ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.449
Committed: Sun Sep 23 21:21:58 2012 UTC (11 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.448: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363 /* which makes programs even slower. might work on other unices, too. */
364 #if EV_USE_CLOCK_SYSCALL
365 # include <sys/syscall.h>
366 # ifdef SYS_clock_gettime
367 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368 # undef EV_USE_MONOTONIC
369 # define EV_USE_MONOTONIC 1
370 # else
371 # undef EV_USE_CLOCK_SYSCALL
372 # define EV_USE_CLOCK_SYSCALL 0
373 # endif
374 #endif
375
376 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 #ifndef CLOCK_MONOTONIC
385 # undef EV_USE_MONOTONIC
386 # define EV_USE_MONOTONIC 0
387 #endif
388
389 #ifndef CLOCK_REALTIME
390 # undef EV_USE_REALTIME
391 # define EV_USE_REALTIME 0
392 #endif
393
394 #if !EV_STAT_ENABLE
395 # undef EV_USE_INOTIFY
396 # define EV_USE_INOTIFY 0
397 #endif
398
399 #if !EV_USE_NANOSLEEP
400 /* hp-ux has it in sys/time.h, which we unconditionally include above */
401 # if !defined _WIN32 && !defined __hpux
402 # include <sys/select.h>
403 # endif
404 #endif
405
406 #if EV_USE_INOTIFY
407 # include <sys/statfs.h>
408 # include <sys/inotify.h>
409 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410 # ifndef IN_DONT_FOLLOW
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 # endif
414 #endif
415
416 #if EV_USE_EVENTFD
417 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418 # include <stdint.h>
419 # ifndef EFD_NONBLOCK
420 # define EFD_NONBLOCK O_NONBLOCK
421 # endif
422 # ifndef EFD_CLOEXEC
423 # ifdef O_CLOEXEC
424 # define EFD_CLOEXEC O_CLOEXEC
425 # else
426 # define EFD_CLOEXEC 02000000
427 # endif
428 # endif
429 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430 #endif
431
432 #if EV_USE_SIGNALFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef SFD_NONBLOCK
436 # define SFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef SFD_CLOEXEC
439 # ifdef O_CLOEXEC
440 # define SFD_CLOEXEC O_CLOEXEC
441 # else
442 # define SFD_CLOEXEC 02000000
443 # endif
444 # endif
445 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447 struct signalfd_siginfo
448 {
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451 };
452 #endif
453
454 /**/
455
456 #if EV_VERIFY >= 3
457 # define EV_FREQUENT_CHECK ev_verify (EV_A)
458 #else
459 # define EV_FREQUENT_CHECK do { } while (0)
460 #endif
461
462 /*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476 /* ECB.H BEGIN */
477 /*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506 #ifndef ECB_H
507 #define ECB_H
508
509 /* 16 bits major, 16 bits minor */
510 #define ECB_VERSION 0x00010001
511
512 #ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536 #else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543 #endif
544
545 /* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552 #ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558 #endif
559
560 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
562 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
563 #define ECB_CPP (__cplusplus+0)
564 #define ECB_CPP11 (__cplusplus >= 201103L)
565
566 /*****************************************************************************/
567
568 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571 #if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573 #endif
574
575 #if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577 #endif
578
579 #ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614 #endif
615
616 #ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641 #endif
642
643 #ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656 #endif
657
658 #ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674 #endif
675
676 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678 #endif
679
680 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682 #endif
683
684 /*****************************************************************************/
685
686 #if __cplusplus
687 #define ecb_inline static inline
688 #elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690 #elif ECB_C99
691 #define ecb_inline static inline
692 #else
693 #define ecb_inline static
694 #endif
695
696 #if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698 #elif ECB_C99
699 #define ecb_restrict restrict
700 #else
701 #define ecb_restrict
702 #endif
703
704 typedef int ecb_bool;
705
706 #define ECB_CONCAT_(a, b) a ## b
707 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708 #define ECB_STRINGIFY_(a) # a
709 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711 #define ecb_function_ ecb_inline
712
713 #if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718 #else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723 #endif
724
725 /* no emulation for ecb_decltype */
726 #if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728 #elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730 #endif
731
732 #define ecb_noinline ecb_attribute ((__noinline__))
733 #define ecb_unused ecb_attribute ((__unused__))
734 #define ecb_const ecb_attribute ((__const__))
735 #define ecb_pure ecb_attribute ((__pure__))
736
737 #if ECB_C11
738 #define ecb_noreturn _Noreturn
739 #else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741 #endif
742
743 #if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747 #else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751 #endif
752
753 /* put around conditional expressions if you are very sure that the */
754 /* expression is mostly true or mostly false. note that these return */
755 /* booleans, not the expression. */
756 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
757 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758 /* for compatibility to the rest of the world */
759 #define ecb_likely(expr) ecb_expect_true (expr)
760 #define ecb_unlikely(expr) ecb_expect_false (expr)
761
762 /* count trailing zero bits and count # of one bits */
763 #if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771 #else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780 #if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786 #else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792 #endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840 #endif
841
842 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849 {
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852 }
853
854 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856 {
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863 }
864
865 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867 {
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875 }
876
877 /* popcount64 is only available on 64 bit cpus as gcc builtin */
878 /* so for this version we are lazy */
879 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880 ecb_function_ int
881 ecb_popcount64 (uint64_t x)
882 {
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884 }
885
886 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904 #if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908 #else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929 #endif
930
931 #if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933 #else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937 #endif
938
939 /* try to tell the compiler that some condition is definitely true */
940 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943 ecb_inline unsigned char
944 ecb_byteorder_helper (void)
945 {
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948 }
949
950 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955 #if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957 #else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959 #endif
960
961 #if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972 #else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975 #endif
976
977 #if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984 #else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986 #endif
987
988 #endif
989
990 /* ECB.H END */
991
992 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993 /* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000 # error "memory fences not defined for your architecture, please report"
1001 #endif
1002
1003 #ifndef ECB_MEMORY_FENCE
1004 # define ECB_MEMORY_FENCE do { } while (0)
1005 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007 #endif
1008
1009 #define expect_false(cond) ecb_expect_false (cond)
1010 #define expect_true(cond) ecb_expect_true (cond)
1011 #define noinline ecb_noinline
1012
1013 #define inline_size ecb_inline
1014
1015 #if EV_FEATURE_CODE
1016 # define inline_speed ecb_inline
1017 #else
1018 # define inline_speed static noinline
1019 #endif
1020
1021 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023 #if EV_MINPRI == EV_MAXPRI
1024 # define ABSPRI(w) (((W)w), 0)
1025 #else
1026 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027 #endif
1028
1029 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1030 #define EMPTY2(a,b) /* used to suppress some warnings */
1031
1032 typedef ev_watcher *W;
1033 typedef ev_watcher_list *WL;
1034 typedef ev_watcher_time *WT;
1035
1036 #define ev_active(w) ((W)(w))->active
1037 #define ev_at(w) ((WT)(w))->at
1038
1039 #if EV_USE_REALTIME
1040 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041 /* giving it a reasonably high chance of working on typical architectures */
1042 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043 #endif
1044
1045 #if EV_USE_MONOTONIC
1046 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047 #endif
1048
1049 #ifndef EV_FD_TO_WIN32_HANDLE
1050 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051 #endif
1052 #ifndef EV_WIN32_HANDLE_TO_FD
1053 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054 #endif
1055 #ifndef EV_WIN32_CLOSE_FD
1056 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1057 #endif
1058
1059 #ifdef _WIN32
1060 # include "ev_win32.c"
1061 #endif
1062
1063 /*****************************************************************************/
1064
1065 /* define a suitable floor function (only used by periodics atm) */
1066
1067 #if EV_USE_FLOOR
1068 # include <math.h>
1069 # define ev_floor(v) floor (v)
1070 #else
1071
1072 #include <float.h>
1073
1074 /* a floor() replacement function, should be independent of ev_tstamp type */
1075 static ev_tstamp noinline
1076 ev_floor (ev_tstamp v)
1077 {
1078 /* the choice of shift factor is not terribly important */
1079 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081 #else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083 #endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107 }
1108
1109 #endif
1110
1111 /*****************************************************************************/
1112
1113 #ifdef __linux
1114 # include <sys/utsname.h>
1115 #endif
1116
1117 static unsigned int noinline ecb_cold
1118 ev_linux_version (void)
1119 {
1120 #ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148 #else
1149 return 0;
1150 #endif
1151 }
1152
1153 /*****************************************************************************/
1154
1155 #if EV_AVOID_STDIO
1156 static void noinline ecb_cold
1157 ev_printerr (const char *msg)
1158 {
1159 write (STDERR_FILENO, msg, strlen (msg));
1160 }
1161 #endif
1162
1163 static void (*syserr_cb)(const char *msg) EV_THROW;
1164
1165 void ecb_cold
1166 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1167 {
1168 syserr_cb = cb;
1169 }
1170
1171 static void noinline ecb_cold
1172 ev_syserr (const char *msg)
1173 {
1174 if (!msg)
1175 msg = "(libev) system error";
1176
1177 if (syserr_cb)
1178 syserr_cb (msg);
1179 else
1180 {
1181 #if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186 #else
1187 perror (msg);
1188 #endif
1189 abort ();
1190 }
1191 }
1192
1193 static void *
1194 ev_realloc_emul (void *ptr, long size) EV_THROW
1195 {
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208 }
1209
1210 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1211
1212 void ecb_cold
1213 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1214 {
1215 alloc = cb;
1216 }
1217
1218 inline_speed void *
1219 ev_realloc (void *ptr, long size)
1220 {
1221 ptr = alloc (ptr, size);
1222
1223 if (!ptr && size)
1224 {
1225 #if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227 #else
1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229 #endif
1230 abort ();
1231 }
1232
1233 return ptr;
1234 }
1235
1236 #define ev_malloc(size) ev_realloc (0, (size))
1237 #define ev_free(ptr) ev_realloc ((ptr), 0)
1238
1239 /*****************************************************************************/
1240
1241 /* set in reify when reification needed */
1242 #define EV_ANFD_REIFY 1
1243
1244 /* file descriptor info structure */
1245 typedef struct
1246 {
1247 WL head;
1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1251 unsigned char unused;
1252 #if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254 #endif
1255 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1256 SOCKET handle;
1257 #endif
1258 #if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260 #endif
1261 } ANFD;
1262
1263 /* stores the pending event set for a given watcher */
1264 typedef struct
1265 {
1266 W w;
1267 int events; /* the pending event set for the given watcher */
1268 } ANPENDING;
1269
1270 #if EV_USE_INOTIFY
1271 /* hash table entry per inotify-id */
1272 typedef struct
1273 {
1274 WL head;
1275 } ANFS;
1276 #endif
1277
1278 /* Heap Entry */
1279 #if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289 #else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
1296 #endif
1297
1298 #if EV_MULTIPLICITY
1299
1300 struct ev_loop
1301 {
1302 ev_tstamp ev_rt_now;
1303 #define ev_rt_now ((loop)->ev_rt_now)
1304 #define VAR(name,decl) decl;
1305 #include "ev_vars.h"
1306 #undef VAR
1307 };
1308 #include "ev_wrap.h"
1309
1310 static struct ev_loop default_loop_struct;
1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1312
1313 #else
1314
1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1316 #define VAR(name,decl) static decl;
1317 #include "ev_vars.h"
1318 #undef VAR
1319
1320 static int ev_default_loop_ptr;
1321
1322 #endif
1323
1324 #if EV_FEATURE_API
1325 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1328 #else
1329 # define EV_RELEASE_CB (void)0
1330 # define EV_ACQUIRE_CB (void)0
1331 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332 #endif
1333
1334 #define EVBREAK_RECURSE 0x80
1335
1336 /*****************************************************************************/
1337
1338 #ifndef EV_HAVE_EV_TIME
1339 ev_tstamp
1340 ev_time (void) EV_THROW
1341 {
1342 #if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
1345 struct timespec ts;
1346 clock_gettime (CLOCK_REALTIME, &ts);
1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
1348 }
1349 #endif
1350
1351 struct timeval tv;
1352 gettimeofday (&tv, 0);
1353 return tv.tv_sec + tv.tv_usec * 1e-6;
1354 }
1355 #endif
1356
1357 inline_size ev_tstamp
1358 get_clock (void)
1359 {
1360 #if EV_USE_MONOTONIC
1361 if (expect_true (have_monotonic))
1362 {
1363 struct timespec ts;
1364 clock_gettime (CLOCK_MONOTONIC, &ts);
1365 return ts.tv_sec + ts.tv_nsec * 1e-9;
1366 }
1367 #endif
1368
1369 return ev_time ();
1370 }
1371
1372 #if EV_MULTIPLICITY
1373 ev_tstamp
1374 ev_now (EV_P) EV_THROW
1375 {
1376 return ev_rt_now;
1377 }
1378 #endif
1379
1380 void
1381 ev_sleep (ev_tstamp delay) EV_THROW
1382 {
1383 if (delay > 0.)
1384 {
1385 #if EV_USE_NANOSLEEP
1386 struct timespec ts;
1387
1388 EV_TS_SET (ts, delay);
1389 nanosleep (&ts, 0);
1390 #elif defined _WIN32
1391 Sleep ((unsigned long)(delay * 1e3));
1392 #else
1393 struct timeval tv;
1394
1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1396 /* something not guaranteed by newer posix versions, but guaranteed */
1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
1399 select (0, 0, 0, 0, &tv);
1400 #endif
1401 }
1402 }
1403
1404 /*****************************************************************************/
1405
1406 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408 /* find a suitable new size for the given array, */
1409 /* hopefully by rounding to a nice-to-malloc size */
1410 inline_size int
1411 array_nextsize (int elem, int cur, int cnt)
1412 {
1413 int ncur = cur + 1;
1414
1415 do
1416 ncur <<= 1;
1417 while (cnt > ncur);
1418
1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1421 {
1422 ncur *= elem;
1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1424 ncur = ncur - sizeof (void *) * 4;
1425 ncur /= elem;
1426 }
1427
1428 return ncur;
1429 }
1430
1431 static void * noinline ecb_cold
1432 array_realloc (int elem, void *base, int *cur, int cnt)
1433 {
1434 *cur = array_nextsize (elem, *cur, cnt);
1435 return ev_realloc (base, elem * *cur);
1436 }
1437
1438 #define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1440
1441 #define array_needsize(type,base,cur,cnt,init) \
1442 if (expect_false ((cnt) > (cur))) \
1443 { \
1444 int ecb_unused ocur_ = (cur); \
1445 (base) = (type *)array_realloc \
1446 (sizeof (type), (base), &(cur), (cnt)); \
1447 init ((base) + (ocur_), (cur) - ocur_); \
1448 }
1449
1450 #if 0
1451 #define array_slim(type,stem) \
1452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1453 { \
1454 stem ## max = array_roundsize (stem ## cnt >> 1); \
1455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1457 }
1458 #endif
1459
1460 #define array_free(stem, idx) \
1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1462
1463 /*****************************************************************************/
1464
1465 /* dummy callback for pending events */
1466 static void noinline
1467 pendingcb (EV_P_ ev_prepare *w, int revents)
1468 {
1469 }
1470
1471 void noinline
1472 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1473 {
1474 W w_ = (W)w;
1475 int pri = ABSPRI (w_);
1476
1477 if (expect_false (w_->pending))
1478 pendings [pri][w_->pending - 1].events |= revents;
1479 else
1480 {
1481 w_->pending = ++pendingcnt [pri];
1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1483 pendings [pri][w_->pending - 1].w = w_;
1484 pendings [pri][w_->pending - 1].events = revents;
1485 }
1486
1487 pendingpri = NUMPRI - 1;
1488 }
1489
1490 inline_speed void
1491 feed_reverse (EV_P_ W w)
1492 {
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495 }
1496
1497 inline_size void
1498 feed_reverse_done (EV_P_ int revents)
1499 {
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503 }
1504
1505 inline_speed void
1506 queue_events (EV_P_ W *events, int eventcnt, int type)
1507 {
1508 int i;
1509
1510 for (i = 0; i < eventcnt; ++i)
1511 ev_feed_event (EV_A_ events [i], type);
1512 }
1513
1514 /*****************************************************************************/
1515
1516 inline_speed void
1517 fd_event_nocheck (EV_P_ int fd, int revents)
1518 {
1519 ANFD *anfd = anfds + fd;
1520 ev_io *w;
1521
1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1523 {
1524 int ev = w->events & revents;
1525
1526 if (ev)
1527 ev_feed_event (EV_A_ (W)w, ev);
1528 }
1529 }
1530
1531 /* do not submit kernel events for fds that have reify set */
1532 /* because that means they changed while we were polling for new events */
1533 inline_speed void
1534 fd_event (EV_P_ int fd, int revents)
1535 {
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540 }
1541
1542 void
1543 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1544 {
1545 if (fd >= 0 && fd < anfdmax)
1546 fd_event_nocheck (EV_A_ fd, revents);
1547 }
1548
1549 /* make sure the external fd watch events are in-sync */
1550 /* with the kernel/libev internal state */
1551 inline_size void
1552 fd_reify (EV_P)
1553 {
1554 int i;
1555
1556 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1557 for (i = 0; i < fdchangecnt; ++i)
1558 {
1559 int fd = fdchanges [i];
1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579 #endif
1580
1581 for (i = 0; i < fdchangecnt; ++i)
1582 {
1583 int fd = fdchanges [i];
1584 ANFD *anfd = anfds + fd;
1585 ev_io *w;
1586
1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
1589
1590 anfd->reify = 0;
1591
1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1593 {
1594 anfd->events = 0;
1595
1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1597 anfd->events |= (unsigned char)w->events;
1598
1599 if (o_events != anfd->events)
1600 o_reify = EV__IOFDSET; /* actually |= */
1601 }
1602
1603 if (o_reify & EV__IOFDSET)
1604 backend_modify (EV_A_ fd, o_events, anfd->events);
1605 }
1606
1607 fdchangecnt = 0;
1608 }
1609
1610 /* something about the given fd changed */
1611 inline_size void
1612 fd_change (EV_P_ int fd, int flags)
1613 {
1614 unsigned char reify = anfds [fd].reify;
1615 anfds [fd].reify |= flags;
1616
1617 if (expect_true (!reify))
1618 {
1619 ++fdchangecnt;
1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1621 fdchanges [fdchangecnt - 1] = fd;
1622 }
1623 }
1624
1625 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626 inline_speed void ecb_cold
1627 fd_kill (EV_P_ int fd)
1628 {
1629 ev_io *w;
1630
1631 while ((w = (ev_io *)anfds [fd].head))
1632 {
1633 ev_io_stop (EV_A_ w);
1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1635 }
1636 }
1637
1638 /* check whether the given fd is actually valid, for error recovery */
1639 inline_size int ecb_cold
1640 fd_valid (int fd)
1641 {
1642 #ifdef _WIN32
1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1644 #else
1645 return fcntl (fd, F_GETFD) != -1;
1646 #endif
1647 }
1648
1649 /* called on EBADF to verify fds */
1650 static void noinline ecb_cold
1651 fd_ebadf (EV_P)
1652 {
1653 int fd;
1654
1655 for (fd = 0; fd < anfdmax; ++fd)
1656 if (anfds [fd].events)
1657 if (!fd_valid (fd) && errno == EBADF)
1658 fd_kill (EV_A_ fd);
1659 }
1660
1661 /* called on ENOMEM in select/poll to kill some fds and retry */
1662 static void noinline ecb_cold
1663 fd_enomem (EV_P)
1664 {
1665 int fd;
1666
1667 for (fd = anfdmax; fd--; )
1668 if (anfds [fd].events)
1669 {
1670 fd_kill (EV_A_ fd);
1671 break;
1672 }
1673 }
1674
1675 /* usually called after fork if backend needs to re-arm all fds from scratch */
1676 static void noinline
1677 fd_rearm_all (EV_P)
1678 {
1679 int fd;
1680
1681 for (fd = 0; fd < anfdmax; ++fd)
1682 if (anfds [fd].events)
1683 {
1684 anfds [fd].events = 0;
1685 anfds [fd].emask = 0;
1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1687 }
1688 }
1689
1690 /* used to prepare libev internal fd's */
1691 /* this is not fork-safe */
1692 inline_speed void
1693 fd_intern (int fd)
1694 {
1695 #ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698 #else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701 #endif
1702 }
1703
1704 /*****************************************************************************/
1705
1706 /*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
1711
1712 /*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718 #if EV_USE_4HEAP
1719
1720 #define DHEAP 4
1721 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723 #define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725 /* away from the root */
1726 inline_speed void
1727 downheap (ANHE *heap, int N, int k)
1728 {
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767 }
1768
1769 #else /* 4HEAP */
1770
1771 #define HEAP0 1
1772 #define HPARENT(k) ((k) >> 1)
1773 #define UPHEAP_DONE(p,k) (!(p))
1774
1775 /* away from the root */
1776 inline_speed void
1777 downheap (ANHE *heap, int N, int k)
1778 {
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802 }
1803 #endif
1804
1805 /* towards the root */
1806 inline_speed void
1807 upheap (ANHE *heap, int k)
1808 {
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825 }
1826
1827 /* move an element suitably so it is in a correct place */
1828 inline_size void
1829 adjustheap (ANHE *heap, int N, int k)
1830 {
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835 }
1836
1837 /* rebuild the heap: this function is used only once and executed rarely */
1838 inline_size void
1839 reheap (ANHE *heap, int N)
1840 {
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847 }
1848
1849 /*****************************************************************************/
1850
1851 /* associate signal watchers to a signal signal */
1852 typedef struct
1853 {
1854 EV_ATOMIC_T pending;
1855 #if EV_MULTIPLICITY
1856 EV_P;
1857 #endif
1858 WL head;
1859 } ANSIG;
1860
1861 static ANSIG signals [EV_NSIG - 1];
1862
1863 /*****************************************************************************/
1864
1865 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867 static void noinline ecb_cold
1868 evpipe_init (EV_P)
1869 {
1870 if (!ev_is_active (&pipe_w))
1871 {
1872 int fds [2];
1873
1874 # if EV_USE_EVENTFD
1875 fds [0] = -1;
1876 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1877 if (fds [1] < 0 && errno == EINVAL)
1878 fds [1] = eventfd (0, 0);
1879
1880 if (fds [1] < 0)
1881 # endif
1882 {
1883 while (pipe (fds))
1884 ev_syserr ("(libev) error creating signal/async pipe");
1885
1886 fd_intern (fds [0]);
1887 }
1888
1889 fd_intern (fds [1]);
1890
1891 evpipe [0] = fds [0];
1892
1893 if (evpipe [1] < 0)
1894 evpipe [1] = fds [1]; /* first call, set write fd */
1895 else
1896 {
1897 /* on subsequent calls, do not change evpipe [1] */
1898 /* so that evpipe_write can always rely on its value. */
1899 /* this branch does not do anything sensible on windows, */
1900 /* so must not be executed on windows */
1901
1902 dup2 (fds [1], evpipe [1]);
1903 close (fds [1]);
1904 }
1905
1906 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
1907 ev_io_start (EV_A_ &pipe_w);
1908 ev_unref (EV_A); /* watcher should not keep loop alive */
1909 }
1910 }
1911
1912 inline_speed void
1913 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1914 {
1915 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1916
1917 if (expect_true (*flag))
1918 return;
1919
1920 *flag = 1;
1921 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1922
1923 pipe_write_skipped = 1;
1924
1925 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1926
1927 if (pipe_write_wanted)
1928 {
1929 int old_errno;
1930
1931 pipe_write_skipped = 0;
1932 ECB_MEMORY_FENCE_RELEASE;
1933
1934 old_errno = errno; /* save errno because write will clobber it */
1935
1936 #if EV_USE_EVENTFD
1937 if (evpipe [0] < 0)
1938 {
1939 uint64_t counter = 1;
1940 write (evpipe [1], &counter, sizeof (uint64_t));
1941 }
1942 else
1943 #endif
1944 {
1945 #ifdef _WIN32
1946 WSABUF buf;
1947 DWORD sent;
1948 buf.buf = &buf;
1949 buf.len = 1;
1950 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1951 #else
1952 write (evpipe [1], &(evpipe [1]), 1);
1953 #endif
1954 }
1955
1956 errno = old_errno;
1957 }
1958 }
1959
1960 /* called whenever the libev signal pipe */
1961 /* got some events (signal, async) */
1962 static void
1963 pipecb (EV_P_ ev_io *iow, int revents)
1964 {
1965 int i;
1966
1967 if (revents & EV_READ)
1968 {
1969 #if EV_USE_EVENTFD
1970 if (evpipe [0] < 0)
1971 {
1972 uint64_t counter;
1973 read (evpipe [1], &counter, sizeof (uint64_t));
1974 }
1975 else
1976 #endif
1977 {
1978 char dummy[4];
1979 #ifdef _WIN32
1980 WSABUF buf;
1981 DWORD recvd;
1982 DWORD flags = 0;
1983 buf.buf = dummy;
1984 buf.len = sizeof (dummy);
1985 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1986 #else
1987 read (evpipe [0], &dummy, sizeof (dummy));
1988 #endif
1989 }
1990 }
1991
1992 pipe_write_skipped = 0;
1993
1994 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1995
1996 #if EV_SIGNAL_ENABLE
1997 if (sig_pending)
1998 {
1999 sig_pending = 0;
2000
2001 ECB_MEMORY_FENCE;
2002
2003 for (i = EV_NSIG - 1; i--; )
2004 if (expect_false (signals [i].pending))
2005 ev_feed_signal_event (EV_A_ i + 1);
2006 }
2007 #endif
2008
2009 #if EV_ASYNC_ENABLE
2010 if (async_pending)
2011 {
2012 async_pending = 0;
2013
2014 ECB_MEMORY_FENCE;
2015
2016 for (i = asynccnt; i--; )
2017 if (asyncs [i]->sent)
2018 {
2019 asyncs [i]->sent = 0;
2020 ECB_MEMORY_FENCE_RELEASE;
2021 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2022 }
2023 }
2024 #endif
2025 }
2026
2027 /*****************************************************************************/
2028
2029 void
2030 ev_feed_signal (int signum) EV_THROW
2031 {
2032 #if EV_MULTIPLICITY
2033 ECB_MEMORY_FENCE_ACQUIRE;
2034 EV_P = signals [signum - 1].loop;
2035
2036 if (!EV_A)
2037 return;
2038 #endif
2039
2040 signals [signum - 1].pending = 1;
2041 evpipe_write (EV_A_ &sig_pending);
2042 }
2043
2044 static void
2045 ev_sighandler (int signum)
2046 {
2047 #ifdef _WIN32
2048 signal (signum, ev_sighandler);
2049 #endif
2050
2051 ev_feed_signal (signum);
2052 }
2053
2054 void noinline
2055 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2056 {
2057 WL w;
2058
2059 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2060 return;
2061
2062 --signum;
2063
2064 #if EV_MULTIPLICITY
2065 /* it is permissible to try to feed a signal to the wrong loop */
2066 /* or, likely more useful, feeding a signal nobody is waiting for */
2067
2068 if (expect_false (signals [signum].loop != EV_A))
2069 return;
2070 #endif
2071
2072 signals [signum].pending = 0;
2073 ECB_MEMORY_FENCE_RELEASE;
2074
2075 for (w = signals [signum].head; w; w = w->next)
2076 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2077 }
2078
2079 #if EV_USE_SIGNALFD
2080 static void
2081 sigfdcb (EV_P_ ev_io *iow, int revents)
2082 {
2083 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2084
2085 for (;;)
2086 {
2087 ssize_t res = read (sigfd, si, sizeof (si));
2088
2089 /* not ISO-C, as res might be -1, but works with SuS */
2090 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2091 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2092
2093 if (res < (ssize_t)sizeof (si))
2094 break;
2095 }
2096 }
2097 #endif
2098
2099 #endif
2100
2101 /*****************************************************************************/
2102
2103 #if EV_CHILD_ENABLE
2104 static WL childs [EV_PID_HASHSIZE];
2105
2106 static ev_signal childev;
2107
2108 #ifndef WIFCONTINUED
2109 # define WIFCONTINUED(status) 0
2110 #endif
2111
2112 /* handle a single child status event */
2113 inline_speed void
2114 child_reap (EV_P_ int chain, int pid, int status)
2115 {
2116 ev_child *w;
2117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2118
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 {
2121 if ((w->pid == pid || !w->pid)
2122 && (!traced || (w->flags & 1)))
2123 {
2124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2125 w->rpid = pid;
2126 w->rstatus = status;
2127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2128 }
2129 }
2130 }
2131
2132 #ifndef WCONTINUED
2133 # define WCONTINUED 0
2134 #endif
2135
2136 /* called on sigchld etc., calls waitpid */
2137 static void
2138 childcb (EV_P_ ev_signal *sw, int revents)
2139 {
2140 int pid, status;
2141
2142 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2143 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2144 if (!WCONTINUED
2145 || errno != EINVAL
2146 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2147 return;
2148
2149 /* make sure we are called again until all children have been reaped */
2150 /* we need to do it this way so that the callback gets called before we continue */
2151 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2152
2153 child_reap (EV_A_ pid, pid, status);
2154 if ((EV_PID_HASHSIZE) > 1)
2155 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2156 }
2157
2158 #endif
2159
2160 /*****************************************************************************/
2161
2162 #if EV_USE_IOCP
2163 # include "ev_iocp.c"
2164 #endif
2165 #if EV_USE_PORT
2166 # include "ev_port.c"
2167 #endif
2168 #if EV_USE_KQUEUE
2169 # include "ev_kqueue.c"
2170 #endif
2171 #if EV_USE_EPOLL
2172 # include "ev_epoll.c"
2173 #endif
2174 #if EV_USE_POLL
2175 # include "ev_poll.c"
2176 #endif
2177 #if EV_USE_SELECT
2178 # include "ev_select.c"
2179 #endif
2180
2181 int ecb_cold
2182 ev_version_major (void) EV_THROW
2183 {
2184 return EV_VERSION_MAJOR;
2185 }
2186
2187 int ecb_cold
2188 ev_version_minor (void) EV_THROW
2189 {
2190 return EV_VERSION_MINOR;
2191 }
2192
2193 /* return true if we are running with elevated privileges and should ignore env variables */
2194 int inline_size ecb_cold
2195 enable_secure (void)
2196 {
2197 #ifdef _WIN32
2198 return 0;
2199 #else
2200 return getuid () != geteuid ()
2201 || getgid () != getegid ();
2202 #endif
2203 }
2204
2205 unsigned int ecb_cold
2206 ev_supported_backends (void) EV_THROW
2207 {
2208 unsigned int flags = 0;
2209
2210 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2211 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2212 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2213 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2214 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2215
2216 return flags;
2217 }
2218
2219 unsigned int ecb_cold
2220 ev_recommended_backends (void) EV_THROW
2221 {
2222 unsigned int flags = ev_supported_backends ();
2223
2224 #ifndef __NetBSD__
2225 /* kqueue is borked on everything but netbsd apparently */
2226 /* it usually doesn't work correctly on anything but sockets and pipes */
2227 flags &= ~EVBACKEND_KQUEUE;
2228 #endif
2229 #ifdef __APPLE__
2230 /* only select works correctly on that "unix-certified" platform */
2231 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2232 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2233 #endif
2234 #ifdef __FreeBSD__
2235 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2236 #endif
2237
2238 return flags;
2239 }
2240
2241 unsigned int ecb_cold
2242 ev_embeddable_backends (void) EV_THROW
2243 {
2244 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2245
2246 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2247 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2248 flags &= ~EVBACKEND_EPOLL;
2249
2250 return flags;
2251 }
2252
2253 unsigned int
2254 ev_backend (EV_P) EV_THROW
2255 {
2256 return backend;
2257 }
2258
2259 #if EV_FEATURE_API
2260 unsigned int
2261 ev_iteration (EV_P) EV_THROW
2262 {
2263 return loop_count;
2264 }
2265
2266 unsigned int
2267 ev_depth (EV_P) EV_THROW
2268 {
2269 return loop_depth;
2270 }
2271
2272 void
2273 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2274 {
2275 io_blocktime = interval;
2276 }
2277
2278 void
2279 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2280 {
2281 timeout_blocktime = interval;
2282 }
2283
2284 void
2285 ev_set_userdata (EV_P_ void *data) EV_THROW
2286 {
2287 userdata = data;
2288 }
2289
2290 void *
2291 ev_userdata (EV_P) EV_THROW
2292 {
2293 return userdata;
2294 }
2295
2296 void
2297 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2298 {
2299 invoke_cb = invoke_pending_cb;
2300 }
2301
2302 void
2303 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2304 {
2305 release_cb = release;
2306 acquire_cb = acquire;
2307 }
2308 #endif
2309
2310 /* initialise a loop structure, must be zero-initialised */
2311 static void noinline ecb_cold
2312 loop_init (EV_P_ unsigned int flags) EV_THROW
2313 {
2314 if (!backend)
2315 {
2316 origflags = flags;
2317
2318 #if EV_USE_REALTIME
2319 if (!have_realtime)
2320 {
2321 struct timespec ts;
2322
2323 if (!clock_gettime (CLOCK_REALTIME, &ts))
2324 have_realtime = 1;
2325 }
2326 #endif
2327
2328 #if EV_USE_MONOTONIC
2329 if (!have_monotonic)
2330 {
2331 struct timespec ts;
2332
2333 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2334 have_monotonic = 1;
2335 }
2336 #endif
2337
2338 /* pid check not overridable via env */
2339 #ifndef _WIN32
2340 if (flags & EVFLAG_FORKCHECK)
2341 curpid = getpid ();
2342 #endif
2343
2344 if (!(flags & EVFLAG_NOENV)
2345 && !enable_secure ()
2346 && getenv ("LIBEV_FLAGS"))
2347 flags = atoi (getenv ("LIBEV_FLAGS"));
2348
2349 ev_rt_now = ev_time ();
2350 mn_now = get_clock ();
2351 now_floor = mn_now;
2352 rtmn_diff = ev_rt_now - mn_now;
2353 #if EV_FEATURE_API
2354 invoke_cb = ev_invoke_pending;
2355 #endif
2356
2357 io_blocktime = 0.;
2358 timeout_blocktime = 0.;
2359 backend = 0;
2360 backend_fd = -1;
2361 sig_pending = 0;
2362 #if EV_ASYNC_ENABLE
2363 async_pending = 0;
2364 #endif
2365 pipe_write_skipped = 0;
2366 pipe_write_wanted = 0;
2367 evpipe [0] = -1;
2368 evpipe [1] = -1;
2369 #if EV_USE_INOTIFY
2370 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2371 #endif
2372 #if EV_USE_SIGNALFD
2373 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2374 #endif
2375
2376 if (!(flags & EVBACKEND_MASK))
2377 flags |= ev_recommended_backends ();
2378
2379 #if EV_USE_IOCP
2380 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2381 #endif
2382 #if EV_USE_PORT
2383 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2384 #endif
2385 #if EV_USE_KQUEUE
2386 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2387 #endif
2388 #if EV_USE_EPOLL
2389 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2390 #endif
2391 #if EV_USE_POLL
2392 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2393 #endif
2394 #if EV_USE_SELECT
2395 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2396 #endif
2397
2398 ev_prepare_init (&pending_w, pendingcb);
2399
2400 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2401 ev_init (&pipe_w, pipecb);
2402 ev_set_priority (&pipe_w, EV_MAXPRI);
2403 #endif
2404 }
2405 }
2406
2407 /* free up a loop structure */
2408 void ecb_cold
2409 ev_loop_destroy (EV_P)
2410 {
2411 int i;
2412
2413 #if EV_MULTIPLICITY
2414 /* mimic free (0) */
2415 if (!EV_A)
2416 return;
2417 #endif
2418
2419 #if EV_CLEANUP_ENABLE
2420 /* queue cleanup watchers (and execute them) */
2421 if (expect_false (cleanupcnt))
2422 {
2423 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2424 EV_INVOKE_PENDING;
2425 }
2426 #endif
2427
2428 #if EV_CHILD_ENABLE
2429 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2430 {
2431 ev_ref (EV_A); /* child watcher */
2432 ev_signal_stop (EV_A_ &childev);
2433 }
2434 #endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /*ev_ref (EV_A);*/
2439 /*ev_io_stop (EV_A_ &pipe_w);*/
2440
2441 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2442 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2443 }
2444
2445 #if EV_USE_SIGNALFD
2446 if (ev_is_active (&sigfd_w))
2447 close (sigfd);
2448 #endif
2449
2450 #if EV_USE_INOTIFY
2451 if (fs_fd >= 0)
2452 close (fs_fd);
2453 #endif
2454
2455 if (backend_fd >= 0)
2456 close (backend_fd);
2457
2458 #if EV_USE_IOCP
2459 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2460 #endif
2461 #if EV_USE_PORT
2462 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2463 #endif
2464 #if EV_USE_KQUEUE
2465 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2466 #endif
2467 #if EV_USE_EPOLL
2468 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2469 #endif
2470 #if EV_USE_POLL
2471 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2472 #endif
2473 #if EV_USE_SELECT
2474 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2475 #endif
2476
2477 for (i = NUMPRI; i--; )
2478 {
2479 array_free (pending, [i]);
2480 #if EV_IDLE_ENABLE
2481 array_free (idle, [i]);
2482 #endif
2483 }
2484
2485 ev_free (anfds); anfds = 0; anfdmax = 0;
2486
2487 /* have to use the microsoft-never-gets-it-right macro */
2488 array_free (rfeed, EMPTY);
2489 array_free (fdchange, EMPTY);
2490 array_free (timer, EMPTY);
2491 #if EV_PERIODIC_ENABLE
2492 array_free (periodic, EMPTY);
2493 #endif
2494 #if EV_FORK_ENABLE
2495 array_free (fork, EMPTY);
2496 #endif
2497 #if EV_CLEANUP_ENABLE
2498 array_free (cleanup, EMPTY);
2499 #endif
2500 array_free (prepare, EMPTY);
2501 array_free (check, EMPTY);
2502 #if EV_ASYNC_ENABLE
2503 array_free (async, EMPTY);
2504 #endif
2505
2506 backend = 0;
2507
2508 #if EV_MULTIPLICITY
2509 if (ev_is_default_loop (EV_A))
2510 #endif
2511 ev_default_loop_ptr = 0;
2512 #if EV_MULTIPLICITY
2513 else
2514 ev_free (EV_A);
2515 #endif
2516 }
2517
2518 #if EV_USE_INOTIFY
2519 inline_size void infy_fork (EV_P);
2520 #endif
2521
2522 inline_size void
2523 loop_fork (EV_P)
2524 {
2525 #if EV_USE_PORT
2526 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2527 #endif
2528 #if EV_USE_KQUEUE
2529 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2530 #endif
2531 #if EV_USE_EPOLL
2532 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2533 #endif
2534 #if EV_USE_INOTIFY
2535 infy_fork (EV_A);
2536 #endif
2537
2538 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2539 if (ev_is_active (&pipe_w))
2540 {
2541 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2542
2543 ev_ref (EV_A);
2544 ev_io_stop (EV_A_ &pipe_w);
2545
2546 if (evpipe [0] >= 0)
2547 EV_WIN32_CLOSE_FD (evpipe [0]);
2548
2549 evpipe_init (EV_A);
2550 /* iterate over everything, in case we missed something before */
2551 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2552 }
2553 #endif
2554
2555 postfork = 0;
2556 }
2557
2558 #if EV_MULTIPLICITY
2559
2560 struct ev_loop * ecb_cold
2561 ev_loop_new (unsigned int flags) EV_THROW
2562 {
2563 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2564
2565 memset (EV_A, 0, sizeof (struct ev_loop));
2566 loop_init (EV_A_ flags);
2567
2568 if (ev_backend (EV_A))
2569 return EV_A;
2570
2571 ev_free (EV_A);
2572 return 0;
2573 }
2574
2575 #endif /* multiplicity */
2576
2577 #if EV_VERIFY
2578 static void noinline ecb_cold
2579 verify_watcher (EV_P_ W w)
2580 {
2581 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2582
2583 if (w->pending)
2584 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2585 }
2586
2587 static void noinline ecb_cold
2588 verify_heap (EV_P_ ANHE *heap, int N)
2589 {
2590 int i;
2591
2592 for (i = HEAP0; i < N + HEAP0; ++i)
2593 {
2594 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2595 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2596 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2597
2598 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2599 }
2600 }
2601
2602 static void noinline ecb_cold
2603 array_verify (EV_P_ W *ws, int cnt)
2604 {
2605 while (cnt--)
2606 {
2607 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2608 verify_watcher (EV_A_ ws [cnt]);
2609 }
2610 }
2611 #endif
2612
2613 #if EV_FEATURE_API
2614 void ecb_cold
2615 ev_verify (EV_P) EV_THROW
2616 {
2617 #if EV_VERIFY
2618 int i;
2619 WL w, w2;
2620
2621 assert (activecnt >= -1);
2622
2623 assert (fdchangemax >= fdchangecnt);
2624 for (i = 0; i < fdchangecnt; ++i)
2625 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2626
2627 assert (anfdmax >= 0);
2628 for (i = 0; i < anfdmax; ++i)
2629 {
2630 int j = 0;
2631
2632 for (w = w2 = anfds [i].head; w; w = w->next)
2633 {
2634 verify_watcher (EV_A_ (W)w);
2635
2636 if (j++ & 1)
2637 {
2638 assert (("libev: io watcher list contains a loop", w != w2));
2639 w2 = w2->next;
2640 }
2641
2642 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2643 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2644 }
2645 }
2646
2647 assert (timermax >= timercnt);
2648 verify_heap (EV_A_ timers, timercnt);
2649
2650 #if EV_PERIODIC_ENABLE
2651 assert (periodicmax >= periodiccnt);
2652 verify_heap (EV_A_ periodics, periodiccnt);
2653 #endif
2654
2655 for (i = NUMPRI; i--; )
2656 {
2657 assert (pendingmax [i] >= pendingcnt [i]);
2658 #if EV_IDLE_ENABLE
2659 assert (idleall >= 0);
2660 assert (idlemax [i] >= idlecnt [i]);
2661 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2662 #endif
2663 }
2664
2665 #if EV_FORK_ENABLE
2666 assert (forkmax >= forkcnt);
2667 array_verify (EV_A_ (W *)forks, forkcnt);
2668 #endif
2669
2670 #if EV_CLEANUP_ENABLE
2671 assert (cleanupmax >= cleanupcnt);
2672 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2673 #endif
2674
2675 #if EV_ASYNC_ENABLE
2676 assert (asyncmax >= asynccnt);
2677 array_verify (EV_A_ (W *)asyncs, asynccnt);
2678 #endif
2679
2680 #if EV_PREPARE_ENABLE
2681 assert (preparemax >= preparecnt);
2682 array_verify (EV_A_ (W *)prepares, preparecnt);
2683 #endif
2684
2685 #if EV_CHECK_ENABLE
2686 assert (checkmax >= checkcnt);
2687 array_verify (EV_A_ (W *)checks, checkcnt);
2688 #endif
2689
2690 # if 0
2691 #if EV_CHILD_ENABLE
2692 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2693 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2694 #endif
2695 # endif
2696 #endif
2697 }
2698 #endif
2699
2700 #if EV_MULTIPLICITY
2701 struct ev_loop * ecb_cold
2702 #else
2703 int
2704 #endif
2705 ev_default_loop (unsigned int flags) EV_THROW
2706 {
2707 if (!ev_default_loop_ptr)
2708 {
2709 #if EV_MULTIPLICITY
2710 EV_P = ev_default_loop_ptr = &default_loop_struct;
2711 #else
2712 ev_default_loop_ptr = 1;
2713 #endif
2714
2715 loop_init (EV_A_ flags);
2716
2717 if (ev_backend (EV_A))
2718 {
2719 #if EV_CHILD_ENABLE
2720 ev_signal_init (&childev, childcb, SIGCHLD);
2721 ev_set_priority (&childev, EV_MAXPRI);
2722 ev_signal_start (EV_A_ &childev);
2723 ev_unref (EV_A); /* child watcher should not keep loop alive */
2724 #endif
2725 }
2726 else
2727 ev_default_loop_ptr = 0;
2728 }
2729
2730 return ev_default_loop_ptr;
2731 }
2732
2733 void
2734 ev_loop_fork (EV_P) EV_THROW
2735 {
2736 postfork = 1;
2737 }
2738
2739 /*****************************************************************************/
2740
2741 void
2742 ev_invoke (EV_P_ void *w, int revents)
2743 {
2744 EV_CB_INVOKE ((W)w, revents);
2745 }
2746
2747 unsigned int
2748 ev_pending_count (EV_P) EV_THROW
2749 {
2750 int pri;
2751 unsigned int count = 0;
2752
2753 for (pri = NUMPRI; pri--; )
2754 count += pendingcnt [pri];
2755
2756 return count;
2757 }
2758
2759 void noinline
2760 ev_invoke_pending (EV_P)
2761 {
2762 pendingpri = NUMPRI;
2763
2764 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2765 {
2766 --pendingpri;
2767
2768 while (pendingcnt [pendingpri])
2769 {
2770 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2771
2772 p->w->pending = 0;
2773 EV_CB_INVOKE (p->w, p->events);
2774 EV_FREQUENT_CHECK;
2775 }
2776 }
2777 }
2778
2779 #if EV_IDLE_ENABLE
2780 /* make idle watchers pending. this handles the "call-idle */
2781 /* only when higher priorities are idle" logic */
2782 inline_size void
2783 idle_reify (EV_P)
2784 {
2785 if (expect_false (idleall))
2786 {
2787 int pri;
2788
2789 for (pri = NUMPRI; pri--; )
2790 {
2791 if (pendingcnt [pri])
2792 break;
2793
2794 if (idlecnt [pri])
2795 {
2796 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2797 break;
2798 }
2799 }
2800 }
2801 }
2802 #endif
2803
2804 /* make timers pending */
2805 inline_size void
2806 timers_reify (EV_P)
2807 {
2808 EV_FREQUENT_CHECK;
2809
2810 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2811 {
2812 do
2813 {
2814 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2815
2816 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2817
2818 /* first reschedule or stop timer */
2819 if (w->repeat)
2820 {
2821 ev_at (w) += w->repeat;
2822 if (ev_at (w) < mn_now)
2823 ev_at (w) = mn_now;
2824
2825 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2826
2827 ANHE_at_cache (timers [HEAP0]);
2828 downheap (timers, timercnt, HEAP0);
2829 }
2830 else
2831 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2832
2833 EV_FREQUENT_CHECK;
2834 feed_reverse (EV_A_ (W)w);
2835 }
2836 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2837
2838 feed_reverse_done (EV_A_ EV_TIMER);
2839 }
2840 }
2841
2842 #if EV_PERIODIC_ENABLE
2843
2844 static void noinline
2845 periodic_recalc (EV_P_ ev_periodic *w)
2846 {
2847 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2848 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2849
2850 /* the above almost always errs on the low side */
2851 while (at <= ev_rt_now)
2852 {
2853 ev_tstamp nat = at + w->interval;
2854
2855 /* when resolution fails us, we use ev_rt_now */
2856 if (expect_false (nat == at))
2857 {
2858 at = ev_rt_now;
2859 break;
2860 }
2861
2862 at = nat;
2863 }
2864
2865 ev_at (w) = at;
2866 }
2867
2868 /* make periodics pending */
2869 inline_size void
2870 periodics_reify (EV_P)
2871 {
2872 EV_FREQUENT_CHECK;
2873
2874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2875 {
2876 do
2877 {
2878 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2879
2880 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2881
2882 /* first reschedule or stop timer */
2883 if (w->reschedule_cb)
2884 {
2885 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2886
2887 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2888
2889 ANHE_at_cache (periodics [HEAP0]);
2890 downheap (periodics, periodiccnt, HEAP0);
2891 }
2892 else if (w->interval)
2893 {
2894 periodic_recalc (EV_A_ w);
2895 ANHE_at_cache (periodics [HEAP0]);
2896 downheap (periodics, periodiccnt, HEAP0);
2897 }
2898 else
2899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2900
2901 EV_FREQUENT_CHECK;
2902 feed_reverse (EV_A_ (W)w);
2903 }
2904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2905
2906 feed_reverse_done (EV_A_ EV_PERIODIC);
2907 }
2908 }
2909
2910 /* simply recalculate all periodics */
2911 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2912 static void noinline ecb_cold
2913 periodics_reschedule (EV_P)
2914 {
2915 int i;
2916
2917 /* adjust periodics after time jump */
2918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2919 {
2920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2921
2922 if (w->reschedule_cb)
2923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2924 else if (w->interval)
2925 periodic_recalc (EV_A_ w);
2926
2927 ANHE_at_cache (periodics [i]);
2928 }
2929
2930 reheap (periodics, periodiccnt);
2931 }
2932 #endif
2933
2934 /* adjust all timers by a given offset */
2935 static void noinline ecb_cold
2936 timers_reschedule (EV_P_ ev_tstamp adjust)
2937 {
2938 int i;
2939
2940 for (i = 0; i < timercnt; ++i)
2941 {
2942 ANHE *he = timers + i + HEAP0;
2943 ANHE_w (*he)->at += adjust;
2944 ANHE_at_cache (*he);
2945 }
2946 }
2947
2948 /* fetch new monotonic and realtime times from the kernel */
2949 /* also detect if there was a timejump, and act accordingly */
2950 inline_speed void
2951 time_update (EV_P_ ev_tstamp max_block)
2952 {
2953 #if EV_USE_MONOTONIC
2954 if (expect_true (have_monotonic))
2955 {
2956 int i;
2957 ev_tstamp odiff = rtmn_diff;
2958
2959 mn_now = get_clock ();
2960
2961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2962 /* interpolate in the meantime */
2963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2964 {
2965 ev_rt_now = rtmn_diff + mn_now;
2966 return;
2967 }
2968
2969 now_floor = mn_now;
2970 ev_rt_now = ev_time ();
2971
2972 /* loop a few times, before making important decisions.
2973 * on the choice of "4": one iteration isn't enough,
2974 * in case we get preempted during the calls to
2975 * ev_time and get_clock. a second call is almost guaranteed
2976 * to succeed in that case, though. and looping a few more times
2977 * doesn't hurt either as we only do this on time-jumps or
2978 * in the unlikely event of having been preempted here.
2979 */
2980 for (i = 4; --i; )
2981 {
2982 ev_tstamp diff;
2983 rtmn_diff = ev_rt_now - mn_now;
2984
2985 diff = odiff - rtmn_diff;
2986
2987 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2988 return; /* all is well */
2989
2990 ev_rt_now = ev_time ();
2991 mn_now = get_clock ();
2992 now_floor = mn_now;
2993 }
2994
2995 /* no timer adjustment, as the monotonic clock doesn't jump */
2996 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2997 # if EV_PERIODIC_ENABLE
2998 periodics_reschedule (EV_A);
2999 # endif
3000 }
3001 else
3002 #endif
3003 {
3004 ev_rt_now = ev_time ();
3005
3006 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3007 {
3008 /* adjust timers. this is easy, as the offset is the same for all of them */
3009 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3010 #if EV_PERIODIC_ENABLE
3011 periodics_reschedule (EV_A);
3012 #endif
3013 }
3014
3015 mn_now = ev_rt_now;
3016 }
3017 }
3018
3019 int
3020 ev_run (EV_P_ int flags)
3021 {
3022 #if EV_FEATURE_API
3023 ++loop_depth;
3024 #endif
3025
3026 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3027
3028 loop_done = EVBREAK_CANCEL;
3029
3030 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3031
3032 do
3033 {
3034 #if EV_VERIFY >= 2
3035 ev_verify (EV_A);
3036 #endif
3037
3038 #ifndef _WIN32
3039 if (expect_false (curpid)) /* penalise the forking check even more */
3040 if (expect_false (getpid () != curpid))
3041 {
3042 curpid = getpid ();
3043 postfork = 1;
3044 }
3045 #endif
3046
3047 #if EV_FORK_ENABLE
3048 /* we might have forked, so queue fork handlers */
3049 if (expect_false (postfork))
3050 if (forkcnt)
3051 {
3052 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3053 EV_INVOKE_PENDING;
3054 }
3055 #endif
3056
3057 #if EV_PREPARE_ENABLE
3058 /* queue prepare watchers (and execute them) */
3059 if (expect_false (preparecnt))
3060 {
3061 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3062 EV_INVOKE_PENDING;
3063 }
3064 #endif
3065
3066 if (expect_false (loop_done))
3067 break;
3068
3069 /* we might have forked, so reify kernel state if necessary */
3070 if (expect_false (postfork))
3071 loop_fork (EV_A);
3072
3073 /* update fd-related kernel structures */
3074 fd_reify (EV_A);
3075
3076 /* calculate blocking time */
3077 {
3078 ev_tstamp waittime = 0.;
3079 ev_tstamp sleeptime = 0.;
3080
3081 /* remember old timestamp for io_blocktime calculation */
3082 ev_tstamp prev_mn_now = mn_now;
3083
3084 /* update time to cancel out callback processing overhead */
3085 time_update (EV_A_ 1e100);
3086
3087 /* from now on, we want a pipe-wake-up */
3088 pipe_write_wanted = 1;
3089
3090 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3091
3092 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3093 {
3094 waittime = MAX_BLOCKTIME;
3095
3096 if (timercnt)
3097 {
3098 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3099 if (waittime > to) waittime = to;
3100 }
3101
3102 #if EV_PERIODIC_ENABLE
3103 if (periodiccnt)
3104 {
3105 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3106 if (waittime > to) waittime = to;
3107 }
3108 #endif
3109
3110 /* don't let timeouts decrease the waittime below timeout_blocktime */
3111 if (expect_false (waittime < timeout_blocktime))
3112 waittime = timeout_blocktime;
3113
3114 /* at this point, we NEED to wait, so we have to ensure */
3115 /* to pass a minimum nonzero value to the backend */
3116 if (expect_false (waittime < backend_mintime))
3117 waittime = backend_mintime;
3118
3119 /* extra check because io_blocktime is commonly 0 */
3120 if (expect_false (io_blocktime))
3121 {
3122 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3123
3124 if (sleeptime > waittime - backend_mintime)
3125 sleeptime = waittime - backend_mintime;
3126
3127 if (expect_true (sleeptime > 0.))
3128 {
3129 ev_sleep (sleeptime);
3130 waittime -= sleeptime;
3131 }
3132 }
3133 }
3134
3135 #if EV_FEATURE_API
3136 ++loop_count;
3137 #endif
3138 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3139 backend_poll (EV_A_ waittime);
3140 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3141
3142 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3143
3144 ECB_MEMORY_FENCE_ACQUIRE;
3145 if (pipe_write_skipped)
3146 {
3147 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3148 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3149 }
3150
3151
3152 /* update ev_rt_now, do magic */
3153 time_update (EV_A_ waittime + sleeptime);
3154 }
3155
3156 /* queue pending timers and reschedule them */
3157 timers_reify (EV_A); /* relative timers called last */
3158 #if EV_PERIODIC_ENABLE
3159 periodics_reify (EV_A); /* absolute timers called first */
3160 #endif
3161
3162 #if EV_IDLE_ENABLE
3163 /* queue idle watchers unless other events are pending */
3164 idle_reify (EV_A);
3165 #endif
3166
3167 #if EV_CHECK_ENABLE
3168 /* queue check watchers, to be executed first */
3169 if (expect_false (checkcnt))
3170 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3171 #endif
3172
3173 EV_INVOKE_PENDING;
3174 }
3175 while (expect_true (
3176 activecnt
3177 && !loop_done
3178 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3179 ));
3180
3181 if (loop_done == EVBREAK_ONE)
3182 loop_done = EVBREAK_CANCEL;
3183
3184 #if EV_FEATURE_API
3185 --loop_depth;
3186 #endif
3187
3188 return activecnt;
3189 }
3190
3191 void
3192 ev_break (EV_P_ int how) EV_THROW
3193 {
3194 loop_done = how;
3195 }
3196
3197 void
3198 ev_ref (EV_P) EV_THROW
3199 {
3200 ++activecnt;
3201 }
3202
3203 void
3204 ev_unref (EV_P) EV_THROW
3205 {
3206 --activecnt;
3207 }
3208
3209 void
3210 ev_now_update (EV_P) EV_THROW
3211 {
3212 time_update (EV_A_ 1e100);
3213 }
3214
3215 void
3216 ev_suspend (EV_P) EV_THROW
3217 {
3218 ev_now_update (EV_A);
3219 }
3220
3221 void
3222 ev_resume (EV_P) EV_THROW
3223 {
3224 ev_tstamp mn_prev = mn_now;
3225
3226 ev_now_update (EV_A);
3227 timers_reschedule (EV_A_ mn_now - mn_prev);
3228 #if EV_PERIODIC_ENABLE
3229 /* TODO: really do this? */
3230 periodics_reschedule (EV_A);
3231 #endif
3232 }
3233
3234 /*****************************************************************************/
3235 /* singly-linked list management, used when the expected list length is short */
3236
3237 inline_size void
3238 wlist_add (WL *head, WL elem)
3239 {
3240 elem->next = *head;
3241 *head = elem;
3242 }
3243
3244 inline_size void
3245 wlist_del (WL *head, WL elem)
3246 {
3247 while (*head)
3248 {
3249 if (expect_true (*head == elem))
3250 {
3251 *head = elem->next;
3252 break;
3253 }
3254
3255 head = &(*head)->next;
3256 }
3257 }
3258
3259 /* internal, faster, version of ev_clear_pending */
3260 inline_speed void
3261 clear_pending (EV_P_ W w)
3262 {
3263 if (w->pending)
3264 {
3265 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3266 w->pending = 0;
3267 }
3268 }
3269
3270 int
3271 ev_clear_pending (EV_P_ void *w) EV_THROW
3272 {
3273 W w_ = (W)w;
3274 int pending = w_->pending;
3275
3276 if (expect_true (pending))
3277 {
3278 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3279 p->w = (W)&pending_w;
3280 w_->pending = 0;
3281 return p->events;
3282 }
3283 else
3284 return 0;
3285 }
3286
3287 inline_size void
3288 pri_adjust (EV_P_ W w)
3289 {
3290 int pri = ev_priority (w);
3291 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3292 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3293 ev_set_priority (w, pri);
3294 }
3295
3296 inline_speed void
3297 ev_start (EV_P_ W w, int active)
3298 {
3299 pri_adjust (EV_A_ w);
3300 w->active = active;
3301 ev_ref (EV_A);
3302 }
3303
3304 inline_size void
3305 ev_stop (EV_P_ W w)
3306 {
3307 ev_unref (EV_A);
3308 w->active = 0;
3309 }
3310
3311 /*****************************************************************************/
3312
3313 void noinline
3314 ev_io_start (EV_P_ ev_io *w) EV_THROW
3315 {
3316 int fd = w->fd;
3317
3318 if (expect_false (ev_is_active (w)))
3319 return;
3320
3321 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3322 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3323
3324 EV_FREQUENT_CHECK;
3325
3326 ev_start (EV_A_ (W)w, 1);
3327 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3328 wlist_add (&anfds[fd].head, (WL)w);
3329
3330 /* common bug, apparently */
3331 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3332
3333 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3334 w->events &= ~EV__IOFDSET;
3335
3336 EV_FREQUENT_CHECK;
3337 }
3338
3339 void noinline
3340 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3341 {
3342 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w)))
3344 return;
3345
3346 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3347
3348 EV_FREQUENT_CHECK;
3349
3350 wlist_del (&anfds[w->fd].head, (WL)w);
3351 ev_stop (EV_A_ (W)w);
3352
3353 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3354
3355 EV_FREQUENT_CHECK;
3356 }
3357
3358 void noinline
3359 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3360 {
3361 if (expect_false (ev_is_active (w)))
3362 return;
3363
3364 ev_at (w) += mn_now;
3365
3366 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3367
3368 EV_FREQUENT_CHECK;
3369
3370 ++timercnt;
3371 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3372 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3373 ANHE_w (timers [ev_active (w)]) = (WT)w;
3374 ANHE_at_cache (timers [ev_active (w)]);
3375 upheap (timers, ev_active (w));
3376
3377 EV_FREQUENT_CHECK;
3378
3379 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3380 }
3381
3382 void noinline
3383 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3384 {
3385 clear_pending (EV_A_ (W)w);
3386 if (expect_false (!ev_is_active (w)))
3387 return;
3388
3389 EV_FREQUENT_CHECK;
3390
3391 {
3392 int active = ev_active (w);
3393
3394 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3395
3396 --timercnt;
3397
3398 if (expect_true (active < timercnt + HEAP0))
3399 {
3400 timers [active] = timers [timercnt + HEAP0];
3401 adjustheap (timers, timercnt, active);
3402 }
3403 }
3404
3405 ev_at (w) -= mn_now;
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410 }
3411
3412 void noinline
3413 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3414 {
3415 EV_FREQUENT_CHECK;
3416
3417 clear_pending (EV_A_ (W)w);
3418
3419 if (ev_is_active (w))
3420 {
3421 if (w->repeat)
3422 {
3423 ev_at (w) = mn_now + w->repeat;
3424 ANHE_at_cache (timers [ev_active (w)]);
3425 adjustheap (timers, timercnt, ev_active (w));
3426 }
3427 else
3428 ev_timer_stop (EV_A_ w);
3429 }
3430 else if (w->repeat)
3431 {
3432 ev_at (w) = w->repeat;
3433 ev_timer_start (EV_A_ w);
3434 }
3435
3436 EV_FREQUENT_CHECK;
3437 }
3438
3439 ev_tstamp
3440 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3441 {
3442 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3443 }
3444
3445 #if EV_PERIODIC_ENABLE
3446 void noinline
3447 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3448 {
3449 if (expect_false (ev_is_active (w)))
3450 return;
3451
3452 if (w->reschedule_cb)
3453 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3454 else if (w->interval)
3455 {
3456 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3457 periodic_recalc (EV_A_ w);
3458 }
3459 else
3460 ev_at (w) = w->offset;
3461
3462 EV_FREQUENT_CHECK;
3463
3464 ++periodiccnt;
3465 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3466 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3467 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3468 ANHE_at_cache (periodics [ev_active (w)]);
3469 upheap (periodics, ev_active (w));
3470
3471 EV_FREQUENT_CHECK;
3472
3473 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3474 }
3475
3476 void noinline
3477 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3478 {
3479 clear_pending (EV_A_ (W)w);
3480 if (expect_false (!ev_is_active (w)))
3481 return;
3482
3483 EV_FREQUENT_CHECK;
3484
3485 {
3486 int active = ev_active (w);
3487
3488 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3489
3490 --periodiccnt;
3491
3492 if (expect_true (active < periodiccnt + HEAP0))
3493 {
3494 periodics [active] = periodics [periodiccnt + HEAP0];
3495 adjustheap (periodics, periodiccnt, active);
3496 }
3497 }
3498
3499 ev_stop (EV_A_ (W)w);
3500
3501 EV_FREQUENT_CHECK;
3502 }
3503
3504 void noinline
3505 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3506 {
3507 /* TODO: use adjustheap and recalculation */
3508 ev_periodic_stop (EV_A_ w);
3509 ev_periodic_start (EV_A_ w);
3510 }
3511 #endif
3512
3513 #ifndef SA_RESTART
3514 # define SA_RESTART 0
3515 #endif
3516
3517 #if EV_SIGNAL_ENABLE
3518
3519 void noinline
3520 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3521 {
3522 if (expect_false (ev_is_active (w)))
3523 return;
3524
3525 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3526
3527 #if EV_MULTIPLICITY
3528 assert (("libev: a signal must not be attached to two different loops",
3529 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3530
3531 signals [w->signum - 1].loop = EV_A;
3532 ECB_MEMORY_FENCE_RELEASE;
3533 #endif
3534
3535 EV_FREQUENT_CHECK;
3536
3537 #if EV_USE_SIGNALFD
3538 if (sigfd == -2)
3539 {
3540 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3541 if (sigfd < 0 && errno == EINVAL)
3542 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3543
3544 if (sigfd >= 0)
3545 {
3546 fd_intern (sigfd); /* doing it twice will not hurt */
3547
3548 sigemptyset (&sigfd_set);
3549
3550 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3551 ev_set_priority (&sigfd_w, EV_MAXPRI);
3552 ev_io_start (EV_A_ &sigfd_w);
3553 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3554 }
3555 }
3556
3557 if (sigfd >= 0)
3558 {
3559 /* TODO: check .head */
3560 sigaddset (&sigfd_set, w->signum);
3561 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3562
3563 signalfd (sigfd, &sigfd_set, 0);
3564 }
3565 #endif
3566
3567 ev_start (EV_A_ (W)w, 1);
3568 wlist_add (&signals [w->signum - 1].head, (WL)w);
3569
3570 if (!((WL)w)->next)
3571 # if EV_USE_SIGNALFD
3572 if (sigfd < 0) /*TODO*/
3573 # endif
3574 {
3575 # ifdef _WIN32
3576 evpipe_init (EV_A);
3577
3578 signal (w->signum, ev_sighandler);
3579 # else
3580 struct sigaction sa;
3581
3582 evpipe_init (EV_A);
3583
3584 sa.sa_handler = ev_sighandler;
3585 sigfillset (&sa.sa_mask);
3586 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3587 sigaction (w->signum, &sa, 0);
3588
3589 if (origflags & EVFLAG_NOSIGMASK)
3590 {
3591 sigemptyset (&sa.sa_mask);
3592 sigaddset (&sa.sa_mask, w->signum);
3593 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3594 }
3595 #endif
3596 }
3597
3598 EV_FREQUENT_CHECK;
3599 }
3600
3601 void noinline
3602 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3603 {
3604 clear_pending (EV_A_ (W)w);
3605 if (expect_false (!ev_is_active (w)))
3606 return;
3607
3608 EV_FREQUENT_CHECK;
3609
3610 wlist_del (&signals [w->signum - 1].head, (WL)w);
3611 ev_stop (EV_A_ (W)w);
3612
3613 if (!signals [w->signum - 1].head)
3614 {
3615 #if EV_MULTIPLICITY
3616 signals [w->signum - 1].loop = 0; /* unattach from signal */
3617 #endif
3618 #if EV_USE_SIGNALFD
3619 if (sigfd >= 0)
3620 {
3621 sigset_t ss;
3622
3623 sigemptyset (&ss);
3624 sigaddset (&ss, w->signum);
3625 sigdelset (&sigfd_set, w->signum);
3626
3627 signalfd (sigfd, &sigfd_set, 0);
3628 sigprocmask (SIG_UNBLOCK, &ss, 0);
3629 }
3630 else
3631 #endif
3632 signal (w->signum, SIG_DFL);
3633 }
3634
3635 EV_FREQUENT_CHECK;
3636 }
3637
3638 #endif
3639
3640 #if EV_CHILD_ENABLE
3641
3642 void
3643 ev_child_start (EV_P_ ev_child *w) EV_THROW
3644 {
3645 #if EV_MULTIPLICITY
3646 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3647 #endif
3648 if (expect_false (ev_is_active (w)))
3649 return;
3650
3651 EV_FREQUENT_CHECK;
3652
3653 ev_start (EV_A_ (W)w, 1);
3654 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3655
3656 EV_FREQUENT_CHECK;
3657 }
3658
3659 void
3660 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3661 {
3662 clear_pending (EV_A_ (W)w);
3663 if (expect_false (!ev_is_active (w)))
3664 return;
3665
3666 EV_FREQUENT_CHECK;
3667
3668 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672 }
3673
3674 #endif
3675
3676 #if EV_STAT_ENABLE
3677
3678 # ifdef _WIN32
3679 # undef lstat
3680 # define lstat(a,b) _stati64 (a,b)
3681 # endif
3682
3683 #define DEF_STAT_INTERVAL 5.0074891
3684 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3685 #define MIN_STAT_INTERVAL 0.1074891
3686
3687 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3688
3689 #if EV_USE_INOTIFY
3690
3691 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3692 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3693
3694 static void noinline
3695 infy_add (EV_P_ ev_stat *w)
3696 {
3697 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3698
3699 if (w->wd >= 0)
3700 {
3701 struct statfs sfs;
3702
3703 /* now local changes will be tracked by inotify, but remote changes won't */
3704 /* unless the filesystem is known to be local, we therefore still poll */
3705 /* also do poll on <2.6.25, but with normal frequency */
3706
3707 if (!fs_2625)
3708 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3709 else if (!statfs (w->path, &sfs)
3710 && (sfs.f_type == 0x1373 /* devfs */
3711 || sfs.f_type == 0xEF53 /* ext2/3 */
3712 || sfs.f_type == 0x3153464a /* jfs */
3713 || sfs.f_type == 0x52654973 /* reiser3 */
3714 || sfs.f_type == 0x01021994 /* tempfs */
3715 || sfs.f_type == 0x58465342 /* xfs */))
3716 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3717 else
3718 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3719 }
3720 else
3721 {
3722 /* can't use inotify, continue to stat */
3723 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3724
3725 /* if path is not there, monitor some parent directory for speedup hints */
3726 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3727 /* but an efficiency issue only */
3728 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3729 {
3730 char path [4096];
3731 strcpy (path, w->path);
3732
3733 do
3734 {
3735 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3736 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3737
3738 char *pend = strrchr (path, '/');
3739
3740 if (!pend || pend == path)
3741 break;
3742
3743 *pend = 0;
3744 w->wd = inotify_add_watch (fs_fd, path, mask);
3745 }
3746 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3747 }
3748 }
3749
3750 if (w->wd >= 0)
3751 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3752
3753 /* now re-arm timer, if required */
3754 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3755 ev_timer_again (EV_A_ &w->timer);
3756 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3757 }
3758
3759 static void noinline
3760 infy_del (EV_P_ ev_stat *w)
3761 {
3762 int slot;
3763 int wd = w->wd;
3764
3765 if (wd < 0)
3766 return;
3767
3768 w->wd = -2;
3769 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3770 wlist_del (&fs_hash [slot].head, (WL)w);
3771
3772 /* remove this watcher, if others are watching it, they will rearm */
3773 inotify_rm_watch (fs_fd, wd);
3774 }
3775
3776 static void noinline
3777 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3778 {
3779 if (slot < 0)
3780 /* overflow, need to check for all hash slots */
3781 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3782 infy_wd (EV_A_ slot, wd, ev);
3783 else
3784 {
3785 WL w_;
3786
3787 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3788 {
3789 ev_stat *w = (ev_stat *)w_;
3790 w_ = w_->next; /* lets us remove this watcher and all before it */
3791
3792 if (w->wd == wd || wd == -1)
3793 {
3794 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3795 {
3796 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3797 w->wd = -1;
3798 infy_add (EV_A_ w); /* re-add, no matter what */
3799 }
3800
3801 stat_timer_cb (EV_A_ &w->timer, 0);
3802 }
3803 }
3804 }
3805 }
3806
3807 static void
3808 infy_cb (EV_P_ ev_io *w, int revents)
3809 {
3810 char buf [EV_INOTIFY_BUFSIZE];
3811 int ofs;
3812 int len = read (fs_fd, buf, sizeof (buf));
3813
3814 for (ofs = 0; ofs < len; )
3815 {
3816 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3817 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3818 ofs += sizeof (struct inotify_event) + ev->len;
3819 }
3820 }
3821
3822 inline_size void ecb_cold
3823 ev_check_2625 (EV_P)
3824 {
3825 /* kernels < 2.6.25 are borked
3826 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3827 */
3828 if (ev_linux_version () < 0x020619)
3829 return;
3830
3831 fs_2625 = 1;
3832 }
3833
3834 inline_size int
3835 infy_newfd (void)
3836 {
3837 #if defined IN_CLOEXEC && defined IN_NONBLOCK
3838 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3839 if (fd >= 0)
3840 return fd;
3841 #endif
3842 return inotify_init ();
3843 }
3844
3845 inline_size void
3846 infy_init (EV_P)
3847 {
3848 if (fs_fd != -2)
3849 return;
3850
3851 fs_fd = -1;
3852
3853 ev_check_2625 (EV_A);
3854
3855 fs_fd = infy_newfd ();
3856
3857 if (fs_fd >= 0)
3858 {
3859 fd_intern (fs_fd);
3860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3861 ev_set_priority (&fs_w, EV_MAXPRI);
3862 ev_io_start (EV_A_ &fs_w);
3863 ev_unref (EV_A);
3864 }
3865 }
3866
3867 inline_size void
3868 infy_fork (EV_P)
3869 {
3870 int slot;
3871
3872 if (fs_fd < 0)
3873 return;
3874
3875 ev_ref (EV_A);
3876 ev_io_stop (EV_A_ &fs_w);
3877 close (fs_fd);
3878 fs_fd = infy_newfd ();
3879
3880 if (fs_fd >= 0)
3881 {
3882 fd_intern (fs_fd);
3883 ev_io_set (&fs_w, fs_fd, EV_READ);
3884 ev_io_start (EV_A_ &fs_w);
3885 ev_unref (EV_A);
3886 }
3887
3888 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3889 {
3890 WL w_ = fs_hash [slot].head;
3891 fs_hash [slot].head = 0;
3892
3893 while (w_)
3894 {
3895 ev_stat *w = (ev_stat *)w_;
3896 w_ = w_->next; /* lets us add this watcher */
3897
3898 w->wd = -1;
3899
3900 if (fs_fd >= 0)
3901 infy_add (EV_A_ w); /* re-add, no matter what */
3902 else
3903 {
3904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3905 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3906 ev_timer_again (EV_A_ &w->timer);
3907 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3908 }
3909 }
3910 }
3911 }
3912
3913 #endif
3914
3915 #ifdef _WIN32
3916 # define EV_LSTAT(p,b) _stati64 (p, b)
3917 #else
3918 # define EV_LSTAT(p,b) lstat (p, b)
3919 #endif
3920
3921 void
3922 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3923 {
3924 if (lstat (w->path, &w->attr) < 0)
3925 w->attr.st_nlink = 0;
3926 else if (!w->attr.st_nlink)
3927 w->attr.st_nlink = 1;
3928 }
3929
3930 static void noinline
3931 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3932 {
3933 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3934
3935 ev_statdata prev = w->attr;
3936 ev_stat_stat (EV_A_ w);
3937
3938 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3939 if (
3940 prev.st_dev != w->attr.st_dev
3941 || prev.st_ino != w->attr.st_ino
3942 || prev.st_mode != w->attr.st_mode
3943 || prev.st_nlink != w->attr.st_nlink
3944 || prev.st_uid != w->attr.st_uid
3945 || prev.st_gid != w->attr.st_gid
3946 || prev.st_rdev != w->attr.st_rdev
3947 || prev.st_size != w->attr.st_size
3948 || prev.st_atime != w->attr.st_atime
3949 || prev.st_mtime != w->attr.st_mtime
3950 || prev.st_ctime != w->attr.st_ctime
3951 ) {
3952 /* we only update w->prev on actual differences */
3953 /* in case we test more often than invoke the callback, */
3954 /* to ensure that prev is always different to attr */
3955 w->prev = prev;
3956
3957 #if EV_USE_INOTIFY
3958 if (fs_fd >= 0)
3959 {
3960 infy_del (EV_A_ w);
3961 infy_add (EV_A_ w);
3962 ev_stat_stat (EV_A_ w); /* avoid race... */
3963 }
3964 #endif
3965
3966 ev_feed_event (EV_A_ w, EV_STAT);
3967 }
3968 }
3969
3970 void
3971 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3972 {
3973 if (expect_false (ev_is_active (w)))
3974 return;
3975
3976 ev_stat_stat (EV_A_ w);
3977
3978 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3979 w->interval = MIN_STAT_INTERVAL;
3980
3981 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3982 ev_set_priority (&w->timer, ev_priority (w));
3983
3984 #if EV_USE_INOTIFY
3985 infy_init (EV_A);
3986
3987 if (fs_fd >= 0)
3988 infy_add (EV_A_ w);
3989 else
3990 #endif
3991 {
3992 ev_timer_again (EV_A_ &w->timer);
3993 ev_unref (EV_A);
3994 }
3995
3996 ev_start (EV_A_ (W)w, 1);
3997
3998 EV_FREQUENT_CHECK;
3999 }
4000
4001 void
4002 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4003 {
4004 clear_pending (EV_A_ (W)w);
4005 if (expect_false (!ev_is_active (w)))
4006 return;
4007
4008 EV_FREQUENT_CHECK;
4009
4010 #if EV_USE_INOTIFY
4011 infy_del (EV_A_ w);
4012 #endif
4013
4014 if (ev_is_active (&w->timer))
4015 {
4016 ev_ref (EV_A);
4017 ev_timer_stop (EV_A_ &w->timer);
4018 }
4019
4020 ev_stop (EV_A_ (W)w);
4021
4022 EV_FREQUENT_CHECK;
4023 }
4024 #endif
4025
4026 #if EV_IDLE_ENABLE
4027 void
4028 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4029 {
4030 if (expect_false (ev_is_active (w)))
4031 return;
4032
4033 pri_adjust (EV_A_ (W)w);
4034
4035 EV_FREQUENT_CHECK;
4036
4037 {
4038 int active = ++idlecnt [ABSPRI (w)];
4039
4040 ++idleall;
4041 ev_start (EV_A_ (W)w, active);
4042
4043 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4044 idles [ABSPRI (w)][active - 1] = w;
4045 }
4046
4047 EV_FREQUENT_CHECK;
4048 }
4049
4050 void
4051 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4052 {
4053 clear_pending (EV_A_ (W)w);
4054 if (expect_false (!ev_is_active (w)))
4055 return;
4056
4057 EV_FREQUENT_CHECK;
4058
4059 {
4060 int active = ev_active (w);
4061
4062 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4063 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4064
4065 ev_stop (EV_A_ (W)w);
4066 --idleall;
4067 }
4068
4069 EV_FREQUENT_CHECK;
4070 }
4071 #endif
4072
4073 #if EV_PREPARE_ENABLE
4074 void
4075 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4076 {
4077 if (expect_false (ev_is_active (w)))
4078 return;
4079
4080 EV_FREQUENT_CHECK;
4081
4082 ev_start (EV_A_ (W)w, ++preparecnt);
4083 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4084 prepares [preparecnt - 1] = w;
4085
4086 EV_FREQUENT_CHECK;
4087 }
4088
4089 void
4090 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4091 {
4092 clear_pending (EV_A_ (W)w);
4093 if (expect_false (!ev_is_active (w)))
4094 return;
4095
4096 EV_FREQUENT_CHECK;
4097
4098 {
4099 int active = ev_active (w);
4100
4101 prepares [active - 1] = prepares [--preparecnt];
4102 ev_active (prepares [active - 1]) = active;
4103 }
4104
4105 ev_stop (EV_A_ (W)w);
4106
4107 EV_FREQUENT_CHECK;
4108 }
4109 #endif
4110
4111 #if EV_CHECK_ENABLE
4112 void
4113 ev_check_start (EV_P_ ev_check *w) EV_THROW
4114 {
4115 if (expect_false (ev_is_active (w)))
4116 return;
4117
4118 EV_FREQUENT_CHECK;
4119
4120 ev_start (EV_A_ (W)w, ++checkcnt);
4121 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4122 checks [checkcnt - 1] = w;
4123
4124 EV_FREQUENT_CHECK;
4125 }
4126
4127 void
4128 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4129 {
4130 clear_pending (EV_A_ (W)w);
4131 if (expect_false (!ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 {
4137 int active = ev_active (w);
4138
4139 checks [active - 1] = checks [--checkcnt];
4140 ev_active (checks [active - 1]) = active;
4141 }
4142
4143 ev_stop (EV_A_ (W)w);
4144
4145 EV_FREQUENT_CHECK;
4146 }
4147 #endif
4148
4149 #if EV_EMBED_ENABLE
4150 void noinline
4151 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4152 {
4153 ev_run (w->other, EVRUN_NOWAIT);
4154 }
4155
4156 static void
4157 embed_io_cb (EV_P_ ev_io *io, int revents)
4158 {
4159 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4160
4161 if (ev_cb (w))
4162 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4163 else
4164 ev_run (w->other, EVRUN_NOWAIT);
4165 }
4166
4167 static void
4168 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4169 {
4170 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4171
4172 {
4173 EV_P = w->other;
4174
4175 while (fdchangecnt)
4176 {
4177 fd_reify (EV_A);
4178 ev_run (EV_A_ EVRUN_NOWAIT);
4179 }
4180 }
4181 }
4182
4183 static void
4184 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4185 {
4186 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4187
4188 ev_embed_stop (EV_A_ w);
4189
4190 {
4191 EV_P = w->other;
4192
4193 ev_loop_fork (EV_A);
4194 ev_run (EV_A_ EVRUN_NOWAIT);
4195 }
4196
4197 ev_embed_start (EV_A_ w);
4198 }
4199
4200 #if 0
4201 static void
4202 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4203 {
4204 ev_idle_stop (EV_A_ idle);
4205 }
4206 #endif
4207
4208 void
4209 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4210 {
4211 if (expect_false (ev_is_active (w)))
4212 return;
4213
4214 {
4215 EV_P = w->other;
4216 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4217 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4218 }
4219
4220 EV_FREQUENT_CHECK;
4221
4222 ev_set_priority (&w->io, ev_priority (w));
4223 ev_io_start (EV_A_ &w->io);
4224
4225 ev_prepare_init (&w->prepare, embed_prepare_cb);
4226 ev_set_priority (&w->prepare, EV_MINPRI);
4227 ev_prepare_start (EV_A_ &w->prepare);
4228
4229 ev_fork_init (&w->fork, embed_fork_cb);
4230 ev_fork_start (EV_A_ &w->fork);
4231
4232 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4233
4234 ev_start (EV_A_ (W)w, 1);
4235
4236 EV_FREQUENT_CHECK;
4237 }
4238
4239 void
4240 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4241 {
4242 clear_pending (EV_A_ (W)w);
4243 if (expect_false (!ev_is_active (w)))
4244 return;
4245
4246 EV_FREQUENT_CHECK;
4247
4248 ev_io_stop (EV_A_ &w->io);
4249 ev_prepare_stop (EV_A_ &w->prepare);
4250 ev_fork_stop (EV_A_ &w->fork);
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
4255 }
4256 #endif
4257
4258 #if EV_FORK_ENABLE
4259 void
4260 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4261 {
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 EV_FREQUENT_CHECK;
4266
4267 ev_start (EV_A_ (W)w, ++forkcnt);
4268 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4269 forks [forkcnt - 1] = w;
4270
4271 EV_FREQUENT_CHECK;
4272 }
4273
4274 void
4275 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4276 {
4277 clear_pending (EV_A_ (W)w);
4278 if (expect_false (!ev_is_active (w)))
4279 return;
4280
4281 EV_FREQUENT_CHECK;
4282
4283 {
4284 int active = ev_active (w);
4285
4286 forks [active - 1] = forks [--forkcnt];
4287 ev_active (forks [active - 1]) = active;
4288 }
4289
4290 ev_stop (EV_A_ (W)w);
4291
4292 EV_FREQUENT_CHECK;
4293 }
4294 #endif
4295
4296 #if EV_CLEANUP_ENABLE
4297 void
4298 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4299 {
4300 if (expect_false (ev_is_active (w)))
4301 return;
4302
4303 EV_FREQUENT_CHECK;
4304
4305 ev_start (EV_A_ (W)w, ++cleanupcnt);
4306 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4307 cleanups [cleanupcnt - 1] = w;
4308
4309 /* cleanup watchers should never keep a refcount on the loop */
4310 ev_unref (EV_A);
4311 EV_FREQUENT_CHECK;
4312 }
4313
4314 void
4315 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4316 {
4317 clear_pending (EV_A_ (W)w);
4318 if (expect_false (!ev_is_active (w)))
4319 return;
4320
4321 EV_FREQUENT_CHECK;
4322 ev_ref (EV_A);
4323
4324 {
4325 int active = ev_active (w);
4326
4327 cleanups [active - 1] = cleanups [--cleanupcnt];
4328 ev_active (cleanups [active - 1]) = active;
4329 }
4330
4331 ev_stop (EV_A_ (W)w);
4332
4333 EV_FREQUENT_CHECK;
4334 }
4335 #endif
4336
4337 #if EV_ASYNC_ENABLE
4338 void
4339 ev_async_start (EV_P_ ev_async *w) EV_THROW
4340 {
4341 if (expect_false (ev_is_active (w)))
4342 return;
4343
4344 w->sent = 0;
4345
4346 evpipe_init (EV_A);
4347
4348 EV_FREQUENT_CHECK;
4349
4350 ev_start (EV_A_ (W)w, ++asynccnt);
4351 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4352 asyncs [asynccnt - 1] = w;
4353
4354 EV_FREQUENT_CHECK;
4355 }
4356
4357 void
4358 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4359 {
4360 clear_pending (EV_A_ (W)w);
4361 if (expect_false (!ev_is_active (w)))
4362 return;
4363
4364 EV_FREQUENT_CHECK;
4365
4366 {
4367 int active = ev_active (w);
4368
4369 asyncs [active - 1] = asyncs [--asynccnt];
4370 ev_active (asyncs [active - 1]) = active;
4371 }
4372
4373 ev_stop (EV_A_ (W)w);
4374
4375 EV_FREQUENT_CHECK;
4376 }
4377
4378 void
4379 ev_async_send (EV_P_ ev_async *w) EV_THROW
4380 {
4381 w->sent = 1;
4382 evpipe_write (EV_A_ &async_pending);
4383 }
4384 #endif
4385
4386 /*****************************************************************************/
4387
4388 struct ev_once
4389 {
4390 ev_io io;
4391 ev_timer to;
4392 void (*cb)(int revents, void *arg);
4393 void *arg;
4394 };
4395
4396 static void
4397 once_cb (EV_P_ struct ev_once *once, int revents)
4398 {
4399 void (*cb)(int revents, void *arg) = once->cb;
4400 void *arg = once->arg;
4401
4402 ev_io_stop (EV_A_ &once->io);
4403 ev_timer_stop (EV_A_ &once->to);
4404 ev_free (once);
4405
4406 cb (revents, arg);
4407 }
4408
4409 static void
4410 once_cb_io (EV_P_ ev_io *w, int revents)
4411 {
4412 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4413
4414 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4415 }
4416
4417 static void
4418 once_cb_to (EV_P_ ev_timer *w, int revents)
4419 {
4420 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4421
4422 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4423 }
4424
4425 void
4426 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4427 {
4428 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4429
4430 if (expect_false (!once))
4431 {
4432 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4433 return;
4434 }
4435
4436 once->cb = cb;
4437 once->arg = arg;
4438
4439 ev_init (&once->io, once_cb_io);
4440 if (fd >= 0)
4441 {
4442 ev_io_set (&once->io, fd, events);
4443 ev_io_start (EV_A_ &once->io);
4444 }
4445
4446 ev_init (&once->to, once_cb_to);
4447 if (timeout >= 0.)
4448 {
4449 ev_timer_set (&once->to, timeout, 0.);
4450 ev_timer_start (EV_A_ &once->to);
4451 }
4452 }
4453
4454 /*****************************************************************************/
4455
4456 #if EV_WALK_ENABLE
4457 void ecb_cold
4458 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4459 {
4460 int i, j;
4461 ev_watcher_list *wl, *wn;
4462
4463 if (types & (EV_IO | EV_EMBED))
4464 for (i = 0; i < anfdmax; ++i)
4465 for (wl = anfds [i].head; wl; )
4466 {
4467 wn = wl->next;
4468
4469 #if EV_EMBED_ENABLE
4470 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4471 {
4472 if (types & EV_EMBED)
4473 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4474 }
4475 else
4476 #endif
4477 #if EV_USE_INOTIFY
4478 if (ev_cb ((ev_io *)wl) == infy_cb)
4479 ;
4480 else
4481 #endif
4482 if ((ev_io *)wl != &pipe_w)
4483 if (types & EV_IO)
4484 cb (EV_A_ EV_IO, wl);
4485
4486 wl = wn;
4487 }
4488
4489 if (types & (EV_TIMER | EV_STAT))
4490 for (i = timercnt + HEAP0; i-- > HEAP0; )
4491 #if EV_STAT_ENABLE
4492 /*TODO: timer is not always active*/
4493 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4494 {
4495 if (types & EV_STAT)
4496 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4497 }
4498 else
4499 #endif
4500 if (types & EV_TIMER)
4501 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4502
4503 #if EV_PERIODIC_ENABLE
4504 if (types & EV_PERIODIC)
4505 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4506 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4507 #endif
4508
4509 #if EV_IDLE_ENABLE
4510 if (types & EV_IDLE)
4511 for (j = NUMPRI; j--; )
4512 for (i = idlecnt [j]; i--; )
4513 cb (EV_A_ EV_IDLE, idles [j][i]);
4514 #endif
4515
4516 #if EV_FORK_ENABLE
4517 if (types & EV_FORK)
4518 for (i = forkcnt; i--; )
4519 if (ev_cb (forks [i]) != embed_fork_cb)
4520 cb (EV_A_ EV_FORK, forks [i]);
4521 #endif
4522
4523 #if EV_ASYNC_ENABLE
4524 if (types & EV_ASYNC)
4525 for (i = asynccnt; i--; )
4526 cb (EV_A_ EV_ASYNC, asyncs [i]);
4527 #endif
4528
4529 #if EV_PREPARE_ENABLE
4530 if (types & EV_PREPARE)
4531 for (i = preparecnt; i--; )
4532 # if EV_EMBED_ENABLE
4533 if (ev_cb (prepares [i]) != embed_prepare_cb)
4534 # endif
4535 cb (EV_A_ EV_PREPARE, prepares [i]);
4536 #endif
4537
4538 #if EV_CHECK_ENABLE
4539 if (types & EV_CHECK)
4540 for (i = checkcnt; i--; )
4541 cb (EV_A_ EV_CHECK, checks [i]);
4542 #endif
4543
4544 #if EV_SIGNAL_ENABLE
4545 if (types & EV_SIGNAL)
4546 for (i = 0; i < EV_NSIG - 1; ++i)
4547 for (wl = signals [i].head; wl; )
4548 {
4549 wn = wl->next;
4550 cb (EV_A_ EV_SIGNAL, wl);
4551 wl = wn;
4552 }
4553 #endif
4554
4555 #if EV_CHILD_ENABLE
4556 if (types & EV_CHILD)
4557 for (i = (EV_PID_HASHSIZE); i--; )
4558 for (wl = childs [i]; wl; )
4559 {
4560 wn = wl->next;
4561 cb (EV_A_ EV_CHILD, wl);
4562 wl = wn;
4563 }
4564 #endif
4565 /* EV_STAT 0x00001000 /* stat data changed */
4566 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4567 }
4568 #endif
4569
4570 #if EV_MULTIPLICITY
4571 #include "ev_wrap.h"
4572 #endif
4573