkmax >= forkcnt);
2610 array_verify (EV_A_ (W *)forks, forkcnt);
2611 #endif
2612
2613 #if EV_CLEANUP_ENABLE
2614 assert (cleanupmax >= cleanupcnt);
2615 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2616 #endif
2617
2618 #if EV_ASYNC_ENABLE
2619 assert (asyncmax >= asynccnt);
2620 array_verify (EV_A_ (W *)asyncs, asynccnt);
2621 #endif
2622
2623 #if EV_PREPARE_ENABLE
2624 assert (preparemax >= preparecnt);
2625 array_verify (EV_A_ (W *)prepares, preparecnt);
2626 #endif
2627
2628 #if EV_CHECK_ENABLE
2629 assert (checkmax >= checkcnt);
2630 array_verify (EV_A_ (W *)checks, checkcnt);
2631 #endif
2632
2633 # if 0
2634 #if EV_CHILD_ENABLE
2635 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2636 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2637 #endif
2638 # endif
2639 #endif
2640 }
2641 #endif
2642
2643 #if EV_MULTIPLICITY
2644 struct ev_loop * ecb_cold
2645 #else
2646 int
2647 #endif
2648 ev_default_loop (unsigned int flags) EV_THROW
2649 {
2650 if (!ev_default_loop_ptr)
2651 {
2652 #if EV_MULTIPLICITY
2653 EV_P = ev_default_loop_ptr = &default_loop_struct;
2654 #else
2655 ev_default_loop_ptr = 1;
2656 #endif
2657
2658 loop_init (EV_A_ flags);
2659
2660 if (ev_backend (EV_A))
2661 {
2662 #if EV_CHILD_ENABLE
2663 ev_signal_init (&childev, childcb, SIGCHLD);
2664 ev_set_priority (&childev, EV_MAXPRI);
2665 ev_signal_start (EV_A_ &childev);
2666 ev_unref (EV_A); /* child watcher should not keep loop alive */
2667 #endif
2668 }
2669 else
2670 ev_default_loop_ptr = 0;
2671 }
2672
2673 return ev_default_loop_ptr;
2674 }
2675
2676 void
2677 ev_loop_fork (EV_P) EV_THROW
2678 {
2679 postfork = 1; /* must be in line with ev_default_fork */
2680 }
2681
2682 /*****************************************************************************/
2683
2684 void
2685 ev_invoke (EV_P_ void *w, int revents)
2686 {
2687 EV_CB_INVOKE ((W)w, revents);
2688 }
2689
2690 unsigned int
2691 ev_pending_count (EV_P) EV_THROW
2692 {
2693 int pri;
2694 unsigned int count = 0;
2695
2696 for (pri = NUMPRI; pri--; )
2697 count += pendingcnt [pri];
2698
2699 return count;
2700 }
2701
2702 void noinline
2703 ev_invoke_pending (EV_P)
2704 {
2705 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2706 while (pendingcnt [pendingpri])
2707 {
2708 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2709
2710 p->w->pending = 0;
2711 EV_CB_INVOKE (p->w, p->events);
2712 EV_FREQUENT_CHECK;
2713 }
2714 }
2715
2716 #if EV_IDLE_ENABLE
2717 /* make idle watchers pending. this handles the "call-idle */
2718 /* only when higher priorities are idle" logic */
2719 inline_size void
2720 idle_reify (EV_P)
2721 {
2722 if (expect_false (idleall))
2723 {
2724 int pri;
2725
2726 for (pri = NUMPRI; pri--; )
2727 {
2728 if (pendingcnt [pri])
2729 break;
2730
2731 if (idlecnt [pri])
2732 {
2733 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2734 break;
2735 }
2736 }
2737 }
2738 }
2739 #endif
2740
2741 /* make timers pending */
2742 inline_size void
2743 timers_reify (EV_P)
2744 {
2745 EV_FREQUENT_CHECK;
2746
2747 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2748 {
2749 do
2750 {
2751 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2752
2753 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2754
2755 /* first reschedule or stop timer */
2756 if (w->repeat)
2757 {
2758 ev_at (w) += w->repeat;
2759 if (ev_at (w) < mn_now)
2760 ev_at (w) = mn_now;
2761
2762 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2763
2764 ANHE_at_cache (timers [HEAP0]);
2765 downheap (timers, timercnt, HEAP0);
2766 }
2767 else
2768 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2769
2770 EV_FREQUENT_CHECK;
2771 feed_reverse (EV_A_ (W)w);
2772 }
2773 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2774
2775 feed_reverse_done (EV_A_ EV_TIMER);
2776 }
2777 }
2778
2779 #if EV_PERIODIC_ENABLE
2780
2781 static void noinline
2782 periodic_recalc (EV_P_ ev_periodic *w)
2783 {
2784 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2785 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2786
2787 /* the above almost always errs on the low side */
2788 while (at <= ev_rt_now)
2789 {
2790 ev_tstamp nat = at + w->interval;
2791
2792 /* when resolution fails us, we use ev_rt_now */
2793 if (expect_false (nat == at))
2794 {
2795 at = ev_rt_now;
2796 break;
2797 }
2798
2799 at = nat;
2800 }
2801
2802 ev_at (w) = at;
2803 }
2804
2805 /* make periodics pending */
2806 inline_size void
2807 periodics_reify (EV_P)
2808 {
2809 EV_FREQUENT_CHECK;
2810
2811 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2812 {
2813 int feed_count = 0;
2814
2815 do
2816 {
2817 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->reschedule_cb)
2823 {
2824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2825
2826 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2827
2828 ANHE_at_cache (periodics [HEAP0]);
2829 downheap (periodics, periodiccnt, HEAP0);
2830 }
2831 else if (w->interval)
2832 {
2833 periodic_recalc (EV_A_ w);
2834 ANHE_at_cache (periodics [HEAP0]);
2835 downheap (periodics, periodiccnt, HEAP0);
2836 }
2837 else
2838 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2839
2840 EV_FREQUENT_CHECK;
2841 feed_reverse (EV_A_ (W)w);
2842 }
2843 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2844
2845 feed_reverse_done (EV_A_ EV_PERIODIC);
2846 }
2847 }
2848
2849 /* simply recalculate all periodics */
2850 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2851 static void noinline ecb_cold
2852 periodics_reschedule (EV_P)
2853 {
2854 int i;
2855
2856 /* adjust periodics after time jump */
2857 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2858 {
2859 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2860
2861 if (w->reschedule_cb)
2862 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2863 else if (w->interval)
2864 periodic_recalc (EV_A_ w);
2865
2866 ANHE_at_cache (periodics [i]);
2867 }
2868
2869 reheap (periodics, periodiccnt);
2870 }
2871 #endif
2872
2873 /* adjust all timers by a given offset */
2874 static void noinline ecb_cold
2875 timers_reschedule (EV_P_ ev_tstamp adjust)
2876 {
2877 int i;
2878
2879 for (i = 0; i < timercnt; ++i)
2880 {
2881 ANHE *he = timers + i + HEAP0;
2882 ANHE_w (*he)->at += adjust;
2883 ANHE_at_cache (*he);
2884 }
2885 }
2886
2887 /* fetch new monotonic and realtime times from the kernel */
2888 /* also detect if there was a timejump, and act accordingly */
2889 inline_speed void
2890 time_update (EV_P_ ev_tstamp max_block)
2891 {
2892 #if EV_USE_MONOTONIC
2893 if (expect_true (have_monotonic))
2894 {
2895 int i;
2896 ev_tstamp odiff = rtmn_diff;
2897
2898 mn_now = get_clock ();
2899
2900 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2901 /* interpolate in the meantime */
2902 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2903 {
2904 ev_rt_now = rtmn_diff + mn_now;
2905 return;
2906 }
2907
2908 now_floor = mn_now;
2909 ev_rt_now = ev_time ();
2910
2911 /* loop a few times, before making important decisions.
2912 * on the choice of "4": one iteration isn't enough,
2913 * in case we get preempted during the calls to
2914 * ev_time and get_clock. a second call is almost guaranteed
2915 * to succeed in that case, though. and looping a few more times
2916 * doesn't hurt either as we only do this on time-jumps or
2917 * in the unlikely event of having been preempted here.
2918 */
2919 for (i = 4; --i; )
2920 {
2921 ev_tstamp diff;
2922 rtmn_diff = ev_rt_now - mn_now;
2923
2924 diff = odiff - rtmn_diff;
2925
2926 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2927 return; /* all is well */
2928
2929 ev_rt_now = ev_time ();
2930 mn_now = get_clock ();
2931 now_floor = mn_now;
2932 }
2933
2934 /* no timer adjustment, as the monotonic clock doesn't jump */
2935 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2936 # if EV_PERIODIC_ENABLE
2937 periodics_reschedule (EV_A);
2938 # endif
2939 }
2940 else
2941 #endif
2942 {
2943 ev_rt_now = ev_time ();
2944
2945 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2946 {
2947 /* adjust timers. this is easy, as the offset is the same for all of them */
2948 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2949 #if EV_PERIODIC_ENABLE
2950 periodics_reschedule (EV_A);
2951 #endif
2952 }
2953
2954 mn_now = ev_rt_now;
2955 }
2956 }
2957
2958 int
2959 ev_run (EV_P_ int flags)
2960 {
2961 #if EV_FEATURE_API
2962 ++loop_depth;
2963 #endif
2964
2965 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2966
2967 loop_done = EVBREAK_CANCEL;
2968
2969 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2970
2971 do
2972 {
2973 #if EV_VERIFY >= 2
2974 ev_verify (EV_A);
2975 #endif
2976
2977 #ifndef _WIN32
2978 if (expect_false (curpid)) /* penalise the forking check even more */
2979 if (expect_false (getpid () != curpid))
2980 {
2981 curpid = getpid ();
2982 postfork = 1;
2983 }
2984 #endif
2985
2986 #if EV_FORK_ENABLE
2987 /* we might have forked, so queue fork handlers */
2988 if (expect_false (postfork))
2989 if (forkcnt)
2990 {
2991 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2992 EV_INVOKE_PENDING;
2993 }
2994 #endif
2995
2996 #if EV_PREPARE_ENABLE
2997 /* queue prepare watchers (and execute them) */
2998 if (expect_false (preparecnt))
2999 {
3000 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3001 EV_INVOKE_PENDING;
3002 }
3003 #endif
3004
3005 if (expect_false (loop_done))
3006 break;
3007
3008 /* we might have forked, so reify kernel state if necessary */
3009 if (expect_false (postfork))
3010 loop_fork (EV_A);
3011
3012 /* update fd-related kernel structures */
3013 fd_reify (EV_A);
3014
3015 /* calculate blocking time */
3016 {
3017 ev_tstamp waittime = 0.;
3018 ev_tstamp sleeptime = 0.;
3019
3020 /* remember old timestamp for io_blocktime calculation */
3021 ev_tstamp prev_mn_now = mn_now;
3022
3023 /* update time to cancel out callback processing overhead */
3024 time_update (EV_A_ 1e100);
3025
3026 /* from now on, we want a pipe-wake-up */
3027 pipe_write_wanted = 1;
3028
3029 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3030
3031 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3032 {
3033 waittime = MAX_BLOCKTIME;
3034
3035 if (timercnt)
3036 {
3037 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3038 if (waittime > to) waittime = to;
3039 }
3040
3041 #if EV_PERIODIC_ENABLE
3042 if (periodiccnt)
3043 {
3044 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3045 if (waittime > to) waittime = to;
3046 }
3047 #endif
3048
3049 /* don't let timeouts decrease the waittime below timeout_blocktime */
3050 if (expect_false (waittime < timeout_blocktime))
3051 waittime = timeout_blocktime;
3052
3053 /* at this point, we NEED to wait, so we have to ensure */
3054 /* to pass a minimum nonzero value to the backend */
3055 if (expect_false (waittime < backend_mintime))
3056 waittime = backend_mintime;
3057
3058 /* extra check because io_blocktime is commonly 0 */
3059 if (expect_false (io_blocktime))
3060 {
3061 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3062
3063 if (sleeptime > waittime - backend_mintime)
3064 sleeptime = waittime - backend_mintime;
3065
3066 if (expect_true (sleeptime > 0.))
3067 {
3068 ev_sleep (sleeptime);
3069 waittime -= sleeptime;
3070 }
3071 }
3072 }
3073
3074 #if EV_FEATURE_API
3075 ++loop_count;
3076 #endif
3077 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3078 backend_poll (EV_A_ waittime);
3079 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3080
3081 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3082
3083 if (pipe_write_skipped)
3084 {
3085 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3086 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3087 }
3088
3089
3090 /* update ev_rt_now, do magic */
3091 time_update (EV_A_ waittime + sleeptime);
3092 }
3093
3094 /* queue pending timers and reschedule them */
3095 timers_reify (EV_A); /* relative timers called last */
3096 #if EV_PERIODIC_ENABLE
3097 periodics_reify (EV_A); /* absolute timers called first */
3098 #endif
3099
3100 #if EV_IDLE_ENABLE
3101 /* queue idle watchers unless other events are pending */
3102 idle_reify (EV_A);
3103 #endif
3104
3105 #if EV_CHECK_ENABLE
3106 /* queue check watchers, to be executed first */
3107 if (expect_false (checkcnt))
3108 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3109 #endif
3110
3111 EV_INVOKE_PENDING;
3112 }
3113 while (expect_true (
3114 activecnt
3115 && !loop_done
3116 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3117 ));
3118
3119 if (loop_done == EVBREAK_ONE)
3120 loop_done = EVBREAK_CANCEL;
3121
3122 #if EV_FEATURE_API
3123 --loop_depth;
3124 #endif
3125
3126 return activecnt;
3127 }
3128
3129 void
3130 ev_break (EV_P_ int how) EV_THROW
3131 {
3132 loop_done = how;
3133 }
3134
3135 void
3136 ev_ref (EV_P) EV_THROW
3137 {
3138 ++activecnt;
3139 }
3140
3141 void
3142 ev_unref (EV_P) EV_THROW
3143 {
3144 --activecnt;
3145 }
3146
3147 void
3148 ev_now_update (EV_P) EV_THROW
3149 {
3150 time_update (EV_A_ 1e100);
3151 }
3152
3153 void
3154 ev_suspend (EV_P) EV_THROW
3155 {
3156 ev_now_update (EV_A);
3157 }
3158
3159 void
3160 ev_resume (EV_P) EV_THROW
3161 {
3162 ev_tstamp mn_prev = mn_now;
3163
3164 ev_now_update (EV_A);
3165 timers_reschedule (EV_A_ mn_now - mn_prev);
3166 #if EV_PERIODIC_ENABLE
3167 /* TODO: really do this? */
3168 periodics_reschedule (EV_A);
3169 #endif
3170 }
3171
3172 /*****************************************************************************/
3173 /* singly-linked list management, used when the expected list length is short */
3174
3175 inline_size void
3176 wlist_add (WL *head, WL elem)
3177 {
3178 elem->next = *head;
3179 *head = elem;
3180 }
3181
3182 inline_size void
3183 wlist_del (WL *head, WL elem)
3184 {
3185 while (*head)
3186 {
3187 if (expect_true (*head == elem))
3188 {
3189 *head = elem->next;
3190 break;
3191 }
3192
3193 head = &(*head)->next;
3194 }
3195 }
3196
3197 /* internal, faster, version of ev_clear_pending */
3198 inline_speed void
3199 clear_pending (EV_P_ W w)
3200 {
3201 if (w->pending)
3202 {
3203 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3204 w->pending = 0;
3205 }
3206 }
3207
3208 int
3209 ev_clear_pending (EV_P_ void *w) EV_THROW
3210 {
3211 W w_ = (W)w;
3212 int pending = w_->pending;
3213
3214 if (expect_true (pending))
3215 {
3216 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3217 p->w = (W)&pending_w;
3218 w_->pending = 0;
3219 return p->events;
3220 }
3221 else
3222 return 0;
3223 }
3224
3225 inline_size void
3226 pri_adjust (EV_P_ W w)
3227 {
3228 int pri = ev_priority (w);
3229 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3230 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3231 ev_set_priority (w, pri);
3232 }
3233
3234 inline_speed void
3235 ev_start (EV_P_ W w, int active)
3236 {
3237 pri_adjust (EV_A_ w);
3238 w->active = active;
3239 ev_ref (EV_A);
3240 }
3241
3242 inline_size void
3243 ev_stop (EV_P_ W w)
3244 {
3245 ev_unref (EV_A);
3246 w->active = 0;
3247 }
3248
3249 /*****************************************************************************/
3250
3251 void noinline
3252 ev_io_start (EV_P_ ev_io *w) EV_THROW
3253 {
3254 int fd = w->fd;
3255
3256 if (expect_false (ev_is_active (w)))
3257 return;
3258
3259 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3260 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3261
3262 EV_FREQUENT_CHECK;
3263
3264 ev_start (EV_A_ (W)w, 1);
3265 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3266 wlist_add (&anfds[fd].head, (WL)w);
3267
3268 /* common bug, apparently */
3269 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3270
3271 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3272 w->events &= ~EV__IOFDSET;
3273
3274 EV_FREQUENT_CHECK;
3275 }
3276
3277 void noinline
3278 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3279 {
3280 clear_pending (EV_A_ (W)w);
3281 if (expect_false (!ev_is_active (w)))
3282 return;
3283
3284 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3285
3286 EV_FREQUENT_CHECK;
3287
3288 wlist_del (&anfds[w->fd].head, (WL)w);
3289 ev_stop (EV_A_ (W)w);
3290
3291 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3292
3293 EV_FREQUENT_CHECK;
3294 }
3295
3296 void noinline
3297 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3298 {
3299 if (expect_false (ev_is_active (w)))
3300 return;
3301
3302 ev_at (w) += mn_now;
3303
3304 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3305
3306 EV_FREQUENT_CHECK;
3307
3308 ++timercnt;
3309 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3310 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3311 ANHE_w (timers [ev_active (w)]) = (WT)w;
3312 ANHE_at_cache (timers [ev_active (w)]);
3313 upheap (timers, ev_active (w));
3314
3315 EV_FREQUENT_CHECK;
3316
3317 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3318 }
3319
3320 void noinline
3321 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3322 {
3323 clear_pending (EV_A_ (W)w);
3324 if (expect_false (!ev_is_active (w)))
3325 return;
3326
3327 EV_FREQUENT_CHECK;
3328
3329 {
3330 int active = ev_active (w);
3331
3332 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3333
3334 --timercnt;
3335
3336 if (expect_true (active < timercnt + HEAP0))
3337 {
3338 timers [active] = timers [timercnt + HEAP0];
3339 adjustheap (timers, timercnt, active);
3340 }
3341 }
3342
3343 ev_at (w) -= mn_now;
3344
3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
3348 }
3349
3350 void noinline
3351 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3352 {
3353 EV_FREQUENT_CHECK;
3354
3355 clear_pending (EV_A_ (W)w);
3356
3357 if (ev_is_active (w))
3358 {
3359 if (w->repeat)
3360 {
3361 ev_at (w) = mn_now + w->repeat;
3362 ANHE_at_cache (timers [ev_active (w)]);
3363 adjustheap (timers, timercnt, ev_active (w));
3364 }
3365 else
3366 ev_timer_stop (EV_A_ w);
3367 }
3368 else if (w->repeat)
3369 {
3370 ev_at (w) = w->repeat;
3371 ev_timer_start (EV_A_ w);
3372 }
3373
3374 EV_FREQUENT_CHECK;
3375 }
3376
3377 ev_tstamp
3378 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3379 {
3380 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3381 }
3382
3383 #if EV_PERIODIC_ENABLE
3384 void noinline
3385 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3386 {
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 if (w->reschedule_cb)
3391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3392 else if (w->interval)
3393 {
3394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3395 periodic_recalc (EV_A_ w);
3396 }
3397 else
3398 ev_at (w) = w->offset;
3399
3400 EV_FREQUENT_CHECK;
3401
3402 ++periodiccnt;
3403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3406 ANHE_at_cache (periodics [ev_active (w)]);
3407 upheap (periodics, ev_active (w));
3408
3409 EV_FREQUENT_CHECK;
3410
3411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3412 }
3413
3414 void noinline
3415 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3416 {
3417 clear_pending (EV_A_ (W)w);
3418 if (expect_false (!ev_is_active (w)))
3419 return;
3420
3421 EV_FREQUENT_CHECK;
3422
3423 {
3424 int active = ev_active (w);
3425
3426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3427
3428 --periodiccnt;
3429
3430 if (expect_true (active < periodiccnt + HEAP0))
3431 {
3432 periodics [active] = periodics [periodiccnt + HEAP0];
3433 adjustheap (periodics, periodiccnt, active);
3434 }
3435 }
3436
3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
3440 }
3441
3442 void noinline
3443 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3444 {
3445 /* TODO: use adjustheap and recalculation */
3446 ev_periodic_stop (EV_A_ w);
3447 ev_periodic_start (EV_A_ w);
3448 }
3449 #endif
3450
3451 #ifndef SA_RESTART
3452 # define SA_RESTART 0
3453 #endif
3454
3455 #if EV_SIGNAL_ENABLE
3456
3457 void noinline
3458 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3459 {
3460 if (expect_false (ev_is_active (w)))
3461 return;
3462
3463 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3464
3465 #if EV_MULTIPLICITY
3466 assert (("libev: a signal must not be attached to two different loops",
3467 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3468
3469 signals [w->signum - 1].loop = EV_A;
3470 #endif
3471
3472 EV_FREQUENT_CHECK;
3473
3474 #if EV_USE_SIGNALFD
3475 if (sigfd == -2)
3476 {
3477 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3478 if (sigfd < 0 && errno == EINVAL)
3479 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3480
3481 if (sigfd >= 0)
3482 {
3483 fd_intern (sigfd); /* doing it twice will not hurt */
3484
3485 sigemptyset (&sigfd_set);
3486
3487 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3488 ev_set_priority (&sigfd_w, EV_MAXPRI);
3489 ev_io_start (EV_A_ &sigfd_w);
3490 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3491 }
3492 }
3493
3494 if (sigfd >= 0)
3495 {
3496 /* TODO: check .head */
3497 sigaddset (&sigfd_set, w->signum);
3498 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3499
3500 signalfd (sigfd, &sigfd_set, 0);
3501 }
3502 #endif
3503
3504 ev_start (EV_A_ (W)w, 1);
3505 wlist_add (&signals [w->signum - 1].head, (WL)w);
3506
3507 if (!((WL)w)->next)
3508 # if EV_USE_SIGNALFD
3509 if (sigfd < 0) /*TODO*/
3510 # endif
3511 {
3512 # ifdef _WIN32
3513 evpipe_init (EV_A);
3514
3515 signal (w->signum, ev_sighandler);
3516 # else
3517 struct sigaction sa;
3518
3519 evpipe_init (EV_A);
3520
3521 sa.sa_handler = ev_sighandler;
3522 sigfillset (&sa.sa_mask);
3523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3524 sigaction (w->signum, &sa, 0);
3525
3526 if (origflags & EVFLAG_NOSIGMASK)
3527 {
3528 sigemptyset (&sa.sa_mask);
3529 sigaddset (&sa.sa_mask, w->signum);
3530 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3531 }
3532 #endif
3533 }
3534
3535 EV_FREQUENT_CHECK;
3536 }
3537
3538 void noinline
3539 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3540 {
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 wlist_del (&signals [w->signum - 1].head, (WL)w);
3548 ev_stop (EV_A_ (W)w);
3549
3550 if (!signals [w->signum - 1].head)
3551 {
3552 #if EV_MULTIPLICITY
3553 signals [w->signum - 1].loop = 0; /* unattach from signal */
3554 #endif
3555 #if EV_USE_SIGNALFD
3556 if (sigfd >= 0)
3557 {
3558 sigset_t ss;
3559
3560 sigemptyset (&ss);
3561 sigaddset (&ss, w->signum);
3562 sigdelset (&sigfd_set, w->signum);
3563
3564 signalfd (sigfd, &sigfd_set, 0);
3565 sigprocmask (SIG_UNBLOCK, &ss, 0);
3566 }
3567 else
3568 #endif
3569 signal (w->signum, SIG_DFL);
3570 }
3571
3572 EV_FREQUENT_CHECK;
3573 }
3574
3575 #endif
3576
3577 #if EV_CHILD_ENABLE
3578
3579 void
3580 ev_child_start (EV_P_ ev_child *w) EV_THROW
3581 {
3582 #if EV_MULTIPLICITY
3583 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3584 #endif
3585 if (expect_false (ev_is_active (w)))
3586 return;
3587
3588 EV_FREQUENT_CHECK;
3589
3590 ev_start (EV_A_ (W)w, 1);
3591 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3592
3593 EV_FREQUENT_CHECK;
3594 }
3595
3596 void
3597 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3598 {
3599 clear_pending (EV_A_ (W)w);
3600 if (expect_false (!ev_is_active (w)))
3601 return;
3602
3603 EV_FREQUENT_CHECK;
3604
3605 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609 }
3610
3611 #endif
3612
3613 #if EV_STAT_ENABLE
3614
3615 # ifdef _WIN32
3616 # undef lstat
3617 # define lstat(a,b) _stati64 (a,b)
3618 # endif
3619
3620 #define DEF_STAT_INTERVAL 5.0074891
3621 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3622 #define MIN_STAT_INTERVAL 0.1074891
3623
3624 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3625
3626 #if EV_USE_INOTIFY
3627
3628 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3629 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3630
3631 static void noinline
3632 infy_add (EV_P_ ev_stat *w)
3633 {
3634 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3635
3636 if (w->wd >= 0)
3637 {
3638 struct statfs sfs;
3639
3640 /* now local changes will be tracked by inotify, but remote changes won't */
3641 /* unless the filesystem is known to be local, we therefore still poll */
3642 /* also do poll on <2.6.25, but with normal frequency */
3643
3644 if (!fs_2625)
3645 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3646 else if (!statfs (w->path, &sfs)
3647 && (sfs.f_type == 0x1373 /* devfs */
3648 || sfs.f_type == 0xEF53 /* ext2/3 */
3649 || sfs.f_type == 0x3153464a /* jfs */
3650 || sfs.f_type == 0x52654973 /* reiser3 */
3651 || sfs.f_type == 0x01021994 /* tempfs */
3652 || sfs.f_type == 0x58465342 /* xfs */))
3653 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3654 else
3655 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3656 }
3657 else
3658 {
3659 /* can't use inotify, continue to stat */
3660 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3661
3662 /* if path is not there, monitor some parent directory for speedup hints */
3663 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3664 /* but an efficiency issue only */
3665 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3666 {
3667 char path [4096];
3668 strcpy (path, w->path);
3669
3670 do
3671 {
3672 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3673 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3674
3675 char *pend = strrchr (path, '/');
3676
3677 if (!pend || pend == path)
3678 break;
3679
3680 *pend = 0;
3681 w->wd = inotify_add_watch (fs_fd, path, mask);
3682 }
3683 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3684 }
3685 }
3686
3687 if (w->wd >= 0)
3688 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3689
3690 /* now re-arm timer, if required */
3691 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3692 ev_timer_again (EV_A_ &w->timer);
3693 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3694 }
3695
3696 static void noinline
3697 infy_del (EV_P_ ev_stat *w)
3698 {
3699 int slot;
3700 int wd = w->wd;
3701
3702 if (wd < 0)
3703 return;
3704
3705 w->wd = -2;
3706 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3707 wlist_del (&fs_hash [slot].head, (WL)w);
3708
3709 /* remove this watcher, if others are watching it, they will rearm */
3710 inotify_rm_watch (fs_fd, wd);
3711 }
3712
3713 static void noinline
3714 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3715 {
3716 if (slot < 0)
3717 /* overflow, need to check for all hash slots */
3718 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3719 infy_wd (EV_A_ slot, wd, ev);
3720 else
3721 {
3722 WL w_;
3723
3724 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3725 {
3726 ev_stat *w = (ev_stat *)w_;
3727 w_ = w_->next; /* lets us remove this watcher and all before it */
3728
3729 if (w->wd == wd || wd == -1)
3730 {
3731 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3732 {
3733 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3734 w->wd = -1;
3735 infy_add (EV_A_ w); /* re-add, no matter what */
3736 }
3737
3738 stat_timer_cb (EV_A_ &w->timer, 0);
3739 }
3740 }
3741 }
3742 }
3743
3744 static void
3745 infy_cb (EV_P_ ev_io *w, int revents)
3746 {
3747 char buf [EV_INOTIFY_BUFSIZE];
3748 int ofs;
3749 int len = read (fs_fd, buf, sizeof (buf));
3750
3751 for (ofs = 0; ofs < len; )
3752 {
3753 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3754 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3755 ofs += sizeof (struct inotify_event) + ev->len;
3756 }
3757 }
3758
3759 inline_size void ecb_cold
3760 ev_check_2625 (EV_P)
3761 {
3762 /* kernels < 2.6.25 are borked
3763 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3764 */
3765 if (ev_linux_version () < 0x020619)
3766 return;
3767
3768 fs_2625 = 1;
3769 }
3770
3771 inline_size int
3772 infy_newfd (void)
3773 {
3774 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3775 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3776 if (fd >= 0)
3777 return fd;
3778 #endif
3779 return inotify_init ();
3780 }
3781
3782 inline_size void
3783 infy_init (EV_P)
3784 {
3785 if (fs_fd != -2)
3786 return;
3787
3788 fs_fd = -1;
3789
3790 ev_check_2625 (EV_A);
3791
3792 fs_fd = infy_newfd ();
3793
3794 if (fs_fd >= 0)
3795 {
3796 fd_intern (fs_fd);
3797 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3798 ev_set_priority (&fs_w, EV_MAXPRI);
3799 ev_io_start (EV_A_ &fs_w);
3800 ev_unref (EV_A);
3801 }
3802 }
3803
3804 inline_size void
3805 infy_fork (EV_P)
3806 {
3807 int slot;
3808
3809 if (fs_fd < 0)
3810 return;
3811
3812 ev_ref (EV_A);
3813 ev_io_stop (EV_A_ &fs_w);
3814 close (fs_fd);
3815 fs_fd = infy_newfd ();
3816
3817 if (fs_fd >= 0)
3818 {
3819 fd_intern (fs_fd);
3820 ev_io_set (&fs_w, fs_fd, EV_READ);
3821 ev_io_start (EV_A_ &fs_w);
3822 ev_unref (EV_A);
3823 }
3824
3825 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3826 {
3827 WL w_ = fs_hash [slot].head;
3828 fs_hash [slot].head = 0;
3829
3830 while (w_)
3831 {
3832 ev_stat *w = (ev_stat *)w_;
3833 w_ = w_->next; /* lets us add this watcher */
3834
3835 w->wd = -1;
3836
3837 if (fs_fd >= 0)
3838 infy_add (EV_A_ w); /* re-add, no matter what */
3839 else
3840 {
3841 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3842 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3843 ev_timer_again (EV_A_ &w->timer);
3844 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3845 }
3846 }
3847 }
3848 }
3849
3850 #endif
3851
3852 #ifdef _WIN32
3853 # define EV_LSTAT(p,b) _stati64 (p, b)
3854 #else
3855 # define EV_LSTAT(p,b) lstat (p, b)
3856 #endif
3857
3858 void
3859 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3860 {
3861 if (lstat (w->path, &w->attr) < 0)
3862 w->attr.st_nlink = 0;
3863 else if (!w->attr.st_nlink)
3864 w->attr.st_nlink = 1;
3865 }
3866
3867 static void noinline
3868 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3869 {
3870 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3871
3872 ev_statdata prev = w->attr;
3873 ev_stat_stat (EV_A_ w);
3874
3875 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3876 if (
3877 prev.st_dev != w->attr.st_dev
3878 || prev.st_ino != w->attr.st_ino
3879 || prev.st_mode != w->attr.st_mode
3880 || prev.st_nlink != w->attr.st_nlink
3881 || prev.st_uid != w->attr.st_uid
3882 || prev.st_gid != w->attr.st_gid
3883 || prev.st_rdev != w->attr.st_rdev
3884 || prev.st_size != w->attr.st_size
3885 || prev.st_atime != w->attr.st_atime
3886 || prev.st_mtime != w->attr.st_mtime
3887 || prev.st_ctime != w->attr.st_ctime
3888 ) {
3889 /* we only update w->prev on actual differences */
3890 /* in case we test more often than invoke the callback, */
3891 /* to ensure that prev is always different to attr */
3892 w->prev = prev;
3893
3894 #if EV_USE_INOTIFY
3895 if (fs_fd >= 0)
3896 {
3897 infy_del (EV_A_ w);
3898 infy_add (EV_A_ w);
3899 ev_stat_stat (EV_A_ w); /* avoid race... */
3900 }
3901 #endif
3902
3903 ev_feed_event (EV_A_ w, EV_STAT);
3904 }
3905 }
3906
3907 void
3908 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3909 {
3910 if (expect_false (ev_is_active (w)))
3911 return;
3912
3913 ev_stat_stat (EV_A_ w);
3914
3915 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3916 w->interval = MIN_STAT_INTERVAL;
3917
3918 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3919 ev_set_priority (&w->timer, ev_priority (w));
3920
3921 #if EV_USE_INOTIFY
3922 infy_init (EV_A);
3923
3924 if (fs_fd >= 0)
3925 infy_add (EV_A_ w);
3926 else
3927 #endif
3928 {
3929 ev_timer_again (EV_A_ &w->timer);
3930 ev_unref (EV_A);
3931 }
3932
3933 ev_start (EV_A_ (W)w, 1);
3934
3935 EV_FREQUENT_CHECK;
3936 }
3937
3938 void
3939 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3940 {
3941 clear_pending (EV_A_ (W)w);
3942 if (expect_false (!ev_is_active (w)))
3943 return;
3944
3945 EV_FREQUENT_CHECK;
3946
3947 #if EV_USE_INOTIFY
3948 infy_del (EV_A_ w);
3949 #endif
3950
3951 if (ev_is_active (&w->timer))
3952 {
3953 ev_ref (EV_A);
3954 ev_timer_stop (EV_A_ &w->timer);
3955 }
3956
3957 ev_stop (EV_A_ (W)w);
3958
3959 EV_FREQUENT_CHECK;
3960 }
3961 #endif
3962
3963 #if EV_IDLE_ENABLE
3964 void
3965 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3966 {
3967 if (expect_false (ev_is_active (w)))
3968 return;
3969
3970 pri_adjust (EV_A_ (W)w);
3971
3972 EV_FREQUENT_CHECK;
3973
3974 {
3975 int active = ++idlecnt [ABSPRI (w)];
3976
3977 ++idleall;
3978 ev_start (EV_A_ (W)w, active);
3979
3980 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3981 idles [ABSPRI (w)][active - 1] = w;
3982 }
3983
3984 EV_FREQUENT_CHECK;
3985 }
3986
3987 void
3988 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3989 {
3990 clear_pending (EV_A_ (W)w);
3991 if (expect_false (!ev_is_active (w)))
3992 return;
3993
3994 EV_FREQUENT_CHECK;
3995
3996 {
3997 int active = ev_active (w);
3998
3999 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4000 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4001
4002 ev_stop (EV_A_ (W)w);
4003 --idleall;
4004 }
4005
4006 EV_FREQUENT_CHECK;
4007 }
4008 #endif
4009
4010 #if EV_PREPARE_ENABLE
4011 void
4012 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4013 {
4014 if (expect_false (ev_is_active (w)))
4015 return;
4016
4017 EV_FREQUENT_CHECK;
4018
4019 ev_start (EV_A_ (W)w, ++preparecnt);
4020 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4021 prepares [preparecnt - 1] = w;
4022
4023 EV_FREQUENT_CHECK;
4024 }
4025
4026 void
4027 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4028 {
4029 clear_pending (EV_A_ (W)w);
4030 if (expect_false (!ev_is_active (w)))
4031 return;
4032
4033 EV_FREQUENT_CHECK;
4034
4035 {
4036 int active = ev_active (w);
4037
4038 prepares [active - 1] = prepares [--preparecnt];
4039 ev_active (prepares [active - 1]) = active;
4040 }
4041
4042 ev_stop (EV_A_ (W)w);
4043
4044 EV_FREQUENT_CHECK;
4045 }
4046 #endif
4047
4048 #if EV_CHECK_ENABLE
4049 void
4050 ev_check_start (EV_P_ ev_check *w) EV_THROW
4051 {
4052 if (expect_false (ev_is_active (w)))
4053 return;
4054
4055 EV_FREQUENT_CHECK;
4056
4057 ev_start (EV_A_ (W)w, ++checkcnt);
4058 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4059 checks [checkcnt - 1] = w;
4060
4061 EV_FREQUENT_CHECK;
4062 }
4063
4064 void
4065 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4066 {
4067 clear_pending (EV_A_ (W)w);
4068 if (expect_false (!ev_is_active (w)))
4069 return;
4070
4071 EV_FREQUENT_CHECK;
4072
4073 {
4074 int active = ev_active (w);
4075
4076 checks [active - 1] = checks [--checkcnt];
4077 ev_active (checks [active - 1]) = active;
4078 }
4079
4080 ev_stop (EV_A_ (W)w);
4081
4082 EV_FREQUENT_CHECK;
4083 }
4084 #endif
4085
4086 #if EV_EMBED_ENABLE
4087 void noinline
4088 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4089 {
4090 ev_run (w->other, EVRUN_NOWAIT);
4091 }
4092
4093 static void
4094 embed_io_cb (EV_P_ ev_io *io, int revents)
4095 {
4096 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4097
4098 if (ev_cb (w))
4099 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4100 else
4101 ev_run (w->other, EVRUN_NOWAIT);
4102 }
4103
4104 static void
4105 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4106 {
4107 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4108
4109 {
4110 EV_P = w->other;
4111
4112 while (fdchangecnt)
4113 {
4114 fd_reify (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117 }
4118 }
4119
4120 static void
4121 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4122 {
4123 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4124
4125 ev_embed_stop (EV_A_ w);
4126
4127 {
4128 EV_P = w->other;
4129
4130 ev_loop_fork (EV_A);
4131 ev_run (EV_A_ EVRUN_NOWAIT);
4132 }
4133
4134 ev_embed_start (EV_A_ w);
4135 }
4136
4137 #if 0
4138 static void
4139 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4140 {
4141 ev_idle_stop (EV_A_ idle);
4142 }
4143 #endif
4144
4145 void
4146 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4147 {
4148 if (expect_false (ev_is_active (w)))
4149 return;
4150
4151 {
4152 EV_P = w->other;
4153 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4154 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4155 }
4156
4157 EV_FREQUENT_CHECK;
4158
4159 ev_set_priority (&w->io, ev_priority (w));
4160 ev_io_start (EV_A_ &w->io);
4161
4162 ev_prepare_init (&w->prepare, embed_prepare_cb);
4163 ev_set_priority (&w->prepare, EV_MINPRI);
4164 ev_prepare_start (EV_A_ &w->prepare);
4165
4166 ev_fork_init (&w->fork, embed_fork_cb);
4167 ev_fork_start (EV_A_ &w->fork);
4168
4169 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4170
4171 ev_start (EV_A_ (W)w, 1);
4172
4173 EV_FREQUENT_CHECK;
4174 }
4175
4176 void
4177 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4178 {
4179 clear_pending (EV_A_ (W)w);
4180 if (expect_false (!ev_is_active (w)))
4181 return;
4182
4183 EV_FREQUENT_CHECK;
4184
4185 ev_io_stop (EV_A_ &w->io);
4186 ev_prepare_stop (EV_A_ &w->prepare);
4187 ev_fork_stop (EV_A_ &w->fork);
4188
4189 ev_stop (EV_A_ (W)w);
4190
4191 EV_FREQUENT_CHECK;
4192 }
4193 #endif
4194
4195 #if EV_FORK_ENABLE
4196 void
4197 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4198 {
4199 if (expect_false (ev_is_active (w)))
4200 return;
4201
4202 EV_FREQUENT_CHECK;
4203
4204 ev_start (EV_A_ (W)w, ++forkcnt);
4205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4206 forks [forkcnt - 1] = w;
4207
4208 EV_FREQUENT_CHECK;
4209 }
4210
4211 void
4212 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4213 {
4214 clear_pending (EV_A_ (W)w);
4215 if (expect_false (!ev_is_active (w)))
4216 return;
4217
4218 EV_FREQUENT_CHECK;
4219
4220 {
4221 int active = ev_active (w);
4222
4223 forks [active - 1] = forks [--forkcnt];
4224 ev_active (forks [active - 1]) = active;
4225 }
4226
4227 ev_stop (EV_A_ (W)w);
4228
4229 EV_FREQUENT_CHECK;
4230 }
4231 #endif
4232
4233 #if EV_CLEANUP_ENABLE
4234 void
4235 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4236 {
4237 if (expect_false (ev_is_active (w)))
4238 return;
4239
4240 EV_FREQUENT_CHECK;
4241
4242 ev_start (EV_A_ (W)w, ++cleanupcnt);
4243 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4244 cleanups [cleanupcnt - 1] = w;
4245
4246 /* cleanup watchers should never keep a refcount on the loop */
4247 ev_unref (EV_A);
4248 EV_FREQUENT_CHECK;
4249 }
4250
4251 void
4252 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4253 {
4254 clear_pending (EV_A_ (W)w);
4255 if (expect_false (!ev_is_active (w)))
4256 return;
4257
4258 EV_FREQUENT_CHECK;
4259 ev_ref (EV_A);
4260
4261 {
4262 int active = ev_active (w);
4263
4264 cleanups [active - 1] = cleanups [--cleanupcnt];
4265 ev_active (cleanups [active - 1]) = active;
4266 }
4267
4268 ev_stop (EV_A_ (W)w);
4269
4270 EV_FREQUENT_CHECK;
4271 }
4272 #endif
4273
4274 #if EV_ASYNC_ENABLE
4275 void
4276 ev_async_start (EV_P_ ev_async *w) EV_THROW
4277 {
4278 if (expect_false (ev_is_active (w)))
4279 return;
4280
4281 w->sent = 0;
4282
4283 evpipe_init (EV_A);
4284
4285 EV_FREQUENT_CHECK;
4286
4287 ev_start (EV_A_ (W)w, ++asynccnt);
4288 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4289 asyncs [asynccnt - 1] = w;
4290
4291 EV_FREQUENT_CHECK;
4292 }
4293
4294 void
4295 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4296 {
4297 clear_pending (EV_A_ (W)w);
4298 if (expect_false (!ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 {
4304 int active = ev_active (w);
4305
4306 asyncs [active - 1] = asyncs [--asynccnt];
4307 ev_active (asyncs [active - 1]) = active;
4308 }
4309
4310 ev_stop (EV_A_ (W)w);
4311
4312 EV_FREQUENT_CHECK;
4313 }
4314
4315 void
4316 ev_async_send (EV_P_ ev_async *w) EV_THROW
4317 {
4318 w->sent = 1;
4319 evpipe_write (EV_A_ &async_pending);
4320 }
4321 #endif
4322
4323 /*****************************************************************************/
4324
4325 struct ev_once
4326 {
4327 ev_io io;
4328 ev_timer to;
4329 void (*cb)(int revents, void *arg);
4330 void *arg;
4331 };
4332
4333 static void
4334 once_cb (EV_P_ struct ev_once *once, int revents)
4335 {
4336 void (*cb)(int revents, void *arg) = once->cb;
4337 void *arg = once->arg;
4338
4339 ev_io_stop (EV_A_ &once->io);
4340 ev_timer_stop (EV_A_ &once->to);
4341 ev_free (once);
4342
4343 cb (revents, arg);
4344 }
4345
4346 static void
4347 once_cb_io (EV_P_ ev_io *w, int revents)
4348 {
4349 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4350
4351 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4352 }
4353
4354 static void
4355 once_cb_to (EV_P_ ev_timer *w, int revents)
4356 {
4357 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4358
4359 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4360 }
4361
4362 void
4363 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4364 {
4365 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4366
4367 if (expect_false (!once))
4368 {
4369 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4370 return;
4371 }
4372
4373 once->cb = cb;
4374 once->arg = arg;
4375
4376 ev_init (&once->io, once_cb_io);
4377 if (fd >= 0)
4378 {
4379 ev_io_set (&once->io, fd, events);
4380 ev_io_start (EV_A_ &once->io);
4381 }
4382
4383 ev_init (&once->to, once_cb_to);
4384 if (timeout >= 0.)
4385 {
4386 ev_timer_set (&once->to, timeout, 0.);
4387 ev_timer_start (EV_A_ &once->to);
4388 }
4389 }
4390
4391 /*****************************************************************************/
4392
4393 #if EV_WALK_ENABLE
4394 void ecb_cold
4395 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4396 {
4397 int i, j;
4398 ev_watcher_list *wl, *wn;
4399
4400 if (types & (EV_IO | EV_EMBED))
4401 for (i = 0; i < anfdmax; ++i)
4402 for (wl = anfds [i].head; wl; )
4403 {
4404 wn = wl->next;
4405
4406 #if EV_EMBED_ENABLE
4407 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4408 {
4409 if (types & EV_EMBED)
4410 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4411 }
4412 else
4413 #endif
4414 #if EV_USE_INOTIFY
4415 if (ev_cb ((ev_io *)wl) == infy_cb)
4416 ;
4417 else
4418 #endif
4419 if ((ev_io *)wl != &pipe_w)
4420 if (types & EV_IO)
4421 cb (EV_A_ EV_IO, wl);
4422
4423 wl = wn;
4424 }
4425
4426 if (types & (EV_TIMER | EV_STAT))
4427 for (i = timercnt + HEAP0; i-- > HEAP0; )
4428 #if EV_STAT_ENABLE
4429 /*TODO: timer is not always active*/
4430 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4431 {
4432 if (types & EV_STAT)
4433 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4434 }
4435 else
4436 #endif
4437 if (types & EV_TIMER)
4438 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4439
4440 #if EV_PERIODIC_ENABLE
4441 if (types & EV_PERIODIC)
4442 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4443 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4444 #endif
4445
4446 #if EV_IDLE_ENABLE
4447 if (types & EV_IDLE)
4448 for (j = NUMPRI; j--; )
4449 for (i = idlecnt [j]; i--; )
4450 cb (EV_A_ EV_IDLE, idles [j][i]);
4451 #endif
4452
4453 #if EV_FORK_ENABLE
4454 if (types & EV_FORK)
4455 for (i = forkcnt; i--; )
4456 if (ev_cb (forks [i]) != embed_fork_cb)
4457 cb (EV_A_ EV_FORK, forks [i]);
4458 #endif
4459
4460 #if EV_ASYNC_ENABLE
4461 if (types & EV_ASYNC)
4462 for (i = asynccnt; i--; )
4463 cb (EV_A_ EV_ASYNC, asyncs [i]);
4464 #endif
4465
4466 #if EV_PREPARE_ENABLE
4467 if (types & EV_PREPARE)
4468 for (i = preparecnt; i--; )
4469 # if EV_EMBED_ENABLE
4470 if (ev_cb (prepares [i]) != embed_prepare_cb)
4471 # endif
4472 cb (EV_A_ EV_PREPARE, prepares [i]);
4473 #endif
4474
4475 #if EV_CHECK_ENABLE
4476 if (types & EV_CHECK)
4477 for (i = checkcnt; i--; )
4478 cb (EV_A_ EV_CHECK, checks [i]);
4479 #endif
4480
4481 #if EV_SIGNAL_ENABLE
4482 if (types & EV_SIGNAL)
4483 for (i = 0; i < EV_NSIG - 1; ++i)
4484 for (wl = signals [i].head; wl; )
4485 {
4486 wn = wl->next;
4487 cb (EV_A_ EV_SIGNAL, wl);
4488 wl = wn;
4489 }
4490 #endif
4491
4492 #if EV_CHILD_ENABLE
4493 if (types & EV_CHILD)
4494 for (i = (EV_PID_HASHSIZE); i--; )
4495 for (wl = childs [i]; wl; )
4496 {
4497 wn = wl->next;
4498 cb (EV_A_ EV_CHILD, wl);
4499 wl = wn;
4500 }
4501 #endif
4502 /* EV_STAT 0x00001000 /* stat data changed */
4503 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4504 }
4505 #endif
4506
4507 #if EV_MULTIPLICITY
4508 #include "ev_wrap.h"
4509 #endif
4510