ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.436
Committed: Tue May 29 20:44:39 2012 UTC (11 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.435: +6 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_USE_EVENTFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef EFD_NONBLOCK
420 # define EFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef EFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define EFD_CLOEXEC O_CLOEXEC
425 # else
426 # define EFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 #endif
431
432 #if EV_USE_SIGNALFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef SFD_NONBLOCK
436 # define SFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef SFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define SFD_CLOEXEC O_CLOEXEC
441 # else
442 # define SFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447 struct signalfd_siginfo
448 {
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451 };
452 #endif
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476 /* ECB.H BEGIN */
477 /*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506 #ifndef ECB_H
507 #define ECB_H
508
509 #ifdef _WIN32
510 typedef signed char int8_t;
511 typedef unsigned char uint8_t;
512 typedef signed short int16_t;
513 typedef unsigned short uint16_t;
514 typedef signed int int32_t;
515 typedef unsigned int uint32_t;
516 #if __GNUC__
517 typedef signed long long int64_t;
518 typedef unsigned long long uint64_t;
519 #else /* _MSC_VER || __BORLANDC__ */
520 typedef signed __int64 int64_t;
521 typedef unsigned __int64 uint64_t;
522 #endif
523 #else
524 #include <inttypes.h>
525 #endif
526
527 /* many compilers define _GNUC_ to some versions but then only implement
528 * what their idiot authors think are the "more important" extensions,
529 * causing enormous grief in return for some better fake benchmark numbers.
530 * or so.
531 * we try to detect these and simply assume they are not gcc - if they have
532 * an issue with that they should have done it right in the first place.
533 */
534 #ifndef ECB_GCC_VERSION
535 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
536 #define ECB_GCC_VERSION(major,minor) 0
537 #else
538 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
539 #endif
540 #endif
541
542 /*****************************************************************************/
543
544 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
545 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
546
547 #if ECB_NO_THREADS
548 # define ECB_NO_SMP 1
549 #endif
550
551 #if ECB_NO_THREADS || ECB_NO_SMP
552 #define ECB_MEMORY_FENCE do { } while (0)
553 #endif
554
555 #ifndef ECB_MEMORY_FENCE
556 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
557 #if __i386 || __i386__
558 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
559 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
560 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
561 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
565 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
566 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
567 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
568 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
570 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
571 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
573 #elif __sparc || __sparc__
574 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
575 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
576 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
577 #elif defined __s390__ || defined __s390x__
578 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
579 #elif defined __mips__
580 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
581 #elif defined __alpha__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
583 #endif
584 #endif
585 #endif
586
587 #ifndef ECB_MEMORY_FENCE
588 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
589 #define ECB_MEMORY_FENCE __sync_synchronize ()
590 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
591 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
592 #elif _MSC_VER >= 1400 /* VC++ 2005 */
593 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
594 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
595 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
596 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
597 #elif defined _WIN32
598 #include <WinNT.h>
599 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
600 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
601 #include <mbarrier.h>
602 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
603 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
604 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
605 #elif __xlC__
606 #define ECB_MEMORY_FENCE __sync ()
607 #endif
608 #endif
609
610 #ifndef ECB_MEMORY_FENCE
611 #if !ECB_AVOID_PTHREADS
612 /*
613 * if you get undefined symbol references to pthread_mutex_lock,
614 * or failure to find pthread.h, then you should implement
615 * the ECB_MEMORY_FENCE operations for your cpu/compiler
616 * OR provide pthread.h and link against the posix thread library
617 * of your system.
618 */
619 #include <pthread.h>
620 #define ECB_NEEDS_PTHREADS 1
621 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
622
623 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
624 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
625 #endif
626 #endif
627
628 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
629 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
630 #endif
631
632 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
633 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
634 #endif
635
636 /*****************************************************************************/
637
638 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
639
640 #if __cplusplus
641 #define ecb_inline static inline
642 #elif ECB_GCC_VERSION(2,5)
643 #define ecb_inline static __inline__
644 #elif ECB_C99
645 #define ecb_inline static inline
646 #else
647 #define ecb_inline static
648 #endif
649
650 #if ECB_GCC_VERSION(3,3)
651 #define ecb_restrict __restrict__
652 #elif ECB_C99
653 #define ecb_restrict restrict
654 #else
655 #define ecb_restrict
656 #endif
657
658 typedef int ecb_bool;
659
660 #define ECB_CONCAT_(a, b) a ## b
661 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
662 #define ECB_STRINGIFY_(a) # a
663 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
664
665 #define ecb_function_ ecb_inline
666
667 #if ECB_GCC_VERSION(3,1)
668 #define ecb_attribute(attrlist) __attribute__(attrlist)
669 #define ecb_is_constant(expr) __builtin_constant_p (expr)
670 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
671 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
672 #else
673 #define ecb_attribute(attrlist)
674 #define ecb_is_constant(expr) 0
675 #define ecb_expect(expr,value) (expr)
676 #define ecb_prefetch(addr,rw,locality)
677 #endif
678
679 /* no emulation for ecb_decltype */
680 #if ECB_GCC_VERSION(4,5)
681 #define ecb_decltype(x) __decltype(x)
682 #elif ECB_GCC_VERSION(3,0)
683 #define ecb_decltype(x) __typeof(x)
684 #endif
685
686 #define ecb_noinline ecb_attribute ((__noinline__))
687 #define ecb_noreturn ecb_attribute ((__noreturn__))
688 #define ecb_unused ecb_attribute ((__unused__))
689 #define ecb_const ecb_attribute ((__const__))
690 #define ecb_pure ecb_attribute ((__pure__))
691
692 #if ECB_GCC_VERSION(4,3)
693 #define ecb_artificial ecb_attribute ((__artificial__))
694 #define ecb_hot ecb_attribute ((__hot__))
695 #define ecb_cold ecb_attribute ((__cold__))
696 #else
697 #define ecb_artificial
698 #define ecb_hot
699 #define ecb_cold
700 #endif
701
702 /* put around conditional expressions if you are very sure that the */
703 /* expression is mostly true or mostly false. note that these return */
704 /* booleans, not the expression. */
705 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
706 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
707 /* for compatibility to the rest of the world */
708 #define ecb_likely(expr) ecb_expect_true (expr)
709 #define ecb_unlikely(expr) ecb_expect_false (expr)
710
711 /* count trailing zero bits and count # of one bits */
712 #if ECB_GCC_VERSION(3,4)
713 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
714 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
715 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
716 #define ecb_ctz32(x) __builtin_ctz (x)
717 #define ecb_ctz64(x) __builtin_ctzll (x)
718 #define ecb_popcount32(x) __builtin_popcount (x)
719 /* no popcountll */
720 #else
721 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
722 ecb_function_ int
723 ecb_ctz32 (uint32_t x)
724 {
725 int r = 0;
726
727 x &= ~x + 1; /* this isolates the lowest bit */
728
729 #if ECB_branchless_on_i386
730 r += !!(x & 0xaaaaaaaa) << 0;
731 r += !!(x & 0xcccccccc) << 1;
732 r += !!(x & 0xf0f0f0f0) << 2;
733 r += !!(x & 0xff00ff00) << 3;
734 r += !!(x & 0xffff0000) << 4;
735 #else
736 if (x & 0xaaaaaaaa) r += 1;
737 if (x & 0xcccccccc) r += 2;
738 if (x & 0xf0f0f0f0) r += 4;
739 if (x & 0xff00ff00) r += 8;
740 if (x & 0xffff0000) r += 16;
741 #endif
742
743 return r;
744 }
745
746 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
747 ecb_function_ int
748 ecb_ctz64 (uint64_t x)
749 {
750 int shift = x & 0xffffffffU ? 0 : 32;
751 return ecb_ctz32 (x >> shift) + shift;
752 }
753
754 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount32 (uint32_t x)
757 {
758 x -= (x >> 1) & 0x55555555;
759 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
760 x = ((x >> 4) + x) & 0x0f0f0f0f;
761 x *= 0x01010101;
762
763 return x >> 24;
764 }
765
766 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
767 ecb_function_ int ecb_ld32 (uint32_t x)
768 {
769 int r = 0;
770
771 if (x >> 16) { x >>= 16; r += 16; }
772 if (x >> 8) { x >>= 8; r += 8; }
773 if (x >> 4) { x >>= 4; r += 4; }
774 if (x >> 2) { x >>= 2; r += 2; }
775 if (x >> 1) { r += 1; }
776
777 return r;
778 }
779
780 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
781 ecb_function_ int ecb_ld64 (uint64_t x)
782 {
783 int r = 0;
784
785 if (x >> 32) { x >>= 32; r += 32; }
786
787 return r + ecb_ld32 (x);
788 }
789 #endif
790
791 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
792 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
793 {
794 return ( (x * 0x0802U & 0x22110U)
795 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
796 }
797
798 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
799 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
800 {
801 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
802 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
803 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
804 x = ( x >> 8 ) | ( x << 8);
805
806 return x;
807 }
808
809 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
810 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
811 {
812 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
813 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
814 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
815 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
816 x = ( x >> 16 ) | ( x << 16);
817
818 return x;
819 }
820
821 /* popcount64 is only available on 64 bit cpus as gcc builtin */
822 /* so for this version we are lazy */
823 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_popcount64 (uint64_t x)
826 {
827 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
828 }
829
830 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
831 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
832 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
833 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
834 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
835 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
836 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
837 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
838
839 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
840 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
841 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
842 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
843 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
844 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
845 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
846 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
847
848 #if ECB_GCC_VERSION(4,3)
849 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
850 #define ecb_bswap32(x) __builtin_bswap32 (x)
851 #define ecb_bswap64(x) __builtin_bswap64 (x)
852 #else
853 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
854 ecb_function_ uint16_t
855 ecb_bswap16 (uint16_t x)
856 {
857 return ecb_rotl16 (x, 8);
858 }
859
860 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
861 ecb_function_ uint32_t
862 ecb_bswap32 (uint32_t x)
863 {
864 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
865 }
866
867 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
868 ecb_function_ uint64_t
869 ecb_bswap64 (uint64_t x)
870 {
871 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
872 }
873 #endif
874
875 #if ECB_GCC_VERSION(4,5)
876 #define ecb_unreachable() __builtin_unreachable ()
877 #else
878 /* this seems to work fine, but gcc always emits a warning for it :/ */
879 ecb_inline void ecb_unreachable (void) ecb_noreturn;
880 ecb_inline void ecb_unreachable (void) { }
881 #endif
882
883 /* try to tell the compiler that some condition is definitely true */
884 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
885
886 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
887 ecb_inline unsigned char
888 ecb_byteorder_helper (void)
889 {
890 const uint32_t u = 0x11223344;
891 return *(unsigned char *)&u;
892 }
893
894 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
895 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
896 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
897 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
898
899 #if ECB_GCC_VERSION(3,0) || ECB_C99
900 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
901 #else
902 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
903 #endif
904
905 #if __cplusplus
906 template<typename T>
907 static inline T ecb_div_rd (T val, T div)
908 {
909 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
910 }
911 template<typename T>
912 static inline T ecb_div_ru (T val, T div)
913 {
914 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
915 }
916 #else
917 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
918 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
919 #endif
920
921 #if ecb_cplusplus_does_not_suck
922 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
923 template<typename T, int N>
924 static inline int ecb_array_length (const T (&arr)[N])
925 {
926 return N;
927 }
928 #else
929 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
930 #endif
931
932 #endif
933
934 /* ECB.H END */
935
936 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
937 /* if your architecture doesn't need memory fences, e.g. because it is
938 * single-cpu/core, or if you use libev in a project that doesn't use libev
939 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
940 * libev, in which cases the memory fences become nops.
941 * alternatively, you can remove this #error and link against libpthread,
942 * which will then provide the memory fences.
943 */
944 # error "memory fences not defined for your architecture, please report"
945 #endif
946
947 #ifndef ECB_MEMORY_FENCE
948 # define ECB_MEMORY_FENCE do { } while (0)
949 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
950 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
951 #endif
952
953 #define expect_false(cond) ecb_expect_false (cond)
954 #define expect_true(cond) ecb_expect_true (cond)
955 #define noinline ecb_noinline
956
957 #define inline_size ecb_inline
958
959 #if EV_FEATURE_CODE
960 # define inline_speed ecb_inline
961 #else
962 # define inline_speed static noinline
963 #endif
964
965 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
966
967 #if EV_MINPRI == EV_MAXPRI
968 # define ABSPRI(w) (((W)w), 0)
969 #else
970 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
971 #endif
972
973 #define EMPTY /* required for microsofts broken pseudo-c compiler */
974 #define EMPTY2(a,b) /* used to suppress some warnings */
975
976 typedef ev_watcher *W;
977 typedef ev_watcher_list *WL;
978 typedef ev_watcher_time *WT;
979
980 #define ev_active(w) ((W)(w))->active
981 #define ev_at(w) ((WT)(w))->at
982
983 #if EV_USE_REALTIME
984 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
985 /* giving it a reasonably high chance of working on typical architectures */
986 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
987 #endif
988
989 #if EV_USE_MONOTONIC
990 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
991 #endif
992
993 #ifndef EV_FD_TO_WIN32_HANDLE
994 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
995 #endif
996 #ifndef EV_WIN32_HANDLE_TO_FD
997 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
998 #endif
999 #ifndef EV_WIN32_CLOSE_FD
1000 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1001 #endif
1002
1003 #ifdef _WIN32
1004 # include "ev_win32.c"
1005 #endif
1006
1007 /*****************************************************************************/
1008
1009 /* define a suitable floor function (only used by periodics atm) */
1010
1011 #if EV_USE_FLOOR
1012 # include <math.h>
1013 # define ev_floor(v) floor (v)
1014 #else
1015
1016 #include <float.h>
1017
1018 /* a floor() replacement function, should be independent of ev_tstamp type */
1019 static ev_tstamp noinline
1020 ev_floor (ev_tstamp v)
1021 {
1022 /* the choice of shift factor is not terribly important */
1023 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1024 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1025 #else
1026 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1027 #endif
1028
1029 /* argument too large for an unsigned long? */
1030 if (expect_false (v >= shift))
1031 {
1032 ev_tstamp f;
1033
1034 if (v == v - 1.)
1035 return v; /* very large number */
1036
1037 f = shift * ev_floor (v * (1. / shift));
1038 return f + ev_floor (v - f);
1039 }
1040
1041 /* special treatment for negative args? */
1042 if (expect_false (v < 0.))
1043 {
1044 ev_tstamp f = -ev_floor (-v);
1045
1046 return f - (f == v ? 0 : 1);
1047 }
1048
1049 /* fits into an unsigned long */
1050 return (unsigned long)v;
1051 }
1052
1053 #endif
1054
1055 /*****************************************************************************/
1056
1057 #ifdef __linux
1058 # include <sys/utsname.h>
1059 #endif
1060
1061 static unsigned int noinline ecb_cold
1062 ev_linux_version (void)
1063 {
1064 #ifdef __linux
1065 unsigned int v = 0;
1066 struct utsname buf;
1067 int i;
1068 char *p = buf.release;
1069
1070 if (uname (&buf))
1071 return 0;
1072
1073 for (i = 3+1; --i; )
1074 {
1075 unsigned int c = 0;
1076
1077 for (;;)
1078 {
1079 if (*p >= '0' && *p <= '9')
1080 c = c * 10 + *p++ - '0';
1081 else
1082 {
1083 p += *p == '.';
1084 break;
1085 }
1086 }
1087
1088 v = (v << 8) | c;
1089 }
1090
1091 return v;
1092 #else
1093 return 0;
1094 #endif
1095 }
1096
1097 /*****************************************************************************/
1098
1099 #if EV_AVOID_STDIO
1100 static void noinline ecb_cold
1101 ev_printerr (const char *msg)
1102 {
1103 write (STDERR_FILENO, msg, strlen (msg));
1104 }
1105 #endif
1106
1107 static void (*syserr_cb)(const char *msg) EV_THROW;
1108
1109 void ecb_cold
1110 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1111 {
1112 syserr_cb = cb;
1113 }
1114
1115 static void noinline ecb_cold
1116 ev_syserr (const char *msg)
1117 {
1118 if (!msg)
1119 msg = "(libev) system error";
1120
1121 if (syserr_cb)
1122 syserr_cb (msg);
1123 else
1124 {
1125 #if EV_AVOID_STDIO
1126 ev_printerr (msg);
1127 ev_printerr (": ");
1128 ev_printerr (strerror (errno));
1129 ev_printerr ("\n");
1130 #else
1131 perror (msg);
1132 #endif
1133 abort ();
1134 }
1135 }
1136
1137 static void *
1138 ev_realloc_emul (void *ptr, long size) EV_THROW
1139 {
1140 #if __GLIBC__
1141 return realloc (ptr, size);
1142 #else
1143 /* some systems, notably openbsd and darwin, fail to properly
1144 * implement realloc (x, 0) (as required by both ansi c-89 and
1145 * the single unix specification, so work around them here.
1146 */
1147
1148 if (size)
1149 return realloc (ptr, size);
1150
1151 free (ptr);
1152 return 0;
1153 #endif
1154 }
1155
1156 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1157
1158 void ecb_cold
1159 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1160 {
1161 alloc = cb;
1162 }
1163
1164 inline_speed void *
1165 ev_realloc (void *ptr, long size)
1166 {
1167 ptr = alloc (ptr, size);
1168
1169 if (!ptr && size)
1170 {
1171 #if EV_AVOID_STDIO
1172 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1173 #else
1174 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1175 #endif
1176 abort ();
1177 }
1178
1179 return ptr;
1180 }
1181
1182 #define ev_malloc(size) ev_realloc (0, (size))
1183 #define ev_free(ptr) ev_realloc ((ptr), 0)
1184
1185 /*****************************************************************************/
1186
1187 /* set in reify when reification needed */
1188 #define EV_ANFD_REIFY 1
1189
1190 /* file descriptor info structure */
1191 typedef struct
1192 {
1193 WL head;
1194 unsigned char events; /* the events watched for */
1195 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1196 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1197 unsigned char unused;
1198 #if EV_USE_EPOLL
1199 unsigned int egen; /* generation counter to counter epoll bugs */
1200 #endif
1201 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1202 SOCKET handle;
1203 #endif
1204 #if EV_USE_IOCP
1205 OVERLAPPED or, ow;
1206 #endif
1207 } ANFD;
1208
1209 /* stores the pending event set for a given watcher */
1210 typedef struct
1211 {
1212 W w;
1213 int events; /* the pending event set for the given watcher */
1214 } ANPENDING;
1215
1216 #if EV_USE_INOTIFY
1217 /* hash table entry per inotify-id */
1218 typedef struct
1219 {
1220 WL head;
1221 } ANFS;
1222 #endif
1223
1224 /* Heap Entry */
1225 #if EV_HEAP_CACHE_AT
1226 /* a heap element */
1227 typedef struct {
1228 ev_tstamp at;
1229 WT w;
1230 } ANHE;
1231
1232 #define ANHE_w(he) (he).w /* access watcher, read-write */
1233 #define ANHE_at(he) (he).at /* access cached at, read-only */
1234 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1235 #else
1236 /* a heap element */
1237 typedef WT ANHE;
1238
1239 #define ANHE_w(he) (he)
1240 #define ANHE_at(he) (he)->at
1241 #define ANHE_at_cache(he)
1242 #endif
1243
1244 #if EV_MULTIPLICITY
1245
1246 struct ev_loop
1247 {
1248 ev_tstamp ev_rt_now;
1249 #define ev_rt_now ((loop)->ev_rt_now)
1250 #define VAR(name,decl) decl;
1251 #include "ev_vars.h"
1252 #undef VAR
1253 };
1254 #include "ev_wrap.h"
1255
1256 static struct ev_loop default_loop_struct;
1257 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1258
1259 #else
1260
1261 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1262 #define VAR(name,decl) static decl;
1263 #include "ev_vars.h"
1264 #undef VAR
1265
1266 static int ev_default_loop_ptr;
1267
1268 #endif
1269
1270 #if EV_FEATURE_API
1271 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1272 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1273 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1274 #else
1275 # define EV_RELEASE_CB (void)0
1276 # define EV_ACQUIRE_CB (void)0
1277 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1278 #endif
1279
1280 #define EVBREAK_RECURSE 0x80
1281
1282 /*****************************************************************************/
1283
1284 #ifndef EV_HAVE_EV_TIME
1285 ev_tstamp
1286 ev_time (void) EV_THROW
1287 {
1288 #if EV_USE_REALTIME
1289 if (expect_true (have_realtime))
1290 {
1291 struct timespec ts;
1292 clock_gettime (CLOCK_REALTIME, &ts);
1293 return ts.tv_sec + ts.tv_nsec * 1e-9;
1294 }
1295 #endif
1296
1297 struct timeval tv;
1298 gettimeofday (&tv, 0);
1299 return tv.tv_sec + tv.tv_usec * 1e-6;
1300 }
1301 #endif
1302
1303 inline_size ev_tstamp
1304 get_clock (void)
1305 {
1306 #if EV_USE_MONOTONIC
1307 if (expect_true (have_monotonic))
1308 {
1309 struct timespec ts;
1310 clock_gettime (CLOCK_MONOTONIC, &ts);
1311 return ts.tv_sec + ts.tv_nsec * 1e-9;
1312 }
1313 #endif
1314
1315 return ev_time ();
1316 }
1317
1318 #if EV_MULTIPLICITY
1319 ev_tstamp
1320 ev_now (EV_P) EV_THROW
1321 {
1322 return ev_rt_now;
1323 }
1324 #endif
1325
1326 void
1327 ev_sleep (ev_tstamp delay) EV_THROW
1328 {
1329 if (delay > 0.)
1330 {
1331 #if EV_USE_NANOSLEEP
1332 struct timespec ts;
1333
1334 EV_TS_SET (ts, delay);
1335 nanosleep (&ts, 0);
1336 #elif defined _WIN32
1337 Sleep ((unsigned long)(delay * 1e3));
1338 #else
1339 struct timeval tv;
1340
1341 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1342 /* something not guaranteed by newer posix versions, but guaranteed */
1343 /* by older ones */
1344 EV_TV_SET (tv, delay);
1345 select (0, 0, 0, 0, &tv);
1346 #endif
1347 }
1348 }
1349
1350 /*****************************************************************************/
1351
1352 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1353
1354 /* find a suitable new size for the given array, */
1355 /* hopefully by rounding to a nice-to-malloc size */
1356 inline_size int
1357 array_nextsize (int elem, int cur, int cnt)
1358 {
1359 int ncur = cur + 1;
1360
1361 do
1362 ncur <<= 1;
1363 while (cnt > ncur);
1364
1365 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1366 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1367 {
1368 ncur *= elem;
1369 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1370 ncur = ncur - sizeof (void *) * 4;
1371 ncur /= elem;
1372 }
1373
1374 return ncur;
1375 }
1376
1377 static void * noinline ecb_cold
1378 array_realloc (int elem, void *base, int *cur, int cnt)
1379 {
1380 *cur = array_nextsize (elem, *cur, cnt);
1381 return ev_realloc (base, elem * *cur);
1382 }
1383
1384 #define array_init_zero(base,count) \
1385 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1386
1387 #define array_needsize(type,base,cur,cnt,init) \
1388 if (expect_false ((cnt) > (cur))) \
1389 { \
1390 int ecb_unused ocur_ = (cur); \
1391 (base) = (type *)array_realloc \
1392 (sizeof (type), (base), &(cur), (cnt)); \
1393 init ((base) + (ocur_), (cur) - ocur_); \
1394 }
1395
1396 #if 0
1397 #define array_slim(type,stem) \
1398 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1399 { \
1400 stem ## max = array_roundsize (stem ## cnt >> 1); \
1401 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1402 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1403 }
1404 #endif
1405
1406 #define array_free(stem, idx) \
1407 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1408
1409 /*****************************************************************************/
1410
1411 /* dummy callback for pending events */
1412 static void noinline
1413 pendingcb (EV_P_ ev_prepare *w, int revents)
1414 {
1415 }
1416
1417 void noinline
1418 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1419 {
1420 W w_ = (W)w;
1421 int pri = ABSPRI (w_);
1422
1423 if (expect_false (w_->pending))
1424 pendings [pri][w_->pending - 1].events |= revents;
1425 else
1426 {
1427 w_->pending = ++pendingcnt [pri];
1428 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1429 pendings [pri][w_->pending - 1].w = w_;
1430 pendings [pri][w_->pending - 1].events = revents;
1431 }
1432
1433 pendingpri = NUMPRI - 1;
1434 }
1435
1436 inline_speed void
1437 feed_reverse (EV_P_ W w)
1438 {
1439 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1440 rfeeds [rfeedcnt++] = w;
1441 }
1442
1443 inline_size void
1444 feed_reverse_done (EV_P_ int revents)
1445 {
1446 do
1447 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1448 while (rfeedcnt);
1449 }
1450
1451 inline_speed void
1452 queue_events (EV_P_ W *events, int eventcnt, int type)
1453 {
1454 int i;
1455
1456 for (i = 0; i < eventcnt; ++i)
1457 ev_feed_event (EV_A_ events [i], type);
1458 }
1459
1460 /*****************************************************************************/
1461
1462 inline_speed void
1463 fd_event_nocheck (EV_P_ int fd, int revents)
1464 {
1465 ANFD *anfd = anfds + fd;
1466 ev_io *w;
1467
1468 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1469 {
1470 int ev = w->events & revents;
1471
1472 if (ev)
1473 ev_feed_event (EV_A_ (W)w, ev);
1474 }
1475 }
1476
1477 /* do not submit kernel events for fds that have reify set */
1478 /* because that means they changed while we were polling for new events */
1479 inline_speed void
1480 fd_event (EV_P_ int fd, int revents)
1481 {
1482 ANFD *anfd = anfds + fd;
1483
1484 if (expect_true (!anfd->reify))
1485 fd_event_nocheck (EV_A_ fd, revents);
1486 }
1487
1488 void
1489 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1490 {
1491 if (fd >= 0 && fd < anfdmax)
1492 fd_event_nocheck (EV_A_ fd, revents);
1493 }
1494
1495 /* make sure the external fd watch events are in-sync */
1496 /* with the kernel/libev internal state */
1497 inline_size void
1498 fd_reify (EV_P)
1499 {
1500 int i;
1501
1502 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1503 for (i = 0; i < fdchangecnt; ++i)
1504 {
1505 int fd = fdchanges [i];
1506 ANFD *anfd = anfds + fd;
1507
1508 if (anfd->reify & EV__IOFDSET && anfd->head)
1509 {
1510 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1511
1512 if (handle != anfd->handle)
1513 {
1514 unsigned long arg;
1515
1516 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1517
1518 /* handle changed, but fd didn't - we need to do it in two steps */
1519 backend_modify (EV_A_ fd, anfd->events, 0);
1520 anfd->events = 0;
1521 anfd->handle = handle;
1522 }
1523 }
1524 }
1525 #endif
1526
1527 for (i = 0; i < fdchangecnt; ++i)
1528 {
1529 int fd = fdchanges [i];
1530 ANFD *anfd = anfds + fd;
1531 ev_io *w;
1532
1533 unsigned char o_events = anfd->events;
1534 unsigned char o_reify = anfd->reify;
1535
1536 anfd->reify = 0;
1537
1538 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1539 {
1540 anfd->events = 0;
1541
1542 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1543 anfd->events |= (unsigned char)w->events;
1544
1545 if (o_events != anfd->events)
1546 o_reify = EV__IOFDSET; /* actually |= */
1547 }
1548
1549 if (o_reify & EV__IOFDSET)
1550 backend_modify (EV_A_ fd, o_events, anfd->events);
1551 }
1552
1553 fdchangecnt = 0;
1554 }
1555
1556 /* something about the given fd changed */
1557 inline_size void
1558 fd_change (EV_P_ int fd, int flags)
1559 {
1560 unsigned char reify = anfds [fd].reify;
1561 anfds [fd].reify |= flags;
1562
1563 if (expect_true (!reify))
1564 {
1565 ++fdchangecnt;
1566 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1567 fdchanges [fdchangecnt - 1] = fd;
1568 }
1569 }
1570
1571 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1572 inline_speed void ecb_cold
1573 fd_kill (EV_P_ int fd)
1574 {
1575 ev_io *w;
1576
1577 while ((w = (ev_io *)anfds [fd].head))
1578 {
1579 ev_io_stop (EV_A_ w);
1580 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1581 }
1582 }
1583
1584 /* check whether the given fd is actually valid, for error recovery */
1585 inline_size int ecb_cold
1586 fd_valid (int fd)
1587 {
1588 #ifdef _WIN32
1589 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1590 #else
1591 return fcntl (fd, F_GETFD) != -1;
1592 #endif
1593 }
1594
1595 /* called on EBADF to verify fds */
1596 static void noinline ecb_cold
1597 fd_ebadf (EV_P)
1598 {
1599 int fd;
1600
1601 for (fd = 0; fd < anfdmax; ++fd)
1602 if (anfds [fd].events)
1603 if (!fd_valid (fd) && errno == EBADF)
1604 fd_kill (EV_A_ fd);
1605 }
1606
1607 /* called on ENOMEM in select/poll to kill some fds and retry */
1608 static void noinline ecb_cold
1609 fd_enomem (EV_P)
1610 {
1611 int fd;
1612
1613 for (fd = anfdmax; fd--; )
1614 if (anfds [fd].events)
1615 {
1616 fd_kill (EV_A_ fd);
1617 break;
1618 }
1619 }
1620
1621 /* usually called after fork if backend needs to re-arm all fds from scratch */
1622 static void noinline
1623 fd_rearm_all (EV_P)
1624 {
1625 int fd;
1626
1627 for (fd = 0; fd < anfdmax; ++fd)
1628 if (anfds [fd].events)
1629 {
1630 anfds [fd].events = 0;
1631 anfds [fd].emask = 0;
1632 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1633 }
1634 }
1635
1636 /* used to prepare libev internal fd's */
1637 /* this is not fork-safe */
1638 inline_speed void
1639 fd_intern (int fd)
1640 {
1641 #ifdef _WIN32
1642 unsigned long arg = 1;
1643 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1644 #else
1645 fcntl (fd, F_SETFD, FD_CLOEXEC);
1646 fcntl (fd, F_SETFL, O_NONBLOCK);
1647 #endif
1648 }
1649
1650 /*****************************************************************************/
1651
1652 /*
1653 * the heap functions want a real array index. array index 0 is guaranteed to not
1654 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1655 * the branching factor of the d-tree.
1656 */
1657
1658 /*
1659 * at the moment we allow libev the luxury of two heaps,
1660 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1661 * which is more cache-efficient.
1662 * the difference is about 5% with 50000+ watchers.
1663 */
1664 #if EV_USE_4HEAP
1665
1666 #define DHEAP 4
1667 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1668 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1669 #define UPHEAP_DONE(p,k) ((p) == (k))
1670
1671 /* away from the root */
1672 inline_speed void
1673 downheap (ANHE *heap, int N, int k)
1674 {
1675 ANHE he = heap [k];
1676 ANHE *E = heap + N + HEAP0;
1677
1678 for (;;)
1679 {
1680 ev_tstamp minat;
1681 ANHE *minpos;
1682 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1683
1684 /* find minimum child */
1685 if (expect_true (pos + DHEAP - 1 < E))
1686 {
1687 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1688 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1689 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1690 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1691 }
1692 else if (pos < E)
1693 {
1694 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1695 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1696 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1697 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1698 }
1699 else
1700 break;
1701
1702 if (ANHE_at (he) <= minat)
1703 break;
1704
1705 heap [k] = *minpos;
1706 ev_active (ANHE_w (*minpos)) = k;
1707
1708 k = minpos - heap;
1709 }
1710
1711 heap [k] = he;
1712 ev_active (ANHE_w (he)) = k;
1713 }
1714
1715 #else /* 4HEAP */
1716
1717 #define HEAP0 1
1718 #define HPARENT(k) ((k) >> 1)
1719 #define UPHEAP_DONE(p,k) (!(p))
1720
1721 /* away from the root */
1722 inline_speed void
1723 downheap (ANHE *heap, int N, int k)
1724 {
1725 ANHE he = heap [k];
1726
1727 for (;;)
1728 {
1729 int c = k << 1;
1730
1731 if (c >= N + HEAP0)
1732 break;
1733
1734 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1735 ? 1 : 0;
1736
1737 if (ANHE_at (he) <= ANHE_at (heap [c]))
1738 break;
1739
1740 heap [k] = heap [c];
1741 ev_active (ANHE_w (heap [k])) = k;
1742
1743 k = c;
1744 }
1745
1746 heap [k] = he;
1747 ev_active (ANHE_w (he)) = k;
1748 }
1749 #endif
1750
1751 /* towards the root */
1752 inline_speed void
1753 upheap (ANHE *heap, int k)
1754 {
1755 ANHE he = heap [k];
1756
1757 for (;;)
1758 {
1759 int p = HPARENT (k);
1760
1761 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1762 break;
1763
1764 heap [k] = heap [p];
1765 ev_active (ANHE_w (heap [k])) = k;
1766 k = p;
1767 }
1768
1769 heap [k] = he;
1770 ev_active (ANHE_w (he)) = k;
1771 }
1772
1773 /* move an element suitably so it is in a correct place */
1774 inline_size void
1775 adjustheap (ANHE *heap, int N, int k)
1776 {
1777 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1778 upheap (heap, k);
1779 else
1780 downheap (heap, N, k);
1781 }
1782
1783 /* rebuild the heap: this function is used only once and executed rarely */
1784 inline_size void
1785 reheap (ANHE *heap, int N)
1786 {
1787 int i;
1788
1789 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1790 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1791 for (i = 0; i < N; ++i)
1792 upheap (heap, i + HEAP0);
1793 }
1794
1795 /*****************************************************************************/
1796
1797 /* associate signal watchers to a signal signal */
1798 typedef struct
1799 {
1800 EV_ATOMIC_T pending;
1801 #if EV_MULTIPLICITY
1802 EV_P;
1803 #endif
1804 WL head;
1805 } ANSIG;
1806
1807 static ANSIG signals [EV_NSIG - 1];
1808
1809 /*****************************************************************************/
1810
1811 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1812
1813 static void noinline ecb_cold
1814 evpipe_init (EV_P)
1815 {
1816 if (!ev_is_active (&pipe_w))
1817 {
1818 # if EV_USE_EVENTFD
1819 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1820 if (evfd < 0 && errno == EINVAL)
1821 evfd = eventfd (0, 0);
1822
1823 if (evfd >= 0)
1824 {
1825 evpipe [0] = -1;
1826 fd_intern (evfd); /* doing it twice doesn't hurt */
1827 ev_io_set (&pipe_w, evfd, EV_READ);
1828 }
1829 else
1830 # endif
1831 {
1832 while (pipe (evpipe))
1833 ev_syserr ("(libev) error creating signal/async pipe");
1834
1835 fd_intern (evpipe [0]);
1836 fd_intern (evpipe [1]);
1837 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1838 }
1839
1840 ev_io_start (EV_A_ &pipe_w);
1841 ev_unref (EV_A); /* watcher should not keep loop alive */
1842 }
1843 }
1844
1845 inline_speed void
1846 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1847 {
1848 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1849
1850 if (expect_true (*flag))
1851 return;
1852
1853 *flag = 1;
1854 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1855
1856 pipe_write_skipped = 1;
1857
1858 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1859
1860 if (pipe_write_wanted)
1861 {
1862 int old_errno;
1863
1864 pipe_write_skipped = 0;
1865 ECB_MEMORY_FENCE_RELEASE;
1866
1867 old_errno = errno; /* save errno because write will clobber it */
1868
1869 #if EV_USE_EVENTFD
1870 if (evfd >= 0)
1871 {
1872 uint64_t counter = 1;
1873 write (evfd, &counter, sizeof (uint64_t));
1874 }
1875 else
1876 #endif
1877 {
1878 #ifdef _WIN32
1879 WSABUF buf;
1880 DWORD sent;
1881 buf.buf = &buf;
1882 buf.len = 1;
1883 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1884 #else
1885 write (evpipe [1], &(evpipe [1]), 1);
1886 #endif
1887 }
1888
1889 errno = old_errno;
1890 }
1891 }
1892
1893 /* called whenever the libev signal pipe */
1894 /* got some events (signal, async) */
1895 static void
1896 pipecb (EV_P_ ev_io *iow, int revents)
1897 {
1898 int i;
1899
1900 if (revents & EV_READ)
1901 {
1902 #if EV_USE_EVENTFD
1903 if (evfd >= 0)
1904 {
1905 uint64_t counter;
1906 read (evfd, &counter, sizeof (uint64_t));
1907 }
1908 else
1909 #endif
1910 {
1911 char dummy[4];
1912 #ifdef _WIN32
1913 WSABUF buf;
1914 DWORD recvd;
1915 DWORD flags = 0;
1916 buf.buf = dummy;
1917 buf.len = sizeof (dummy);
1918 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1919 #else
1920 read (evpipe [0], &dummy, sizeof (dummy));
1921 #endif
1922 }
1923 }
1924
1925 pipe_write_skipped = 0;
1926
1927 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1928
1929 #if EV_SIGNAL_ENABLE
1930 if (sig_pending)
1931 {
1932 sig_pending = 0;
1933
1934 ECB_MEMORY_FENCE;
1935
1936 for (i = EV_NSIG - 1; i--; )
1937 if (expect_false (signals [i].pending))
1938 ev_feed_signal_event (EV_A_ i + 1);
1939 }
1940 #endif
1941
1942 #if EV_ASYNC_ENABLE
1943 if (async_pending)
1944 {
1945 async_pending = 0;
1946
1947 ECB_MEMORY_FENCE;
1948
1949 for (i = asynccnt; i--; )
1950 if (asyncs [i]->sent)
1951 {
1952 asyncs [i]->sent = 0;
1953 ECB_MEMORY_FENCE_RELEASE;
1954 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1955 }
1956 }
1957 #endif
1958 }
1959
1960 /*****************************************************************************/
1961
1962 void
1963 ev_feed_signal (int signum) EV_THROW
1964 {
1965 #if EV_MULTIPLICITY
1966 EV_P = signals [signum - 1].loop;
1967
1968 if (!EV_A)
1969 return;
1970 #endif
1971
1972 if (!ev_active (&pipe_w))
1973 return;
1974
1975 signals [signum - 1].pending = 1;
1976 evpipe_write (EV_A_ &sig_pending);
1977 }
1978
1979 static void
1980 ev_sighandler (int signum)
1981 {
1982 #ifdef _WIN32
1983 signal (signum, ev_sighandler);
1984 #endif
1985
1986 ev_feed_signal (signum);
1987 }
1988
1989 void noinline
1990 ev_feed_signal_event (EV_P_ int signum) EV_THROW
1991 {
1992 WL w;
1993
1994 if (expect_false (signum <= 0 || signum > EV_NSIG))
1995 return;
1996
1997 --signum;
1998
1999 #if EV_MULTIPLICITY
2000 /* it is permissible to try to feed a signal to the wrong loop */
2001 /* or, likely more useful, feeding a signal nobody is waiting for */
2002
2003 if (expect_false (signals [signum].loop != EV_A))
2004 return;
2005 #endif
2006
2007 signals [signum].pending = 0;
2008 MEMORY_FENCE_RELEASE;
2009
2010 for (w = signals [signum].head; w; w = w->next)
2011 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2012 }
2013
2014 #if EV_USE_SIGNALFD
2015 static void
2016 sigfdcb (EV_P_ ev_io *iow, int revents)
2017 {
2018 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2019
2020 for (;;)
2021 {
2022 ssize_t res = read (sigfd, si, sizeof (si));
2023
2024 /* not ISO-C, as res might be -1, but works with SuS */
2025 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2026 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2027
2028 if (res < (ssize_t)sizeof (si))
2029 break;
2030 }
2031 }
2032 #endif
2033
2034 #endif
2035
2036 /*****************************************************************************/
2037
2038 #if EV_CHILD_ENABLE
2039 static WL childs [EV_PID_HASHSIZE];
2040
2041 static ev_signal childev;
2042
2043 #ifndef WIFCONTINUED
2044 # define WIFCONTINUED(status) 0
2045 #endif
2046
2047 /* handle a single child status event */
2048 inline_speed void
2049 child_reap (EV_P_ int chain, int pid, int status)
2050 {
2051 ev_child *w;
2052 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2053
2054 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2055 {
2056 if ((w->pid == pid || !w->pid)
2057 && (!traced || (w->flags & 1)))
2058 {
2059 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2060 w->rpid = pid;
2061 w->rstatus = status;
2062 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2063 }
2064 }
2065 }
2066
2067 #ifndef WCONTINUED
2068 # define WCONTINUED 0
2069 #endif
2070
2071 /* called on sigchld etc., calls waitpid */
2072 static void
2073 childcb (EV_P_ ev_signal *sw, int revents)
2074 {
2075 int pid, status;
2076
2077 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2078 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2079 if (!WCONTINUED
2080 || errno != EINVAL
2081 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2082 return;
2083
2084 /* make sure we are called again until all children have been reaped */
2085 /* we need to do it this way so that the callback gets called before we continue */
2086 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2087
2088 child_reap (EV_A_ pid, pid, status);
2089 if ((EV_PID_HASHSIZE) > 1)
2090 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2091 }
2092
2093 #endif
2094
2095 /*****************************************************************************/
2096
2097 #if EV_USE_IOCP
2098 # include "ev_iocp.c"
2099 #endif
2100 #if EV_USE_PORT
2101 # include "ev_port.c"
2102 #endif
2103 #if EV_USE_KQUEUE
2104 # include "ev_kqueue.c"
2105 #endif
2106 #if EV_USE_EPOLL
2107 # include "ev_epoll.c"
2108 #endif
2109 #if EV_USE_POLL
2110 # include "ev_poll.c"
2111 #endif
2112 #if EV_USE_SELECT
2113 # include "ev_select.c"
2114 #endif
2115
2116 int ecb_cold
2117 ev_version_major (void) EV_THROW
2118 {
2119 return EV_VERSION_MAJOR;
2120 }
2121
2122 int ecb_cold
2123 ev_version_minor (void) EV_THROW
2124 {
2125 return EV_VERSION_MINOR;
2126 }
2127
2128 /* return true if we are running with elevated privileges and should ignore env variables */
2129 int inline_size ecb_cold
2130 enable_secure (void)
2131 {
2132 #ifdef _WIN32
2133 return 0;
2134 #else
2135 return getuid () != geteuid ()
2136 || getgid () != getegid ();
2137 #endif
2138 }
2139
2140 unsigned int ecb_cold
2141 ev_supported_backends (void) EV_THROW
2142 {
2143 unsigned int flags = 0;
2144
2145 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2146 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2147 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2148 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2149 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2150
2151 return flags;
2152 }
2153
2154 unsigned int ecb_cold
2155 ev_recommended_backends (void) EV_THROW
2156 {
2157 unsigned int flags = ev_supported_backends ();
2158
2159 #ifndef __NetBSD__
2160 /* kqueue is borked on everything but netbsd apparently */
2161 /* it usually doesn't work correctly on anything but sockets and pipes */
2162 flags &= ~EVBACKEND_KQUEUE;
2163 #endif
2164 #ifdef __APPLE__
2165 /* only select works correctly on that "unix-certified" platform */
2166 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2167 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2168 #endif
2169 #ifdef __FreeBSD__
2170 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2171 #endif
2172
2173 return flags;
2174 }
2175
2176 unsigned int ecb_cold
2177 ev_embeddable_backends (void) EV_THROW
2178 {
2179 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2180
2181 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2182 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2183 flags &= ~EVBACKEND_EPOLL;
2184
2185 return flags;
2186 }
2187
2188 unsigned int
2189 ev_backend (EV_P) EV_THROW
2190 {
2191 return backend;
2192 }
2193
2194 #if EV_FEATURE_API
2195 unsigned int
2196 ev_iteration (EV_P) EV_THROW
2197 {
2198 return loop_count;
2199 }
2200
2201 unsigned int
2202 ev_depth (EV_P) EV_THROW
2203 {
2204 return loop_depth;
2205 }
2206
2207 void
2208 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2209 {
2210 io_blocktime = interval;
2211 }
2212
2213 void
2214 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2215 {
2216 timeout_blocktime = interval;
2217 }
2218
2219 void
2220 ev_set_userdata (EV_P_ void *data) EV_THROW
2221 {
2222 userdata = data;
2223 }
2224
2225 void *
2226 ev_userdata (EV_P) EV_THROW
2227 {
2228 return userdata;
2229 }
2230
2231 void
2232 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2233 {
2234 invoke_cb = invoke_pending_cb;
2235 }
2236
2237 void
2238 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2239 {
2240 release_cb = release;
2241 acquire_cb = acquire;
2242 }
2243 #endif
2244
2245 /* initialise a loop structure, must be zero-initialised */
2246 static void noinline ecb_cold
2247 loop_init (EV_P_ unsigned int flags) EV_THROW
2248 {
2249 if (!backend)
2250 {
2251 origflags = flags;
2252
2253 #if EV_USE_REALTIME
2254 if (!have_realtime)
2255 {
2256 struct timespec ts;
2257
2258 if (!clock_gettime (CLOCK_REALTIME, &ts))
2259 have_realtime = 1;
2260 }
2261 #endif
2262
2263 #if EV_USE_MONOTONIC
2264 if (!have_monotonic)
2265 {
2266 struct timespec ts;
2267
2268 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2269 have_monotonic = 1;
2270 }
2271 #endif
2272
2273 /* pid check not overridable via env */
2274 #ifndef _WIN32
2275 if (flags & EVFLAG_FORKCHECK)
2276 curpid = getpid ();
2277 #endif
2278
2279 if (!(flags & EVFLAG_NOENV)
2280 && !enable_secure ()
2281 && getenv ("LIBEV_FLAGS"))
2282 flags = atoi (getenv ("LIBEV_FLAGS"));
2283
2284 ev_rt_now = ev_time ();
2285 mn_now = get_clock ();
2286 now_floor = mn_now;
2287 rtmn_diff = ev_rt_now - mn_now;
2288 #if EV_FEATURE_API
2289 invoke_cb = ev_invoke_pending;
2290 #endif
2291
2292 io_blocktime = 0.;
2293 timeout_blocktime = 0.;
2294 backend = 0;
2295 backend_fd = -1;
2296 sig_pending = 0;
2297 #if EV_ASYNC_ENABLE
2298 async_pending = 0;
2299 #endif
2300 pipe_write_skipped = 0;
2301 pipe_write_wanted = 0;
2302 #if EV_USE_INOTIFY
2303 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2304 #endif
2305 #if EV_USE_SIGNALFD
2306 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2307 #endif
2308
2309 if (!(flags & EVBACKEND_MASK))
2310 flags |= ev_recommended_backends ();
2311
2312 #if EV_USE_IOCP
2313 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2314 #endif
2315 #if EV_USE_PORT
2316 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2317 #endif
2318 #if EV_USE_KQUEUE
2319 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2320 #endif
2321 #if EV_USE_EPOLL
2322 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2323 #endif
2324 #if EV_USE_POLL
2325 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2326 #endif
2327 #if EV_USE_SELECT
2328 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2329 #endif
2330
2331 ev_prepare_init (&pending_w, pendingcb);
2332
2333 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2334 ev_init (&pipe_w, pipecb);
2335 ev_set_priority (&pipe_w, EV_MAXPRI);
2336 #endif
2337 }
2338 }
2339
2340 /* free up a loop structure */
2341 void ecb_cold
2342 ev_loop_destroy (EV_P)
2343 {
2344 int i;
2345
2346 #if EV_MULTIPLICITY
2347 /* mimic free (0) */
2348 if (!EV_A)
2349 return;
2350 #endif
2351
2352 #if EV_CLEANUP_ENABLE
2353 /* queue cleanup watchers (and execute them) */
2354 if (expect_false (cleanupcnt))
2355 {
2356 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2357 EV_INVOKE_PENDING;
2358 }
2359 #endif
2360
2361 #if EV_CHILD_ENABLE
2362 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2363 {
2364 ev_ref (EV_A); /* child watcher */
2365 ev_signal_stop (EV_A_ &childev);
2366 }
2367 #endif
2368
2369 if (ev_is_active (&pipe_w))
2370 {
2371 /*ev_ref (EV_A);*/
2372 /*ev_io_stop (EV_A_ &pipe_w);*/
2373
2374 #if EV_USE_EVENTFD
2375 if (evfd >= 0)
2376 close (evfd);
2377 #endif
2378
2379 if (evpipe [0] >= 0)
2380 {
2381 EV_WIN32_CLOSE_FD (evpipe [0]);
2382 EV_WIN32_CLOSE_FD (evpipe [1]);
2383 }
2384 }
2385
2386 #if EV_USE_SIGNALFD
2387 if (ev_is_active (&sigfd_w))
2388 close (sigfd);
2389 #endif
2390
2391 #if EV_USE_INOTIFY
2392 if (fs_fd >= 0)
2393 close (fs_fd);
2394 #endif
2395
2396 if (backend_fd >= 0)
2397 close (backend_fd);
2398
2399 #if EV_USE_IOCP
2400 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2401 #endif
2402 #if EV_USE_PORT
2403 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2404 #endif
2405 #if EV_USE_KQUEUE
2406 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2407 #endif
2408 #if EV_USE_EPOLL
2409 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2410 #endif
2411 #if EV_USE_POLL
2412 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2413 #endif
2414 #if EV_USE_SELECT
2415 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2416 #endif
2417
2418 for (i = NUMPRI; i--; )
2419 {
2420 array_free (pending, [i]);
2421 #if EV_IDLE_ENABLE
2422 array_free (idle, [i]);
2423 #endif
2424 }
2425
2426 ev_free (anfds); anfds = 0; anfdmax = 0;
2427
2428 /* have to use the microsoft-never-gets-it-right macro */
2429 array_free (rfeed, EMPTY);
2430 array_free (fdchange, EMPTY);
2431 array_free (timer, EMPTY);
2432 #if EV_PERIODIC_ENABLE
2433 array_free (periodic, EMPTY);
2434 #endif
2435 #if EV_FORK_ENABLE
2436 array_free (fork, EMPTY);
2437 #endif
2438 #if EV_CLEANUP_ENABLE
2439 array_free (cleanup, EMPTY);
2440 #endif
2441 array_free (prepare, EMPTY);
2442 array_free (check, EMPTY);
2443 #if EV_ASYNC_ENABLE
2444 array_free (async, EMPTY);
2445 #endif
2446
2447 backend = 0;
2448
2449 #if EV_MULTIPLICITY
2450 if (ev_is_default_loop (EV_A))
2451 #endif
2452 ev_default_loop_ptr = 0;
2453 #if EV_MULTIPLICITY
2454 else
2455 ev_free (EV_A);
2456 #endif
2457 }
2458
2459 #if EV_USE_INOTIFY
2460 inline_size void infy_fork (EV_P);
2461 #endif
2462
2463 inline_size void
2464 loop_fork (EV_P)
2465 {
2466 #if EV_USE_PORT
2467 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2468 #endif
2469 #if EV_USE_KQUEUE
2470 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2471 #endif
2472 #if EV_USE_EPOLL
2473 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2474 #endif
2475 #if EV_USE_INOTIFY
2476 infy_fork (EV_A);
2477 #endif
2478
2479 if (ev_is_active (&pipe_w))
2480 {
2481 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2482
2483 ev_ref (EV_A);
2484 ev_io_stop (EV_A_ &pipe_w);
2485
2486 #if EV_USE_EVENTFD
2487 if (evfd >= 0)
2488 close (evfd);
2489 #endif
2490
2491 if (evpipe [0] >= 0)
2492 {
2493 EV_WIN32_CLOSE_FD (evpipe [0]);
2494 EV_WIN32_CLOSE_FD (evpipe [1]);
2495 }
2496
2497 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2498 evpipe_init (EV_A);
2499 /* now iterate over everything, in case we missed something */
2500 pipecb (EV_A_ &pipe_w, EV_READ);
2501 #endif
2502 }
2503
2504 postfork = 0;
2505 }
2506
2507 #if EV_MULTIPLICITY
2508
2509 struct ev_loop * ecb_cold
2510 ev_loop_new (unsigned int flags) EV_THROW
2511 {
2512 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2513
2514 memset (EV_A, 0, sizeof (struct ev_loop));
2515 loop_init (EV_A_ flags);
2516
2517 if (ev_backend (EV_A))
2518 return EV_A;
2519
2520 ev_free (EV_A);
2521 return 0;
2522 }
2523
2524 #endif /* multiplicity */
2525
2526 #if EV_VERIFY
2527 static void noinline ecb_cold
2528 verify_watcher (EV_P_ W w)
2529 {
2530 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2531
2532 if (w->pending)
2533 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2534 }
2535
2536 static void noinline ecb_cold
2537 verify_heap (EV_P_ ANHE *heap, int N)
2538 {
2539 int i;
2540
2541 for (i = HEAP0; i < N + HEAP0; ++i)
2542 {
2543 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2544 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2545 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2546
2547 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2548 }
2549 }
2550
2551 static void noinline ecb_cold
2552 array_verify (EV_P_ W *ws, int cnt)
2553 {
2554 while (cnt--)
2555 {
2556 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2557 verify_watcher (EV_A_ ws [cnt]);
2558 }
2559 }
2560 #endif
2561
2562 #if EV_FEATURE_API
2563 void ecb_cold
2564 ev_verify (EV_P) EV_THROW
2565 {
2566 #if EV_VERIFY
2567 int i;
2568 WL w, w2;
2569
2570 assert (activecnt >= -1);
2571
2572 assert (fdchangemax >= fdchangecnt);
2573 for (i = 0; i < fdchangecnt; ++i)
2574 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2575
2576 assert (anfdmax >= 0);
2577 for (i = 0; i < anfdmax; ++i)
2578 {
2579 int j = 0;
2580
2581 for (w = w2 = anfds [i].head; w; w = w->next)
2582 {
2583 verify_watcher (EV_A_ (W)w);
2584
2585 if (j++ & 1)
2586 {
2587 assert (("libev: io watcher list contains a loop", w != w2));
2588 w2 = w2->next;
2589 }
2590
2591 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2592 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2593 }
2594 }
2595
2596 assert (timermax >= timercnt);
2597 verify_heap (EV_A_ timers, timercnt);
2598
2599 #if EV_PERIODIC_ENABLE
2600 assert (periodicmax >= periodiccnt);
2601 verify_heap (EV_A_ periodics, periodiccnt);
2602 #endif
2603
2604 for (i = NUMPRI; i--; )
2605 {
2606 assert (pendingmax [i] >= pendingcnt [i]);
2607 #if EV_IDLE_ENABLE
2608 assert (idleall >= 0);
2609 assert (idlemax [i] >= idlecnt [i]);
2610 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2611 #endif
2612 }
2613
2614 #if EV_FORK_ENABLE
2615 assert (forkmax >= forkcnt);
2616 array_verify (EV_A_ (W *)forks, forkcnt);
2617 #endif
2618
2619 #if EV_CLEANUP_ENABLE
2620 assert (cleanupmax >= cleanupcnt);
2621 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2622 #endif
2623
2624 #if EV_ASYNC_ENABLE
2625 assert (asyncmax >= asynccnt);
2626 array_verify (EV_A_ (W *)asyncs, asynccnt);
2627 #endif
2628
2629 #if EV_PREPARE_ENABLE
2630 assert (preparemax >= preparecnt);
2631 array_verify (EV_A_ (W *)prepares, preparecnt);
2632 #endif
2633
2634 #if EV_CHECK_ENABLE
2635 assert (checkmax >= checkcnt);
2636 array_verify (EV_A_ (W *)checks, checkcnt);
2637 #endif
2638
2639 # if 0
2640 #if EV_CHILD_ENABLE
2641 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2642 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2643 #endif
2644 # endif
2645 #endif
2646 }
2647 #endif
2648
2649 #if EV_MULTIPLICITY
2650 struct ev_loop * ecb_cold
2651 #else
2652 int
2653 #endif
2654 ev_default_loop (unsigned int flags) EV_THROW
2655 {
2656 if (!ev_default_loop_ptr)
2657 {
2658 #if EV_MULTIPLICITY
2659 EV_P = ev_default_loop_ptr = &default_loop_struct;
2660 #else
2661 ev_default_loop_ptr = 1;
2662 #endif
2663
2664 loop_init (EV_A_ flags);
2665
2666 if (ev_backend (EV_A))
2667 {
2668 #if EV_CHILD_ENABLE
2669 ev_signal_init (&childev, childcb, SIGCHLD);
2670 ev_set_priority (&childev, EV_MAXPRI);
2671 ev_signal_start (EV_A_ &childev);
2672 ev_unref (EV_A); /* child watcher should not keep loop alive */
2673 #endif
2674 }
2675 else
2676 ev_default_loop_ptr = 0;
2677 }
2678
2679 return ev_default_loop_ptr;
2680 }
2681
2682 void
2683 ev_loop_fork (EV_P) EV_THROW
2684 {
2685 postfork = 1; /* must be in line with ev_default_fork */
2686 }
2687
2688 /*****************************************************************************/
2689
2690 void
2691 ev_invoke (EV_P_ void *w, int revents)
2692 {
2693 EV_CB_INVOKE ((W)w, revents);
2694 }
2695
2696 unsigned int
2697 ev_pending_count (EV_P) EV_THROW
2698 {
2699 int pri;
2700 unsigned int count = 0;
2701
2702 for (pri = NUMPRI; pri--; )
2703 count += pendingcnt [pri];
2704
2705 return count;
2706 }
2707
2708 void noinline
2709 ev_invoke_pending (EV_P)
2710 {
2711 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
2712 while (pendingcnt [pendingpri])
2713 {
2714 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2715
2716 p->w->pending = 0;
2717 EV_CB_INVOKE (p->w, p->events);
2718 EV_FREQUENT_CHECK;
2719 }
2720 }
2721
2722 #if EV_IDLE_ENABLE
2723 /* make idle watchers pending. this handles the "call-idle */
2724 /* only when higher priorities are idle" logic */
2725 inline_size void
2726 idle_reify (EV_P)
2727 {
2728 if (expect_false (idleall))
2729 {
2730 int pri;
2731
2732 for (pri = NUMPRI; pri--; )
2733 {
2734 if (pendingcnt [pri])
2735 break;
2736
2737 if (idlecnt [pri])
2738 {
2739 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2740 break;
2741 }
2742 }
2743 }
2744 }
2745 #endif
2746
2747 /* make timers pending */
2748 inline_size void
2749 timers_reify (EV_P)
2750 {
2751 EV_FREQUENT_CHECK;
2752
2753 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2754 {
2755 do
2756 {
2757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2758
2759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2760
2761 /* first reschedule or stop timer */
2762 if (w->repeat)
2763 {
2764 ev_at (w) += w->repeat;
2765 if (ev_at (w) < mn_now)
2766 ev_at (w) = mn_now;
2767
2768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2769
2770 ANHE_at_cache (timers [HEAP0]);
2771 downheap (timers, timercnt, HEAP0);
2772 }
2773 else
2774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2775
2776 EV_FREQUENT_CHECK;
2777 feed_reverse (EV_A_ (W)w);
2778 }
2779 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2780
2781 feed_reverse_done (EV_A_ EV_TIMER);
2782 }
2783 }
2784
2785 #if EV_PERIODIC_ENABLE
2786
2787 static void noinline
2788 periodic_recalc (EV_P_ ev_periodic *w)
2789 {
2790 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2791 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2792
2793 /* the above almost always errs on the low side */
2794 while (at <= ev_rt_now)
2795 {
2796 ev_tstamp nat = at + w->interval;
2797
2798 /* when resolution fails us, we use ev_rt_now */
2799 if (expect_false (nat == at))
2800 {
2801 at = ev_rt_now;
2802 break;
2803 }
2804
2805 at = nat;
2806 }
2807
2808 ev_at (w) = at;
2809 }
2810
2811 /* make periodics pending */
2812 inline_size void
2813 periodics_reify (EV_P)
2814 {
2815 EV_FREQUENT_CHECK;
2816
2817 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2818 {
2819 do
2820 {
2821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2822
2823 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2824
2825 /* first reschedule or stop timer */
2826 if (w->reschedule_cb)
2827 {
2828 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2829
2830 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2831
2832 ANHE_at_cache (periodics [HEAP0]);
2833 downheap (periodics, periodiccnt, HEAP0);
2834 }
2835 else if (w->interval)
2836 {
2837 periodic_recalc (EV_A_ w);
2838 ANHE_at_cache (periodics [HEAP0]);
2839 downheap (periodics, periodiccnt, HEAP0);
2840 }
2841 else
2842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2843
2844 EV_FREQUENT_CHECK;
2845 feed_reverse (EV_A_ (W)w);
2846 }
2847 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2848
2849 feed_reverse_done (EV_A_ EV_PERIODIC);
2850 }
2851 }
2852
2853 /* simply recalculate all periodics */
2854 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2855 static void noinline ecb_cold
2856 periodics_reschedule (EV_P)
2857 {
2858 int i;
2859
2860 /* adjust periodics after time jump */
2861 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2862 {
2863 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2864
2865 if (w->reschedule_cb)
2866 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2867 else if (w->interval)
2868 periodic_recalc (EV_A_ w);
2869
2870 ANHE_at_cache (periodics [i]);
2871 }
2872
2873 reheap (periodics, periodiccnt);
2874 }
2875 #endif
2876
2877 /* adjust all timers by a given offset */
2878 static void noinline ecb_cold
2879 timers_reschedule (EV_P_ ev_tstamp adjust)
2880 {
2881 int i;
2882
2883 for (i = 0; i < timercnt; ++i)
2884 {
2885 ANHE *he = timers + i + HEAP0;
2886 ANHE_w (*he)->at += adjust;
2887 ANHE_at_cache (*he);
2888 }
2889 }
2890
2891 /* fetch new monotonic and realtime times from the kernel */
2892 /* also detect if there was a timejump, and act accordingly */
2893 inline_speed void
2894 time_update (EV_P_ ev_tstamp max_block)
2895 {
2896 #if EV_USE_MONOTONIC
2897 if (expect_true (have_monotonic))
2898 {
2899 int i;
2900 ev_tstamp odiff = rtmn_diff;
2901
2902 mn_now = get_clock ();
2903
2904 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2905 /* interpolate in the meantime */
2906 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2907 {
2908 ev_rt_now = rtmn_diff + mn_now;
2909 return;
2910 }
2911
2912 now_floor = mn_now;
2913 ev_rt_now = ev_time ();
2914
2915 /* loop a few times, before making important decisions.
2916 * on the choice of "4": one iteration isn't enough,
2917 * in case we get preempted during the calls to
2918 * ev_time and get_clock. a second call is almost guaranteed
2919 * to succeed in that case, though. and looping a few more times
2920 * doesn't hurt either as we only do this on time-jumps or
2921 * in the unlikely event of having been preempted here.
2922 */
2923 for (i = 4; --i; )
2924 {
2925 ev_tstamp diff;
2926 rtmn_diff = ev_rt_now - mn_now;
2927
2928 diff = odiff - rtmn_diff;
2929
2930 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2931 return; /* all is well */
2932
2933 ev_rt_now = ev_time ();
2934 mn_now = get_clock ();
2935 now_floor = mn_now;
2936 }
2937
2938 /* no timer adjustment, as the monotonic clock doesn't jump */
2939 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2940 # if EV_PERIODIC_ENABLE
2941 periodics_reschedule (EV_A);
2942 # endif
2943 }
2944 else
2945 #endif
2946 {
2947 ev_rt_now = ev_time ();
2948
2949 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2950 {
2951 /* adjust timers. this is easy, as the offset is the same for all of them */
2952 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2953 #if EV_PERIODIC_ENABLE
2954 periodics_reschedule (EV_A);
2955 #endif
2956 }
2957
2958 mn_now = ev_rt_now;
2959 }
2960 }
2961
2962 int
2963 ev_run (EV_P_ int flags)
2964 {
2965 #if EV_FEATURE_API
2966 ++loop_depth;
2967 #endif
2968
2969 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2970
2971 loop_done = EVBREAK_CANCEL;
2972
2973 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2974
2975 do
2976 {
2977 #if EV_VERIFY >= 2
2978 ev_verify (EV_A);
2979 #endif
2980
2981 #ifndef _WIN32
2982 if (expect_false (curpid)) /* penalise the forking check even more */
2983 if (expect_false (getpid () != curpid))
2984 {
2985 curpid = getpid ();
2986 postfork = 1;
2987 }
2988 #endif
2989
2990 #if EV_FORK_ENABLE
2991 /* we might have forked, so queue fork handlers */
2992 if (expect_false (postfork))
2993 if (forkcnt)
2994 {
2995 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2996 EV_INVOKE_PENDING;
2997 }
2998 #endif
2999
3000 #if EV_PREPARE_ENABLE
3001 /* queue prepare watchers (and execute them) */
3002 if (expect_false (preparecnt))
3003 {
3004 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3005 EV_INVOKE_PENDING;
3006 }
3007 #endif
3008
3009 if (expect_false (loop_done))
3010 break;
3011
3012 /* we might have forked, so reify kernel state if necessary */
3013 if (expect_false (postfork))
3014 loop_fork (EV_A);
3015
3016 /* update fd-related kernel structures */
3017 fd_reify (EV_A);
3018
3019 /* calculate blocking time */
3020 {
3021 ev_tstamp waittime = 0.;
3022 ev_tstamp sleeptime = 0.;
3023
3024 /* remember old timestamp for io_blocktime calculation */
3025 ev_tstamp prev_mn_now = mn_now;
3026
3027 /* update time to cancel out callback processing overhead */
3028 time_update (EV_A_ 1e100);
3029
3030 /* from now on, we want a pipe-wake-up */
3031 pipe_write_wanted = 1;
3032
3033 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3034
3035 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3036 {
3037 waittime = MAX_BLOCKTIME;
3038
3039 if (timercnt)
3040 {
3041 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3042 if (waittime > to) waittime = to;
3043 }
3044
3045 #if EV_PERIODIC_ENABLE
3046 if (periodiccnt)
3047 {
3048 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3049 if (waittime > to) waittime = to;
3050 }
3051 #endif
3052
3053 /* don't let timeouts decrease the waittime below timeout_blocktime */
3054 if (expect_false (waittime < timeout_blocktime))
3055 waittime = timeout_blocktime;
3056
3057 /* at this point, we NEED to wait, so we have to ensure */
3058 /* to pass a minimum nonzero value to the backend */
3059 if (expect_false (waittime < backend_mintime))
3060 waittime = backend_mintime;
3061
3062 /* extra check because io_blocktime is commonly 0 */
3063 if (expect_false (io_blocktime))
3064 {
3065 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3066
3067 if (sleeptime > waittime - backend_mintime)
3068 sleeptime = waittime - backend_mintime;
3069
3070 if (expect_true (sleeptime > 0.))
3071 {
3072 ev_sleep (sleeptime);
3073 waittime -= sleeptime;
3074 }
3075 }
3076 }
3077
3078 #if EV_FEATURE_API
3079 ++loop_count;
3080 #endif
3081 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3082 backend_poll (EV_A_ waittime);
3083 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3084
3085 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3086
3087 if (pipe_write_skipped)
3088 {
3089 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092
3093
3094 /* update ev_rt_now, do magic */
3095 time_update (EV_A_ waittime + sleeptime);
3096 }
3097
3098 /* queue pending timers and reschedule them */
3099 timers_reify (EV_A); /* relative timers called last */
3100 #if EV_PERIODIC_ENABLE
3101 periodics_reify (EV_A); /* absolute timers called first */
3102 #endif
3103
3104 #if EV_IDLE_ENABLE
3105 /* queue idle watchers unless other events are pending */
3106 idle_reify (EV_A);
3107 #endif
3108
3109 #if EV_CHECK_ENABLE
3110 /* queue check watchers, to be executed first */
3111 if (expect_false (checkcnt))
3112 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3113 #endif
3114
3115 EV_INVOKE_PENDING;
3116 }
3117 while (expect_true (
3118 activecnt
3119 && !loop_done
3120 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3121 ));
3122
3123 if (loop_done == EVBREAK_ONE)
3124 loop_done = EVBREAK_CANCEL;
3125
3126 #if EV_FEATURE_API
3127 --loop_depth;
3128 #endif
3129
3130 return activecnt;
3131 }
3132
3133 void
3134 ev_break (EV_P_ int how) EV_THROW
3135 {
3136 loop_done = how;
3137 }
3138
3139 void
3140 ev_ref (EV_P) EV_THROW
3141 {
3142 ++activecnt;
3143 }
3144
3145 void
3146 ev_unref (EV_P) EV_THROW
3147 {
3148 --activecnt;
3149 }
3150
3151 void
3152 ev_now_update (EV_P) EV_THROW
3153 {
3154 time_update (EV_A_ 1e100);
3155 }
3156
3157 void
3158 ev_suspend (EV_P) EV_THROW
3159 {
3160 ev_now_update (EV_A);
3161 }
3162
3163 void
3164 ev_resume (EV_P) EV_THROW
3165 {
3166 ev_tstamp mn_prev = mn_now;
3167
3168 ev_now_update (EV_A);
3169 timers_reschedule (EV_A_ mn_now - mn_prev);
3170 #if EV_PERIODIC_ENABLE
3171 /* TODO: really do this? */
3172 periodics_reschedule (EV_A);
3173 #endif
3174 }
3175
3176 /*****************************************************************************/
3177 /* singly-linked list management, used when the expected list length is short */
3178
3179 inline_size void
3180 wlist_add (WL *head, WL elem)
3181 {
3182 elem->next = *head;
3183 *head = elem;
3184 }
3185
3186 inline_size void
3187 wlist_del (WL *head, WL elem)
3188 {
3189 while (*head)
3190 {
3191 if (expect_true (*head == elem))
3192 {
3193 *head = elem->next;
3194 break;
3195 }
3196
3197 head = &(*head)->next;
3198 }
3199 }
3200
3201 /* internal, faster, version of ev_clear_pending */
3202 inline_speed void
3203 clear_pending (EV_P_ W w)
3204 {
3205 if (w->pending)
3206 {
3207 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3208 w->pending = 0;
3209 }
3210 }
3211
3212 int
3213 ev_clear_pending (EV_P_ void *w) EV_THROW
3214 {
3215 W w_ = (W)w;
3216 int pending = w_->pending;
3217
3218 if (expect_true (pending))
3219 {
3220 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3221 p->w = (W)&pending_w;
3222 w_->pending = 0;
3223 return p->events;
3224 }
3225 else
3226 return 0;
3227 }
3228
3229 inline_size void
3230 pri_adjust (EV_P_ W w)
3231 {
3232 int pri = ev_priority (w);
3233 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3234 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3235 ev_set_priority (w, pri);
3236 }
3237
3238 inline_speed void
3239 ev_start (EV_P_ W w, int active)
3240 {
3241 pri_adjust (EV_A_ w);
3242 w->active = active;
3243 ev_ref (EV_A);
3244 }
3245
3246 inline_size void
3247 ev_stop (EV_P_ W w)
3248 {
3249 ev_unref (EV_A);
3250 w->active = 0;
3251 }
3252
3253 /*****************************************************************************/
3254
3255 void noinline
3256 ev_io_start (EV_P_ ev_io *w) EV_THROW
3257 {
3258 int fd = w->fd;
3259
3260 if (expect_false (ev_is_active (w)))
3261 return;
3262
3263 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3264 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3265
3266 EV_FREQUENT_CHECK;
3267
3268 ev_start (EV_A_ (W)w, 1);
3269 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3270 wlist_add (&anfds[fd].head, (WL)w);
3271
3272 /* common bug, apparently */
3273 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3274
3275 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3276 w->events &= ~EV__IOFDSET;
3277
3278 EV_FREQUENT_CHECK;
3279 }
3280
3281 void noinline
3282 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3283 {
3284 clear_pending (EV_A_ (W)w);
3285 if (expect_false (!ev_is_active (w)))
3286 return;
3287
3288 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3289
3290 EV_FREQUENT_CHECK;
3291
3292 wlist_del (&anfds[w->fd].head, (WL)w);
3293 ev_stop (EV_A_ (W)w);
3294
3295 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3296
3297 EV_FREQUENT_CHECK;
3298 }
3299
3300 void noinline
3301 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3302 {
3303 if (expect_false (ev_is_active (w)))
3304 return;
3305
3306 ev_at (w) += mn_now;
3307
3308 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3309
3310 EV_FREQUENT_CHECK;
3311
3312 ++timercnt;
3313 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3314 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3315 ANHE_w (timers [ev_active (w)]) = (WT)w;
3316 ANHE_at_cache (timers [ev_active (w)]);
3317 upheap (timers, ev_active (w));
3318
3319 EV_FREQUENT_CHECK;
3320
3321 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3322 }
3323
3324 void noinline
3325 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3326 {
3327 clear_pending (EV_A_ (W)w);
3328 if (expect_false (!ev_is_active (w)))
3329 return;
3330
3331 EV_FREQUENT_CHECK;
3332
3333 {
3334 int active = ev_active (w);
3335
3336 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3337
3338 --timercnt;
3339
3340 if (expect_true (active < timercnt + HEAP0))
3341 {
3342 timers [active] = timers [timercnt + HEAP0];
3343 adjustheap (timers, timercnt, active);
3344 }
3345 }
3346
3347 ev_at (w) -= mn_now;
3348
3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352 }
3353
3354 void noinline
3355 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3356 {
3357 EV_FREQUENT_CHECK;
3358
3359 clear_pending (EV_A_ (W)w);
3360
3361 if (ev_is_active (w))
3362 {
3363 if (w->repeat)
3364 {
3365 ev_at (w) = mn_now + w->repeat;
3366 ANHE_at_cache (timers [ev_active (w)]);
3367 adjustheap (timers, timercnt, ev_active (w));
3368 }
3369 else
3370 ev_timer_stop (EV_A_ w);
3371 }
3372 else if (w->repeat)
3373 {
3374 ev_at (w) = w->repeat;
3375 ev_timer_start (EV_A_ w);
3376 }
3377
3378 EV_FREQUENT_CHECK;
3379 }
3380
3381 ev_tstamp
3382 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3383 {
3384 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3385 }
3386
3387 #if EV_PERIODIC_ENABLE
3388 void noinline
3389 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3390 {
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 if (w->reschedule_cb)
3395 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3396 else if (w->interval)
3397 {
3398 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3399 periodic_recalc (EV_A_ w);
3400 }
3401 else
3402 ev_at (w) = w->offset;
3403
3404 EV_FREQUENT_CHECK;
3405
3406 ++periodiccnt;
3407 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3408 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3409 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3410 ANHE_at_cache (periodics [ev_active (w)]);
3411 upheap (periodics, ev_active (w));
3412
3413 EV_FREQUENT_CHECK;
3414
3415 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3416 }
3417
3418 void noinline
3419 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3420 {
3421 clear_pending (EV_A_ (W)w);
3422 if (expect_false (!ev_is_active (w)))
3423 return;
3424
3425 EV_FREQUENT_CHECK;
3426
3427 {
3428 int active = ev_active (w);
3429
3430 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3431
3432 --periodiccnt;
3433
3434 if (expect_true (active < periodiccnt + HEAP0))
3435 {
3436 periodics [active] = periodics [periodiccnt + HEAP0];
3437 adjustheap (periodics, periodiccnt, active);
3438 }
3439 }
3440
3441 ev_stop (EV_A_ (W)w);
3442
3443 EV_FREQUENT_CHECK;
3444 }
3445
3446 void noinline
3447 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3448 {
3449 /* TODO: use adjustheap and recalculation */
3450 ev_periodic_stop (EV_A_ w);
3451 ev_periodic_start (EV_A_ w);
3452 }
3453 #endif
3454
3455 #ifndef SA_RESTART
3456 # define SA_RESTART 0
3457 #endif
3458
3459 #if EV_SIGNAL_ENABLE
3460
3461 void noinline
3462 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3463 {
3464 if (expect_false (ev_is_active (w)))
3465 return;
3466
3467 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3468
3469 #if EV_MULTIPLICITY
3470 assert (("libev: a signal must not be attached to two different loops",
3471 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3472
3473 signals [w->signum - 1].loop = EV_A;
3474 #endif
3475
3476 EV_FREQUENT_CHECK;
3477
3478 #if EV_USE_SIGNALFD
3479 if (sigfd == -2)
3480 {
3481 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3482 if (sigfd < 0 && errno == EINVAL)
3483 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3484
3485 if (sigfd >= 0)
3486 {
3487 fd_intern (sigfd); /* doing it twice will not hurt */
3488
3489 sigemptyset (&sigfd_set);
3490
3491 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3492 ev_set_priority (&sigfd_w, EV_MAXPRI);
3493 ev_io_start (EV_A_ &sigfd_w);
3494 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3495 }
3496 }
3497
3498 if (sigfd >= 0)
3499 {
3500 /* TODO: check .head */
3501 sigaddset (&sigfd_set, w->signum);
3502 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3503
3504 signalfd (sigfd, &sigfd_set, 0);
3505 }
3506 #endif
3507
3508 ev_start (EV_A_ (W)w, 1);
3509 wlist_add (&signals [w->signum - 1].head, (WL)w);
3510
3511 if (!((WL)w)->next)
3512 # if EV_USE_SIGNALFD
3513 if (sigfd < 0) /*TODO*/
3514 # endif
3515 {
3516 # ifdef _WIN32
3517 evpipe_init (EV_A);
3518
3519 signal (w->signum, ev_sighandler);
3520 # else
3521 struct sigaction sa;
3522
3523 evpipe_init (EV_A);
3524
3525 sa.sa_handler = ev_sighandler;
3526 sigfillset (&sa.sa_mask);
3527 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3528 sigaction (w->signum, &sa, 0);
3529
3530 if (origflags & EVFLAG_NOSIGMASK)
3531 {
3532 sigemptyset (&sa.sa_mask);
3533 sigaddset (&sa.sa_mask, w->signum);
3534 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3535 }
3536 #endif
3537 }
3538
3539 EV_FREQUENT_CHECK;
3540 }
3541
3542 void noinline
3543 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3544 {
3545 clear_pending (EV_A_ (W)w);
3546 if (expect_false (!ev_is_active (w)))
3547 return;
3548
3549 EV_FREQUENT_CHECK;
3550
3551 wlist_del (&signals [w->signum - 1].head, (WL)w);
3552 ev_stop (EV_A_ (W)w);
3553
3554 if (!signals [w->signum - 1].head)
3555 {
3556 #if EV_MULTIPLICITY
3557 signals [w->signum - 1].loop = 0; /* unattach from signal */
3558 #endif
3559 #if EV_USE_SIGNALFD
3560 if (sigfd >= 0)
3561 {
3562 sigset_t ss;
3563
3564 sigemptyset (&ss);
3565 sigaddset (&ss, w->signum);
3566 sigdelset (&sigfd_set, w->signum);
3567
3568 signalfd (sigfd, &sigfd_set, 0);
3569 sigprocmask (SIG_UNBLOCK, &ss, 0);
3570 }
3571 else
3572 #endif
3573 signal (w->signum, SIG_DFL);
3574 }
3575
3576 EV_FREQUENT_CHECK;
3577 }
3578
3579 #endif
3580
3581 #if EV_CHILD_ENABLE
3582
3583 void
3584 ev_child_start (EV_P_ ev_child *w) EV_THROW
3585 {
3586 #if EV_MULTIPLICITY
3587 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3588 #endif
3589 if (expect_false (ev_is_active (w)))
3590 return;
3591
3592 EV_FREQUENT_CHECK;
3593
3594 ev_start (EV_A_ (W)w, 1);
3595 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3596
3597 EV_FREQUENT_CHECK;
3598 }
3599
3600 void
3601 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3602 {
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3610 ev_stop (EV_A_ (W)w);
3611
3612 EV_FREQUENT_CHECK;
3613 }
3614
3615 #endif
3616
3617 #if EV_STAT_ENABLE
3618
3619 # ifdef _WIN32
3620 # undef lstat
3621 # define lstat(a,b) _stati64 (a,b)
3622 # endif
3623
3624 #define DEF_STAT_INTERVAL 5.0074891
3625 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3626 #define MIN_STAT_INTERVAL 0.1074891
3627
3628 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3629
3630 #if EV_USE_INOTIFY
3631
3632 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3633 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3634
3635 static void noinline
3636 infy_add (EV_P_ ev_stat *w)
3637 {
3638 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3639
3640 if (w->wd >= 0)
3641 {
3642 struct statfs sfs;
3643
3644 /* now local changes will be tracked by inotify, but remote changes won't */
3645 /* unless the filesystem is known to be local, we therefore still poll */
3646 /* also do poll on <2.6.25, but with normal frequency */
3647
3648 if (!fs_2625)
3649 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3650 else if (!statfs (w->path, &sfs)
3651 && (sfs.f_type == 0x1373 /* devfs */
3652 || sfs.f_type == 0xEF53 /* ext2/3 */
3653 || sfs.f_type == 0x3153464a /* jfs */
3654 || sfs.f_type == 0x52654973 /* reiser3 */
3655 || sfs.f_type == 0x01021994 /* tempfs */
3656 || sfs.f_type == 0x58465342 /* xfs */))
3657 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3658 else
3659 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3660 }
3661 else
3662 {
3663 /* can't use inotify, continue to stat */
3664 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3665
3666 /* if path is not there, monitor some parent directory for speedup hints */
3667 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3668 /* but an efficiency issue only */
3669 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3670 {
3671 char path [4096];
3672 strcpy (path, w->path);
3673
3674 do
3675 {
3676 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3677 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3678
3679 char *pend = strrchr (path, '/');
3680
3681 if (!pend || pend == path)
3682 break;
3683
3684 *pend = 0;
3685 w->wd = inotify_add_watch (fs_fd, path, mask);
3686 }
3687 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3688 }
3689 }
3690
3691 if (w->wd >= 0)
3692 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3693
3694 /* now re-arm timer, if required */
3695 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3696 ev_timer_again (EV_A_ &w->timer);
3697 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3698 }
3699
3700 static void noinline
3701 infy_del (EV_P_ ev_stat *w)
3702 {
3703 int slot;
3704 int wd = w->wd;
3705
3706 if (wd < 0)
3707 return;
3708
3709 w->wd = -2;
3710 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3711 wlist_del (&fs_hash [slot].head, (WL)w);
3712
3713 /* remove this watcher, if others are watching it, they will rearm */
3714 inotify_rm_watch (fs_fd, wd);
3715 }
3716
3717 static void noinline
3718 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3719 {
3720 if (slot < 0)
3721 /* overflow, need to check for all hash slots */
3722 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3723 infy_wd (EV_A_ slot, wd, ev);
3724 else
3725 {
3726 WL w_;
3727
3728 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3729 {
3730 ev_stat *w = (ev_stat *)w_;
3731 w_ = w_->next; /* lets us remove this watcher and all before it */
3732
3733 if (w->wd == wd || wd == -1)
3734 {
3735 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3736 {
3737 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3738 w->wd = -1;
3739 infy_add (EV_A_ w); /* re-add, no matter what */
3740 }
3741
3742 stat_timer_cb (EV_A_ &w->timer, 0);
3743 }
3744 }
3745 }
3746 }
3747
3748 static void
3749 infy_cb (EV_P_ ev_io *w, int revents)
3750 {
3751 char buf [EV_INOTIFY_BUFSIZE];
3752 int ofs;
3753 int len = read (fs_fd, buf, sizeof (buf));
3754
3755 for (ofs = 0; ofs < len; )
3756 {
3757 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3758 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3759 ofs += sizeof (struct inotify_event) + ev->len;
3760 }
3761 }
3762
3763 inline_size void ecb_cold
3764 ev_check_2625 (EV_P)
3765 {
3766 /* kernels < 2.6.25 are borked
3767 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3768 */
3769 if (ev_linux_version () < 0x020619)
3770 return;
3771
3772 fs_2625 = 1;
3773 }
3774
3775 inline_size int
3776 infy_newfd (void)
3777 {
3778 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3779 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3780 if (fd >= 0)
3781 return fd;
3782 #endif
3783 return inotify_init ();
3784 }
3785
3786 inline_size void
3787 infy_init (EV_P)
3788 {
3789 if (fs_fd != -2)
3790 return;
3791
3792 fs_fd = -1;
3793
3794 ev_check_2625 (EV_A);
3795
3796 fs_fd = infy_newfd ();
3797
3798 if (fs_fd >= 0)
3799 {
3800 fd_intern (fs_fd);
3801 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3802 ev_set_priority (&fs_w, EV_MAXPRI);
3803 ev_io_start (EV_A_ &fs_w);
3804 ev_unref (EV_A);
3805 }
3806 }
3807
3808 inline_size void
3809 infy_fork (EV_P)
3810 {
3811 int slot;
3812
3813 if (fs_fd < 0)
3814 return;
3815
3816 ev_ref (EV_A);
3817 ev_io_stop (EV_A_ &fs_w);
3818 close (fs_fd);
3819 fs_fd = infy_newfd ();
3820
3821 if (fs_fd >= 0)
3822 {
3823 fd_intern (fs_fd);
3824 ev_io_set (&fs_w, fs_fd, EV_READ);
3825 ev_io_start (EV_A_ &fs_w);
3826 ev_unref (EV_A);
3827 }
3828
3829 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3830 {
3831 WL w_ = fs_hash [slot].head;
3832 fs_hash [slot].head = 0;
3833
3834 while (w_)
3835 {
3836 ev_stat *w = (ev_stat *)w_;
3837 w_ = w_->next; /* lets us add this watcher */
3838
3839 w->wd = -1;
3840
3841 if (fs_fd >= 0)
3842 infy_add (EV_A_ w); /* re-add, no matter what */
3843 else
3844 {
3845 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3846 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3847 ev_timer_again (EV_A_ &w->timer);
3848 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3849 }
3850 }
3851 }
3852 }
3853
3854 #endif
3855
3856 #ifdef _WIN32
3857 # define EV_LSTAT(p,b) _stati64 (p, b)
3858 #else
3859 # define EV_LSTAT(p,b) lstat (p, b)
3860 #endif
3861
3862 void
3863 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3864 {
3865 if (lstat (w->path, &w->attr) < 0)
3866 w->attr.st_nlink = 0;
3867 else if (!w->attr.st_nlink)
3868 w->attr.st_nlink = 1;
3869 }
3870
3871 static void noinline
3872 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3873 {
3874 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3875
3876 ev_statdata prev = w->attr;
3877 ev_stat_stat (EV_A_ w);
3878
3879 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3880 if (
3881 prev.st_dev != w->attr.st_dev
3882 || prev.st_ino != w->attr.st_ino
3883 || prev.st_mode != w->attr.st_mode
3884 || prev.st_nlink != w->attr.st_nlink
3885 || prev.st_uid != w->attr.st_uid
3886 || prev.st_gid != w->attr.st_gid
3887 || prev.st_rdev != w->attr.st_rdev
3888 || prev.st_size != w->attr.st_size
3889 || prev.st_atime != w->attr.st_atime
3890 || prev.st_mtime != w->attr.st_mtime
3891 || prev.st_ctime != w->attr.st_ctime
3892 ) {
3893 /* we only update w->prev on actual differences */
3894 /* in case we test more often than invoke the callback, */
3895 /* to ensure that prev is always different to attr */
3896 w->prev = prev;
3897
3898 #if EV_USE_INOTIFY
3899 if (fs_fd >= 0)
3900 {
3901 infy_del (EV_A_ w);
3902 infy_add (EV_A_ w);
3903 ev_stat_stat (EV_A_ w); /* avoid race... */
3904 }
3905 #endif
3906
3907 ev_feed_event (EV_A_ w, EV_STAT);
3908 }
3909 }
3910
3911 void
3912 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3913 {
3914 if (expect_false (ev_is_active (w)))
3915 return;
3916
3917 ev_stat_stat (EV_A_ w);
3918
3919 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3920 w->interval = MIN_STAT_INTERVAL;
3921
3922 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3923 ev_set_priority (&w->timer, ev_priority (w));
3924
3925 #if EV_USE_INOTIFY
3926 infy_init (EV_A);
3927
3928 if (fs_fd >= 0)
3929 infy_add (EV_A_ w);
3930 else
3931 #endif
3932 {
3933 ev_timer_again (EV_A_ &w->timer);
3934 ev_unref (EV_A);
3935 }
3936
3937 ev_start (EV_A_ (W)w, 1);
3938
3939 EV_FREQUENT_CHECK;
3940 }
3941
3942 void
3943 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3944 {
3945 clear_pending (EV_A_ (W)w);
3946 if (expect_false (!ev_is_active (w)))
3947 return;
3948
3949 EV_FREQUENT_CHECK;
3950
3951 #if EV_USE_INOTIFY
3952 infy_del (EV_A_ w);
3953 #endif
3954
3955 if (ev_is_active (&w->timer))
3956 {
3957 ev_ref (EV_A);
3958 ev_timer_stop (EV_A_ &w->timer);
3959 }
3960
3961 ev_stop (EV_A_ (W)w);
3962
3963 EV_FREQUENT_CHECK;
3964 }
3965 #endif
3966
3967 #if EV_IDLE_ENABLE
3968 void
3969 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3970 {
3971 if (expect_false (ev_is_active (w)))
3972 return;
3973
3974 pri_adjust (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
3977
3978 {
3979 int active = ++idlecnt [ABSPRI (w)];
3980
3981 ++idleall;
3982 ev_start (EV_A_ (W)w, active);
3983
3984 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3985 idles [ABSPRI (w)][active - 1] = w;
3986 }
3987
3988 EV_FREQUENT_CHECK;
3989 }
3990
3991 void
3992 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3993 {
3994 clear_pending (EV_A_ (W)w);
3995 if (expect_false (!ev_is_active (w)))
3996 return;
3997
3998 EV_FREQUENT_CHECK;
3999
4000 {
4001 int active = ev_active (w);
4002
4003 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4004 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4005
4006 ev_stop (EV_A_ (W)w);
4007 --idleall;
4008 }
4009
4010 EV_FREQUENT_CHECK;
4011 }
4012 #endif
4013
4014 #if EV_PREPARE_ENABLE
4015 void
4016 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4017 {
4018 if (expect_false (ev_is_active (w)))
4019 return;
4020
4021 EV_FREQUENT_CHECK;
4022
4023 ev_start (EV_A_ (W)w, ++preparecnt);
4024 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4025 prepares [preparecnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
4028 }
4029
4030 void
4031 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4032 {
4033 clear_pending (EV_A_ (W)w);
4034 if (expect_false (!ev_is_active (w)))
4035 return;
4036
4037 EV_FREQUENT_CHECK;
4038
4039 {
4040 int active = ev_active (w);
4041
4042 prepares [active - 1] = prepares [--preparecnt];
4043 ev_active (prepares [active - 1]) = active;
4044 }
4045
4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
4049 }
4050 #endif
4051
4052 #if EV_CHECK_ENABLE
4053 void
4054 ev_check_start (EV_P_ ev_check *w) EV_THROW
4055 {
4056 if (expect_false (ev_is_active (w)))
4057 return;
4058
4059 EV_FREQUENT_CHECK;
4060
4061 ev_start (EV_A_ (W)w, ++checkcnt);
4062 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4063 checks [checkcnt - 1] = w;
4064
4065 EV_FREQUENT_CHECK;
4066 }
4067
4068 void
4069 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4070 {
4071 clear_pending (EV_A_ (W)w);
4072 if (expect_false (!ev_is_active (w)))
4073 return;
4074
4075 EV_FREQUENT_CHECK;
4076
4077 {
4078 int active = ev_active (w);
4079
4080 checks [active - 1] = checks [--checkcnt];
4081 ev_active (checks [active - 1]) = active;
4082 }
4083
4084 ev_stop (EV_A_ (W)w);
4085
4086 EV_FREQUENT_CHECK;
4087 }
4088 #endif
4089
4090 #if EV_EMBED_ENABLE
4091 void noinline
4092 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4093 {
4094 ev_run (w->other, EVRUN_NOWAIT);
4095 }
4096
4097 static void
4098 embed_io_cb (EV_P_ ev_io *io, int revents)
4099 {
4100 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4101
4102 if (ev_cb (w))
4103 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4104 else
4105 ev_run (w->other, EVRUN_NOWAIT);
4106 }
4107
4108 static void
4109 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4110 {
4111 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4112
4113 {
4114 EV_P = w->other;
4115
4116 while (fdchangecnt)
4117 {
4118 fd_reify (EV_A);
4119 ev_run (EV_A_ EVRUN_NOWAIT);
4120 }
4121 }
4122 }
4123
4124 static void
4125 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4126 {
4127 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4128
4129 ev_embed_stop (EV_A_ w);
4130
4131 {
4132 EV_P = w->other;
4133
4134 ev_loop_fork (EV_A);
4135 ev_run (EV_A_ EVRUN_NOWAIT);
4136 }
4137
4138 ev_embed_start (EV_A_ w);
4139 }
4140
4141 #if 0
4142 static void
4143 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4144 {
4145 ev_idle_stop (EV_A_ idle);
4146 }
4147 #endif
4148
4149 void
4150 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4151 {
4152 if (expect_false (ev_is_active (w)))
4153 return;
4154
4155 {
4156 EV_P = w->other;
4157 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4158 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4159 }
4160
4161 EV_FREQUENT_CHECK;
4162
4163 ev_set_priority (&w->io, ev_priority (w));
4164 ev_io_start (EV_A_ &w->io);
4165
4166 ev_prepare_init (&w->prepare, embed_prepare_cb);
4167 ev_set_priority (&w->prepare, EV_MINPRI);
4168 ev_prepare_start (EV_A_ &w->prepare);
4169
4170 ev_fork_init (&w->fork, embed_fork_cb);
4171 ev_fork_start (EV_A_ &w->fork);
4172
4173 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4174
4175 ev_start (EV_A_ (W)w, 1);
4176
4177 EV_FREQUENT_CHECK;
4178 }
4179
4180 void
4181 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4182 {
4183 clear_pending (EV_A_ (W)w);
4184 if (expect_false (!ev_is_active (w)))
4185 return;
4186
4187 EV_FREQUENT_CHECK;
4188
4189 ev_io_stop (EV_A_ &w->io);
4190 ev_prepare_stop (EV_A_ &w->prepare);
4191 ev_fork_stop (EV_A_ &w->fork);
4192
4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196 }
4197 #endif
4198
4199 #if EV_FORK_ENABLE
4200 void
4201 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4202 {
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++forkcnt);
4209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4210 forks [forkcnt - 1] = w;
4211
4212 EV_FREQUENT_CHECK;
4213 }
4214
4215 void
4216 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4217 {
4218 clear_pending (EV_A_ (W)w);
4219 if (expect_false (!ev_is_active (w)))
4220 return;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 {
4225 int active = ev_active (w);
4226
4227 forks [active - 1] = forks [--forkcnt];
4228 ev_active (forks [active - 1]) = active;
4229 }
4230
4231 ev_stop (EV_A_ (W)w);
4232
4233 EV_FREQUENT_CHECK;
4234 }
4235 #endif
4236
4237 #if EV_CLEANUP_ENABLE
4238 void
4239 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4240 {
4241 if (expect_false (ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 ev_start (EV_A_ (W)w, ++cleanupcnt);
4247 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4248 cleanups [cleanupcnt - 1] = w;
4249
4250 /* cleanup watchers should never keep a refcount on the loop */
4251 ev_unref (EV_A);
4252 EV_FREQUENT_CHECK;
4253 }
4254
4255 void
4256 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4257 {
4258 clear_pending (EV_A_ (W)w);
4259 if (expect_false (!ev_is_active (w)))
4260 return;
4261
4262 EV_FREQUENT_CHECK;
4263 ev_ref (EV_A);
4264
4265 {
4266 int active = ev_active (w);
4267
4268 cleanups [active - 1] = cleanups [--cleanupcnt];
4269 ev_active (cleanups [active - 1]) = active;
4270 }
4271
4272 ev_stop (EV_A_ (W)w);
4273
4274 EV_FREQUENT_CHECK;
4275 }
4276 #endif
4277
4278 #if EV_ASYNC_ENABLE
4279 void
4280 ev_async_start (EV_P_ ev_async *w) EV_THROW
4281 {
4282 if (expect_false (ev_is_active (w)))
4283 return;
4284
4285 w->sent = 0;
4286
4287 evpipe_init (EV_A);
4288
4289 EV_FREQUENT_CHECK;
4290
4291 ev_start (EV_A_ (W)w, ++asynccnt);
4292 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4293 asyncs [asynccnt - 1] = w;
4294
4295 EV_FREQUENT_CHECK;
4296 }
4297
4298 void
4299 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4300 {
4301 clear_pending (EV_A_ (W)w);
4302 if (expect_false (!ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 {
4308 int active = ev_active (w);
4309
4310 asyncs [active - 1] = asyncs [--asynccnt];
4311 ev_active (asyncs [active - 1]) = active;
4312 }
4313
4314 ev_stop (EV_A_ (W)w);
4315
4316 EV_FREQUENT_CHECK;
4317 }
4318
4319 void
4320 ev_async_send (EV_P_ ev_async *w) EV_THROW
4321 {
4322 w->sent = 1;
4323 evpipe_write (EV_A_ &async_pending);
4324 }
4325 #endif
4326
4327 /*****************************************************************************/
4328
4329 struct ev_once
4330 {
4331 ev_io io;
4332 ev_timer to;
4333 void (*cb)(int revents, void *arg);
4334 void *arg;
4335 };
4336
4337 static void
4338 once_cb (EV_P_ struct ev_once *once, int revents)
4339 {
4340 void (*cb)(int revents, void *arg) = once->cb;
4341 void *arg = once->arg;
4342
4343 ev_io_stop (EV_A_ &once->io);
4344 ev_timer_stop (EV_A_ &once->to);
4345 ev_free (once);
4346
4347 cb (revents, arg);
4348 }
4349
4350 static void
4351 once_cb_io (EV_P_ ev_io *w, int revents)
4352 {
4353 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4354
4355 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4356 }
4357
4358 static void
4359 once_cb_to (EV_P_ ev_timer *w, int revents)
4360 {
4361 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4362
4363 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4364 }
4365
4366 void
4367 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4368 {
4369 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4370
4371 if (expect_false (!once))
4372 {
4373 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4374 return;
4375 }
4376
4377 once->cb = cb;
4378 once->arg = arg;
4379
4380 ev_init (&once->io, once_cb_io);
4381 if (fd >= 0)
4382 {
4383 ev_io_set (&once->io, fd, events);
4384 ev_io_start (EV_A_ &once->io);
4385 }
4386
4387 ev_init (&once->to, once_cb_to);
4388 if (timeout >= 0.)
4389 {
4390 ev_timer_set (&once->to, timeout, 0.);
4391 ev_timer_start (EV_A_ &once->to);
4392 }
4393 }
4394
4395 /*****************************************************************************/
4396
4397 #if EV_WALK_ENABLE
4398 void ecb_cold
4399 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4400 {
4401 int i, j;
4402 ev_watcher_list *wl, *wn;
4403
4404 if (types & (EV_IO | EV_EMBED))
4405 for (i = 0; i < anfdmax; ++i)
4406 for (wl = anfds [i].head; wl; )
4407 {
4408 wn = wl->next;
4409
4410 #if EV_EMBED_ENABLE
4411 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4412 {
4413 if (types & EV_EMBED)
4414 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4415 }
4416 else
4417 #endif
4418 #if EV_USE_INOTIFY
4419 if (ev_cb ((ev_io *)wl) == infy_cb)
4420 ;
4421 else
4422 #endif
4423 if ((ev_io *)wl != &pipe_w)
4424 if (types & EV_IO)
4425 cb (EV_A_ EV_IO, wl);
4426
4427 wl = wn;
4428 }
4429
4430 if (types & (EV_TIMER | EV_STAT))
4431 for (i = timercnt + HEAP0; i-- > HEAP0; )
4432 #if EV_STAT_ENABLE
4433 /*TODO: timer is not always active*/
4434 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4435 {
4436 if (types & EV_STAT)
4437 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4438 }
4439 else
4440 #endif
4441 if (types & EV_TIMER)
4442 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4443
4444 #if EV_PERIODIC_ENABLE
4445 if (types & EV_PERIODIC)
4446 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4447 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4448 #endif
4449
4450 #if EV_IDLE_ENABLE
4451 if (types & EV_IDLE)
4452 for (j = NUMPRI; j--; )
4453 for (i = idlecnt [j]; i--; )
4454 cb (EV_A_ EV_IDLE, idles [j][i]);
4455 #endif
4456
4457 #if EV_FORK_ENABLE
4458 if (types & EV_FORK)
4459 for (i = forkcnt; i--; )
4460 if (ev_cb (forks [i]) != embed_fork_cb)
4461 cb (EV_A_ EV_FORK, forks [i]);
4462 #endif
4463
4464 #if EV_ASYNC_ENABLE
4465 if (types & EV_ASYNC)
4466 for (i = asynccnt; i--; )
4467 cb (EV_A_ EV_ASYNC, asyncs [i]);
4468 #endif
4469
4470 #if EV_PREPARE_ENABLE
4471 if (types & EV_PREPARE)
4472 for (i = preparecnt; i--; )
4473 # if EV_EMBED_ENABLE
4474 if (ev_cb (prepares [i]) != embed_prepare_cb)
4475 # endif
4476 cb (EV_A_ EV_PREPARE, prepares [i]);
4477 #endif
4478
4479 #if EV_CHECK_ENABLE
4480 if (types & EV_CHECK)
4481 for (i = checkcnt; i--; )
4482 cb (EV_A_ EV_CHECK, checks [i]);
4483 #endif
4484
4485 #if EV_SIGNAL_ENABLE
4486 if (types & EV_SIGNAL)
4487 for (i = 0; i < EV_NSIG - 1; ++i)
4488 for (wl = signals [i].head; wl; )
4489 {
4490 wn = wl->next;
4491 cb (EV_A_ EV_SIGNAL, wl);
4492 wl = wn;
4493 }
4494 #endif
4495
4496 #if EV_CHILD_ENABLE
4497 if (types & EV_CHILD)
4498 for (i = (EV_PID_HASHSIZE); i--; )
4499 for (wl = childs [i]; wl; )
4500 {
4501 wn = wl->next;
4502 cb (EV_A_ EV_CHILD, wl);
4503 wl = wn;
4504 }
4505 #endif
4506 /* EV_STAT 0x00001000 /* stat data changed */
4507 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4508 }
4509 #endif
4510
4511 #if EV_MULTIPLICITY
4512 #include "ev_wrap.h"
4513 #endif
4514