ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.430
Committed: Wed May 9 16:50:23 2012 UTC (12 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.429: +0 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <windows.h>
207 # include <winsock2.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_USE_EVENTFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef EFD_NONBLOCK
420 # define EFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef EFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define EFD_CLOEXEC O_CLOEXEC
425 # else
426 # define EFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 #endif
431
432 #if EV_USE_SIGNALFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef SFD_NONBLOCK
436 # define SFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef SFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define SFD_CLOEXEC O_CLOEXEC
441 # else
442 # define SFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447 struct signalfd_siginfo
448 {
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451 };
452 #endif
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476 /* ECB.H BEGIN */
477 /*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506 #ifndef ECB_H
507 #define ECB_H
508
509 #ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
516 #if __GNUC__
517 typedef signed long long int64_t;
518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
523 #else
524 #include <inttypes.h>
525 #endif
526
527 /* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534 #ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
539 #endif
540 #endif
541
542 /*****************************************************************************/
543
544 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547 #if ECB_NO_THREADS
548 # define ECB_NO_SMP 1
549 #endif
550
551 #if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553 #endif
554
555 #ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585 #endif
586
587 #ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608 #endif
609
610 #ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626 #endif
627
628 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630 #endif
631
632 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634 #endif
635
636 /*****************************************************************************/
637
638 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640 #if __cplusplus
641 #define ecb_inline static inline
642 #elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644 #elif ECB_C99
645 #define ecb_inline static inline
646 #else
647 #define ecb_inline static
648 #endif
649
650 #if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652 #elif ECB_C99
653 #define ecb_restrict restrict
654 #else
655 #define ecb_restrict
656 #endif
657
658 typedef int ecb_bool;
659
660 #define ECB_CONCAT_(a, b) a ## b
661 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662 #define ECB_STRINGIFY_(a) # a
663 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665 #define ecb_function_ ecb_inline
666
667 #if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672 #else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677 #endif
678
679 /* no emulation for ecb_decltype */
680 #if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682 #elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684 #endif
685
686 #define ecb_noinline ecb_attribute ((__noinline__))
687 #define ecb_noreturn ecb_attribute ((__noreturn__))
688 #define ecb_unused ecb_attribute ((__unused__))
689 #define ecb_const ecb_attribute ((__const__))
690 #define ecb_pure ecb_attribute ((__pure__))
691
692 #if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696 #else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700 #endif
701
702 /* put around conditional expressions if you are very sure that the */
703 /* expression is mostly true or mostly false. note that these return */
704 /* booleans, not the expression. */
705 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
706 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707 /* for compatibility to the rest of the world */
708 #define ecb_likely(expr) ecb_expect_true (expr)
709 #define ecb_unlikely(expr) ecb_expect_false (expr)
710
711 /* count trailing zero bits and count # of one bits */
712 #if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720 #else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729 #if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735 #else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741 #endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789 #endif
790
791 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793 {
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796 }
797
798 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800 {
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807 }
808
809 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811 {
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819 }
820
821 /* popcount64 is only available on 64 bit cpus as gcc builtin */
822 /* so for this version we are lazy */
823 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_popcount64 (uint64_t x)
826 {
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828 }
829
830 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848 #if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852 #else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873 #endif
874
875 #if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877 #else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881 #endif
882
883 /* try to tell the compiler that some condition is definitely true */
884 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887 ecb_inline unsigned char
888 ecb_byteorder_helper (void)
889 {
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892 }
893
894 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899 #if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901 #else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903 #endif
904
905 #if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916 #else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919 #endif
920
921 #if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928 #else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930 #endif
931
932 #endif
933
934 /* ECB.H END */
935
936 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937 /* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944 # error "memory fences not defined for your architecture, please report"
945 #endif
946
947 #ifndef ECB_MEMORY_FENCE
948 # define ECB_MEMORY_FENCE do { } while (0)
949 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951 #endif
952
953 #define expect_false(cond) ecb_expect_false (cond)
954 #define expect_true(cond) ecb_expect_true (cond)
955 #define noinline ecb_noinline
956
957 #define inline_size ecb_inline
958
959 #if EV_FEATURE_CODE
960 # define inline_speed ecb_inline
961 #else
962 # define inline_speed static noinline
963 #endif
964
965 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967 #if EV_MINPRI == EV_MAXPRI
968 # define ABSPRI(w) (((W)w), 0)
969 #else
970 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971 #endif
972
973 #define EMPTY /* required for microsofts broken pseudo-c compiler */
974 #define EMPTY2(a,b) /* used to suppress some warnings */
975
976 typedef ev_watcher *W;
977 typedef ev_watcher_list *WL;
978 typedef ev_watcher_time *WT;
979
980 #define ev_active(w) ((W)(w))->active
981 #define ev_at(w) ((WT)(w))->at
982
983 #if EV_USE_REALTIME
984 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
985 /* giving it a reasonably high chance of working on typical architectures */
986 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987 #endif
988
989 #if EV_USE_MONOTONIC
990 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991 #endif
992
993 #ifndef EV_FD_TO_WIN32_HANDLE
994 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995 #endif
996 #ifndef EV_WIN32_HANDLE_TO_FD
997 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998 #endif
999 #ifndef EV_WIN32_CLOSE_FD
1000 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1001 #endif
1002
1003 #ifdef _WIN32
1004 # include "ev_win32.c"
1005 #endif
1006
1007 /*****************************************************************************/
1008
1009 /* define a suitable floor function (only used by periodics atm) */
1010
1011 #if EV_USE_FLOOR
1012 # include <math.h>
1013 # define ev_floor(v) floor (v)
1014 #else
1015
1016 #include <float.h>
1017
1018 /* a floor() replacement function, should be independent of ev_tstamp type */
1019 static ev_tstamp noinline
1020 ev_floor (ev_tstamp v)
1021 {
1022 /* the choice of shift factor is not terribly important */
1023 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025 #else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027 #endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051 }
1052
1053 #endif
1054
1055 /*****************************************************************************/
1056
1057 #ifdef __linux
1058 # include <sys/utsname.h>
1059 #endif
1060
1061 static unsigned int noinline ecb_cold
1062 ev_linux_version (void)
1063 {
1064 #ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092 #else
1093 return 0;
1094 #endif
1095 }
1096
1097 /*****************************************************************************/
1098
1099 #if EV_AVOID_STDIO
1100 static void noinline ecb_cold
1101 ev_printerr (const char *msg)
1102 {
1103 write (STDERR_FILENO, msg, strlen (msg));
1104 }
1105 #endif
1106
1107 static void (*syserr_cb)(const char *msg) EV_THROW;
1108
1109 void ecb_cold
1110 ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
1111 {
1112 syserr_cb = cb;
1113 }
1114
1115 static void noinline ecb_cold
1116 ev_syserr (const char *msg)
1117 {
1118 if (!msg)
1119 msg = "(libev) system error";
1120
1121 if (syserr_cb)
1122 syserr_cb (msg);
1123 else
1124 {
1125 #if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130 #else
1131 perror (msg);
1132 #endif
1133 abort ();
1134 }
1135 }
1136
1137 static void *
1138 ev_realloc_emul (void *ptr, long size)
1139 {
1140 #if __GLIBC__
1141 return realloc (ptr, size);
1142 #else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153 #endif
1154 }
1155
1156 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1157
1158 void ecb_cold
1159 ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
1160 {
1161 alloc = cb;
1162 }
1163
1164 inline_speed void *
1165 ev_realloc (void *ptr, long size)
1166 {
1167 ptr = alloc (ptr, size);
1168
1169 if (!ptr && size)
1170 {
1171 #if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173 #else
1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175 #endif
1176 abort ();
1177 }
1178
1179 return ptr;
1180 }
1181
1182 #define ev_malloc(size) ev_realloc (0, (size))
1183 #define ev_free(ptr) ev_realloc ((ptr), 0)
1184
1185 /*****************************************************************************/
1186
1187 /* set in reify when reification needed */
1188 #define EV_ANFD_REIFY 1
1189
1190 /* file descriptor info structure */
1191 typedef struct
1192 {
1193 WL head;
1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1197 unsigned char unused;
1198 #if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200 #endif
1201 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1202 SOCKET handle;
1203 #endif
1204 #if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206 #endif
1207 } ANFD;
1208
1209 /* stores the pending event set for a given watcher */
1210 typedef struct
1211 {
1212 W w;
1213 int events; /* the pending event set for the given watcher */
1214 } ANPENDING;
1215
1216 #if EV_USE_INOTIFY
1217 /* hash table entry per inotify-id */
1218 typedef struct
1219 {
1220 WL head;
1221 } ANFS;
1222 #endif
1223
1224 /* Heap Entry */
1225 #if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235 #else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242 #endif
1243
1244 #if EV_MULTIPLICITY
1245
1246 struct ev_loop
1247 {
1248 ev_tstamp ev_rt_now;
1249 #define ev_rt_now ((loop)->ev_rt_now)
1250 #define VAR(name,decl) decl;
1251 #include "ev_vars.h"
1252 #undef VAR
1253 };
1254 #include "ev_wrap.h"
1255
1256 static struct ev_loop default_loop_struct;
1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1258
1259 #else
1260
1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1262 #define VAR(name,decl) static decl;
1263 #include "ev_vars.h"
1264 #undef VAR
1265
1266 static int ev_default_loop_ptr;
1267
1268 #endif
1269
1270 #if EV_FEATURE_API
1271 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1274 #else
1275 # define EV_RELEASE_CB (void)0
1276 # define EV_ACQUIRE_CB (void)0
1277 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278 #endif
1279
1280 #define EVBREAK_RECURSE 0x80
1281
1282 /*****************************************************************************/
1283
1284 #ifndef EV_HAVE_EV_TIME
1285 ev_tstamp
1286 ev_time (void) EV_THROW
1287 {
1288 #if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
1291 struct timespec ts;
1292 clock_gettime (CLOCK_REALTIME, &ts);
1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
1294 }
1295 #endif
1296
1297 struct timeval tv;
1298 gettimeofday (&tv, 0);
1299 return tv.tv_sec + tv.tv_usec * 1e-6;
1300 }
1301 #endif
1302
1303 inline_size ev_tstamp
1304 get_clock (void)
1305 {
1306 #if EV_USE_MONOTONIC
1307 if (expect_true (have_monotonic))
1308 {
1309 struct timespec ts;
1310 clock_gettime (CLOCK_MONOTONIC, &ts);
1311 return ts.tv_sec + ts.tv_nsec * 1e-9;
1312 }
1313 #endif
1314
1315 return ev_time ();
1316 }
1317
1318 #if EV_MULTIPLICITY
1319 ev_tstamp
1320 ev_now (EV_P) EV_THROW
1321 {
1322 return ev_rt_now;
1323 }
1324 #endif
1325
1326 void
1327 ev_sleep (ev_tstamp delay) EV_THROW
1328 {
1329 if (delay > 0.)
1330 {
1331 #if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336 #elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338 #else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346 #endif
1347 }
1348 }
1349
1350 /*****************************************************************************/
1351
1352 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354 /* find a suitable new size for the given array, */
1355 /* hopefully by rounding to a nice-to-malloc size */
1356 inline_size int
1357 array_nextsize (int elem, int cur, int cnt)
1358 {
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1367 {
1368 ncur *= elem;
1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1370 ncur = ncur - sizeof (void *) * 4;
1371 ncur /= elem;
1372 }
1373
1374 return ncur;
1375 }
1376
1377 static void * noinline ecb_cold
1378 array_realloc (int elem, void *base, int *cur, int cnt)
1379 {
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382 }
1383
1384 #define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1386
1387 #define array_needsize(type,base,cur,cnt,init) \
1388 if (expect_false ((cnt) > (cur))) \
1389 { \
1390 int ecb_unused ocur_ = (cur); \
1391 (base) = (type *)array_realloc \
1392 (sizeof (type), (base), &(cur), (cnt)); \
1393 init ((base) + (ocur_), (cur) - ocur_); \
1394 }
1395
1396 #if 0
1397 #define array_slim(type,stem) \
1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1399 { \
1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1403 }
1404 #endif
1405
1406 #define array_free(stem, idx) \
1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1408
1409 /*****************************************************************************/
1410
1411 /* dummy callback for pending events */
1412 static void noinline
1413 pendingcb (EV_P_ ev_prepare *w, int revents)
1414 {
1415 }
1416
1417 void noinline
1418 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1419 {
1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
1422
1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
1430 pendings [pri][w_->pending - 1].events = revents;
1431 }
1432
1433 pendingpri = NUMPRI - 1;
1434 }
1435
1436 inline_speed void
1437 feed_reverse (EV_P_ W w)
1438 {
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441 }
1442
1443 inline_size void
1444 feed_reverse_done (EV_P_ int revents)
1445 {
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449 }
1450
1451 inline_speed void
1452 queue_events (EV_P_ W *events, int eventcnt, int type)
1453 {
1454 int i;
1455
1456 for (i = 0; i < eventcnt; ++i)
1457 ev_feed_event (EV_A_ events [i], type);
1458 }
1459
1460 /*****************************************************************************/
1461
1462 inline_speed void
1463 fd_event_nocheck (EV_P_ int fd, int revents)
1464 {
1465 ANFD *anfd = anfds + fd;
1466 ev_io *w;
1467
1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1469 {
1470 int ev = w->events & revents;
1471
1472 if (ev)
1473 ev_feed_event (EV_A_ (W)w, ev);
1474 }
1475 }
1476
1477 /* do not submit kernel events for fds that have reify set */
1478 /* because that means they changed while we were polling for new events */
1479 inline_speed void
1480 fd_event (EV_P_ int fd, int revents)
1481 {
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486 }
1487
1488 void
1489 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1490 {
1491 if (fd >= 0 && fd < anfdmax)
1492 fd_event_nocheck (EV_A_ fd, revents);
1493 }
1494
1495 /* make sure the external fd watch events are in-sync */
1496 /* with the kernel/libev internal state */
1497 inline_size void
1498 fd_reify (EV_P)
1499 {
1500 int i;
1501
1502 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525 #endif
1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
1536 anfd->reify = 0;
1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
1551 }
1552
1553 fdchangecnt = 0;
1554 }
1555
1556 /* something about the given fd changed */
1557 inline_size void
1558 fd_change (EV_P_ int fd, int flags)
1559 {
1560 unsigned char reify = anfds [fd].reify;
1561 anfds [fd].reify |= flags;
1562
1563 if (expect_true (!reify))
1564 {
1565 ++fdchangecnt;
1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
1569 }
1570
1571 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572 inline_speed void ecb_cold
1573 fd_kill (EV_P_ int fd)
1574 {
1575 ev_io *w;
1576
1577 while ((w = (ev_io *)anfds [fd].head))
1578 {
1579 ev_io_stop (EV_A_ w);
1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1581 }
1582 }
1583
1584 /* check whether the given fd is actually valid, for error recovery */
1585 inline_size int ecb_cold
1586 fd_valid (int fd)
1587 {
1588 #ifdef _WIN32
1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1590 #else
1591 return fcntl (fd, F_GETFD) != -1;
1592 #endif
1593 }
1594
1595 /* called on EBADF to verify fds */
1596 static void noinline ecb_cold
1597 fd_ebadf (EV_P)
1598 {
1599 int fd;
1600
1601 for (fd = 0; fd < anfdmax; ++fd)
1602 if (anfds [fd].events)
1603 if (!fd_valid (fd) && errno == EBADF)
1604 fd_kill (EV_A_ fd);
1605 }
1606
1607 /* called on ENOMEM in select/poll to kill some fds and retry */
1608 static void noinline ecb_cold
1609 fd_enomem (EV_P)
1610 {
1611 int fd;
1612
1613 for (fd = anfdmax; fd--; )
1614 if (anfds [fd].events)
1615 {
1616 fd_kill (EV_A_ fd);
1617 break;
1618 }
1619 }
1620
1621 /* usually called after fork if backend needs to re-arm all fds from scratch */
1622 static void noinline
1623 fd_rearm_all (EV_P)
1624 {
1625 int fd;
1626
1627 for (fd = 0; fd < anfdmax; ++fd)
1628 if (anfds [fd].events)
1629 {
1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1633 }
1634 }
1635
1636 /* used to prepare libev internal fd's */
1637 /* this is not fork-safe */
1638 inline_speed void
1639 fd_intern (int fd)
1640 {
1641 #ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644 #else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647 #endif
1648 }
1649
1650 /*****************************************************************************/
1651
1652 /*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658 /*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664 #if EV_USE_4HEAP
1665
1666 #define DHEAP 4
1667 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669 #define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671 /* away from the root */
1672 inline_speed void
1673 downheap (ANHE *heap, int N, int k)
1674 {
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713 }
1714
1715 #else /* 4HEAP */
1716
1717 #define HEAP0 1
1718 #define HPARENT(k) ((k) >> 1)
1719 #define UPHEAP_DONE(p,k) (!(p))
1720
1721 /* away from the root */
1722 inline_speed void
1723 downheap (ANHE *heap, int N, int k)
1724 {
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748 }
1749 #endif
1750
1751 /* towards the root */
1752 inline_speed void
1753 upheap (ANHE *heap, int k)
1754 {
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771 }
1772
1773 /* move an element suitably so it is in a correct place */
1774 inline_size void
1775 adjustheap (ANHE *heap, int N, int k)
1776 {
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781 }
1782
1783 /* rebuild the heap: this function is used only once and executed rarely */
1784 inline_size void
1785 reheap (ANHE *heap, int N)
1786 {
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793 }
1794
1795 /*****************************************************************************/
1796
1797 /* associate signal watchers to a signal signal */
1798 typedef struct
1799 {
1800 EV_ATOMIC_T pending;
1801 #if EV_MULTIPLICITY
1802 EV_P;
1803 #endif
1804 WL head;
1805 } ANSIG;
1806
1807 static ANSIG signals [EV_NSIG - 1];
1808
1809 /*****************************************************************************/
1810
1811 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813 static void noinline ecb_cold
1814 evpipe_init (EV_P)
1815 {
1816 if (!ev_is_active (&pipe_w))
1817 {
1818 # if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830 # endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843 }
1844
1845 inline_speed void
1846 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847 {
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869 #if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876 #endif
1877 {
1878 #ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884 #else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886 #endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891 }
1892
1893 /* called whenever the libev signal pipe */
1894 /* got some events (signal, async) */
1895 static void
1896 pipecb (EV_P_ ev_io *iow, int revents)
1897 {
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
1902 #if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909 #endif
1910 {
1911 char dummy[4];
1912 #ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 buf.buf = dummy;
1916 buf.len = sizeof (dummy);
1917 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, 0, 0, 0);
1918 #else
1919 read (evpipe [0], &dummy, sizeof (dummy));
1920 #endif
1921 }
1922 }
1923
1924 pipe_write_skipped = 0;
1925
1926 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1927
1928 #if EV_SIGNAL_ENABLE
1929 if (sig_pending)
1930 {
1931 sig_pending = 0;
1932
1933 ECB_MEMORY_FENCE_RELEASE;
1934
1935 for (i = EV_NSIG - 1; i--; )
1936 if (expect_false (signals [i].pending))
1937 ev_feed_signal_event (EV_A_ i + 1);
1938 }
1939 #endif
1940
1941 #if EV_ASYNC_ENABLE
1942 if (async_pending)
1943 {
1944 async_pending = 0;
1945
1946 ECB_MEMORY_FENCE_RELEASE;
1947
1948 for (i = asynccnt; i--; )
1949 if (asyncs [i]->sent)
1950 {
1951 asyncs [i]->sent = 0;
1952 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1953 }
1954 }
1955 #endif
1956 }
1957
1958 /*****************************************************************************/
1959
1960 void
1961 ev_feed_signal (int signum) EV_THROW
1962 {
1963 #if EV_MULTIPLICITY
1964 EV_P = signals [signum - 1].loop;
1965
1966 if (!EV_A)
1967 return;
1968 #endif
1969
1970 if (!ev_active (&pipe_w))
1971 return;
1972
1973 signals [signum - 1].pending = 1;
1974 evpipe_write (EV_A_ &sig_pending);
1975 }
1976
1977 static void
1978 ev_sighandler (int signum)
1979 {
1980 #ifdef _WIN32
1981 signal (signum, ev_sighandler);
1982 #endif
1983
1984 ev_feed_signal (signum);
1985 }
1986
1987 void noinline
1988 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1989 {
1990 WL w;
1991
1992 if (expect_false (signum <= 0 || signum > EV_NSIG))
1993 return;
1994
1995 --signum;
1996
1997 #if EV_MULTIPLICITY
1998 /* it is permissible to try to feed a signal to the wrong loop */
1999 /* or, likely more useful, feeding a signal nobody is waiting for */
2000
2001 if (expect_false (signals [signum].loop != EV_A))
2002 return;
2003 #endif
2004
2005 signals [signum].pending = 0;
2006
2007 for (w = signals [signum].head; w; w = w->next)
2008 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2009 }
2010
2011 #if EV_USE_SIGNALFD
2012 static void
2013 sigfdcb (EV_P_ ev_io *iow, int revents)
2014 {
2015 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2016
2017 for (;;)
2018 {
2019 ssize_t res = read (sigfd, si, sizeof (si));
2020
2021 /* not ISO-C, as res might be -1, but works with SuS */
2022 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2023 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2024
2025 if (res < (ssize_t)sizeof (si))
2026 break;
2027 }
2028 }
2029 #endif
2030
2031 #endif
2032
2033 /*****************************************************************************/
2034
2035 #if EV_CHILD_ENABLE
2036 static WL childs [EV_PID_HASHSIZE];
2037
2038 static ev_signal childev;
2039
2040 #ifndef WIFCONTINUED
2041 # define WIFCONTINUED(status) 0
2042 #endif
2043
2044 /* handle a single child status event */
2045 inline_speed void
2046 child_reap (EV_P_ int chain, int pid, int status)
2047 {
2048 ev_child *w;
2049 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2050
2051 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2052 {
2053 if ((w->pid == pid || !w->pid)
2054 && (!traced || (w->flags & 1)))
2055 {
2056 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2057 w->rpid = pid;
2058 w->rstatus = status;
2059 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2060 }
2061 }
2062 }
2063
2064 #ifndef WCONTINUED
2065 # define WCONTINUED 0
2066 #endif
2067
2068 /* called on sigchld etc., calls waitpid */
2069 static void
2070 childcb (EV_P_ ev_signal *sw, int revents)
2071 {
2072 int pid, status;
2073
2074 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2075 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2076 if (!WCONTINUED
2077 || errno != EINVAL
2078 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2079 return;
2080
2081 /* make sure we are called again until all children have been reaped */
2082 /* we need to do it this way so that the callback gets called before we continue */
2083 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2084
2085 child_reap (EV_A_ pid, pid, status);
2086 if ((EV_PID_HASHSIZE) > 1)
2087 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2088 }
2089
2090 #endif
2091
2092 /*****************************************************************************/
2093
2094 #if EV_USE_IOCP
2095 # include "ev_iocp.c"
2096 #endif
2097 #if EV_USE_PORT
2098 # include "ev_port.c"
2099 #endif
2100 #if EV_USE_KQUEUE
2101 # include "ev_kqueue.c"
2102 #endif
2103 #if EV_USE_EPOLL
2104 # include "ev_epoll.c"
2105 #endif
2106 #if EV_USE_POLL
2107 # include "ev_poll.c"
2108 #endif
2109 #if EV_USE_SELECT
2110 # include "ev_select.c"
2111 #endif
2112
2113 int ecb_cold
2114 ev_version_major (void) EV_THROW
2115 {
2116 return EV_VERSION_MAJOR;
2117 }
2118
2119 int ecb_cold
2120 ev_version_minor (void) EV_THROW
2121 {
2122 return EV_VERSION_MINOR;
2123 }
2124
2125 /* return true if we are running with elevated privileges and should ignore env variables */
2126 int inline_size ecb_cold
2127 enable_secure (void)
2128 {
2129 #ifdef _WIN32
2130 return 0;
2131 #else
2132 return getuid () != geteuid ()
2133 || getgid () != getegid ();
2134 #endif
2135 }
2136
2137 unsigned int ecb_cold
2138 ev_supported_backends (void) EV_THROW
2139 {
2140 unsigned int flags = 0;
2141
2142 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2143 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2144 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2145 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2146 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2147
2148 return flags;
2149 }
2150
2151 unsigned int ecb_cold
2152 ev_recommended_backends (void) EV_THROW
2153 {
2154 unsigned int flags = ev_supported_backends ();
2155
2156 #ifndef __NetBSD__
2157 /* kqueue is borked on everything but netbsd apparently */
2158 /* it usually doesn't work correctly on anything but sockets and pipes */
2159 flags &= ~EVBACKEND_KQUEUE;
2160 #endif
2161 #ifdef __APPLE__
2162 /* only select works correctly on that "unix-certified" platform */
2163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2165 #endif
2166 #ifdef __FreeBSD__
2167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2168 #endif
2169
2170 return flags;
2171 }
2172
2173 unsigned int ecb_cold
2174 ev_embeddable_backends (void) EV_THROW
2175 {
2176 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2177
2178 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2179 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2180 flags &= ~EVBACKEND_EPOLL;
2181
2182 return flags;
2183 }
2184
2185 unsigned int
2186 ev_backend (EV_P) EV_THROW
2187 {
2188 return backend;
2189 }
2190
2191 #if EV_FEATURE_API
2192 unsigned int
2193 ev_iteration (EV_P) EV_THROW
2194 {
2195 return loop_count;
2196 }
2197
2198 unsigned int
2199 ev_depth (EV_P) EV_THROW
2200 {
2201 return loop_depth;
2202 }
2203
2204 void
2205 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2206 {
2207 io_blocktime = interval;
2208 }
2209
2210 void
2211 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2212 {
2213 timeout_blocktime = interval;
2214 }
2215
2216 void
2217 ev_set_userdata (EV_P_ void *data) EV_THROW
2218 {
2219 userdata = data;
2220 }
2221
2222 void *
2223 ev_userdata (EV_P) EV_THROW
2224 {
2225 return userdata;
2226 }
2227
2228 void
2229 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2230 {
2231 invoke_cb = invoke_pending_cb;
2232 }
2233
2234 void
2235 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2236 {
2237 release_cb = release;
2238 acquire_cb = acquire;
2239 }
2240 #endif
2241
2242 /* initialise a loop structure, must be zero-initialised */
2243 static void noinline ecb_cold
2244 loop_init (EV_P_ unsigned int flags) EV_THROW
2245 {
2246 if (!backend)
2247 {
2248 origflags = flags;
2249
2250 #if EV_USE_REALTIME
2251 if (!have_realtime)
2252 {
2253 struct timespec ts;
2254
2255 if (!clock_gettime (CLOCK_REALTIME, &ts))
2256 have_realtime = 1;
2257 }
2258 #endif
2259
2260 #if EV_USE_MONOTONIC
2261 if (!have_monotonic)
2262 {
2263 struct timespec ts;
2264
2265 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2266 have_monotonic = 1;
2267 }
2268 #endif
2269
2270 /* pid check not overridable via env */
2271 #ifndef _WIN32
2272 if (flags & EVFLAG_FORKCHECK)
2273 curpid = getpid ();
2274 #endif
2275
2276 if (!(flags & EVFLAG_NOENV)
2277 && !enable_secure ()
2278 && getenv ("LIBEV_FLAGS"))
2279 flags = atoi (getenv ("LIBEV_FLAGS"));
2280
2281 ev_rt_now = ev_time ();
2282 mn_now = get_clock ();
2283 now_floor = mn_now;
2284 rtmn_diff = ev_rt_now - mn_now;
2285 #if EV_FEATURE_API
2286 invoke_cb = ev_invoke_pending;
2287 #endif
2288
2289 io_blocktime = 0.;
2290 timeout_blocktime = 0.;
2291 backend = 0;
2292 backend_fd = -1;
2293 sig_pending = 0;
2294 #if EV_ASYNC_ENABLE
2295 async_pending = 0;
2296 #endif
2297 pipe_write_skipped = 0;
2298 pipe_write_wanted = 0;
2299 #if EV_USE_INOTIFY
2300 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2301 #endif
2302 #if EV_USE_SIGNALFD
2303 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2304 #endif
2305
2306 if (!(flags & EVBACKEND_MASK))
2307 flags |= ev_recommended_backends ();
2308
2309 #if EV_USE_IOCP
2310 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2311 #endif
2312 #if EV_USE_PORT
2313 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2314 #endif
2315 #if EV_USE_KQUEUE
2316 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2317 #endif
2318 #if EV_USE_EPOLL
2319 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2320 #endif
2321 #if EV_USE_POLL
2322 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2323 #endif
2324 #if EV_USE_SELECT
2325 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2326 #endif
2327
2328 ev_prepare_init (&pending_w, pendingcb);
2329
2330 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2331 ev_init (&pipe_w, pipecb);
2332 ev_set_priority (&pipe_w, EV_MAXPRI);
2333 #endif
2334 }
2335 }
2336
2337 /* free up a loop structure */
2338 void ecb_cold
2339 ev_loop_destroy (EV_P)
2340 {
2341 int i;
2342
2343 #if EV_MULTIPLICITY
2344 /* mimic free (0) */
2345 if (!EV_A)
2346 return;
2347 #endif
2348
2349 #if EV_CLEANUP_ENABLE
2350 /* queue cleanup watchers (and execute them) */
2351 if (expect_false (cleanupcnt))
2352 {
2353 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2354 EV_INVOKE_PENDING;
2355 }
2356 #endif
2357
2358 #if EV_CHILD_ENABLE
2359 if (ev_is_active (&childev))
2360 {
2361 ev_ref (EV_A); /* child watcher */
2362 ev_signal_stop (EV_A_ &childev);
2363 }
2364 #endif
2365
2366 if (ev_is_active (&pipe_w))
2367 {
2368 /*ev_ref (EV_A);*/
2369 /*ev_io_stop (EV_A_ &pipe_w);*/
2370
2371 #if EV_USE_EVENTFD
2372 if (evfd >= 0)
2373 close (evfd);
2374 #endif
2375
2376 if (evpipe [0] >= 0)
2377 {
2378 EV_WIN32_CLOSE_FD (evpipe [0]);
2379 EV_WIN32_CLOSE_FD (evpipe [1]);
2380 }
2381 }
2382
2383 #if EV_USE_SIGNALFD
2384 if (ev_is_active (&sigfd_w))
2385 close (sigfd);
2386 #endif
2387
2388 #if EV_USE_INOTIFY
2389 if (fs_fd >= 0)
2390 close (fs_fd);
2391 #endif
2392
2393 if (backend_fd >= 0)
2394 close (backend_fd);
2395
2396 #if EV_USE_IOCP
2397 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2398 #endif
2399 #if EV_USE_PORT
2400 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2401 #endif
2402 #if EV_USE_KQUEUE
2403 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2404 #endif
2405 #if EV_USE_EPOLL
2406 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2407 #endif
2408 #if EV_USE_POLL
2409 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2410 #endif
2411 #if EV_USE_SELECT
2412 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2413 #endif
2414
2415 for (i = NUMPRI; i--; )
2416 {
2417 array_free (pending, [i]);
2418 #if EV_IDLE_ENABLE
2419 array_free (idle, [i]);
2420 #endif
2421 }
2422
2423 ev_free (anfds); anfds = 0; anfdmax = 0;
2424
2425 /* have to use the microsoft-never-gets-it-right macro */
2426 array_free (rfeed, EMPTY);
2427 array_free (fdchange, EMPTY);
2428 array_free (timer, EMPTY);
2429 #if EV_PERIODIC_ENABLE
2430 array_free (periodic, EMPTY);
2431 #endif
2432 #if EV_FORK_ENABLE
2433 array_free (fork, EMPTY);
2434 #endif
2435 #if EV_CLEANUP_ENABLE
2436 array_free (cleanup, EMPTY);
2437 #endif
2438 array_free (prepare, EMPTY);
2439 array_free (check, EMPTY);
2440 #if EV_ASYNC_ENABLE
2441 array_free (async, EMPTY);
2442 #endif
2443
2444 backend = 0;
2445
2446 #if EV_MULTIPLICITY
2447 if (ev_is_default_loop (EV_A))
2448 #endif
2449 ev_default_loop_ptr = 0;
2450 #if EV_MULTIPLICITY
2451 else
2452 ev_free (EV_A);
2453 #endif
2454 }
2455
2456 #if EV_USE_INOTIFY
2457 inline_size void infy_fork (EV_P);
2458 #endif
2459
2460 inline_size void
2461 loop_fork (EV_P)
2462 {
2463 #if EV_USE_PORT
2464 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2465 #endif
2466 #if EV_USE_KQUEUE
2467 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2468 #endif
2469 #if EV_USE_EPOLL
2470 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2471 #endif
2472 #if EV_USE_INOTIFY
2473 infy_fork (EV_A);
2474 #endif
2475
2476 if (ev_is_active (&pipe_w))
2477 {
2478 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2479
2480 ev_ref (EV_A);
2481 ev_io_stop (EV_A_ &pipe_w);
2482
2483 #if EV_USE_EVENTFD
2484 if (evfd >= 0)
2485 close (evfd);
2486 #endif
2487
2488 if (evpipe [0] >= 0)
2489 {
2490 EV_WIN32_CLOSE_FD (evpipe [0]);
2491 EV_WIN32_CLOSE_FD (evpipe [1]);
2492 }
2493
2494 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2495 evpipe_init (EV_A);
2496 /* now iterate over everything, in case we missed something */
2497 pipecb (EV_A_ &pipe_w, EV_READ);
2498 #endif
2499 }
2500
2501 postfork = 0;
2502 }
2503
2504 #if EV_MULTIPLICITY
2505
2506 struct ev_loop * ecb_cold
2507 ev_loop_new (unsigned int flags) EV_THROW
2508 {
2509 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2510
2511 memset (EV_A, 0, sizeof (struct ev_loop));
2512 loop_init (EV_A_ flags);
2513
2514 if (ev_backend (EV_A))
2515 return EV_A;
2516
2517 ev_free (EV_A);
2518 return 0;
2519 }
2520
2521 #endif /* multiplicity */
2522
2523 #if EV_VERIFY
2524 static void noinline ecb_cold
2525 verify_watcher (EV_P_ W w)
2526 {
2527 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2528
2529 if (w->pending)
2530 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2531 }
2532
2533 static void noinline ecb_cold
2534 verify_heap (EV_P_ ANHE *heap, int N)
2535 {
2536 int i;
2537
2538 for (i = HEAP0; i < N + HEAP0; ++i)
2539 {
2540 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2541 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2542 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2543
2544 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2545 }
2546 }
2547
2548 static void noinline ecb_cold
2549 array_verify (EV_P_ W *ws, int cnt)
2550 {
2551 while (cnt--)
2552 {
2553 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2554 verify_watcher (EV_A_ ws [cnt]);
2555 }
2556 }
2557 #endif
2558
2559 #if EV_FEATURE_API
2560 void ecb_cold
2561 ev_verify (EV_P) EV_THROW
2562 {
2563 #if EV_VERIFY
2564 int i;
2565 WL w, w2;
2566
2567 assert (activecnt >= -1);
2568
2569 assert (fdchangemax >= fdchangecnt);
2570 for (i = 0; i < fdchangecnt; ++i)
2571 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2572
2573 assert (anfdmax >= 0);
2574 for (i = 0; i < anfdmax; ++i)
2575 {
2576 int j = 0;
2577
2578 for (w = w2 = anfds [i].head; w; w = w->next)
2579 {
2580 verify_watcher (EV_A_ (W)w);
2581
2582 if (j++ & 1)
2583 {
2584 assert (("libev: io watcher list contains a loop", w != w2));
2585 w2 = w2->next;
2586 }
2587
2588 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2589 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2590 }
2591 }
2592
2593 assert (timermax >= timercnt);
2594 verify_heap (EV_A_ timers, timercnt);
2595
2596 #if EV_PERIODIC_ENABLE
2597 assert (periodicmax >= periodiccnt);
2598 verify_heap (EV_A_ periodics, periodiccnt);
2599 #endif
2600
2601 for (i = NUMPRI; i--; )
2602 {
2603 assert (pendingmax [i] >= pendingcnt [i]);
2604 #if EV_IDLE_ENABLE
2605 assert (idleall >= 0);
2606 assert (idlemax [i] >= idlecnt [i]);
2607 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2608 #endif
2609 }
2610
2611 #if EV_FORK_ENABLE
2612 assert (forkmax >= forkcnt);
2613 array_verify (EV_A_ (W *)forks, forkcnt);
2614 #endif
2615
2616 #if EV_CLEANUP_ENABLE
2617 assert (cleanupmax >= cleanupcnt);
2618 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2619 #endif
2620
2621 #if EV_ASYNC_ENABLE
2622 assert (asyncmax >= asynccnt);
2623 array_verify (EV_A_ (W *)asyncs, asynccnt);
2624 #endif
2625
2626 #if EV_PREPARE_ENABLE
2627 assert (preparemax >= preparecnt);
2628 array_verify (EV_A_ (W *)prepares, preparecnt);
2629 #endif
2630
2631 #if EV_CHECK_ENABLE
2632 assert (checkmax >= checkcnt);
2633 array_verify (EV_A_ (W *)checks, checkcnt);
2634 #endif
2635
2636 # if 0
2637 #if EV_CHILD_ENABLE
2638 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2639 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2640 #endif
2641 # endif
2642 #endif
2643 }
2644 #endif
2645
2646 #if EV_MULTIPLICITY
2647 struct ev_loop * ecb_cold
2648 #else
2649 int
2650 #endif
2651 ev_default_loop (unsigned int flags) EV_THROW
2652 {
2653 if (!ev_default_loop_ptr)
2654 {
2655 #if EV_MULTIPLICITY
2656 EV_P = ev_default_loop_ptr = &default_loop_struct;
2657 #else
2658 ev_default_loop_ptr = 1;
2659 #endif
2660
2661 loop_init (EV_A_ flags);
2662
2663 if (ev_backend (EV_A))
2664 {
2665 #if EV_CHILD_ENABLE
2666 ev_signal_init (&childev, childcb, SIGCHLD);
2667 ev_set_priority (&childev, EV_MAXPRI);
2668 ev_signal_start (EV_A_ &childev);
2669 ev_unref (EV_A); /* child watcher should not keep loop alive */
2670 #endif
2671 }
2672 else
2673 ev_default_loop_ptr = 0;
2674 }
2675
2676 return ev_default_loop_ptr;
2677 }
2678
2679 void
2680 ev_loop_fork (EV_P) EV_THROW
2681 {
2682 postfork = 1; /* must be in line with ev_default_fork */
2683 }
2684
2685 /*****************************************************************************/
2686
2687 void
2688 ev_invoke (EV_P_ void *w, int revents)
2689 {
2690 EV_CB_INVOKE ((W)w, revents);
2691 }
2692
2693 unsigned int
2694 ev_pending_count (EV_P) EV_THROW
2695 {
2696 int pri;
2697 unsigned int count = 0;
2698
2699 for (pri = NUMPRI; pri--; )
2700 count += pendingcnt [pri];
2701
2702 return count;
2703 }
2704
2705 void noinline
2706 ev_invoke_pending (EV_P)
2707 {
2708 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2709 while (pendingcnt [pendingpri])
2710 {
2711 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2712
2713 p->w->pending = 0;
2714 EV_CB_INVOKE (p->w, p->events);
2715 EV_FREQUENT_CHECK;
2716 }
2717 }
2718
2719 #if EV_IDLE_ENABLE
2720 /* make idle watchers pending. this handles the "call-idle */
2721 /* only when higher priorities are idle" logic */
2722 inline_size void
2723 idle_reify (EV_P)
2724 {
2725 if (expect_false (idleall))
2726 {
2727 int pri;
2728
2729 for (pri = NUMPRI; pri--; )
2730 {
2731 if (pendingcnt [pri])
2732 break;
2733
2734 if (idlecnt [pri])
2735 {
2736 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2737 break;
2738 }
2739 }
2740 }
2741 }
2742 #endif
2743
2744 /* make timers pending */
2745 inline_size void
2746 timers_reify (EV_P)
2747 {
2748 EV_FREQUENT_CHECK;
2749
2750 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2751 {
2752 do
2753 {
2754 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2755
2756 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2757
2758 /* first reschedule or stop timer */
2759 if (w->repeat)
2760 {
2761 ev_at (w) += w->repeat;
2762 if (ev_at (w) < mn_now)
2763 ev_at (w) = mn_now;
2764
2765 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2766
2767 ANHE_at_cache (timers [HEAP0]);
2768 downheap (timers, timercnt, HEAP0);
2769 }
2770 else
2771 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2772
2773 EV_FREQUENT_CHECK;
2774 feed_reverse (EV_A_ (W)w);
2775 }
2776 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2777
2778 feed_reverse_done (EV_A_ EV_TIMER);
2779 }
2780 }
2781
2782 #if EV_PERIODIC_ENABLE
2783
2784 static void noinline
2785 periodic_recalc (EV_P_ ev_periodic *w)
2786 {
2787 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2788 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2789
2790 /* the above almost always errs on the low side */
2791 while (at <= ev_rt_now)
2792 {
2793 ev_tstamp nat = at + w->interval;
2794
2795 /* when resolution fails us, we use ev_rt_now */
2796 if (expect_false (nat == at))
2797 {
2798 at = ev_rt_now;
2799 break;
2800 }
2801
2802 at = nat;
2803 }
2804
2805 ev_at (w) = at;
2806 }
2807
2808 /* make periodics pending */
2809 inline_size void
2810 periodics_reify (EV_P)
2811 {
2812 EV_FREQUENT_CHECK;
2813
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2815 {
2816 int feed_count = 0;
2817
2818 do
2819 {
2820 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2821
2822 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2823
2824 /* first reschedule or stop timer */
2825 if (w->reschedule_cb)
2826 {
2827 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2828
2829 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2830
2831 ANHE_at_cache (periodics [HEAP0]);
2832 downheap (periodics, periodiccnt, HEAP0);
2833 }
2834 else if (w->interval)
2835 {
2836 periodic_recalc (EV_A_ w);
2837 ANHE_at_cache (periodics [HEAP0]);
2838 downheap (periodics, periodiccnt, HEAP0);
2839 }
2840 else
2841 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2842
2843 EV_FREQUENT_CHECK;
2844 feed_reverse (EV_A_ (W)w);
2845 }
2846 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2847
2848 feed_reverse_done (EV_A_ EV_PERIODIC);
2849 }
2850 }
2851
2852 /* simply recalculate all periodics */
2853 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2854 static void noinline ecb_cold
2855 periodics_reschedule (EV_P)
2856 {
2857 int i;
2858
2859 /* adjust periodics after time jump */
2860 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2861 {
2862 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2863
2864 if (w->reschedule_cb)
2865 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2866 else if (w->interval)
2867 periodic_recalc (EV_A_ w);
2868
2869 ANHE_at_cache (periodics [i]);
2870 }
2871
2872 reheap (periodics, periodiccnt);
2873 }
2874 #endif
2875
2876 /* adjust all timers by a given offset */
2877 static void noinline ecb_cold
2878 timers_reschedule (EV_P_ ev_tstamp adjust)
2879 {
2880 int i;
2881
2882 for (i = 0; i < timercnt; ++i)
2883 {
2884 ANHE *he = timers + i + HEAP0;
2885 ANHE_w (*he)->at += adjust;
2886 ANHE_at_cache (*he);
2887 }
2888 }
2889
2890 /* fetch new monotonic and realtime times from the kernel */
2891 /* also detect if there was a timejump, and act accordingly */
2892 inline_speed void
2893 time_update (EV_P_ ev_tstamp max_block)
2894 {
2895 #if EV_USE_MONOTONIC
2896 if (expect_true (have_monotonic))
2897 {
2898 int i;
2899 ev_tstamp odiff = rtmn_diff;
2900
2901 mn_now = get_clock ();
2902
2903 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2904 /* interpolate in the meantime */
2905 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2906 {
2907 ev_rt_now = rtmn_diff + mn_now;
2908 return;
2909 }
2910
2911 now_floor = mn_now;
2912 ev_rt_now = ev_time ();
2913
2914 /* loop a few times, before making important decisions.
2915 * on the choice of "4": one iteration isn't enough,
2916 * in case we get preempted during the calls to
2917 * ev_time and get_clock. a second call is almost guaranteed
2918 * to succeed in that case, though. and looping a few more times
2919 * doesn't hurt either as we only do this on time-jumps or
2920 * in the unlikely event of having been preempted here.
2921 */
2922 for (i = 4; --i; )
2923 {
2924 ev_tstamp diff;
2925 rtmn_diff = ev_rt_now - mn_now;
2926
2927 diff = odiff - rtmn_diff;
2928
2929 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2930 return; /* all is well */
2931
2932 ev_rt_now = ev_time ();
2933 mn_now = get_clock ();
2934 now_floor = mn_now;
2935 }
2936
2937 /* no timer adjustment, as the monotonic clock doesn't jump */
2938 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2939 # if EV_PERIODIC_ENABLE
2940 periodics_reschedule (EV_A);
2941 # endif
2942 }
2943 else
2944 #endif
2945 {
2946 ev_rt_now = ev_time ();
2947
2948 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2949 {
2950 /* adjust timers. this is easy, as the offset is the same for all of them */
2951 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2952 #if EV_PERIODIC_ENABLE
2953 periodics_reschedule (EV_A);
2954 #endif
2955 }
2956
2957 mn_now = ev_rt_now;
2958 }
2959 }
2960
2961 int
2962 ev_run (EV_P_ int flags)
2963 {
2964 #if EV_FEATURE_API
2965 ++loop_depth;
2966 #endif
2967
2968 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2969
2970 loop_done = EVBREAK_CANCEL;
2971
2972 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2973
2974 do
2975 {
2976 #if EV_VERIFY >= 2
2977 ev_verify (EV_A);
2978 #endif
2979
2980 #ifndef _WIN32
2981 if (expect_false (curpid)) /* penalise the forking check even more */
2982 if (expect_false (getpid () != curpid))
2983 {
2984 curpid = getpid ();
2985 postfork = 1;
2986 }
2987 #endif
2988
2989 #if EV_FORK_ENABLE
2990 /* we might have forked, so queue fork handlers */
2991 if (expect_false (postfork))
2992 if (forkcnt)
2993 {
2994 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2995 EV_INVOKE_PENDING;
2996 }
2997 #endif
2998
2999 #if EV_PREPARE_ENABLE
3000 /* queue prepare watchers (and execute them) */
3001 if (expect_false (preparecnt))
3002 {
3003 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3004 EV_INVOKE_PENDING;
3005 }
3006 #endif
3007
3008 if (expect_false (loop_done))
3009 break;
3010
3011 /* we might have forked, so reify kernel state if necessary */
3012 if (expect_false (postfork))
3013 loop_fork (EV_A);
3014
3015 /* update fd-related kernel structures */
3016 fd_reify (EV_A);
3017
3018 /* calculate blocking time */
3019 {
3020 ev_tstamp waittime = 0.;
3021 ev_tstamp sleeptime = 0.;
3022
3023 /* remember old timestamp for io_blocktime calculation */
3024 ev_tstamp prev_mn_now = mn_now;
3025
3026 /* update time to cancel out callback processing overhead */
3027 time_update (EV_A_ 1e100);
3028
3029 /* from now on, we want a pipe-wake-up */
3030 pipe_write_wanted = 1;
3031
3032 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3033
3034 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3035 {
3036 waittime = MAX_BLOCKTIME;
3037
3038 if (timercnt)
3039 {
3040 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3041 if (waittime > to) waittime = to;
3042 }
3043
3044 #if EV_PERIODIC_ENABLE
3045 if (periodiccnt)
3046 {
3047 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3048 if (waittime > to) waittime = to;
3049 }
3050 #endif
3051
3052 /* don't let timeouts decrease the waittime below timeout_blocktime */
3053 if (expect_false (waittime < timeout_blocktime))
3054 waittime = timeout_blocktime;
3055
3056 /* at this point, we NEED to wait, so we have to ensure */
3057 /* to pass a minimum nonzero value to the backend */
3058 if (expect_false (waittime < backend_mintime))
3059 waittime = backend_mintime;
3060
3061 /* extra check because io_blocktime is commonly 0 */
3062 if (expect_false (io_blocktime))
3063 {
3064 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3065
3066 if (sleeptime > waittime - backend_mintime)
3067 sleeptime = waittime - backend_mintime;
3068
3069 if (expect_true (sleeptime > 0.))
3070 {
3071 ev_sleep (sleeptime);
3072 waittime -= sleeptime;
3073 }
3074 }
3075 }
3076
3077 #if EV_FEATURE_API
3078 ++loop_count;
3079 #endif
3080 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3081 backend_poll (EV_A_ waittime);
3082 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3083
3084 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3085
3086 if (pipe_write_skipped)
3087 {
3088 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3089 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3090 }
3091
3092
3093 /* update ev_rt_now, do magic */
3094 time_update (EV_A_ waittime + sleeptime);
3095 }
3096
3097 /* queue pending timers and reschedule them */
3098 timers_reify (EV_A); /* relative timers called last */
3099 #if EV_PERIODIC_ENABLE
3100 periodics_reify (EV_A); /* absolute timers called first */
3101 #endif
3102
3103 #if EV_IDLE_ENABLE
3104 /* queue idle watchers unless other events are pending */
3105 idle_reify (EV_A);
3106 #endif
3107
3108 #if EV_CHECK_ENABLE
3109 /* queue check watchers, to be executed first */
3110 if (expect_false (checkcnt))
3111 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3112 #endif
3113
3114 EV_INVOKE_PENDING;
3115 }
3116 while (expect_true (
3117 activecnt
3118 && !loop_done
3119 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3120 ));
3121
3122 if (loop_done == EVBREAK_ONE)
3123 loop_done = EVBREAK_CANCEL;
3124
3125 #if EV_FEATURE_API
3126 --loop_depth;
3127 #endif
3128
3129 return activecnt;
3130 }
3131
3132 void
3133 ev_break (EV_P_ int how) EV_THROW
3134 {
3135 loop_done = how;
3136 }
3137
3138 void
3139 ev_ref (EV_P) EV_THROW
3140 {
3141 ++activecnt;
3142 }
3143
3144 void
3145 ev_unref (EV_P) EV_THROW
3146 {
3147 --activecnt;
3148 }
3149
3150 void
3151 ev_now_update (EV_P) EV_THROW
3152 {
3153 time_update (EV_A_ 1e100);
3154 }
3155
3156 void
3157 ev_suspend (EV_P) EV_THROW
3158 {
3159 ev_now_update (EV_A);
3160 }
3161
3162 void
3163 ev_resume (EV_P) EV_THROW
3164 {
3165 ev_tstamp mn_prev = mn_now;
3166
3167 ev_now_update (EV_A);
3168 timers_reschedule (EV_A_ mn_now - mn_prev);
3169 #if EV_PERIODIC_ENABLE
3170 /* TODO: really do this? */
3171 periodics_reschedule (EV_A);
3172 #endif
3173 }
3174
3175 /*****************************************************************************/
3176 /* singly-linked list management, used when the expected list length is short */
3177
3178 inline_size void
3179 wlist_add (WL *head, WL elem)
3180 {
3181 elem->next = *head;
3182 *head = elem;
3183 }
3184
3185 inline_size void
3186 wlist_del (WL *head, WL elem)
3187 {
3188 while (*head)
3189 {
3190 if (expect_true (*head == elem))
3191 {
3192 *head = elem->next;
3193 break;
3194 }
3195
3196 head = &(*head)->next;
3197 }
3198 }
3199
3200 /* internal, faster, version of ev_clear_pending */
3201 inline_speed void
3202 clear_pending (EV_P_ W w)
3203 {
3204 if (w->pending)
3205 {
3206 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3207 w->pending = 0;
3208 }
3209 }
3210
3211 int
3212 ev_clear_pending (EV_P_ void *w) EV_THROW
3213 {
3214 W w_ = (W)w;
3215 int pending = w_->pending;
3216
3217 if (expect_true (pending))
3218 {
3219 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3220 p->w = (W)&pending_w;
3221 w_->pending = 0;
3222 return p->events;
3223 }
3224 else
3225 return 0;
3226 }
3227
3228 inline_size void
3229 pri_adjust (EV_P_ W w)
3230 {
3231 int pri = ev_priority (w);
3232 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3233 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3234 ev_set_priority (w, pri);
3235 }
3236
3237 inline_speed void
3238 ev_start (EV_P_ W w, int active)
3239 {
3240 pri_adjust (EV_A_ w);
3241 w->active = active;
3242 ev_ref (EV_A);
3243 }
3244
3245 inline_size void
3246 ev_stop (EV_P_ W w)
3247 {
3248 ev_unref (EV_A);
3249 w->active = 0;
3250 }
3251
3252 /*****************************************************************************/
3253
3254 void noinline
3255 ev_io_start (EV_P_ ev_io *w) EV_THROW
3256 {
3257 int fd = w->fd;
3258
3259 if (expect_false (ev_is_active (w)))
3260 return;
3261
3262 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3263 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3264
3265 EV_FREQUENT_CHECK;
3266
3267 ev_start (EV_A_ (W)w, 1);
3268 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3269 wlist_add (&anfds[fd].head, (WL)w);
3270
3271 /* common bug, apparently */
3272 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3273
3274 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3275 w->events &= ~EV__IOFDSET;
3276
3277 EV_FREQUENT_CHECK;
3278 }
3279
3280 void noinline
3281 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3282 {
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3288
3289 EV_FREQUENT_CHECK;
3290
3291 wlist_del (&anfds[w->fd].head, (WL)w);
3292 ev_stop (EV_A_ (W)w);
3293
3294 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3295
3296 EV_FREQUENT_CHECK;
3297 }
3298
3299 void noinline
3300 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3301 {
3302 if (expect_false (ev_is_active (w)))
3303 return;
3304
3305 ev_at (w) += mn_now;
3306
3307 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3308
3309 EV_FREQUENT_CHECK;
3310
3311 ++timercnt;
3312 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3313 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3314 ANHE_w (timers [ev_active (w)]) = (WT)w;
3315 ANHE_at_cache (timers [ev_active (w)]);
3316 upheap (timers, ev_active (w));
3317
3318 EV_FREQUENT_CHECK;
3319
3320 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3321 }
3322
3323 void noinline
3324 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3325 {
3326 clear_pending (EV_A_ (W)w);
3327 if (expect_false (!ev_is_active (w)))
3328 return;
3329
3330 EV_FREQUENT_CHECK;
3331
3332 {
3333 int active = ev_active (w);
3334
3335 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3336
3337 --timercnt;
3338
3339 if (expect_true (active < timercnt + HEAP0))
3340 {
3341 timers [active] = timers [timercnt + HEAP0];
3342 adjustheap (timers, timercnt, active);
3343 }
3344 }
3345
3346 ev_at (w) -= mn_now;
3347
3348 ev_stop (EV_A_ (W)w);
3349
3350 EV_FREQUENT_CHECK;
3351 }
3352
3353 void noinline
3354 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3355 {
3356 EV_FREQUENT_CHECK;
3357
3358 clear_pending (EV_A_ (W)w);
3359
3360 if (ev_is_active (w))
3361 {
3362 if (w->repeat)
3363 {
3364 ev_at (w) = mn_now + w->repeat;
3365 ANHE_at_cache (timers [ev_active (w)]);
3366 adjustheap (timers, timercnt, ev_active (w));
3367 }
3368 else
3369 ev_timer_stop (EV_A_ w);
3370 }
3371 else if (w->repeat)
3372 {
3373 ev_at (w) = w->repeat;
3374 ev_timer_start (EV_A_ w);
3375 }
3376
3377 EV_FREQUENT_CHECK;
3378 }
3379
3380 ev_tstamp
3381 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3382 {
3383 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3384 }
3385
3386 #if EV_PERIODIC_ENABLE
3387 void noinline
3388 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3389 {
3390 if (expect_false (ev_is_active (w)))
3391 return;
3392
3393 if (w->reschedule_cb)
3394 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3395 else if (w->interval)
3396 {
3397 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3398 periodic_recalc (EV_A_ w);
3399 }
3400 else
3401 ev_at (w) = w->offset;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ++periodiccnt;
3406 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3407 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3408 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3409 ANHE_at_cache (periodics [ev_active (w)]);
3410 upheap (periodics, ev_active (w));
3411
3412 EV_FREQUENT_CHECK;
3413
3414 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3415 }
3416
3417 void noinline
3418 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3419 {
3420 clear_pending (EV_A_ (W)w);
3421 if (expect_false (!ev_is_active (w)))
3422 return;
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ev_active (w);
3428
3429 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3430
3431 --periodiccnt;
3432
3433 if (expect_true (active < periodiccnt + HEAP0))
3434 {
3435 periodics [active] = periodics [periodiccnt + HEAP0];
3436 adjustheap (periodics, periodiccnt, active);
3437 }
3438 }
3439
3440 ev_stop (EV_A_ (W)w);
3441
3442 EV_FREQUENT_CHECK;
3443 }
3444
3445 void noinline
3446 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3447 {
3448 /* TODO: use adjustheap and recalculation */
3449 ev_periodic_stop (EV_A_ w);
3450 ev_periodic_start (EV_A_ w);
3451 }
3452 #endif
3453
3454 #ifndef SA_RESTART
3455 # define SA_RESTART 0
3456 #endif
3457
3458 #if EV_SIGNAL_ENABLE
3459
3460 void noinline
3461 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3462 {
3463 if (expect_false (ev_is_active (w)))
3464 return;
3465
3466 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3467
3468 #if EV_MULTIPLICITY
3469 assert (("libev: a signal must not be attached to two different loops",
3470 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3471
3472 signals [w->signum - 1].loop = EV_A;
3473 #endif
3474
3475 EV_FREQUENT_CHECK;
3476
3477 #if EV_USE_SIGNALFD
3478 if (sigfd == -2)
3479 {
3480 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3481 if (sigfd < 0 && errno == EINVAL)
3482 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3483
3484 if (sigfd >= 0)
3485 {
3486 fd_intern (sigfd); /* doing it twice will not hurt */
3487
3488 sigemptyset (&sigfd_set);
3489
3490 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3491 ev_set_priority (&sigfd_w, EV_MAXPRI);
3492 ev_io_start (EV_A_ &sigfd_w);
3493 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3494 }
3495 }
3496
3497 if (sigfd >= 0)
3498 {
3499 /* TODO: check .head */
3500 sigaddset (&sigfd_set, w->signum);
3501 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3502
3503 signalfd (sigfd, &sigfd_set, 0);
3504 }
3505 #endif
3506
3507 ev_start (EV_A_ (W)w, 1);
3508 wlist_add (&signals [w->signum - 1].head, (WL)w);
3509
3510 if (!((WL)w)->next)
3511 # if EV_USE_SIGNALFD
3512 if (sigfd < 0) /*TODO*/
3513 # endif
3514 {
3515 # ifdef _WIN32
3516 evpipe_init (EV_A);
3517
3518 signal (w->signum, ev_sighandler);
3519 # else
3520 struct sigaction sa;
3521
3522 evpipe_init (EV_A);
3523
3524 sa.sa_handler = ev_sighandler;
3525 sigfillset (&sa.sa_mask);
3526 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3527 sigaction (w->signum, &sa, 0);
3528
3529 if (origflags & EVFLAG_NOSIGMASK)
3530 {
3531 sigemptyset (&sa.sa_mask);
3532 sigaddset (&sa.sa_mask, w->signum);
3533 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3534 }
3535 #endif
3536 }
3537
3538 EV_FREQUENT_CHECK;
3539 }
3540
3541 void noinline
3542 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3543 {
3544 clear_pending (EV_A_ (W)w);
3545 if (expect_false (!ev_is_active (w)))
3546 return;
3547
3548 EV_FREQUENT_CHECK;
3549
3550 wlist_del (&signals [w->signum - 1].head, (WL)w);
3551 ev_stop (EV_A_ (W)w);
3552
3553 if (!signals [w->signum - 1].head)
3554 {
3555 #if EV_MULTIPLICITY
3556 signals [w->signum - 1].loop = 0; /* unattach from signal */
3557 #endif
3558 #if EV_USE_SIGNALFD
3559 if (sigfd >= 0)
3560 {
3561 sigset_t ss;
3562
3563 sigemptyset (&ss);
3564 sigaddset (&ss, w->signum);
3565 sigdelset (&sigfd_set, w->signum);
3566
3567 signalfd (sigfd, &sigfd_set, 0);
3568 sigprocmask (SIG_UNBLOCK, &ss, 0);
3569 }
3570 else
3571 #endif
3572 signal (w->signum, SIG_DFL);
3573 }
3574
3575 EV_FREQUENT_CHECK;
3576 }
3577
3578 #endif
3579
3580 #if EV_CHILD_ENABLE
3581
3582 void
3583 ev_child_start (EV_P_ ev_child *w) EV_THROW
3584 {
3585 #if EV_MULTIPLICITY
3586 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3587 #endif
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, 1);
3594 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3595
3596 EV_FREQUENT_CHECK;
3597 }
3598
3599 void
3600 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3601 {
3602 clear_pending (EV_A_ (W)w);
3603 if (expect_false (!ev_is_active (w)))
3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
3612 }
3613
3614 #endif
3615
3616 #if EV_STAT_ENABLE
3617
3618 # ifdef _WIN32
3619 # undef lstat
3620 # define lstat(a,b) _stati64 (a,b)
3621 # endif
3622
3623 #define DEF_STAT_INTERVAL 5.0074891
3624 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3625 #define MIN_STAT_INTERVAL 0.1074891
3626
3627 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3628
3629 #if EV_USE_INOTIFY
3630
3631 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3632 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3633
3634 static void noinline
3635 infy_add (EV_P_ ev_stat *w)
3636 {
3637 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3638
3639 if (w->wd >= 0)
3640 {
3641 struct statfs sfs;
3642
3643 /* now local changes will be tracked by inotify, but remote changes won't */
3644 /* unless the filesystem is known to be local, we therefore still poll */
3645 /* also do poll on <2.6.25, but with normal frequency */
3646
3647 if (!fs_2625)
3648 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3649 else if (!statfs (w->path, &sfs)
3650 && (sfs.f_type == 0x1373 /* devfs */
3651 || sfs.f_type == 0xEF53 /* ext2/3 */
3652 || sfs.f_type == 0x3153464a /* jfs */
3653 || sfs.f_type == 0x52654973 /* reiser3 */
3654 || sfs.f_type == 0x01021994 /* tempfs */
3655 || sfs.f_type == 0x58465342 /* xfs */))
3656 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3657 else
3658 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3659 }
3660 else
3661 {
3662 /* can't use inotify, continue to stat */
3663 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3664
3665 /* if path is not there, monitor some parent directory for speedup hints */
3666 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3667 /* but an efficiency issue only */
3668 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3669 {
3670 char path [4096];
3671 strcpy (path, w->path);
3672
3673 do
3674 {
3675 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3676 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3677
3678 char *pend = strrchr (path, '/');
3679
3680 if (!pend || pend == path)
3681 break;
3682
3683 *pend = 0;
3684 w->wd = inotify_add_watch (fs_fd, path, mask);
3685 }
3686 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3687 }
3688 }
3689
3690 if (w->wd >= 0)
3691 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3692
3693 /* now re-arm timer, if required */
3694 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3695 ev_timer_again (EV_A_ &w->timer);
3696 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3697 }
3698
3699 static void noinline
3700 infy_del (EV_P_ ev_stat *w)
3701 {
3702 int slot;
3703 int wd = w->wd;
3704
3705 if (wd < 0)
3706 return;
3707
3708 w->wd = -2;
3709 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3710 wlist_del (&fs_hash [slot].head, (WL)w);
3711
3712 /* remove this watcher, if others are watching it, they will rearm */
3713 inotify_rm_watch (fs_fd, wd);
3714 }
3715
3716 static void noinline
3717 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3718 {
3719 if (slot < 0)
3720 /* overflow, need to check for all hash slots */
3721 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3722 infy_wd (EV_A_ slot, wd, ev);
3723 else
3724 {
3725 WL w_;
3726
3727 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3728 {
3729 ev_stat *w = (ev_stat *)w_;
3730 w_ = w_->next; /* lets us remove this watcher and all before it */
3731
3732 if (w->wd == wd || wd == -1)
3733 {
3734 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3735 {
3736 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3737 w->wd = -1;
3738 infy_add (EV_A_ w); /* re-add, no matter what */
3739 }
3740
3741 stat_timer_cb (EV_A_ &w->timer, 0);
3742 }
3743 }
3744 }
3745 }
3746
3747 static void
3748 infy_cb (EV_P_ ev_io *w, int revents)
3749 {
3750 char buf [EV_INOTIFY_BUFSIZE];
3751 int ofs;
3752 int len = read (fs_fd, buf, sizeof (buf));
3753
3754 for (ofs = 0; ofs < len; )
3755 {
3756 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3757 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3758 ofs += sizeof (struct inotify_event) + ev->len;
3759 }
3760 }
3761
3762 inline_size void ecb_cold
3763 ev_check_2625 (EV_P)
3764 {
3765 /* kernels < 2.6.25 are borked
3766 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3767 */
3768 if (ev_linux_version () < 0x020619)
3769 return;
3770
3771 fs_2625 = 1;
3772 }
3773
3774 inline_size int
3775 infy_newfd (void)
3776 {
3777 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3778 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3779 if (fd >= 0)
3780 return fd;
3781 #endif
3782 return inotify_init ();
3783 }
3784
3785 inline_size void
3786 infy_init (EV_P)
3787 {
3788 if (fs_fd != -2)
3789 return;
3790
3791 fs_fd = -1;
3792
3793 ev_check_2625 (EV_A);
3794
3795 fs_fd = infy_newfd ();
3796
3797 if (fs_fd >= 0)
3798 {
3799 fd_intern (fs_fd);
3800 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3801 ev_set_priority (&fs_w, EV_MAXPRI);
3802 ev_io_start (EV_A_ &fs_w);
3803 ev_unref (EV_A);
3804 }
3805 }
3806
3807 inline_size void
3808 infy_fork (EV_P)
3809 {
3810 int slot;
3811
3812 if (fs_fd < 0)
3813 return;
3814
3815 ev_ref (EV_A);
3816 ev_io_stop (EV_A_ &fs_w);
3817 close (fs_fd);
3818 fs_fd = infy_newfd ();
3819
3820 if (fs_fd >= 0)
3821 {
3822 fd_intern (fs_fd);
3823 ev_io_set (&fs_w, fs_fd, EV_READ);
3824 ev_io_start (EV_A_ &fs_w);
3825 ev_unref (EV_A);
3826 }
3827
3828 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3829 {
3830 WL w_ = fs_hash [slot].head;
3831 fs_hash [slot].head = 0;
3832
3833 while (w_)
3834 {
3835 ev_stat *w = (ev_stat *)w_;
3836 w_ = w_->next; /* lets us add this watcher */
3837
3838 w->wd = -1;
3839
3840 if (fs_fd >= 0)
3841 infy_add (EV_A_ w); /* re-add, no matter what */
3842 else
3843 {
3844 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3845 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3846 ev_timer_again (EV_A_ &w->timer);
3847 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3848 }
3849 }
3850 }
3851 }
3852
3853 #endif
3854
3855 #ifdef _WIN32
3856 # define EV_LSTAT(p,b) _stati64 (p, b)
3857 #else
3858 # define EV_LSTAT(p,b) lstat (p, b)
3859 #endif
3860
3861 void
3862 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3863 {
3864 if (lstat (w->path, &w->attr) < 0)
3865 w->attr.st_nlink = 0;
3866 else if (!w->attr.st_nlink)
3867 w->attr.st_nlink = 1;
3868 }
3869
3870 static void noinline
3871 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3872 {
3873 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3874
3875 ev_statdata prev = w->attr;
3876 ev_stat_stat (EV_A_ w);
3877
3878 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3879 if (
3880 prev.st_dev != w->attr.st_dev
3881 || prev.st_ino != w->attr.st_ino
3882 || prev.st_mode != w->attr.st_mode
3883 || prev.st_nlink != w->attr.st_nlink
3884 || prev.st_uid != w->attr.st_uid
3885 || prev.st_gid != w->attr.st_gid
3886 || prev.st_rdev != w->attr.st_rdev
3887 || prev.st_size != w->attr.st_size
3888 || prev.st_atime != w->attr.st_atime
3889 || prev.st_mtime != w->attr.st_mtime
3890 || prev.st_ctime != w->attr.st_ctime
3891 ) {
3892 /* we only update w->prev on actual differences */
3893 /* in case we test more often than invoke the callback, */
3894 /* to ensure that prev is always different to attr */
3895 w->prev = prev;
3896
3897 #if EV_USE_INOTIFY
3898 if (fs_fd >= 0)
3899 {
3900 infy_del (EV_A_ w);
3901 infy_add (EV_A_ w);
3902 ev_stat_stat (EV_A_ w); /* avoid race... */
3903 }
3904 #endif
3905
3906 ev_feed_event (EV_A_ w, EV_STAT);
3907 }
3908 }
3909
3910 void
3911 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3912 {
3913 if (expect_false (ev_is_active (w)))
3914 return;
3915
3916 ev_stat_stat (EV_A_ w);
3917
3918 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3919 w->interval = MIN_STAT_INTERVAL;
3920
3921 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3922 ev_set_priority (&w->timer, ev_priority (w));
3923
3924 #if EV_USE_INOTIFY
3925 infy_init (EV_A);
3926
3927 if (fs_fd >= 0)
3928 infy_add (EV_A_ w);
3929 else
3930 #endif
3931 {
3932 ev_timer_again (EV_A_ &w->timer);
3933 ev_unref (EV_A);
3934 }
3935
3936 ev_start (EV_A_ (W)w, 1);
3937
3938 EV_FREQUENT_CHECK;
3939 }
3940
3941 void
3942 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3943 {
3944 clear_pending (EV_A_ (W)w);
3945 if (expect_false (!ev_is_active (w)))
3946 return;
3947
3948 EV_FREQUENT_CHECK;
3949
3950 #if EV_USE_INOTIFY
3951 infy_del (EV_A_ w);
3952 #endif
3953
3954 if (ev_is_active (&w->timer))
3955 {
3956 ev_ref (EV_A);
3957 ev_timer_stop (EV_A_ &w->timer);
3958 }
3959
3960 ev_stop (EV_A_ (W)w);
3961
3962 EV_FREQUENT_CHECK;
3963 }
3964 #endif
3965
3966 #if EV_IDLE_ENABLE
3967 void
3968 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3969 {
3970 if (expect_false (ev_is_active (w)))
3971 return;
3972
3973 pri_adjust (EV_A_ (W)w);
3974
3975 EV_FREQUENT_CHECK;
3976
3977 {
3978 int active = ++idlecnt [ABSPRI (w)];
3979
3980 ++idleall;
3981 ev_start (EV_A_ (W)w, active);
3982
3983 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3984 idles [ABSPRI (w)][active - 1] = w;
3985 }
3986
3987 EV_FREQUENT_CHECK;
3988 }
3989
3990 void
3991 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3992 {
3993 clear_pending (EV_A_ (W)w);
3994 if (expect_false (!ev_is_active (w)))
3995 return;
3996
3997 EV_FREQUENT_CHECK;
3998
3999 {
4000 int active = ev_active (w);
4001
4002 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4003 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4004
4005 ev_stop (EV_A_ (W)w);
4006 --idleall;
4007 }
4008
4009 EV_FREQUENT_CHECK;
4010 }
4011 #endif
4012
4013 #if EV_PREPARE_ENABLE
4014 void
4015 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4016 {
4017 if (expect_false (ev_is_active (w)))
4018 return;
4019
4020 EV_FREQUENT_CHECK;
4021
4022 ev_start (EV_A_ (W)w, ++preparecnt);
4023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4024 prepares [preparecnt - 1] = w;
4025
4026 EV_FREQUENT_CHECK;
4027 }
4028
4029 void
4030 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4031 {
4032 clear_pending (EV_A_ (W)w);
4033 if (expect_false (!ev_is_active (w)))
4034 return;
4035
4036 EV_FREQUENT_CHECK;
4037
4038 {
4039 int active = ev_active (w);
4040
4041 prepares [active - 1] = prepares [--preparecnt];
4042 ev_active (prepares [active - 1]) = active;
4043 }
4044
4045 ev_stop (EV_A_ (W)w);
4046
4047 EV_FREQUENT_CHECK;
4048 }
4049 #endif
4050
4051 #if EV_CHECK_ENABLE
4052 void
4053 ev_check_start (EV_P_ ev_check *w) EV_THROW
4054 {
4055 if (expect_false (ev_is_active (w)))
4056 return;
4057
4058 EV_FREQUENT_CHECK;
4059
4060 ev_start (EV_A_ (W)w, ++checkcnt);
4061 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4062 checks [checkcnt - 1] = w;
4063
4064 EV_FREQUENT_CHECK;
4065 }
4066
4067 void
4068 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4069 {
4070 clear_pending (EV_A_ (W)w);
4071 if (expect_false (!ev_is_active (w)))
4072 return;
4073
4074 EV_FREQUENT_CHECK;
4075
4076 {
4077 int active = ev_active (w);
4078
4079 checks [active - 1] = checks [--checkcnt];
4080 ev_active (checks [active - 1]) = active;
4081 }
4082
4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
4086 }
4087 #endif
4088
4089 #if EV_EMBED_ENABLE
4090 void noinline
4091 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4092 {
4093 ev_run (w->other, EVRUN_NOWAIT);
4094 }
4095
4096 static void
4097 embed_io_cb (EV_P_ ev_io *io, int revents)
4098 {
4099 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4100
4101 if (ev_cb (w))
4102 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4103 else
4104 ev_run (w->other, EVRUN_NOWAIT);
4105 }
4106
4107 static void
4108 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4109 {
4110 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4111
4112 {
4113 EV_P = w->other;
4114
4115 while (fdchangecnt)
4116 {
4117 fd_reify (EV_A);
4118 ev_run (EV_A_ EVRUN_NOWAIT);
4119 }
4120 }
4121 }
4122
4123 static void
4124 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4125 {
4126 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4127
4128 ev_embed_stop (EV_A_ w);
4129
4130 {
4131 EV_P = w->other;
4132
4133 ev_loop_fork (EV_A);
4134 ev_run (EV_A_ EVRUN_NOWAIT);
4135 }
4136
4137 ev_embed_start (EV_A_ w);
4138 }
4139
4140 #if 0
4141 static void
4142 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4143 {
4144 ev_idle_stop (EV_A_ idle);
4145 }
4146 #endif
4147
4148 void
4149 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4150 {
4151 if (expect_false (ev_is_active (w)))
4152 return;
4153
4154 {
4155 EV_P = w->other;
4156 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4157 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161
4162 ev_set_priority (&w->io, ev_priority (w));
4163 ev_io_start (EV_A_ &w->io);
4164
4165 ev_prepare_init (&w->prepare, embed_prepare_cb);
4166 ev_set_priority (&w->prepare, EV_MINPRI);
4167 ev_prepare_start (EV_A_ &w->prepare);
4168
4169 ev_fork_init (&w->fork, embed_fork_cb);
4170 ev_fork_start (EV_A_ &w->fork);
4171
4172 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4173
4174 ev_start (EV_A_ (W)w, 1);
4175
4176 EV_FREQUENT_CHECK;
4177 }
4178
4179 void
4180 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4181 {
4182 clear_pending (EV_A_ (W)w);
4183 if (expect_false (!ev_is_active (w)))
4184 return;
4185
4186 EV_FREQUENT_CHECK;
4187
4188 ev_io_stop (EV_A_ &w->io);
4189 ev_prepare_stop (EV_A_ &w->prepare);
4190 ev_fork_stop (EV_A_ &w->fork);
4191
4192 ev_stop (EV_A_ (W)w);
4193
4194 EV_FREQUENT_CHECK;
4195 }
4196 #endif
4197
4198 #if EV_FORK_ENABLE
4199 void
4200 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4201 {
4202 if (expect_false (ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206
4207 ev_start (EV_A_ (W)w, ++forkcnt);
4208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4209 forks [forkcnt - 1] = w;
4210
4211 EV_FREQUENT_CHECK;
4212 }
4213
4214 void
4215 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4216 {
4217 clear_pending (EV_A_ (W)w);
4218 if (expect_false (!ev_is_active (w)))
4219 return;
4220
4221 EV_FREQUENT_CHECK;
4222
4223 {
4224 int active = ev_active (w);
4225
4226 forks [active - 1] = forks [--forkcnt];
4227 ev_active (forks [active - 1]) = active;
4228 }
4229
4230 ev_stop (EV_A_ (W)w);
4231
4232 EV_FREQUENT_CHECK;
4233 }
4234 #endif
4235
4236 #if EV_CLEANUP_ENABLE
4237 void
4238 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4239 {
4240 if (expect_false (ev_is_active (w)))
4241 return;
4242
4243 EV_FREQUENT_CHECK;
4244
4245 ev_start (EV_A_ (W)w, ++cleanupcnt);
4246 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4247 cleanups [cleanupcnt - 1] = w;
4248
4249 /* cleanup watchers should never keep a refcount on the loop */
4250 ev_unref (EV_A);
4251 EV_FREQUENT_CHECK;
4252 }
4253
4254 void
4255 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4256 {
4257 clear_pending (EV_A_ (W)w);
4258 if (expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262 ev_ref (EV_A);
4263
4264 {
4265 int active = ev_active (w);
4266
4267 cleanups [active - 1] = cleanups [--cleanupcnt];
4268 ev_active (cleanups [active - 1]) = active;
4269 }
4270
4271 ev_stop (EV_A_ (W)w);
4272
4273 EV_FREQUENT_CHECK;
4274 }
4275 #endif
4276
4277 #if EV_ASYNC_ENABLE
4278 void
4279 ev_async_start (EV_P_ ev_async *w) EV_THROW
4280 {
4281 if (expect_false (ev_is_active (w)))
4282 return;
4283
4284 w->sent = 0;
4285
4286 evpipe_init (EV_A);
4287
4288 EV_FREQUENT_CHECK;
4289
4290 ev_start (EV_A_ (W)w, ++asynccnt);
4291 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4292 asyncs [asynccnt - 1] = w;
4293
4294 EV_FREQUENT_CHECK;
4295 }
4296
4297 void
4298 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4299 {
4300 clear_pending (EV_A_ (W)w);
4301 if (expect_false (!ev_is_active (w)))
4302 return;
4303
4304 EV_FREQUENT_CHECK;
4305
4306 {
4307 int active = ev_active (w);
4308
4309 asyncs [active - 1] = asyncs [--asynccnt];
4310 ev_active (asyncs [active - 1]) = active;
4311 }
4312
4313 ev_stop (EV_A_ (W)w);
4314
4315 EV_FREQUENT_CHECK;
4316 }
4317
4318 void
4319 ev_async_send (EV_P_ ev_async *w) EV_THROW
4320 {
4321 w->sent = 1;
4322 evpipe_write (EV_A_ &async_pending);
4323 }
4324 #endif
4325
4326 /*****************************************************************************/
4327
4328 struct ev_once
4329 {
4330 ev_io io;
4331 ev_timer to;
4332 void (*cb)(int revents, void *arg);
4333 void *arg;
4334 };
4335
4336 static void
4337 once_cb (EV_P_ struct ev_once *once, int revents)
4338 {
4339 void (*cb)(int revents, void *arg) = once->cb;
4340 void *arg = once->arg;
4341
4342 ev_io_stop (EV_A_ &once->io);
4343 ev_timer_stop (EV_A_ &once->to);
4344 ev_free (once);
4345
4346 cb (revents, arg);
4347 }
4348
4349 static void
4350 once_cb_io (EV_P_ ev_io *w, int revents)
4351 {
4352 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4353
4354 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4355 }
4356
4357 static void
4358 once_cb_to (EV_P_ ev_timer *w, int revents)
4359 {
4360 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4361
4362 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4363 }
4364
4365 void
4366 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4367 {
4368 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4369
4370 if (expect_false (!once))
4371 {
4372 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4373 return;
4374 }
4375
4376 once->cb = cb;
4377 once->arg = arg;
4378
4379 ev_init (&once->io, once_cb_io);
4380 if (fd >= 0)
4381 {
4382 ev_io_set (&once->io, fd, events);
4383 ev_io_start (EV_A_ &once->io);
4384 }
4385
4386 ev_init (&once->to, once_cb_to);
4387 if (timeout >= 0.)
4388 {
4389 ev_timer_set (&once->to, timeout, 0.);
4390 ev_timer_start (EV_A_ &once->to);
4391 }
4392 }
4393
4394 /*****************************************************************************/
4395
4396 #if EV_WALK_ENABLE
4397 void ecb_cold
4398 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4399 {
4400 int i, j;
4401 ev_watcher_list *wl, *wn;
4402
4403 if (types & (EV_IO | EV_EMBED))
4404 for (i = 0; i < anfdmax; ++i)
4405 for (wl = anfds [i].head; wl; )
4406 {
4407 wn = wl->next;
4408
4409 #if EV_EMBED_ENABLE
4410 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4411 {
4412 if (types & EV_EMBED)
4413 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4414 }
4415 else
4416 #endif
4417 #if EV_USE_INOTIFY
4418 if (ev_cb ((ev_io *)wl) == infy_cb)
4419 ;
4420 else
4421 #endif
4422 if ((ev_io *)wl != &pipe_w)
4423 if (types & EV_IO)
4424 cb (EV_A_ EV_IO, wl);
4425
4426 wl = wn;
4427 }
4428
4429 if (types & (EV_TIMER | EV_STAT))
4430 for (i = timercnt + HEAP0; i-- > HEAP0; )
4431 #if EV_STAT_ENABLE
4432 /*TODO: timer is not always active*/
4433 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4434 {
4435 if (types & EV_STAT)
4436 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4437 }
4438 else
4439 #endif
4440 if (types & EV_TIMER)
4441 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4442
4443 #if EV_PERIODIC_ENABLE
4444 if (types & EV_PERIODIC)
4445 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4446 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4447 #endif
4448
4449 #if EV_IDLE_ENABLE
4450 if (types & EV_IDLE)
4451 for (j = NUMPRI; j--; )
4452 for (i = idlecnt [j]; i--; )
4453 cb (EV_A_ EV_IDLE, idles [j][i]);
4454 #endif
4455
4456 #if EV_FORK_ENABLE
4457 if (types & EV_FORK)
4458 for (i = forkcnt; i--; )
4459 if (ev_cb (forks [i]) != embed_fork_cb)
4460 cb (EV_A_ EV_FORK, forks [i]);
4461 #endif
4462
4463 #if EV_ASYNC_ENABLE
4464 if (types & EV_ASYNC)
4465 for (i = asynccnt; i--; )
4466 cb (EV_A_ EV_ASYNC, asyncs [i]);
4467 #endif
4468
4469 #if EV_PREPARE_ENABLE
4470 if (types & EV_PREPARE)
4471 for (i = preparecnt; i--; )
4472 # if EV_EMBED_ENABLE
4473 if (ev_cb (prepares [i]) != embed_prepare_cb)
4474 # endif
4475 cb (EV_A_ EV_PREPARE, prepares [i]);
4476 #endif
4477
4478 #if EV_CHECK_ENABLE
4479 if (types & EV_CHECK)
4480 for (i = checkcnt; i--; )
4481 cb (EV_A_ EV_CHECK, checks [i]);
4482 #endif
4483
4484 #if EV_SIGNAL_ENABLE
4485 if (types & EV_SIGNAL)
4486 for (i = 0; i < EV_NSIG - 1; ++i)
4487 for (wl = signals [i].head; wl; )
4488 {
4489 wn = wl->next;
4490 cb (EV_A_ EV_SIGNAL, wl);
4491 wl = wn;
4492 }
4493 #endif
4494
4495 #if EV_CHILD_ENABLE
4496 if (types & EV_CHILD)
4497 for (i = (EV_PID_HASHSIZE); i--; )
4498 for (wl = childs [i]; wl; )
4499 {
4500 wn = wl->next;
4501 cb (EV_A_ EV_CHILD, wl);
4502 wl = wn;
4503 }
4504 #endif
4505 /* EV_STAT 0x00001000 /* stat data changed */
4506 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4507 }
4508 #endif
4509
4510 #if EV_MULTIPLICITY
4511 #include "ev_wrap.h"
4512 #endif
4513