ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.435
Committed: Sat May 26 08:52:09 2012 UTC (12 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.434: +0 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_USE_EVENTFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef EFD_NONBLOCK
420 # define EFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef EFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define EFD_CLOEXEC O_CLOEXEC
425 # else
426 # define EFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 #endif
431
432 #if EV_USE_SIGNALFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef SFD_NONBLOCK
436 # define SFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef SFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define SFD_CLOEXEC O_CLOEXEC
441 # else
442 # define SFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447 struct signalfd_siginfo
448 {
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451 };
452 #endif
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476 /* ECB.H BEGIN */
477 /*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506 #ifndef ECB_H
507 #define ECB_H
508
509 #ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
516 #if __GNUC__
517 typedef signed long long int64_t;
518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
523 #else
524 #include <inttypes.h>
525 #endif
526
527 /* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534 #ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
539 #endif
540 #endif
541
542 /*****************************************************************************/
543
544 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547 #if ECB_NO_THREADS
548 # define ECB_NO_SMP 1
549 #endif
550
551 #if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553 #endif
554
555 #ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585 #endif
586
587 #ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608 #endif
609
610 #ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626 #endif
627
628 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630 #endif
631
632 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634 #endif
635
636 /*****************************************************************************/
637
638 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640 #if __cplusplus
641 #define ecb_inline static inline
642 #elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644 #elif ECB_C99
645 #define ecb_inline static inline
646 #else
647 #define ecb_inline static
648 #endif
649
650 #if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652 #elif ECB_C99
653 #define ecb_restrict restrict
654 #else
655 #define ecb_restrict
656 #endif
657
658 typedef int ecb_bool;
659
660 #define ECB_CONCAT_(a, b) a ## b
661 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662 #define ECB_STRINGIFY_(a) # a
663 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665 #define ecb_function_ ecb_inline
666
667 #if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672 #else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677 #endif
678
679 /* no emulation for ecb_decltype */
680 #if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682 #elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684 #endif
685
686 #define ecb_noinline ecb_attribute ((__noinline__))
687 #define ecb_noreturn ecb_attribute ((__noreturn__))
688 #define ecb_unused ecb_attribute ((__unused__))
689 #define ecb_const ecb_attribute ((__const__))
690 #define ecb_pure ecb_attribute ((__pure__))
691
692 #if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696 #else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700 #endif
701
702 /* put around conditional expressions if you are very sure that the */
703 /* expression is mostly true or mostly false. note that these return */
704 /* booleans, not the expression. */
705 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
706 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707 /* for compatibility to the rest of the world */
708 #define ecb_likely(expr) ecb_expect_true (expr)
709 #define ecb_unlikely(expr) ecb_expect_false (expr)
710
711 /* count trailing zero bits and count # of one bits */
712 #if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720 #else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729 #if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735 #else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741 #endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789 #endif
790
791 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793 {
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796 }
797
798 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800 {
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807 }
808
809 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811 {
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819 }
820
821 /* popcount64 is only available on 64 bit cpus as gcc builtin */
822 /* so for this version we are lazy */
823 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_popcount64 (uint64_t x)
826 {
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828 }
829
830 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848 #if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852 #else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873 #endif
874
875 #if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877 #else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881 #endif
882
883 /* try to tell the compiler that some condition is definitely true */
884 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887 ecb_inline unsigned char
888 ecb_byteorder_helper (void)
889 {
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892 }
893
894 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899 #if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901 #else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903 #endif
904
905 #if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916 #else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919 #endif
920
921 #if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928 #else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930 #endif
931
932 #endif
933
934 /* ECB.H END */
935
936 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937 /* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944 # error "memory fences not defined for your architecture, please report"
945 #endif
946
947 #ifndef ECB_MEMORY_FENCE
948 # define ECB_MEMORY_FENCE do { } while (0)
949 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951 #endif
952
953 #define expect_false(cond) ecb_expect_false (cond)
954 #define expect_true(cond) ecb_expect_true (cond)
955 #define noinline ecb_noinline
956
957 #define inline_size ecb_inline
958
959 #if EV_FEATURE_CODE
960 # define inline_speed ecb_inline
961 #else
962 # define inline_speed static noinline
963 #endif
964
965 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967 #if EV_MINPRI == EV_MAXPRI
968 # define ABSPRI(w) (((W)w), 0)
969 #else
970 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971 #endif
972
973 #define EMPTY /* required for microsofts broken pseudo-c compiler */
974 #define EMPTY2(a,b) /* used to suppress some warnings */
975
976 typedef ev_watcher *W;
977 typedef ev_watcher_list *WL;
978 typedef ev_watcher_time *WT;
979
980 #define ev_active(w) ((W)(w))->active
981 #define ev_at(w) ((WT)(w))->at
982
983 #if EV_USE_REALTIME
984 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
985 /* giving it a reasonably high chance of working on typical architectures */
986 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987 #endif
988
989 #if EV_USE_MONOTONIC
990 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991 #endif
992
993 #ifndef EV_FD_TO_WIN32_HANDLE
994 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995 #endif
996 #ifndef EV_WIN32_HANDLE_TO_FD
997 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998 #endif
999 #ifndef EV_WIN32_CLOSE_FD
1000 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1001 #endif
1002
1003 #ifdef _WIN32
1004 # include "ev_win32.c"
1005 #endif
1006
1007 /*****************************************************************************/
1008
1009 /* define a suitable floor function (only used by periodics atm) */
1010
1011 #if EV_USE_FLOOR
1012 # include <math.h>
1013 # define ev_floor(v) floor (v)
1014 #else
1015
1016 #include <float.h>
1017
1018 /* a floor() replacement function, should be independent of ev_tstamp type */
1019 static ev_tstamp noinline
1020 ev_floor (ev_tstamp v)
1021 {
1022 /* the choice of shift factor is not terribly important */
1023 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025 #else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027 #endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051 }
1052
1053 #endif
1054
1055 /*****************************************************************************/
1056
1057 #ifdef __linux
1058 # include <sys/utsname.h>
1059 #endif
1060
1061 static unsigned int noinline ecb_cold
1062 ev_linux_version (void)
1063 {
1064 #ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092 #else
1093 return 0;
1094 #endif
1095 }
1096
1097 /*****************************************************************************/
1098
1099 #if EV_AVOID_STDIO
1100 static void noinline ecb_cold
1101 ev_printerr (const char *msg)
1102 {
1103 write (STDERR_FILENO, msg, strlen (msg));
1104 }
1105 #endif
1106
1107 static void (*syserr_cb)(const char *msg) EV_THROW;
1108
1109 void ecb_cold
1110 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1111 {
1112 syserr_cb = cb;
1113 }
1114
1115 static void noinline ecb_cold
1116 ev_syserr (const char *msg)
1117 {
1118 if (!msg)
1119 msg = "(libev) system error";
1120
1121 if (syserr_cb)
1122 syserr_cb (msg);
1123 else
1124 {
1125 #if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130 #else
1131 perror (msg);
1132 #endif
1133 abort ();
1134 }
1135 }
1136
1137 static void *
1138 ev_realloc_emul (void *ptr, long size) EV_THROW
1139 {
1140 #if __GLIBC__
1141 return realloc (ptr, size);
1142 #else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153 #endif
1154 }
1155
1156 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1157
1158 void ecb_cold
1159 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1160 {
1161 alloc = cb;
1162 }
1163
1164 inline_speed void *
1165 ev_realloc (void *ptr, long size)
1166 {
1167 ptr = alloc (ptr, size);
1168
1169 if (!ptr && size)
1170 {
1171 #if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173 #else
1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175 #endif
1176 abort ();
1177 }
1178
1179 return ptr;
1180 }
1181
1182 #define ev_malloc(size) ev_realloc (0, (size))
1183 #define ev_free(ptr) ev_realloc ((ptr), 0)
1184
1185 /*****************************************************************************/
1186
1187 /* set in reify when reification needed */
1188 #define EV_ANFD_REIFY 1
1189
1190 /* file descriptor info structure */
1191 typedef struct
1192 {
1193 WL head;
1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1197 unsigned char unused;
1198 #if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200 #endif
1201 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1202 SOCKET handle;
1203 #endif
1204 #if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206 #endif
1207 } ANFD;
1208
1209 /* stores the pending event set for a given watcher */
1210 typedef struct
1211 {
1212 W w;
1213 int events; /* the pending event set for the given watcher */
1214 } ANPENDING;
1215
1216 #if EV_USE_INOTIFY
1217 /* hash table entry per inotify-id */
1218 typedef struct
1219 {
1220 WL head;
1221 } ANFS;
1222 #endif
1223
1224 /* Heap Entry */
1225 #if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235 #else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242 #endif
1243
1244 #if EV_MULTIPLICITY
1245
1246 struct ev_loop
1247 {
1248 ev_tstamp ev_rt_now;
1249 #define ev_rt_now ((loop)->ev_rt_now)
1250 #define VAR(name,decl) decl;
1251 #include "ev_vars.h"
1252 #undef VAR
1253 };
1254 #include "ev_wrap.h"
1255
1256 static struct ev_loop default_loop_struct;
1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1258
1259 #else
1260
1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1262 #define VAR(name,decl) static decl;
1263 #include "ev_vars.h"
1264 #undef VAR
1265
1266 static int ev_default_loop_ptr;
1267
1268 #endif
1269
1270 #if EV_FEATURE_API
1271 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1274 #else
1275 # define EV_RELEASE_CB (void)0
1276 # define EV_ACQUIRE_CB (void)0
1277 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278 #endif
1279
1280 #define EVBREAK_RECURSE 0x80
1281
1282 /*****************************************************************************/
1283
1284 #ifndef EV_HAVE_EV_TIME
1285 ev_tstamp
1286 ev_time (void) EV_THROW
1287 {
1288 #if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
1291 struct timespec ts;
1292 clock_gettime (CLOCK_REALTIME, &ts);
1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
1294 }
1295 #endif
1296
1297 struct timeval tv;
1298 gettimeofday (&tv, 0);
1299 return tv.tv_sec + tv.tv_usec * 1e-6;
1300 }
1301 #endif
1302
1303 inline_size ev_tstamp
1304 get_clock (void)
1305 {
1306 #if EV_USE_MONOTONIC
1307 if (expect_true (have_monotonic))
1308 {
1309 struct timespec ts;
1310 clock_gettime (CLOCK_MONOTONIC, &ts);
1311 return ts.tv_sec + ts.tv_nsec * 1e-9;
1312 }
1313 #endif
1314
1315 return ev_time ();
1316 }
1317
1318 #if EV_MULTIPLICITY
1319 ev_tstamp
1320 ev_now (EV_P) EV_THROW
1321 {
1322 return ev_rt_now;
1323 }
1324 #endif
1325
1326 void
1327 ev_sleep (ev_tstamp delay) EV_THROW
1328 {
1329 if (delay > 0.)
1330 {
1331 #if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336 #elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338 #else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346 #endif
1347 }
1348 }
1349
1350 /*****************************************************************************/
1351
1352 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354 /* find a suitable new size for the given array, */
1355 /* hopefully by rounding to a nice-to-malloc size */
1356 inline_size int
1357 array_nextsize (int elem, int cur, int cnt)
1358 {
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1367 {
1368 ncur *= elem;
1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1370 ncur = ncur - sizeof (void *) * 4;
1371 ncur /= elem;
1372 }
1373
1374 return ncur;
1375 }
1376
1377 static void * noinline ecb_cold
1378 array_realloc (int elem, void *base, int *cur, int cnt)
1379 {
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382 }
1383
1384 #define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1386
1387 #define array_needsize(type,base,cur,cnt,init) \
1388 if (expect_false ((cnt) > (cur))) \
1389 { \
1390 int ecb_unused ocur_ = (cur); \
1391 (base) = (type *)array_realloc \
1392 (sizeof (type), (base), &(cur), (cnt)); \
1393 init ((base) + (ocur_), (cur) - ocur_); \
1394 }
1395
1396 #if 0
1397 #define array_slim(type,stem) \
1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1399 { \
1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1403 }
1404 #endif
1405
1406 #define array_free(stem, idx) \
1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1408
1409 /*****************************************************************************/
1410
1411 /* dummy callback for pending events */
1412 static void noinline
1413 pendingcb (EV_P_ ev_prepare *w, int revents)
1414 {
1415 }
1416
1417 void noinline
1418 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1419 {
1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
1422
1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
1430 pendings [pri][w_->pending - 1].events = revents;
1431 }
1432
1433 pendingpri = NUMPRI - 1;
1434 }
1435
1436 inline_speed void
1437 feed_reverse (EV_P_ W w)
1438 {
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441 }
1442
1443 inline_size void
1444 feed_reverse_done (EV_P_ int revents)
1445 {
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449 }
1450
1451 inline_speed void
1452 queue_events (EV_P_ W *events, int eventcnt, int type)
1453 {
1454 int i;
1455
1456 for (i = 0; i < eventcnt; ++i)
1457 ev_feed_event (EV_A_ events [i], type);
1458 }
1459
1460 /*****************************************************************************/
1461
1462 inline_speed void
1463 fd_event_nocheck (EV_P_ int fd, int revents)
1464 {
1465 ANFD *anfd = anfds + fd;
1466 ev_io *w;
1467
1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1469 {
1470 int ev = w->events & revents;
1471
1472 if (ev)
1473 ev_feed_event (EV_A_ (W)w, ev);
1474 }
1475 }
1476
1477 /* do not submit kernel events for fds that have reify set */
1478 /* because that means they changed while we were polling for new events */
1479 inline_speed void
1480 fd_event (EV_P_ int fd, int revents)
1481 {
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486 }
1487
1488 void
1489 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1490 {
1491 if (fd >= 0 && fd < anfdmax)
1492 fd_event_nocheck (EV_A_ fd, revents);
1493 }
1494
1495 /* make sure the external fd watch events are in-sync */
1496 /* with the kernel/libev internal state */
1497 inline_size void
1498 fd_reify (EV_P)
1499 {
1500 int i;
1501
1502 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525 #endif
1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
1536 anfd->reify = 0;
1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
1551 }
1552
1553 fdchangecnt = 0;
1554 }
1555
1556 /* something about the given fd changed */
1557 inline_size void
1558 fd_change (EV_P_ int fd, int flags)
1559 {
1560 unsigned char reify = anfds [fd].reify;
1561 anfds [fd].reify |= flags;
1562
1563 if (expect_true (!reify))
1564 {
1565 ++fdchangecnt;
1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
1569 }
1570
1571 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572 inline_speed void ecb_cold
1573 fd_kill (EV_P_ int fd)
1574 {
1575 ev_io *w;
1576
1577 while ((w = (ev_io *)anfds [fd].head))
1578 {
1579 ev_io_stop (EV_A_ w);
1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1581 }
1582 }
1583
1584 /* check whether the given fd is actually valid, for error recovery */
1585 inline_size int ecb_cold
1586 fd_valid (int fd)
1587 {
1588 #ifdef _WIN32
1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1590 #else
1591 return fcntl (fd, F_GETFD) != -1;
1592 #endif
1593 }
1594
1595 /* called on EBADF to verify fds */
1596 static void noinline ecb_cold
1597 fd_ebadf (EV_P)
1598 {
1599 int fd;
1600
1601 for (fd = 0; fd < anfdmax; ++fd)
1602 if (anfds [fd].events)
1603 if (!fd_valid (fd) && errno == EBADF)
1604 fd_kill (EV_A_ fd);
1605 }
1606
1607 /* called on ENOMEM in select/poll to kill some fds and retry */
1608 static void noinline ecb_cold
1609 fd_enomem (EV_P)
1610 {
1611 int fd;
1612
1613 for (fd = anfdmax; fd--; )
1614 if (anfds [fd].events)
1615 {
1616 fd_kill (EV_A_ fd);
1617 break;
1618 }
1619 }
1620
1621 /* usually called after fork if backend needs to re-arm all fds from scratch */
1622 static void noinline
1623 fd_rearm_all (EV_P)
1624 {
1625 int fd;
1626
1627 for (fd = 0; fd < anfdmax; ++fd)
1628 if (anfds [fd].events)
1629 {
1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1633 }
1634 }
1635
1636 /* used to prepare libev internal fd's */
1637 /* this is not fork-safe */
1638 inline_speed void
1639 fd_intern (int fd)
1640 {
1641 #ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644 #else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647 #endif
1648 }
1649
1650 /*****************************************************************************/
1651
1652 /*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658 /*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664 #if EV_USE_4HEAP
1665
1666 #define DHEAP 4
1667 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669 #define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671 /* away from the root */
1672 inline_speed void
1673 downheap (ANHE *heap, int N, int k)
1674 {
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713 }
1714
1715 #else /* 4HEAP */
1716
1717 #define HEAP0 1
1718 #define HPARENT(k) ((k) >> 1)
1719 #define UPHEAP_DONE(p,k) (!(p))
1720
1721 /* away from the root */
1722 inline_speed void
1723 downheap (ANHE *heap, int N, int k)
1724 {
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748 }
1749 #endif
1750
1751 /* towards the root */
1752 inline_speed void
1753 upheap (ANHE *heap, int k)
1754 {
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771 }
1772
1773 /* move an element suitably so it is in a correct place */
1774 inline_size void
1775 adjustheap (ANHE *heap, int N, int k)
1776 {
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781 }
1782
1783 /* rebuild the heap: this function is used only once and executed rarely */
1784 inline_size void
1785 reheap (ANHE *heap, int N)
1786 {
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793 }
1794
1795 /*****************************************************************************/
1796
1797 /* associate signal watchers to a signal signal */
1798 typedef struct
1799 {
1800 EV_ATOMIC_T pending;
1801 #if EV_MULTIPLICITY
1802 EV_P;
1803 #endif
1804 WL head;
1805 } ANSIG;
1806
1807 static ANSIG signals [EV_NSIG - 1];
1808
1809 /*****************************************************************************/
1810
1811 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813 static void noinline ecb_cold
1814 evpipe_init (EV_P)
1815 {
1816 if (!ev_is_active (&pipe_w))
1817 {
1818 # if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830 # endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843 }
1844
1845 inline_speed void
1846 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847 {
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854
1855 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1856
1857 pipe_write_skipped = 1;
1858
1859 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1860
1861 if (pipe_write_wanted)
1862 {
1863 int old_errno;
1864
1865 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869 #if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876 #endif
1877 {
1878 #ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884 #else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886 #endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891 }
1892
1893 /* called whenever the libev signal pipe */
1894 /* got some events (signal, async) */
1895 static void
1896 pipecb (EV_P_ ev_io *iow, int revents)
1897 {
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
1902 #if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909 #endif
1910 {
1911 char dummy[4];
1912 #ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919 #else
1920 read (evpipe [0], &dummy, sizeof (dummy));
1921 #endif
1922 }
1923 }
1924
1925 pipe_write_skipped = 0;
1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929 #if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE_RELEASE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
1938 ev_feed_signal_event (EV_A_ i + 1);
1939 }
1940 #endif
1941
1942 #if EV_ASYNC_ENABLE
1943 if (async_pending)
1944 {
1945 async_pending = 0;
1946
1947 ECB_MEMORY_FENCE_RELEASE;
1948
1949 for (i = asynccnt; i--; )
1950 if (asyncs [i]->sent)
1951 {
1952 asyncs [i]->sent = 0;
1953 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1954 }
1955 }
1956 #endif
1957 }
1958
1959 /*****************************************************************************/
1960
1961 void
1962 ev_feed_signal (int signum) EV_THROW
1963 {
1964 #if EV_MULTIPLICITY
1965 EV_P = signals [signum - 1].loop;
1966
1967 if (!EV_A)
1968 return;
1969 #endif
1970
1971 if (!ev_active (&pipe_w))
1972 return;
1973
1974 signals [signum - 1].pending = 1;
1975 evpipe_write (EV_A_ &sig_pending);
1976 }
1977
1978 static void
1979 ev_sighandler (int signum)
1980 {
1981 #ifdef _WIN32
1982 signal (signum, ev_sighandler);
1983 #endif
1984
1985 ev_feed_signal (signum);
1986 }
1987
1988 void noinline
1989 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1990 {
1991 WL w;
1992
1993 if (expect_false (signum <= 0 || signum > EV_NSIG))
1994 return;
1995
1996 --signum;
1997
1998 #if EV_MULTIPLICITY
1999 /* it is permissible to try to feed a signal to the wrong loop */
2000 /* or, likely more useful, feeding a signal nobody is waiting for */
2001
2002 if (expect_false (signals [signum].loop != EV_A))
2003 return;
2004 #endif
2005
2006 signals [signum].pending = 0;
2007
2008 for (w = signals [signum].head; w; w = w->next)
2009 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2010 }
2011
2012 #if EV_USE_SIGNALFD
2013 static void
2014 sigfdcb (EV_P_ ev_io *iow, int revents)
2015 {
2016 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2017
2018 for (;;)
2019 {
2020 ssize_t res = read (sigfd, si, sizeof (si));
2021
2022 /* not ISO-C, as res might be -1, but works with SuS */
2023 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2024 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2025
2026 if (res < (ssize_t)sizeof (si))
2027 break;
2028 }
2029 }
2030 #endif
2031
2032 #endif
2033
2034 /*****************************************************************************/
2035
2036 #if EV_CHILD_ENABLE
2037 static WL childs [EV_PID_HASHSIZE];
2038
2039 static ev_signal childev;
2040
2041 #ifndef WIFCONTINUED
2042 # define WIFCONTINUED(status) 0
2043 #endif
2044
2045 /* handle a single child status event */
2046 inline_speed void
2047 child_reap (EV_P_ int chain, int pid, int status)
2048 {
2049 ev_child *w;
2050 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2051
2052 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2053 {
2054 if ((w->pid == pid || !w->pid)
2055 && (!traced || (w->flags & 1)))
2056 {
2057 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2058 w->rpid = pid;
2059 w->rstatus = status;
2060 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2061 }
2062 }
2063 }
2064
2065 #ifndef WCONTINUED
2066 # define WCONTINUED 0
2067 #endif
2068
2069 /* called on sigchld etc., calls waitpid */
2070 static void
2071 childcb (EV_P_ ev_signal *sw, int revents)
2072 {
2073 int pid, status;
2074
2075 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2076 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2077 if (!WCONTINUED
2078 || errno != EINVAL
2079 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2080 return;
2081
2082 /* make sure we are called again until all children have been reaped */
2083 /* we need to do it this way so that the callback gets called before we continue */
2084 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2085
2086 child_reap (EV_A_ pid, pid, status);
2087 if ((EV_PID_HASHSIZE) > 1)
2088 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2089 }
2090
2091 #endif
2092
2093 /*****************************************************************************/
2094
2095 #if EV_USE_IOCP
2096 # include "ev_iocp.c"
2097 #endif
2098 #if EV_USE_PORT
2099 # include "ev_port.c"
2100 #endif
2101 #if EV_USE_KQUEUE
2102 # include "ev_kqueue.c"
2103 #endif
2104 #if EV_USE_EPOLL
2105 # include "ev_epoll.c"
2106 #endif
2107 #if EV_USE_POLL
2108 # include "ev_poll.c"
2109 #endif
2110 #if EV_USE_SELECT
2111 # include "ev_select.c"
2112 #endif
2113
2114 int ecb_cold
2115 ev_version_major (void) EV_THROW
2116 {
2117 return EV_VERSION_MAJOR;
2118 }
2119
2120 int ecb_cold
2121 ev_version_minor (void) EV_THROW
2122 {
2123 return EV_VERSION_MINOR;
2124 }
2125
2126 /* return true if we are running with elevated privileges and should ignore env variables */
2127 int inline_size ecb_cold
2128 enable_secure (void)
2129 {
2130 #ifdef _WIN32
2131 return 0;
2132 #else
2133 return getuid () != geteuid ()
2134 || getgid () != getegid ();
2135 #endif
2136 }
2137
2138 unsigned int ecb_cold
2139 ev_supported_backends (void) EV_THROW
2140 {
2141 unsigned int flags = 0;
2142
2143 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2144 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2145 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2146 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2147 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2148
2149 return flags;
2150 }
2151
2152 unsigned int ecb_cold
2153 ev_recommended_backends (void) EV_THROW
2154 {
2155 unsigned int flags = ev_supported_backends ();
2156
2157 #ifndef __NetBSD__
2158 /* kqueue is borked on everything but netbsd apparently */
2159 /* it usually doesn't work correctly on anything but sockets and pipes */
2160 flags &= ~EVBACKEND_KQUEUE;
2161 #endif
2162 #ifdef __APPLE__
2163 /* only select works correctly on that "unix-certified" platform */
2164 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2165 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2166 #endif
2167 #ifdef __FreeBSD__
2168 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2169 #endif
2170
2171 return flags;
2172 }
2173
2174 unsigned int ecb_cold
2175 ev_embeddable_backends (void) EV_THROW
2176 {
2177 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2178
2179 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2180 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2181 flags &= ~EVBACKEND_EPOLL;
2182
2183 return flags;
2184 }
2185
2186 unsigned int
2187 ev_backend (EV_P) EV_THROW
2188 {
2189 return backend;
2190 }
2191
2192 #if EV_FEATURE_API
2193 unsigned int
2194 ev_iteration (EV_P) EV_THROW
2195 {
2196 return loop_count;
2197 }
2198
2199 unsigned int
2200 ev_depth (EV_P) EV_THROW
2201 {
2202 return loop_depth;
2203 }
2204
2205 void
2206 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207 {
2208 io_blocktime = interval;
2209 }
2210
2211 void
2212 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2213 {
2214 timeout_blocktime = interval;
2215 }
2216
2217 void
2218 ev_set_userdata (EV_P_ void *data) EV_THROW
2219 {
2220 userdata = data;
2221 }
2222
2223 void *
2224 ev_userdata (EV_P) EV_THROW
2225 {
2226 return userdata;
2227 }
2228
2229 void
2230 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2231 {
2232 invoke_cb = invoke_pending_cb;
2233 }
2234
2235 void
2236 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2237 {
2238 release_cb = release;
2239 acquire_cb = acquire;
2240 }
2241 #endif
2242
2243 /* initialise a loop structure, must be zero-initialised */
2244 static void noinline ecb_cold
2245 loop_init (EV_P_ unsigned int flags) EV_THROW
2246 {
2247 if (!backend)
2248 {
2249 origflags = flags;
2250
2251 #if EV_USE_REALTIME
2252 if (!have_realtime)
2253 {
2254 struct timespec ts;
2255
2256 if (!clock_gettime (CLOCK_REALTIME, &ts))
2257 have_realtime = 1;
2258 }
2259 #endif
2260
2261 #if EV_USE_MONOTONIC
2262 if (!have_monotonic)
2263 {
2264 struct timespec ts;
2265
2266 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2267 have_monotonic = 1;
2268 }
2269 #endif
2270
2271 /* pid check not overridable via env */
2272 #ifndef _WIN32
2273 if (flags & EVFLAG_FORKCHECK)
2274 curpid = getpid ();
2275 #endif
2276
2277 if (!(flags & EVFLAG_NOENV)
2278 && !enable_secure ()
2279 && getenv ("LIBEV_FLAGS"))
2280 flags = atoi (getenv ("LIBEV_FLAGS"));
2281
2282 ev_rt_now = ev_time ();
2283 mn_now = get_clock ();
2284 now_floor = mn_now;
2285 rtmn_diff = ev_rt_now - mn_now;
2286 #if EV_FEATURE_API
2287 invoke_cb = ev_invoke_pending;
2288 #endif
2289
2290 io_blocktime = 0.;
2291 timeout_blocktime = 0.;
2292 backend = 0;
2293 backend_fd = -1;
2294 sig_pending = 0;
2295 #if EV_ASYNC_ENABLE
2296 async_pending = 0;
2297 #endif
2298 pipe_write_skipped = 0;
2299 pipe_write_wanted = 0;
2300 #if EV_USE_INOTIFY
2301 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2302 #endif
2303 #if EV_USE_SIGNALFD
2304 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2305 #endif
2306
2307 if (!(flags & EVBACKEND_MASK))
2308 flags |= ev_recommended_backends ();
2309
2310 #if EV_USE_IOCP
2311 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2312 #endif
2313 #if EV_USE_PORT
2314 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2315 #endif
2316 #if EV_USE_KQUEUE
2317 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2318 #endif
2319 #if EV_USE_EPOLL
2320 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2321 #endif
2322 #if EV_USE_POLL
2323 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2324 #endif
2325 #if EV_USE_SELECT
2326 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2327 #endif
2328
2329 ev_prepare_init (&pending_w, pendingcb);
2330
2331 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2332 ev_init (&pipe_w, pipecb);
2333 ev_set_priority (&pipe_w, EV_MAXPRI);
2334 #endif
2335 }
2336 }
2337
2338 /* free up a loop structure */
2339 void ecb_cold
2340 ev_loop_destroy (EV_P)
2341 {
2342 int i;
2343
2344 #if EV_MULTIPLICITY
2345 /* mimic free (0) */
2346 if (!EV_A)
2347 return;
2348 #endif
2349
2350 #if EV_CLEANUP_ENABLE
2351 /* queue cleanup watchers (and execute them) */
2352 if (expect_false (cleanupcnt))
2353 {
2354 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2355 EV_INVOKE_PENDING;
2356 }
2357 #endif
2358
2359 #if EV_CHILD_ENABLE
2360 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2361 {
2362 ev_ref (EV_A); /* child watcher */
2363 ev_signal_stop (EV_A_ &childev);
2364 }
2365 #endif
2366
2367 if (ev_is_active (&pipe_w))
2368 {
2369 /*ev_ref (EV_A);*/
2370 /*ev_io_stop (EV_A_ &pipe_w);*/
2371
2372 #if EV_USE_EVENTFD
2373 if (evfd >= 0)
2374 close (evfd);
2375 #endif
2376
2377 if (evpipe [0] >= 0)
2378 {
2379 EV_WIN32_CLOSE_FD (evpipe [0]);
2380 EV_WIN32_CLOSE_FD (evpipe [1]);
2381 }
2382 }
2383
2384 #if EV_USE_SIGNALFD
2385 if (ev_is_active (&sigfd_w))
2386 close (sigfd);
2387 #endif
2388
2389 #if EV_USE_INOTIFY
2390 if (fs_fd >= 0)
2391 close (fs_fd);
2392 #endif
2393
2394 if (backend_fd >= 0)
2395 close (backend_fd);
2396
2397 #if EV_USE_IOCP
2398 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2399 #endif
2400 #if EV_USE_PORT
2401 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2402 #endif
2403 #if EV_USE_KQUEUE
2404 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2405 #endif
2406 #if EV_USE_EPOLL
2407 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2408 #endif
2409 #if EV_USE_POLL
2410 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2411 #endif
2412 #if EV_USE_SELECT
2413 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2414 #endif
2415
2416 for (i = NUMPRI; i--; )
2417 {
2418 array_free (pending, [i]);
2419 #if EV_IDLE_ENABLE
2420 array_free (idle, [i]);
2421 #endif
2422 }
2423
2424 ev_free (anfds); anfds = 0; anfdmax = 0;
2425
2426 /* have to use the microsoft-never-gets-it-right macro */
2427 array_free (rfeed, EMPTY);
2428 array_free (fdchange, EMPTY);
2429 array_free (timer, EMPTY);
2430 #if EV_PERIODIC_ENABLE
2431 array_free (periodic, EMPTY);
2432 #endif
2433 #if EV_FORK_ENABLE
2434 array_free (fork, EMPTY);
2435 #endif
2436 #if EV_CLEANUP_ENABLE
2437 array_free (cleanup, EMPTY);
2438 #endif
2439 array_free (prepare, EMPTY);
2440 array_free (check, EMPTY);
2441 #if EV_ASYNC_ENABLE
2442 array_free (async, EMPTY);
2443 #endif
2444
2445 backend = 0;
2446
2447 #if EV_MULTIPLICITY
2448 if (ev_is_default_loop (EV_A))
2449 #endif
2450 ev_default_loop_ptr = 0;
2451 #if EV_MULTIPLICITY
2452 else
2453 ev_free (EV_A);
2454 #endif
2455 }
2456
2457 #if EV_USE_INOTIFY
2458 inline_size void infy_fork (EV_P);
2459 #endif
2460
2461 inline_size void
2462 loop_fork (EV_P)
2463 {
2464 #if EV_USE_PORT
2465 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2466 #endif
2467 #if EV_USE_KQUEUE
2468 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2469 #endif
2470 #if EV_USE_EPOLL
2471 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2472 #endif
2473 #if EV_USE_INOTIFY
2474 infy_fork (EV_A);
2475 #endif
2476
2477 if (ev_is_active (&pipe_w))
2478 {
2479 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2480
2481 ev_ref (EV_A);
2482 ev_io_stop (EV_A_ &pipe_w);
2483
2484 #if EV_USE_EVENTFD
2485 if (evfd >= 0)
2486 close (evfd);
2487 #endif
2488
2489 if (evpipe [0] >= 0)
2490 {
2491 EV_WIN32_CLOSE_FD (evpipe [0]);
2492 EV_WIN32_CLOSE_FD (evpipe [1]);
2493 }
2494
2495 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2496 evpipe_init (EV_A);
2497 /* now iterate over everything, in case we missed something */
2498 pipecb (EV_A_ &pipe_w, EV_READ);
2499 #endif
2500 }
2501
2502 postfork = 0;
2503 }
2504
2505 #if EV_MULTIPLICITY
2506
2507 struct ev_loop * ecb_cold
2508 ev_loop_new (unsigned int flags) EV_THROW
2509 {
2510 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2511
2512 memset (EV_A, 0, sizeof (struct ev_loop));
2513 loop_init (EV_A_ flags);
2514
2515 if (ev_backend (EV_A))
2516 return EV_A;
2517
2518 ev_free (EV_A);
2519 return 0;
2520 }
2521
2522 #endif /* multiplicity */
2523
2524 #if EV_VERIFY
2525 static void noinline ecb_cold
2526 verify_watcher (EV_P_ W w)
2527 {
2528 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2529
2530 if (w->pending)
2531 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2532 }
2533
2534 static void noinline ecb_cold
2535 verify_heap (EV_P_ ANHE *heap, int N)
2536 {
2537 int i;
2538
2539 for (i = HEAP0; i < N + HEAP0; ++i)
2540 {
2541 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2542 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2543 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2544
2545 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2546 }
2547 }
2548
2549 static void noinline ecb_cold
2550 array_verify (EV_P_ W *ws, int cnt)
2551 {
2552 while (cnt--)
2553 {
2554 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2555 verify_watcher (EV_A_ ws [cnt]);
2556 }
2557 }
2558 #endif
2559
2560 #if EV_FEATURE_API
2561 void ecb_cold
2562 ev_verify (EV_P) EV_THROW
2563 {
2564 #if EV_VERIFY
2565 int i;
2566 WL w, w2;
2567
2568 assert (activecnt >= -1);
2569
2570 assert (fdchangemax >= fdchangecnt);
2571 for (i = 0; i < fdchangecnt; ++i)
2572 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2573
2574 assert (anfdmax >= 0);
2575 for (i = 0; i < anfdmax; ++i)
2576 {
2577 int j = 0;
2578
2579 for (w = w2 = anfds [i].head; w; w = w->next)
2580 {
2581 verify_watcher (EV_A_ (W)w);
2582
2583 if (j++ & 1)
2584 {
2585 assert (("libev: io watcher list contains a loop", w != w2));
2586 w2 = w2->next;
2587 }
2588
2589 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2590 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2591 }
2592 }
2593
2594 assert (timermax >= timercnt);
2595 verify_heap (EV_A_ timers, timercnt);
2596
2597 #if EV_PERIODIC_ENABLE
2598 assert (periodicmax >= periodiccnt);
2599 verify_heap (EV_A_ periodics, periodiccnt);
2600 #endif
2601
2602 for (i = NUMPRI; i--; )
2603 {
2604 assert (pendingmax [i] >= pendingcnt [i]);
2605 #if EV_IDLE_ENABLE
2606 assert (idleall >= 0);
2607 assert (idlemax [i] >= idlecnt [i]);
2608 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2609 #endif
2610 }
2611
2612 #if EV_FORK_ENABLE
2613 assert (forkmax >= forkcnt);
2614 array_verify (EV_A_ (W *)forks, forkcnt);
2615 #endif
2616
2617 #if EV_CLEANUP_ENABLE
2618 assert (cleanupmax >= cleanupcnt);
2619 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2620 #endif
2621
2622 #if EV_ASYNC_ENABLE
2623 assert (asyncmax >= asynccnt);
2624 array_verify (EV_A_ (W *)asyncs, asynccnt);
2625 #endif
2626
2627 #if EV_PREPARE_ENABLE
2628 assert (preparemax >= preparecnt);
2629 array_verify (EV_A_ (W *)prepares, preparecnt);
2630 #endif
2631
2632 #if EV_CHECK_ENABLE
2633 assert (checkmax >= checkcnt);
2634 array_verify (EV_A_ (W *)checks, checkcnt);
2635 #endif
2636
2637 # if 0
2638 #if EV_CHILD_ENABLE
2639 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2640 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2641 #endif
2642 # endif
2643 #endif
2644 }
2645 #endif
2646
2647 #if EV_MULTIPLICITY
2648 struct ev_loop * ecb_cold
2649 #else
2650 int
2651 #endif
2652 ev_default_loop (unsigned int flags) EV_THROW
2653 {
2654 if (!ev_default_loop_ptr)
2655 {
2656 #if EV_MULTIPLICITY
2657 EV_P = ev_default_loop_ptr = &default_loop_struct;
2658 #else
2659 ev_default_loop_ptr = 1;
2660 #endif
2661
2662 loop_init (EV_A_ flags);
2663
2664 if (ev_backend (EV_A))
2665 {
2666 #if EV_CHILD_ENABLE
2667 ev_signal_init (&childev, childcb, SIGCHLD);
2668 ev_set_priority (&childev, EV_MAXPRI);
2669 ev_signal_start (EV_A_ &childev);
2670 ev_unref (EV_A); /* child watcher should not keep loop alive */
2671 #endif
2672 }
2673 else
2674 ev_default_loop_ptr = 0;
2675 }
2676
2677 return ev_default_loop_ptr;
2678 }
2679
2680 void
2681 ev_loop_fork (EV_P) EV_THROW
2682 {
2683 postfork = 1; /* must be in line with ev_default_fork */
2684 }
2685
2686 /*****************************************************************************/
2687
2688 void
2689 ev_invoke (EV_P_ void *w, int revents)
2690 {
2691 EV_CB_INVOKE ((W)w, revents);
2692 }
2693
2694 unsigned int
2695 ev_pending_count (EV_P) EV_THROW
2696 {
2697 int pri;
2698 unsigned int count = 0;
2699
2700 for (pri = NUMPRI; pri--; )
2701 count += pendingcnt [pri];
2702
2703 return count;
2704 }
2705
2706 void noinline
2707 ev_invoke_pending (EV_P)
2708 {
2709 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2710 while (pendingcnt [pendingpri])
2711 {
2712 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2713
2714 p->w->pending = 0;
2715 EV_CB_INVOKE (p->w, p->events);
2716 EV_FREQUENT_CHECK;
2717 }
2718 }
2719
2720 #if EV_IDLE_ENABLE
2721 /* make idle watchers pending. this handles the "call-idle */
2722 /* only when higher priorities are idle" logic */
2723 inline_size void
2724 idle_reify (EV_P)
2725 {
2726 if (expect_false (idleall))
2727 {
2728 int pri;
2729
2730 for (pri = NUMPRI; pri--; )
2731 {
2732 if (pendingcnt [pri])
2733 break;
2734
2735 if (idlecnt [pri])
2736 {
2737 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2738 break;
2739 }
2740 }
2741 }
2742 }
2743 #endif
2744
2745 /* make timers pending */
2746 inline_size void
2747 timers_reify (EV_P)
2748 {
2749 EV_FREQUENT_CHECK;
2750
2751 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2752 {
2753 do
2754 {
2755 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2756
2757 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2758
2759 /* first reschedule or stop timer */
2760 if (w->repeat)
2761 {
2762 ev_at (w) += w->repeat;
2763 if (ev_at (w) < mn_now)
2764 ev_at (w) = mn_now;
2765
2766 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2767
2768 ANHE_at_cache (timers [HEAP0]);
2769 downheap (timers, timercnt, HEAP0);
2770 }
2771 else
2772 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2773
2774 EV_FREQUENT_CHECK;
2775 feed_reverse (EV_A_ (W)w);
2776 }
2777 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2778
2779 feed_reverse_done (EV_A_ EV_TIMER);
2780 }
2781 }
2782
2783 #if EV_PERIODIC_ENABLE
2784
2785 static void noinline
2786 periodic_recalc (EV_P_ ev_periodic *w)
2787 {
2788 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2789 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2790
2791 /* the above almost always errs on the low side */
2792 while (at <= ev_rt_now)
2793 {
2794 ev_tstamp nat = at + w->interval;
2795
2796 /* when resolution fails us, we use ev_rt_now */
2797 if (expect_false (nat == at))
2798 {
2799 at = ev_rt_now;
2800 break;
2801 }
2802
2803 at = nat;
2804 }
2805
2806 ev_at (w) = at;
2807 }
2808
2809 /* make periodics pending */
2810 inline_size void
2811 periodics_reify (EV_P)
2812 {
2813 EV_FREQUENT_CHECK;
2814
2815 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2816 {
2817 do
2818 {
2819 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2820
2821 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2822
2823 /* first reschedule or stop timer */
2824 if (w->reschedule_cb)
2825 {
2826 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2827
2828 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2829
2830 ANHE_at_cache (periodics [HEAP0]);
2831 downheap (periodics, periodiccnt, HEAP0);
2832 }
2833 else if (w->interval)
2834 {
2835 periodic_recalc (EV_A_ w);
2836 ANHE_at_cache (periodics [HEAP0]);
2837 downheap (periodics, periodiccnt, HEAP0);
2838 }
2839 else
2840 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2841
2842 EV_FREQUENT_CHECK;
2843 feed_reverse (EV_A_ (W)w);
2844 }
2845 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2846
2847 feed_reverse_done (EV_A_ EV_PERIODIC);
2848 }
2849 }
2850
2851 /* simply recalculate all periodics */
2852 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2853 static void noinline ecb_cold
2854 periodics_reschedule (EV_P)
2855 {
2856 int i;
2857
2858 /* adjust periodics after time jump */
2859 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2860 {
2861 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2862
2863 if (w->reschedule_cb)
2864 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2865 else if (w->interval)
2866 periodic_recalc (EV_A_ w);
2867
2868 ANHE_at_cache (periodics [i]);
2869 }
2870
2871 reheap (periodics, periodiccnt);
2872 }
2873 #endif
2874
2875 /* adjust all timers by a given offset */
2876 static void noinline ecb_cold
2877 timers_reschedule (EV_P_ ev_tstamp adjust)
2878 {
2879 int i;
2880
2881 for (i = 0; i < timercnt; ++i)
2882 {
2883 ANHE *he = timers + i + HEAP0;
2884 ANHE_w (*he)->at += adjust;
2885 ANHE_at_cache (*he);
2886 }
2887 }
2888
2889 /* fetch new monotonic and realtime times from the kernel */
2890 /* also detect if there was a timejump, and act accordingly */
2891 inline_speed void
2892 time_update (EV_P_ ev_tstamp max_block)
2893 {
2894 #if EV_USE_MONOTONIC
2895 if (expect_true (have_monotonic))
2896 {
2897 int i;
2898 ev_tstamp odiff = rtmn_diff;
2899
2900 mn_now = get_clock ();
2901
2902 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2903 /* interpolate in the meantime */
2904 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2905 {
2906 ev_rt_now = rtmn_diff + mn_now;
2907 return;
2908 }
2909
2910 now_floor = mn_now;
2911 ev_rt_now = ev_time ();
2912
2913 /* loop a few times, before making important decisions.
2914 * on the choice of "4": one iteration isn't enough,
2915 * in case we get preempted during the calls to
2916 * ev_time and get_clock. a second call is almost guaranteed
2917 * to succeed in that case, though. and looping a few more times
2918 * doesn't hurt either as we only do this on time-jumps or
2919 * in the unlikely event of having been preempted here.
2920 */
2921 for (i = 4; --i; )
2922 {
2923 ev_tstamp diff;
2924 rtmn_diff = ev_rt_now - mn_now;
2925
2926 diff = odiff - rtmn_diff;
2927
2928 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2929 return; /* all is well */
2930
2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 }
2935
2936 /* no timer adjustment, as the monotonic clock doesn't jump */
2937 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2938 # if EV_PERIODIC_ENABLE
2939 periodics_reschedule (EV_A);
2940 # endif
2941 }
2942 else
2943 #endif
2944 {
2945 ev_rt_now = ev_time ();
2946
2947 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2948 {
2949 /* adjust timers. this is easy, as the offset is the same for all of them */
2950 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2951 #if EV_PERIODIC_ENABLE
2952 periodics_reschedule (EV_A);
2953 #endif
2954 }
2955
2956 mn_now = ev_rt_now;
2957 }
2958 }
2959
2960 int
2961 ev_run (EV_P_ int flags)
2962 {
2963 #if EV_FEATURE_API
2964 ++loop_depth;
2965 #endif
2966
2967 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2968
2969 loop_done = EVBREAK_CANCEL;
2970
2971 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2972
2973 do
2974 {
2975 #if EV_VERIFY >= 2
2976 ev_verify (EV_A);
2977 #endif
2978
2979 #ifndef _WIN32
2980 if (expect_false (curpid)) /* penalise the forking check even more */
2981 if (expect_false (getpid () != curpid))
2982 {
2983 curpid = getpid ();
2984 postfork = 1;
2985 }
2986 #endif
2987
2988 #if EV_FORK_ENABLE
2989 /* we might have forked, so queue fork handlers */
2990 if (expect_false (postfork))
2991 if (forkcnt)
2992 {
2993 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2994 EV_INVOKE_PENDING;
2995 }
2996 #endif
2997
2998 #if EV_PREPARE_ENABLE
2999 /* queue prepare watchers (and execute them) */
3000 if (expect_false (preparecnt))
3001 {
3002 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3003 EV_INVOKE_PENDING;
3004 }
3005 #endif
3006
3007 if (expect_false (loop_done))
3008 break;
3009
3010 /* we might have forked, so reify kernel state if necessary */
3011 if (expect_false (postfork))
3012 loop_fork (EV_A);
3013
3014 /* update fd-related kernel structures */
3015 fd_reify (EV_A);
3016
3017 /* calculate blocking time */
3018 {
3019 ev_tstamp waittime = 0.;
3020 ev_tstamp sleeptime = 0.;
3021
3022 /* remember old timestamp for io_blocktime calculation */
3023 ev_tstamp prev_mn_now = mn_now;
3024
3025 /* update time to cancel out callback processing overhead */
3026 time_update (EV_A_ 1e100);
3027
3028 /* from now on, we want a pipe-wake-up */
3029 pipe_write_wanted = 1;
3030
3031 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3032
3033 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3034 {
3035 waittime = MAX_BLOCKTIME;
3036
3037 if (timercnt)
3038 {
3039 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3040 if (waittime > to) waittime = to;
3041 }
3042
3043 #if EV_PERIODIC_ENABLE
3044 if (periodiccnt)
3045 {
3046 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3047 if (waittime > to) waittime = to;
3048 }
3049 #endif
3050
3051 /* don't let timeouts decrease the waittime below timeout_blocktime */
3052 if (expect_false (waittime < timeout_blocktime))
3053 waittime = timeout_blocktime;
3054
3055 /* at this point, we NEED to wait, so we have to ensure */
3056 /* to pass a minimum nonzero value to the backend */
3057 if (expect_false (waittime < backend_mintime))
3058 waittime = backend_mintime;
3059
3060 /* extra check because io_blocktime is commonly 0 */
3061 if (expect_false (io_blocktime))
3062 {
3063 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3064
3065 if (sleeptime > waittime - backend_mintime)
3066 sleeptime = waittime - backend_mintime;
3067
3068 if (expect_true (sleeptime > 0.))
3069 {
3070 ev_sleep (sleeptime);
3071 waittime -= sleeptime;
3072 }
3073 }
3074 }
3075
3076 #if EV_FEATURE_API
3077 ++loop_count;
3078 #endif
3079 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3080 backend_poll (EV_A_ waittime);
3081 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3082
3083 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3084
3085 if (pipe_write_skipped)
3086 {
3087 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3088 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3089 }
3090
3091
3092 /* update ev_rt_now, do magic */
3093 time_update (EV_A_ waittime + sleeptime);
3094 }
3095
3096 /* queue pending timers and reschedule them */
3097 timers_reify (EV_A); /* relative timers called last */
3098 #if EV_PERIODIC_ENABLE
3099 periodics_reify (EV_A); /* absolute timers called first */
3100 #endif
3101
3102 #if EV_IDLE_ENABLE
3103 /* queue idle watchers unless other events are pending */
3104 idle_reify (EV_A);
3105 #endif
3106
3107 #if EV_CHECK_ENABLE
3108 /* queue check watchers, to be executed first */
3109 if (expect_false (checkcnt))
3110 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3111 #endif
3112
3113 EV_INVOKE_PENDING;
3114 }
3115 while (expect_true (
3116 activecnt
3117 && !loop_done
3118 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3119 ));
3120
3121 if (loop_done == EVBREAK_ONE)
3122 loop_done = EVBREAK_CANCEL;
3123
3124 #if EV_FEATURE_API
3125 --loop_depth;
3126 #endif
3127
3128 return activecnt;
3129 }
3130
3131 void
3132 ev_break (EV_P_ int how) EV_THROW
3133 {
3134 loop_done = how;
3135 }
3136
3137 void
3138 ev_ref (EV_P) EV_THROW
3139 {
3140 ++activecnt;
3141 }
3142
3143 void
3144 ev_unref (EV_P) EV_THROW
3145 {
3146 --activecnt;
3147 }
3148
3149 void
3150 ev_now_update (EV_P) EV_THROW
3151 {
3152 time_update (EV_A_ 1e100);
3153 }
3154
3155 void
3156 ev_suspend (EV_P) EV_THROW
3157 {
3158 ev_now_update (EV_A);
3159 }
3160
3161 void
3162 ev_resume (EV_P) EV_THROW
3163 {
3164 ev_tstamp mn_prev = mn_now;
3165
3166 ev_now_update (EV_A);
3167 timers_reschedule (EV_A_ mn_now - mn_prev);
3168 #if EV_PERIODIC_ENABLE
3169 /* TODO: really do this? */
3170 periodics_reschedule (EV_A);
3171 #endif
3172 }
3173
3174 /*****************************************************************************/
3175 /* singly-linked list management, used when the expected list length is short */
3176
3177 inline_size void
3178 wlist_add (WL *head, WL elem)
3179 {
3180 elem->next = *head;
3181 *head = elem;
3182 }
3183
3184 inline_size void
3185 wlist_del (WL *head, WL elem)
3186 {
3187 while (*head)
3188 {
3189 if (expect_true (*head == elem))
3190 {
3191 *head = elem->next;
3192 break;
3193 }
3194
3195 head = &(*head)->next;
3196 }
3197 }
3198
3199 /* internal, faster, version of ev_clear_pending */
3200 inline_speed void
3201 clear_pending (EV_P_ W w)
3202 {
3203 if (w->pending)
3204 {
3205 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3206 w->pending = 0;
3207 }
3208 }
3209
3210 int
3211 ev_clear_pending (EV_P_ void *w) EV_THROW
3212 {
3213 W w_ = (W)w;
3214 int pending = w_->pending;
3215
3216 if (expect_true (pending))
3217 {
3218 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3219 p->w = (W)&pending_w;
3220 w_->pending = 0;
3221 return p->events;
3222 }
3223 else
3224 return 0;
3225 }
3226
3227 inline_size void
3228 pri_adjust (EV_P_ W w)
3229 {
3230 int pri = ev_priority (w);
3231 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3232 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3233 ev_set_priority (w, pri);
3234 }
3235
3236 inline_speed void
3237 ev_start (EV_P_ W w, int active)
3238 {
3239 pri_adjust (EV_A_ w);
3240 w->active = active;
3241 ev_ref (EV_A);
3242 }
3243
3244 inline_size void
3245 ev_stop (EV_P_ W w)
3246 {
3247 ev_unref (EV_A);
3248 w->active = 0;
3249 }
3250
3251 /*****************************************************************************/
3252
3253 void noinline
3254 ev_io_start (EV_P_ ev_io *w) EV_THROW
3255 {
3256 int fd = w->fd;
3257
3258 if (expect_false (ev_is_active (w)))
3259 return;
3260
3261 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3262 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3263
3264 EV_FREQUENT_CHECK;
3265
3266 ev_start (EV_A_ (W)w, 1);
3267 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3268 wlist_add (&anfds[fd].head, (WL)w);
3269
3270 /* common bug, apparently */
3271 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3272
3273 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3274 w->events &= ~EV__IOFDSET;
3275
3276 EV_FREQUENT_CHECK;
3277 }
3278
3279 void noinline
3280 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3281 {
3282 clear_pending (EV_A_ (W)w);
3283 if (expect_false (!ev_is_active (w)))
3284 return;
3285
3286 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3287
3288 EV_FREQUENT_CHECK;
3289
3290 wlist_del (&anfds[w->fd].head, (WL)w);
3291 ev_stop (EV_A_ (W)w);
3292
3293 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3294
3295 EV_FREQUENT_CHECK;
3296 }
3297
3298 void noinline
3299 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3300 {
3301 if (expect_false (ev_is_active (w)))
3302 return;
3303
3304 ev_at (w) += mn_now;
3305
3306 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3307
3308 EV_FREQUENT_CHECK;
3309
3310 ++timercnt;
3311 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3312 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3313 ANHE_w (timers [ev_active (w)]) = (WT)w;
3314 ANHE_at_cache (timers [ev_active (w)]);
3315 upheap (timers, ev_active (w));
3316
3317 EV_FREQUENT_CHECK;
3318
3319 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3320 }
3321
3322 void noinline
3323 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3324 {
3325 clear_pending (EV_A_ (W)w);
3326 if (expect_false (!ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ev_active (w);
3333
3334 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3335
3336 --timercnt;
3337
3338 if (expect_true (active < timercnt + HEAP0))
3339 {
3340 timers [active] = timers [timercnt + HEAP0];
3341 adjustheap (timers, timercnt, active);
3342 }
3343 }
3344
3345 ev_at (w) -= mn_now;
3346
3347 ev_stop (EV_A_ (W)w);
3348
3349 EV_FREQUENT_CHECK;
3350 }
3351
3352 void noinline
3353 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3354 {
3355 EV_FREQUENT_CHECK;
3356
3357 clear_pending (EV_A_ (W)w);
3358
3359 if (ev_is_active (w))
3360 {
3361 if (w->repeat)
3362 {
3363 ev_at (w) = mn_now + w->repeat;
3364 ANHE_at_cache (timers [ev_active (w)]);
3365 adjustheap (timers, timercnt, ev_active (w));
3366 }
3367 else
3368 ev_timer_stop (EV_A_ w);
3369 }
3370 else if (w->repeat)
3371 {
3372 ev_at (w) = w->repeat;
3373 ev_timer_start (EV_A_ w);
3374 }
3375
3376 EV_FREQUENT_CHECK;
3377 }
3378
3379 ev_tstamp
3380 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3381 {
3382 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3383 }
3384
3385 #if EV_PERIODIC_ENABLE
3386 void noinline
3387 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3388 {
3389 if (expect_false (ev_is_active (w)))
3390 return;
3391
3392 if (w->reschedule_cb)
3393 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3394 else if (w->interval)
3395 {
3396 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3397 periodic_recalc (EV_A_ w);
3398 }
3399 else
3400 ev_at (w) = w->offset;
3401
3402 EV_FREQUENT_CHECK;
3403
3404 ++periodiccnt;
3405 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3406 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3407 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3408 ANHE_at_cache (periodics [ev_active (w)]);
3409 upheap (periodics, ev_active (w));
3410
3411 EV_FREQUENT_CHECK;
3412
3413 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3414 }
3415
3416 void noinline
3417 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3418 {
3419 clear_pending (EV_A_ (W)w);
3420 if (expect_false (!ev_is_active (w)))
3421 return;
3422
3423 EV_FREQUENT_CHECK;
3424
3425 {
3426 int active = ev_active (w);
3427
3428 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3429
3430 --periodiccnt;
3431
3432 if (expect_true (active < periodiccnt + HEAP0))
3433 {
3434 periodics [active] = periodics [periodiccnt + HEAP0];
3435 adjustheap (periodics, periodiccnt, active);
3436 }
3437 }
3438
3439 ev_stop (EV_A_ (W)w);
3440
3441 EV_FREQUENT_CHECK;
3442 }
3443
3444 void noinline
3445 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3446 {
3447 /* TODO: use adjustheap and recalculation */
3448 ev_periodic_stop (EV_A_ w);
3449 ev_periodic_start (EV_A_ w);
3450 }
3451 #endif
3452
3453 #ifndef SA_RESTART
3454 # define SA_RESTART 0
3455 #endif
3456
3457 #if EV_SIGNAL_ENABLE
3458
3459 void noinline
3460 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3461 {
3462 if (expect_false (ev_is_active (w)))
3463 return;
3464
3465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3466
3467 #if EV_MULTIPLICITY
3468 assert (("libev: a signal must not be attached to two different loops",
3469 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3470
3471 signals [w->signum - 1].loop = EV_A;
3472 #endif
3473
3474 EV_FREQUENT_CHECK;
3475
3476 #if EV_USE_SIGNALFD
3477 if (sigfd == -2)
3478 {
3479 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3480 if (sigfd < 0 && errno == EINVAL)
3481 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3482
3483 if (sigfd >= 0)
3484 {
3485 fd_intern (sigfd); /* doing it twice will not hurt */
3486
3487 sigemptyset (&sigfd_set);
3488
3489 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3490 ev_set_priority (&sigfd_w, EV_MAXPRI);
3491 ev_io_start (EV_A_ &sigfd_w);
3492 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3493 }
3494 }
3495
3496 if (sigfd >= 0)
3497 {
3498 /* TODO: check .head */
3499 sigaddset (&sigfd_set, w->signum);
3500 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3501
3502 signalfd (sigfd, &sigfd_set, 0);
3503 }
3504 #endif
3505
3506 ev_start (EV_A_ (W)w, 1);
3507 wlist_add (&signals [w->signum - 1].head, (WL)w);
3508
3509 if (!((WL)w)->next)
3510 # if EV_USE_SIGNALFD
3511 if (sigfd < 0) /*TODO*/
3512 # endif
3513 {
3514 # ifdef _WIN32
3515 evpipe_init (EV_A);
3516
3517 signal (w->signum, ev_sighandler);
3518 # else
3519 struct sigaction sa;
3520
3521 evpipe_init (EV_A);
3522
3523 sa.sa_handler = ev_sighandler;
3524 sigfillset (&sa.sa_mask);
3525 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3526 sigaction (w->signum, &sa, 0);
3527
3528 if (origflags & EVFLAG_NOSIGMASK)
3529 {
3530 sigemptyset (&sa.sa_mask);
3531 sigaddset (&sa.sa_mask, w->signum);
3532 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3533 }
3534 #endif
3535 }
3536
3537 EV_FREQUENT_CHECK;
3538 }
3539
3540 void noinline
3541 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3542 {
3543 clear_pending (EV_A_ (W)w);
3544 if (expect_false (!ev_is_active (w)))
3545 return;
3546
3547 EV_FREQUENT_CHECK;
3548
3549 wlist_del (&signals [w->signum - 1].head, (WL)w);
3550 ev_stop (EV_A_ (W)w);
3551
3552 if (!signals [w->signum - 1].head)
3553 {
3554 #if EV_MULTIPLICITY
3555 signals [w->signum - 1].loop = 0; /* unattach from signal */
3556 #endif
3557 #if EV_USE_SIGNALFD
3558 if (sigfd >= 0)
3559 {
3560 sigset_t ss;
3561
3562 sigemptyset (&ss);
3563 sigaddset (&ss, w->signum);
3564 sigdelset (&sigfd_set, w->signum);
3565
3566 signalfd (sigfd, &sigfd_set, 0);
3567 sigprocmask (SIG_UNBLOCK, &ss, 0);
3568 }
3569 else
3570 #endif
3571 signal (w->signum, SIG_DFL);
3572 }
3573
3574 EV_FREQUENT_CHECK;
3575 }
3576
3577 #endif
3578
3579 #if EV_CHILD_ENABLE
3580
3581 void
3582 ev_child_start (EV_P_ ev_child *w) EV_THROW
3583 {
3584 #if EV_MULTIPLICITY
3585 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3586 #endif
3587 if (expect_false (ev_is_active (w)))
3588 return;
3589
3590 EV_FREQUENT_CHECK;
3591
3592 ev_start (EV_A_ (W)w, 1);
3593 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3594
3595 EV_FREQUENT_CHECK;
3596 }
3597
3598 void
3599 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3600 {
3601 clear_pending (EV_A_ (W)w);
3602 if (expect_false (!ev_is_active (w)))
3603 return;
3604
3605 EV_FREQUENT_CHECK;
3606
3607 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
3611 }
3612
3613 #endif
3614
3615 #if EV_STAT_ENABLE
3616
3617 # ifdef _WIN32
3618 # undef lstat
3619 # define lstat(a,b) _stati64 (a,b)
3620 # endif
3621
3622 #define DEF_STAT_INTERVAL 5.0074891
3623 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3624 #define MIN_STAT_INTERVAL 0.1074891
3625
3626 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3627
3628 #if EV_USE_INOTIFY
3629
3630 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3631 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3632
3633 static void noinline
3634 infy_add (EV_P_ ev_stat *w)
3635 {
3636 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3637
3638 if (w->wd >= 0)
3639 {
3640 struct statfs sfs;
3641
3642 /* now local changes will be tracked by inotify, but remote changes won't */
3643 /* unless the filesystem is known to be local, we therefore still poll */
3644 /* also do poll on <2.6.25, but with normal frequency */
3645
3646 if (!fs_2625)
3647 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3648 else if (!statfs (w->path, &sfs)
3649 && (sfs.f_type == 0x1373 /* devfs */
3650 || sfs.f_type == 0xEF53 /* ext2/3 */
3651 || sfs.f_type == 0x3153464a /* jfs */
3652 || sfs.f_type == 0x52654973 /* reiser3 */
3653 || sfs.f_type == 0x01021994 /* tempfs */
3654 || sfs.f_type == 0x58465342 /* xfs */))
3655 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3656 else
3657 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3658 }
3659 else
3660 {
3661 /* can't use inotify, continue to stat */
3662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3663
3664 /* if path is not there, monitor some parent directory for speedup hints */
3665 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3666 /* but an efficiency issue only */
3667 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3668 {
3669 char path [4096];
3670 strcpy (path, w->path);
3671
3672 do
3673 {
3674 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3675 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3676
3677 char *pend = strrchr (path, '/');
3678
3679 if (!pend || pend == path)
3680 break;
3681
3682 *pend = 0;
3683 w->wd = inotify_add_watch (fs_fd, path, mask);
3684 }
3685 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3686 }
3687 }
3688
3689 if (w->wd >= 0)
3690 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3691
3692 /* now re-arm timer, if required */
3693 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3694 ev_timer_again (EV_A_ &w->timer);
3695 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3696 }
3697
3698 static void noinline
3699 infy_del (EV_P_ ev_stat *w)
3700 {
3701 int slot;
3702 int wd = w->wd;
3703
3704 if (wd < 0)
3705 return;
3706
3707 w->wd = -2;
3708 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3709 wlist_del (&fs_hash [slot].head, (WL)w);
3710
3711 /* remove this watcher, if others are watching it, they will rearm */
3712 inotify_rm_watch (fs_fd, wd);
3713 }
3714
3715 static void noinline
3716 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3717 {
3718 if (slot < 0)
3719 /* overflow, need to check for all hash slots */
3720 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3721 infy_wd (EV_A_ slot, wd, ev);
3722 else
3723 {
3724 WL w_;
3725
3726 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3727 {
3728 ev_stat *w = (ev_stat *)w_;
3729 w_ = w_->next; /* lets us remove this watcher and all before it */
3730
3731 if (w->wd == wd || wd == -1)
3732 {
3733 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3734 {
3735 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3736 w->wd = -1;
3737 infy_add (EV_A_ w); /* re-add, no matter what */
3738 }
3739
3740 stat_timer_cb (EV_A_ &w->timer, 0);
3741 }
3742 }
3743 }
3744 }
3745
3746 static void
3747 infy_cb (EV_P_ ev_io *w, int revents)
3748 {
3749 char buf [EV_INOTIFY_BUFSIZE];
3750 int ofs;
3751 int len = read (fs_fd, buf, sizeof (buf));
3752
3753 for (ofs = 0; ofs < len; )
3754 {
3755 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3756 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3757 ofs += sizeof (struct inotify_event) + ev->len;
3758 }
3759 }
3760
3761 inline_size void ecb_cold
3762 ev_check_2625 (EV_P)
3763 {
3764 /* kernels < 2.6.25 are borked
3765 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3766 */
3767 if (ev_linux_version () < 0x020619)
3768 return;
3769
3770 fs_2625 = 1;
3771 }
3772
3773 inline_size int
3774 infy_newfd (void)
3775 {
3776 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3777 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3778 if (fd >= 0)
3779 return fd;
3780 #endif
3781 return inotify_init ();
3782 }
3783
3784 inline_size void
3785 infy_init (EV_P)
3786 {
3787 if (fs_fd != -2)
3788 return;
3789
3790 fs_fd = -1;
3791
3792 ev_check_2625 (EV_A);
3793
3794 fs_fd = infy_newfd ();
3795
3796 if (fs_fd >= 0)
3797 {
3798 fd_intern (fs_fd);
3799 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3800 ev_set_priority (&fs_w, EV_MAXPRI);
3801 ev_io_start (EV_A_ &fs_w);
3802 ev_unref (EV_A);
3803 }
3804 }
3805
3806 inline_size void
3807 infy_fork (EV_P)
3808 {
3809 int slot;
3810
3811 if (fs_fd < 0)
3812 return;
3813
3814 ev_ref (EV_A);
3815 ev_io_stop (EV_A_ &fs_w);
3816 close (fs_fd);
3817 fs_fd = infy_newfd ();
3818
3819 if (fs_fd >= 0)
3820 {
3821 fd_intern (fs_fd);
3822 ev_io_set (&fs_w, fs_fd, EV_READ);
3823 ev_io_start (EV_A_ &fs_w);
3824 ev_unref (EV_A);
3825 }
3826
3827 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3828 {
3829 WL w_ = fs_hash [slot].head;
3830 fs_hash [slot].head = 0;
3831
3832 while (w_)
3833 {
3834 ev_stat *w = (ev_stat *)w_;
3835 w_ = w_->next; /* lets us add this watcher */
3836
3837 w->wd = -1;
3838
3839 if (fs_fd >= 0)
3840 infy_add (EV_A_ w); /* re-add, no matter what */
3841 else
3842 {
3843 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3844 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3845 ev_timer_again (EV_A_ &w->timer);
3846 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3847 }
3848 }
3849 }
3850 }
3851
3852 #endif
3853
3854 #ifdef _WIN32
3855 # define EV_LSTAT(p,b) _stati64 (p, b)
3856 #else
3857 # define EV_LSTAT(p,b) lstat (p, b)
3858 #endif
3859
3860 void
3861 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3862 {
3863 if (lstat (w->path, &w->attr) < 0)
3864 w->attr.st_nlink = 0;
3865 else if (!w->attr.st_nlink)
3866 w->attr.st_nlink = 1;
3867 }
3868
3869 static void noinline
3870 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3871 {
3872 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3873
3874 ev_statdata prev = w->attr;
3875 ev_stat_stat (EV_A_ w);
3876
3877 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3878 if (
3879 prev.st_dev != w->attr.st_dev
3880 || prev.st_ino != w->attr.st_ino
3881 || prev.st_mode != w->attr.st_mode
3882 || prev.st_nlink != w->attr.st_nlink
3883 || prev.st_uid != w->attr.st_uid
3884 || prev.st_gid != w->attr.st_gid
3885 || prev.st_rdev != w->attr.st_rdev
3886 || prev.st_size != w->attr.st_size
3887 || prev.st_atime != w->attr.st_atime
3888 || prev.st_mtime != w->attr.st_mtime
3889 || prev.st_ctime != w->attr.st_ctime
3890 ) {
3891 /* we only update w->prev on actual differences */
3892 /* in case we test more often than invoke the callback, */
3893 /* to ensure that prev is always different to attr */
3894 w->prev = prev;
3895
3896 #if EV_USE_INOTIFY
3897 if (fs_fd >= 0)
3898 {
3899 infy_del (EV_A_ w);
3900 infy_add (EV_A_ w);
3901 ev_stat_stat (EV_A_ w); /* avoid race... */
3902 }
3903 #endif
3904
3905 ev_feed_event (EV_A_ w, EV_STAT);
3906 }
3907 }
3908
3909 void
3910 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3911 {
3912 if (expect_false (ev_is_active (w)))
3913 return;
3914
3915 ev_stat_stat (EV_A_ w);
3916
3917 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3918 w->interval = MIN_STAT_INTERVAL;
3919
3920 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3921 ev_set_priority (&w->timer, ev_priority (w));
3922
3923 #if EV_USE_INOTIFY
3924 infy_init (EV_A);
3925
3926 if (fs_fd >= 0)
3927 infy_add (EV_A_ w);
3928 else
3929 #endif
3930 {
3931 ev_timer_again (EV_A_ &w->timer);
3932 ev_unref (EV_A);
3933 }
3934
3935 ev_start (EV_A_ (W)w, 1);
3936
3937 EV_FREQUENT_CHECK;
3938 }
3939
3940 void
3941 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3942 {
3943 clear_pending (EV_A_ (W)w);
3944 if (expect_false (!ev_is_active (w)))
3945 return;
3946
3947 EV_FREQUENT_CHECK;
3948
3949 #if EV_USE_INOTIFY
3950 infy_del (EV_A_ w);
3951 #endif
3952
3953 if (ev_is_active (&w->timer))
3954 {
3955 ev_ref (EV_A);
3956 ev_timer_stop (EV_A_ &w->timer);
3957 }
3958
3959 ev_stop (EV_A_ (W)w);
3960
3961 EV_FREQUENT_CHECK;
3962 }
3963 #endif
3964
3965 #if EV_IDLE_ENABLE
3966 void
3967 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3968 {
3969 if (expect_false (ev_is_active (w)))
3970 return;
3971
3972 pri_adjust (EV_A_ (W)w);
3973
3974 EV_FREQUENT_CHECK;
3975
3976 {
3977 int active = ++idlecnt [ABSPRI (w)];
3978
3979 ++idleall;
3980 ev_start (EV_A_ (W)w, active);
3981
3982 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3983 idles [ABSPRI (w)][active - 1] = w;
3984 }
3985
3986 EV_FREQUENT_CHECK;
3987 }
3988
3989 void
3990 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3991 {
3992 clear_pending (EV_A_ (W)w);
3993 if (expect_false (!ev_is_active (w)))
3994 return;
3995
3996 EV_FREQUENT_CHECK;
3997
3998 {
3999 int active = ev_active (w);
4000
4001 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4002 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4003
4004 ev_stop (EV_A_ (W)w);
4005 --idleall;
4006 }
4007
4008 EV_FREQUENT_CHECK;
4009 }
4010 #endif
4011
4012 #if EV_PREPARE_ENABLE
4013 void
4014 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4015 {
4016 if (expect_false (ev_is_active (w)))
4017 return;
4018
4019 EV_FREQUENT_CHECK;
4020
4021 ev_start (EV_A_ (W)w, ++preparecnt);
4022 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4023 prepares [preparecnt - 1] = w;
4024
4025 EV_FREQUENT_CHECK;
4026 }
4027
4028 void
4029 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4030 {
4031 clear_pending (EV_A_ (W)w);
4032 if (expect_false (!ev_is_active (w)))
4033 return;
4034
4035 EV_FREQUENT_CHECK;
4036
4037 {
4038 int active = ev_active (w);
4039
4040 prepares [active - 1] = prepares [--preparecnt];
4041 ev_active (prepares [active - 1]) = active;
4042 }
4043
4044 ev_stop (EV_A_ (W)w);
4045
4046 EV_FREQUENT_CHECK;
4047 }
4048 #endif
4049
4050 #if EV_CHECK_ENABLE
4051 void
4052 ev_check_start (EV_P_ ev_check *w) EV_THROW
4053 {
4054 if (expect_false (ev_is_active (w)))
4055 return;
4056
4057 EV_FREQUENT_CHECK;
4058
4059 ev_start (EV_A_ (W)w, ++checkcnt);
4060 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4061 checks [checkcnt - 1] = w;
4062
4063 EV_FREQUENT_CHECK;
4064 }
4065
4066 void
4067 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4068 {
4069 clear_pending (EV_A_ (W)w);
4070 if (expect_false (!ev_is_active (w)))
4071 return;
4072
4073 EV_FREQUENT_CHECK;
4074
4075 {
4076 int active = ev_active (w);
4077
4078 checks [active - 1] = checks [--checkcnt];
4079 ev_active (checks [active - 1]) = active;
4080 }
4081
4082 ev_stop (EV_A_ (W)w);
4083
4084 EV_FREQUENT_CHECK;
4085 }
4086 #endif
4087
4088 #if EV_EMBED_ENABLE
4089 void noinline
4090 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4091 {
4092 ev_run (w->other, EVRUN_NOWAIT);
4093 }
4094
4095 static void
4096 embed_io_cb (EV_P_ ev_io *io, int revents)
4097 {
4098 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4099
4100 if (ev_cb (w))
4101 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4102 else
4103 ev_run (w->other, EVRUN_NOWAIT);
4104 }
4105
4106 static void
4107 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4108 {
4109 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4110
4111 {
4112 EV_P = w->other;
4113
4114 while (fdchangecnt)
4115 {
4116 fd_reify (EV_A);
4117 ev_run (EV_A_ EVRUN_NOWAIT);
4118 }
4119 }
4120 }
4121
4122 static void
4123 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4124 {
4125 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4126
4127 ev_embed_stop (EV_A_ w);
4128
4129 {
4130 EV_P = w->other;
4131
4132 ev_loop_fork (EV_A);
4133 ev_run (EV_A_ EVRUN_NOWAIT);
4134 }
4135
4136 ev_embed_start (EV_A_ w);
4137 }
4138
4139 #if 0
4140 static void
4141 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4142 {
4143 ev_idle_stop (EV_A_ idle);
4144 }
4145 #endif
4146
4147 void
4148 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4149 {
4150 if (expect_false (ev_is_active (w)))
4151 return;
4152
4153 {
4154 EV_P = w->other;
4155 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4156 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4157 }
4158
4159 EV_FREQUENT_CHECK;
4160
4161 ev_set_priority (&w->io, ev_priority (w));
4162 ev_io_start (EV_A_ &w->io);
4163
4164 ev_prepare_init (&w->prepare, embed_prepare_cb);
4165 ev_set_priority (&w->prepare, EV_MINPRI);
4166 ev_prepare_start (EV_A_ &w->prepare);
4167
4168 ev_fork_init (&w->fork, embed_fork_cb);
4169 ev_fork_start (EV_A_ &w->fork);
4170
4171 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4172
4173 ev_start (EV_A_ (W)w, 1);
4174
4175 EV_FREQUENT_CHECK;
4176 }
4177
4178 void
4179 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4180 {
4181 clear_pending (EV_A_ (W)w);
4182 if (expect_false (!ev_is_active (w)))
4183 return;
4184
4185 EV_FREQUENT_CHECK;
4186
4187 ev_io_stop (EV_A_ &w->io);
4188 ev_prepare_stop (EV_A_ &w->prepare);
4189 ev_fork_stop (EV_A_ &w->fork);
4190
4191 ev_stop (EV_A_ (W)w);
4192
4193 EV_FREQUENT_CHECK;
4194 }
4195 #endif
4196
4197 #if EV_FORK_ENABLE
4198 void
4199 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4200 {
4201 if (expect_false (ev_is_active (w)))
4202 return;
4203
4204 EV_FREQUENT_CHECK;
4205
4206 ev_start (EV_A_ (W)w, ++forkcnt);
4207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4208 forks [forkcnt - 1] = w;
4209
4210 EV_FREQUENT_CHECK;
4211 }
4212
4213 void
4214 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4215 {
4216 clear_pending (EV_A_ (W)w);
4217 if (expect_false (!ev_is_active (w)))
4218 return;
4219
4220 EV_FREQUENT_CHECK;
4221
4222 {
4223 int active = ev_active (w);
4224
4225 forks [active - 1] = forks [--forkcnt];
4226 ev_active (forks [active - 1]) = active;
4227 }
4228
4229 ev_stop (EV_A_ (W)w);
4230
4231 EV_FREQUENT_CHECK;
4232 }
4233 #endif
4234
4235 #if EV_CLEANUP_ENABLE
4236 void
4237 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4238 {
4239 if (expect_false (ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243
4244 ev_start (EV_A_ (W)w, ++cleanupcnt);
4245 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4246 cleanups [cleanupcnt - 1] = w;
4247
4248 /* cleanup watchers should never keep a refcount on the loop */
4249 ev_unref (EV_A);
4250 EV_FREQUENT_CHECK;
4251 }
4252
4253 void
4254 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4255 {
4256 clear_pending (EV_A_ (W)w);
4257 if (expect_false (!ev_is_active (w)))
4258 return;
4259
4260 EV_FREQUENT_CHECK;
4261 ev_ref (EV_A);
4262
4263 {
4264 int active = ev_active (w);
4265
4266 cleanups [active - 1] = cleanups [--cleanupcnt];
4267 ev_active (cleanups [active - 1]) = active;
4268 }
4269
4270 ev_stop (EV_A_ (W)w);
4271
4272 EV_FREQUENT_CHECK;
4273 }
4274 #endif
4275
4276 #if EV_ASYNC_ENABLE
4277 void
4278 ev_async_start (EV_P_ ev_async *w) EV_THROW
4279 {
4280 if (expect_false (ev_is_active (w)))
4281 return;
4282
4283 w->sent = 0;
4284
4285 evpipe_init (EV_A);
4286
4287 EV_FREQUENT_CHECK;
4288
4289 ev_start (EV_A_ (W)w, ++asynccnt);
4290 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4291 asyncs [asynccnt - 1] = w;
4292
4293 EV_FREQUENT_CHECK;
4294 }
4295
4296 void
4297 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4298 {
4299 clear_pending (EV_A_ (W)w);
4300 if (expect_false (!ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 {
4306 int active = ev_active (w);
4307
4308 asyncs [active - 1] = asyncs [--asynccnt];
4309 ev_active (asyncs [active - 1]) = active;
4310 }
4311
4312 ev_stop (EV_A_ (W)w);
4313
4314 EV_FREQUENT_CHECK;
4315 }
4316
4317 void
4318 ev_async_send (EV_P_ ev_async *w) EV_THROW
4319 {
4320 w->sent = 1;
4321 evpipe_write (EV_A_ &async_pending);
4322 }
4323 #endif
4324
4325 /*****************************************************************************/
4326
4327 struct ev_once
4328 {
4329 ev_io io;
4330 ev_timer to;
4331 void (*cb)(int revents, void *arg);
4332 void *arg;
4333 };
4334
4335 static void
4336 once_cb (EV_P_ struct ev_once *once, int revents)
4337 {
4338 void (*cb)(int revents, void *arg) = once->cb;
4339 void *arg = once->arg;
4340
4341 ev_io_stop (EV_A_ &once->io);
4342 ev_timer_stop (EV_A_ &once->to);
4343 ev_free (once);
4344
4345 cb (revents, arg);
4346 }
4347
4348 static void
4349 once_cb_io (EV_P_ ev_io *w, int revents)
4350 {
4351 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4352
4353 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4354 }
4355
4356 static void
4357 once_cb_to (EV_P_ ev_timer *w, int revents)
4358 {
4359 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4360
4361 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4362 }
4363
4364 void
4365 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4366 {
4367 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4368
4369 if (expect_false (!once))
4370 {
4371 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4372 return;
4373 }
4374
4375 once->cb = cb;
4376 once->arg = arg;
4377
4378 ev_init (&once->io, once_cb_io);
4379 if (fd >= 0)
4380 {
4381 ev_io_set (&once->io, fd, events);
4382 ev_io_start (EV_A_ &once->io);
4383 }
4384
4385 ev_init (&once->to, once_cb_to);
4386 if (timeout >= 0.)
4387 {
4388 ev_timer_set (&once->to, timeout, 0.);
4389 ev_timer_start (EV_A_ &once->to);
4390 }
4391 }
4392
4393 /*****************************************************************************/
4394
4395 #if EV_WALK_ENABLE
4396 void ecb_cold
4397 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4398 {
4399 int i, j;
4400 ev_watcher_list *wl, *wn;
4401
4402 if (types & (EV_IO | EV_EMBED))
4403 for (i = 0; i < anfdmax; ++i)
4404 for (wl = anfds [i].head; wl; )
4405 {
4406 wn = wl->next;
4407
4408 #if EV_EMBED_ENABLE
4409 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4410 {
4411 if (types & EV_EMBED)
4412 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4413 }
4414 else
4415 #endif
4416 #if EV_USE_INOTIFY
4417 if (ev_cb ((ev_io *)wl) == infy_cb)
4418 ;
4419 else
4420 #endif
4421 if ((ev_io *)wl != &pipe_w)
4422 if (types & EV_IO)
4423 cb (EV_A_ EV_IO, wl);
4424
4425 wl = wn;
4426 }
4427
4428 if (types & (EV_TIMER | EV_STAT))
4429 for (i = timercnt + HEAP0; i-- > HEAP0; )
4430 #if EV_STAT_ENABLE
4431 /*TODO: timer is not always active*/
4432 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4433 {
4434 if (types & EV_STAT)
4435 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4436 }
4437 else
4438 #endif
4439 if (types & EV_TIMER)
4440 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4441
4442 #if EV_PERIODIC_ENABLE
4443 if (types & EV_PERIODIC)
4444 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4445 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4446 #endif
4447
4448 #if EV_IDLE_ENABLE
4449 if (types & EV_IDLE)
4450 for (j = NUMPRI; j--; )
4451 for (i = idlecnt [j]; i--; )
4452 cb (EV_A_ EV_IDLE, idles [j][i]);
4453 #endif
4454
4455 #if EV_FORK_ENABLE
4456 if (types & EV_FORK)
4457 for (i = forkcnt; i--; )
4458 if (ev_cb (forks [i]) != embed_fork_cb)
4459 cb (EV_A_ EV_FORK, forks [i]);
4460 #endif
4461
4462 #if EV_ASYNC_ENABLE
4463 if (types & EV_ASYNC)
4464 for (i = asynccnt; i--; )
4465 cb (EV_A_ EV_ASYNC, asyncs [i]);
4466 #endif
4467
4468 #if EV_PREPARE_ENABLE
4469 if (types & EV_PREPARE)
4470 for (i = preparecnt; i--; )
4471 # if EV_EMBED_ENABLE
4472 if (ev_cb (prepares [i]) != embed_prepare_cb)
4473 # endif
4474 cb (EV_A_ EV_PREPARE, prepares [i]);
4475 #endif
4476
4477 #if EV_CHECK_ENABLE
4478 if (types & EV_CHECK)
4479 for (i = checkcnt; i--; )
4480 cb (EV_A_ EV_CHECK, checks [i]);
4481 #endif
4482
4483 #if EV_SIGNAL_ENABLE
4484 if (types & EV_SIGNAL)
4485 for (i = 0; i < EV_NSIG - 1; ++i)
4486 for (wl = signals [i].head; wl; )
4487 {
4488 wn = wl->next;
4489 cb (EV_A_ EV_SIGNAL, wl);
4490 wl = wn;
4491 }
4492 #endif
4493
4494 #if EV_CHILD_ENABLE
4495 if (types & EV_CHILD)
4496 for (i = (EV_PID_HASHSIZE); i--; )
4497 for (wl = childs [i]; wl; )
4498 {
4499 wn = wl->next;
4500 cb (EV_A_ EV_CHILD, wl);
4501 wl = wn;
4502 }
4503 #endif
4504 /* EV_STAT 0x00001000 /* stat data changed */
4505 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4506 }
4507 #endif
4508
4509 #if EV_MULTIPLICITY
4510 #include "ev_wrap.h"
4511 #endif
4512