ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.453
Committed: Thu Feb 28 00:33:25 2013 UTC (11 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.452: +2 -1 lines
Log Message:
avoid c99ism

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 1
386 # else
387 # undef EV_USE_CLOCK_SYSCALL
388 # define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 # include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 # undef EV_USE_INOTIFY
422 # define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 # define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 # ifdef O_CLOEXEC
434 # define EFD_CLOEXEC O_CLOEXEC
435 # else
436 # define EFD_CLOEXEC 02000000
437 # endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 # define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 # ifdef O_CLOEXEC
450 # define SFD_CLOEXEC O_CLOEXEC
451 # else
452 # define SFD_CLOEXEC 02000000
453 # endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010002
521
522 #ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
545 #else
546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
551 #endif
552 #endif
553
554 /* many compilers define _GNUC_ to some versions but then only implement
555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561 #ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566 #endif
567 #endif
568
569 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
571 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
572 #define ECB_CPP (__cplusplus+0)
573 #define ECB_CPP11 (__cplusplus >= 201103L)
574
575 #if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
579 #else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583 #endif
584
585 /*****************************************************************************/
586
587 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590 #if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592 #endif
593
594 #if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596 #endif
597
598 #ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633 #endif
634
635 #ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667 #endif
668
669 #ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682 #endif
683
684 #ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700 #endif
701
702 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704 #endif
705
706 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708 #endif
709
710 /*****************************************************************************/
711
712 #if __cplusplus
713 #define ecb_inline static inline
714 #elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716 #elif ECB_C99
717 #define ecb_inline static inline
718 #else
719 #define ecb_inline static
720 #endif
721
722 #if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724 #elif ECB_C99
725 #define ecb_restrict restrict
726 #else
727 #define ecb_restrict
728 #endif
729
730 typedef int ecb_bool;
731
732 #define ECB_CONCAT_(a, b) a ## b
733 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734 #define ECB_STRINGIFY_(a) # a
735 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737 #define ecb_function_ ecb_inline
738
739 #if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744 #else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
747 #define ecb_expect(expr,value) (expr)
748 #define ecb_prefetch(addr,rw,locality)
749 #endif
750
751 /* no emulation for ecb_decltype */
752 #if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754 #elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756 #endif
757
758 #define ecb_noinline ecb_attribute ((__noinline__))
759 #define ecb_unused ecb_attribute ((__unused__))
760 #define ecb_const ecb_attribute ((__const__))
761 #define ecb_pure ecb_attribute ((__pure__))
762
763 #if ECB_C11
764 #define ecb_noreturn _Noreturn
765 #else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767 #endif
768
769 #if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773 #else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777 #endif
778
779 /* put around conditional expressions if you are very sure that the */
780 /* expression is mostly true or mostly false. note that these return */
781 /* booleans, not the expression. */
782 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
783 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784 /* for compatibility to the rest of the world */
785 #define ecb_likely(expr) ecb_expect_true (expr)
786 #define ecb_unlikely(expr) ecb_expect_false (expr)
787
788 /* count trailing zero bits and count # of one bits */
789 #if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797 #else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806 #if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812 #else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818 #endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866 #endif
867
868 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875 {
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878 }
879
880 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882 {
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889 }
890
891 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893 {
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901 }
902
903 /* popcount64 is only available on 64 bit cpus as gcc builtin */
904 /* so for this version we are lazy */
905 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906 ecb_function_ int
907 ecb_popcount64 (uint64_t x)
908 {
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910 }
911
912 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930 #if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934 #else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955 #endif
956
957 #if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959 #else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963 #endif
964
965 /* try to tell the compiler that some condition is definitely true */
966 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969 ecb_inline unsigned char
970 ecb_byteorder_helper (void)
971 {
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984 #else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991 #endif
992 }
993
994 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999 #if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001 #else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003 #endif
1004
1005 #if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016 #else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019 #endif
1020
1021 #if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028 #else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030 #endif
1031
1032 /*******************************************************************************/
1033 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035 /* basically, everything uses "ieee pure-endian" floating point numbers */
1036 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037 #if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050 #else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053 #endif
1054
1055 #ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197 #endif
1198
1199 #endif
1200
1201 /* ECB.H END */
1202
1203 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204 /* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211 # error "memory fences not defined for your architecture, please report"
1212 #endif
1213
1214 #ifndef ECB_MEMORY_FENCE
1215 # define ECB_MEMORY_FENCE do { } while (0)
1216 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218 #endif
1219
1220 #define expect_false(cond) ecb_expect_false (cond)
1221 #define expect_true(cond) ecb_expect_true (cond)
1222 #define noinline ecb_noinline
1223
1224 #define inline_size ecb_inline
1225
1226 #if EV_FEATURE_CODE
1227 # define inline_speed ecb_inline
1228 #else
1229 # define inline_speed static noinline
1230 #endif
1231
1232 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234 #if EV_MINPRI == EV_MAXPRI
1235 # define ABSPRI(w) (((W)w), 0)
1236 #else
1237 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238 #endif
1239
1240 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1241 #define EMPTY2(a,b) /* used to suppress some warnings */
1242
1243 typedef ev_watcher *W;
1244 typedef ev_watcher_list *WL;
1245 typedef ev_watcher_time *WT;
1246
1247 #define ev_active(w) ((W)(w))->active
1248 #define ev_at(w) ((WT)(w))->at
1249
1250 #if EV_USE_REALTIME
1251 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252 /* giving it a reasonably high chance of working on typical architectures */
1253 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254 #endif
1255
1256 #if EV_USE_MONOTONIC
1257 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258 #endif
1259
1260 #ifndef EV_FD_TO_WIN32_HANDLE
1261 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262 #endif
1263 #ifndef EV_WIN32_HANDLE_TO_FD
1264 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265 #endif
1266 #ifndef EV_WIN32_CLOSE_FD
1267 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1268 #endif
1269
1270 #ifdef _WIN32
1271 # include "ev_win32.c"
1272 #endif
1273
1274 /*****************************************************************************/
1275
1276 /* define a suitable floor function (only used by periodics atm) */
1277
1278 #if EV_USE_FLOOR
1279 # include <math.h>
1280 # define ev_floor(v) floor (v)
1281 #else
1282
1283 #include <float.h>
1284
1285 /* a floor() replacement function, should be independent of ev_tstamp type */
1286 static ev_tstamp noinline
1287 ev_floor (ev_tstamp v)
1288 {
1289 /* the choice of shift factor is not terribly important */
1290 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292 #else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294 #endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318 }
1319
1320 #endif
1321
1322 /*****************************************************************************/
1323
1324 #ifdef __linux
1325 # include <sys/utsname.h>
1326 #endif
1327
1328 static unsigned int noinline ecb_cold
1329 ev_linux_version (void)
1330 {
1331 #ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359 #else
1360 return 0;
1361 #endif
1362 }
1363
1364 /*****************************************************************************/
1365
1366 #if EV_AVOID_STDIO
1367 static void noinline ecb_cold
1368 ev_printerr (const char *msg)
1369 {
1370 write (STDERR_FILENO, msg, strlen (msg));
1371 }
1372 #endif
1373
1374 static void (*syserr_cb)(const char *msg) EV_THROW;
1375
1376 void ecb_cold
1377 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1378 {
1379 syserr_cb = cb;
1380 }
1381
1382 static void noinline ecb_cold
1383 ev_syserr (const char *msg)
1384 {
1385 if (!msg)
1386 msg = "(libev) system error";
1387
1388 if (syserr_cb)
1389 syserr_cb (msg);
1390 else
1391 {
1392 #if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397 #else
1398 perror (msg);
1399 #endif
1400 abort ();
1401 }
1402 }
1403
1404 static void *
1405 ev_realloc_emul (void *ptr, long size) EV_THROW
1406 {
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419 }
1420
1421 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1422
1423 void ecb_cold
1424 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1425 {
1426 alloc = cb;
1427 }
1428
1429 inline_speed void *
1430 ev_realloc (void *ptr, long size)
1431 {
1432 ptr = alloc (ptr, size);
1433
1434 if (!ptr && size)
1435 {
1436 #if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438 #else
1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440 #endif
1441 abort ();
1442 }
1443
1444 return ptr;
1445 }
1446
1447 #define ev_malloc(size) ev_realloc (0, (size))
1448 #define ev_free(ptr) ev_realloc ((ptr), 0)
1449
1450 /*****************************************************************************/
1451
1452 /* set in reify when reification needed */
1453 #define EV_ANFD_REIFY 1
1454
1455 /* file descriptor info structure */
1456 typedef struct
1457 {
1458 WL head;
1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1462 unsigned char unused;
1463 #if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465 #endif
1466 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1467 SOCKET handle;
1468 #endif
1469 #if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471 #endif
1472 } ANFD;
1473
1474 /* stores the pending event set for a given watcher */
1475 typedef struct
1476 {
1477 W w;
1478 int events; /* the pending event set for the given watcher */
1479 } ANPENDING;
1480
1481 #if EV_USE_INOTIFY
1482 /* hash table entry per inotify-id */
1483 typedef struct
1484 {
1485 WL head;
1486 } ANFS;
1487 #endif
1488
1489 /* Heap Entry */
1490 #if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500 #else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
1507 #endif
1508
1509 #if EV_MULTIPLICITY
1510
1511 struct ev_loop
1512 {
1513 ev_tstamp ev_rt_now;
1514 #define ev_rt_now ((loop)->ev_rt_now)
1515 #define VAR(name,decl) decl;
1516 #include "ev_vars.h"
1517 #undef VAR
1518 };
1519 #include "ev_wrap.h"
1520
1521 static struct ev_loop default_loop_struct;
1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1523
1524 #else
1525
1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1527 #define VAR(name,decl) static decl;
1528 #include "ev_vars.h"
1529 #undef VAR
1530
1531 static int ev_default_loop_ptr;
1532
1533 #endif
1534
1535 #if EV_FEATURE_API
1536 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1539 #else
1540 # define EV_RELEASE_CB (void)0
1541 # define EV_ACQUIRE_CB (void)0
1542 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543 #endif
1544
1545 #define EVBREAK_RECURSE 0x80
1546
1547 /*****************************************************************************/
1548
1549 #ifndef EV_HAVE_EV_TIME
1550 ev_tstamp
1551 ev_time (void) EV_THROW
1552 {
1553 #if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
1556 struct timespec ts;
1557 clock_gettime (CLOCK_REALTIME, &ts);
1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
1559 }
1560 #endif
1561
1562 struct timeval tv;
1563 gettimeofday (&tv, 0);
1564 return tv.tv_sec + tv.tv_usec * 1e-6;
1565 }
1566 #endif
1567
1568 inline_size ev_tstamp
1569 get_clock (void)
1570 {
1571 #if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 struct timespec ts;
1575 clock_gettime (CLOCK_MONOTONIC, &ts);
1576 return ts.tv_sec + ts.tv_nsec * 1e-9;
1577 }
1578 #endif
1579
1580 return ev_time ();
1581 }
1582
1583 #if EV_MULTIPLICITY
1584 ev_tstamp
1585 ev_now (EV_P) EV_THROW
1586 {
1587 return ev_rt_now;
1588 }
1589 #endif
1590
1591 void
1592 ev_sleep (ev_tstamp delay) EV_THROW
1593 {
1594 if (delay > 0.)
1595 {
1596 #if EV_USE_NANOSLEEP
1597 struct timespec ts;
1598
1599 EV_TS_SET (ts, delay);
1600 nanosleep (&ts, 0);
1601 #elif defined _WIN32
1602 Sleep ((unsigned long)(delay * 1e3));
1603 #else
1604 struct timeval tv;
1605
1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 /* something not guaranteed by newer posix versions, but guaranteed */
1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
1610 select (0, 0, 0, 0, &tv);
1611 #endif
1612 }
1613 }
1614
1615 /*****************************************************************************/
1616
1617 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619 /* find a suitable new size for the given array, */
1620 /* hopefully by rounding to a nice-to-malloc size */
1621 inline_size int
1622 array_nextsize (int elem, int cur, int cnt)
1623 {
1624 int ncur = cur + 1;
1625
1626 do
1627 ncur <<= 1;
1628 while (cnt > ncur);
1629
1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632 {
1633 ncur *= elem;
1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635 ncur = ncur - sizeof (void *) * 4;
1636 ncur /= elem;
1637 }
1638
1639 return ncur;
1640 }
1641
1642 static void * noinline ecb_cold
1643 array_realloc (int elem, void *base, int *cur, int cnt)
1644 {
1645 *cur = array_nextsize (elem, *cur, cnt);
1646 return ev_realloc (base, elem * *cur);
1647 }
1648
1649 #define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1651
1652 #define array_needsize(type,base,cur,cnt,init) \
1653 if (expect_false ((cnt) > (cur))) \
1654 { \
1655 int ecb_unused ocur_ = (cur); \
1656 (base) = (type *)array_realloc \
1657 (sizeof (type), (base), &(cur), (cnt)); \
1658 init ((base) + (ocur_), (cur) - ocur_); \
1659 }
1660
1661 #if 0
1662 #define array_slim(type,stem) \
1663 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1664 { \
1665 stem ## max = array_roundsize (stem ## cnt >> 1); \
1666 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1668 }
1669 #endif
1670
1671 #define array_free(stem, idx) \
1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1673
1674 /*****************************************************************************/
1675
1676 /* dummy callback for pending events */
1677 static void noinline
1678 pendingcb (EV_P_ ev_prepare *w, int revents)
1679 {
1680 }
1681
1682 void noinline
1683 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1684 {
1685 W w_ = (W)w;
1686 int pri = ABSPRI (w_);
1687
1688 if (expect_false (w_->pending))
1689 pendings [pri][w_->pending - 1].events |= revents;
1690 else
1691 {
1692 w_->pending = ++pendingcnt [pri];
1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694 pendings [pri][w_->pending - 1].w = w_;
1695 pendings [pri][w_->pending - 1].events = revents;
1696 }
1697
1698 pendingpri = NUMPRI - 1;
1699 }
1700
1701 inline_speed void
1702 feed_reverse (EV_P_ W w)
1703 {
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706 }
1707
1708 inline_size void
1709 feed_reverse_done (EV_P_ int revents)
1710 {
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714 }
1715
1716 inline_speed void
1717 queue_events (EV_P_ W *events, int eventcnt, int type)
1718 {
1719 int i;
1720
1721 for (i = 0; i < eventcnt; ++i)
1722 ev_feed_event (EV_A_ events [i], type);
1723 }
1724
1725 /*****************************************************************************/
1726
1727 inline_speed void
1728 fd_event_nocheck (EV_P_ int fd, int revents)
1729 {
1730 ANFD *anfd = anfds + fd;
1731 ev_io *w;
1732
1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1734 {
1735 int ev = w->events & revents;
1736
1737 if (ev)
1738 ev_feed_event (EV_A_ (W)w, ev);
1739 }
1740 }
1741
1742 /* do not submit kernel events for fds that have reify set */
1743 /* because that means they changed while we were polling for new events */
1744 inline_speed void
1745 fd_event (EV_P_ int fd, int revents)
1746 {
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751 }
1752
1753 void
1754 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1755 {
1756 if (fd >= 0 && fd < anfdmax)
1757 fd_event_nocheck (EV_A_ fd, revents);
1758 }
1759
1760 /* make sure the external fd watch events are in-sync */
1761 /* with the kernel/libev internal state */
1762 inline_size void
1763 fd_reify (EV_P)
1764 {
1765 int i;
1766
1767 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768 for (i = 0; i < fdchangecnt; ++i)
1769 {
1770 int fd = fdchanges [i];
1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790 #endif
1791
1792 for (i = 0; i < fdchangecnt; ++i)
1793 {
1794 int fd = fdchanges [i];
1795 ANFD *anfd = anfds + fd;
1796 ev_io *w;
1797
1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
1800
1801 anfd->reify = 0;
1802
1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804 {
1805 anfd->events = 0;
1806
1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808 anfd->events |= (unsigned char)w->events;
1809
1810 if (o_events != anfd->events)
1811 o_reify = EV__IOFDSET; /* actually |= */
1812 }
1813
1814 if (o_reify & EV__IOFDSET)
1815 backend_modify (EV_A_ fd, o_events, anfd->events);
1816 }
1817
1818 fdchangecnt = 0;
1819 }
1820
1821 /* something about the given fd changed */
1822 inline_size void
1823 fd_change (EV_P_ int fd, int flags)
1824 {
1825 unsigned char reify = anfds [fd].reify;
1826 anfds [fd].reify |= flags;
1827
1828 if (expect_true (!reify))
1829 {
1830 ++fdchangecnt;
1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1832 fdchanges [fdchangecnt - 1] = fd;
1833 }
1834 }
1835
1836 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837 inline_speed void ecb_cold
1838 fd_kill (EV_P_ int fd)
1839 {
1840 ev_io *w;
1841
1842 while ((w = (ev_io *)anfds [fd].head))
1843 {
1844 ev_io_stop (EV_A_ w);
1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1846 }
1847 }
1848
1849 /* check whether the given fd is actually valid, for error recovery */
1850 inline_size int ecb_cold
1851 fd_valid (int fd)
1852 {
1853 #ifdef _WIN32
1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1855 #else
1856 return fcntl (fd, F_GETFD) != -1;
1857 #endif
1858 }
1859
1860 /* called on EBADF to verify fds */
1861 static void noinline ecb_cold
1862 fd_ebadf (EV_P)
1863 {
1864 int fd;
1865
1866 for (fd = 0; fd < anfdmax; ++fd)
1867 if (anfds [fd].events)
1868 if (!fd_valid (fd) && errno == EBADF)
1869 fd_kill (EV_A_ fd);
1870 }
1871
1872 /* called on ENOMEM in select/poll to kill some fds and retry */
1873 static void noinline ecb_cold
1874 fd_enomem (EV_P)
1875 {
1876 int fd;
1877
1878 for (fd = anfdmax; fd--; )
1879 if (anfds [fd].events)
1880 {
1881 fd_kill (EV_A_ fd);
1882 break;
1883 }
1884 }
1885
1886 /* usually called after fork if backend needs to re-arm all fds from scratch */
1887 static void noinline
1888 fd_rearm_all (EV_P)
1889 {
1890 int fd;
1891
1892 for (fd = 0; fd < anfdmax; ++fd)
1893 if (anfds [fd].events)
1894 {
1895 anfds [fd].events = 0;
1896 anfds [fd].emask = 0;
1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1898 }
1899 }
1900
1901 /* used to prepare libev internal fd's */
1902 /* this is not fork-safe */
1903 inline_speed void
1904 fd_intern (int fd)
1905 {
1906 #ifdef _WIN32
1907 unsigned long arg = 1;
1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1909 #else
1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
1911 fcntl (fd, F_SETFL, O_NONBLOCK);
1912 #endif
1913 }
1914
1915 /*****************************************************************************/
1916
1917 /*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923 /*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929 #if EV_USE_4HEAP
1930
1931 #define DHEAP 4
1932 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934 #define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936 /* away from the root */
1937 inline_speed void
1938 downheap (ANHE *heap, int N, int k)
1939 {
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978 }
1979
1980 #else /* 4HEAP */
1981
1982 #define HEAP0 1
1983 #define HPARENT(k) ((k) >> 1)
1984 #define UPHEAP_DONE(p,k) (!(p))
1985
1986 /* away from the root */
1987 inline_speed void
1988 downheap (ANHE *heap, int N, int k)
1989 {
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013 }
2014 #endif
2015
2016 /* towards the root */
2017 inline_speed void
2018 upheap (ANHE *heap, int k)
2019 {
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036 }
2037
2038 /* move an element suitably so it is in a correct place */
2039 inline_size void
2040 adjustheap (ANHE *heap, int N, int k)
2041 {
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046 }
2047
2048 /* rebuild the heap: this function is used only once and executed rarely */
2049 inline_size void
2050 reheap (ANHE *heap, int N)
2051 {
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058 }
2059
2060 /*****************************************************************************/
2061
2062 /* associate signal watchers to a signal signal */
2063 typedef struct
2064 {
2065 EV_ATOMIC_T pending;
2066 #if EV_MULTIPLICITY
2067 EV_P;
2068 #endif
2069 WL head;
2070 } ANSIG;
2071
2072 static ANSIG signals [EV_NSIG - 1];
2073
2074 /*****************************************************************************/
2075
2076 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078 static void noinline ecb_cold
2079 evpipe_init (EV_P)
2080 {
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085 # if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092 # endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 }
2121 }
2122
2123 inline_speed void
2124 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125 {
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
2147 #if EV_USE_EVENTFD
2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154 #endif
2155 {
2156 #ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162 #else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164 #endif
2165 }
2166
2167 errno = old_errno;
2168 }
2169 }
2170
2171 /* called whenever the libev signal pipe */
2172 /* got some events (signal, async) */
2173 static void
2174 pipecb (EV_P_ ev_io *iow, int revents)
2175 {
2176 int i;
2177
2178 if (revents & EV_READ)
2179 {
2180 #if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187 #endif
2188 {
2189 char dummy[4];
2190 #ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197 #else
2198 read (evpipe [0], &dummy, sizeof (dummy));
2199 #endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207 #if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
2216 ev_feed_signal_event (EV_A_ i + 1);
2217 }
2218 #endif
2219
2220 #if EV_ASYNC_ENABLE
2221 if (async_pending)
2222 {
2223 async_pending = 0;
2224
2225 ECB_MEMORY_FENCE;
2226
2227 for (i = asynccnt; i--; )
2228 if (asyncs [i]->sent)
2229 {
2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233 }
2234 }
2235 #endif
2236 }
2237
2238 /*****************************************************************************/
2239
2240 void
2241 ev_feed_signal (int signum) EV_THROW
2242 {
2243 #if EV_MULTIPLICITY
2244 EV_P;
2245 ECB_MEMORY_FENCE_ACQUIRE;
2246 EV_A = signals [signum - 1].loop;
2247
2248 if (!EV_A)
2249 return;
2250 #endif
2251
2252 signals [signum - 1].pending = 1;
2253 evpipe_write (EV_A_ &sig_pending);
2254 }
2255
2256 static void
2257 ev_sighandler (int signum)
2258 {
2259 #ifdef _WIN32
2260 signal (signum, ev_sighandler);
2261 #endif
2262
2263 ev_feed_signal (signum);
2264 }
2265
2266 void noinline
2267 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2268 {
2269 WL w;
2270
2271 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2272 return;
2273
2274 --signum;
2275
2276 #if EV_MULTIPLICITY
2277 /* it is permissible to try to feed a signal to the wrong loop */
2278 /* or, likely more useful, feeding a signal nobody is waiting for */
2279
2280 if (expect_false (signals [signum].loop != EV_A))
2281 return;
2282 #endif
2283
2284 signals [signum].pending = 0;
2285 ECB_MEMORY_FENCE_RELEASE;
2286
2287 for (w = signals [signum].head; w; w = w->next)
2288 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2289 }
2290
2291 #if EV_USE_SIGNALFD
2292 static void
2293 sigfdcb (EV_P_ ev_io *iow, int revents)
2294 {
2295 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2296
2297 for (;;)
2298 {
2299 ssize_t res = read (sigfd, si, sizeof (si));
2300
2301 /* not ISO-C, as res might be -1, but works with SuS */
2302 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2303 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2304
2305 if (res < (ssize_t)sizeof (si))
2306 break;
2307 }
2308 }
2309 #endif
2310
2311 #endif
2312
2313 /*****************************************************************************/
2314
2315 #if EV_CHILD_ENABLE
2316 static WL childs [EV_PID_HASHSIZE];
2317
2318 static ev_signal childev;
2319
2320 #ifndef WIFCONTINUED
2321 # define WIFCONTINUED(status) 0
2322 #endif
2323
2324 /* handle a single child status event */
2325 inline_speed void
2326 child_reap (EV_P_ int chain, int pid, int status)
2327 {
2328 ev_child *w;
2329 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2330
2331 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2332 {
2333 if ((w->pid == pid || !w->pid)
2334 && (!traced || (w->flags & 1)))
2335 {
2336 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2337 w->rpid = pid;
2338 w->rstatus = status;
2339 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2340 }
2341 }
2342 }
2343
2344 #ifndef WCONTINUED
2345 # define WCONTINUED 0
2346 #endif
2347
2348 /* called on sigchld etc., calls waitpid */
2349 static void
2350 childcb (EV_P_ ev_signal *sw, int revents)
2351 {
2352 int pid, status;
2353
2354 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2355 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2356 if (!WCONTINUED
2357 || errno != EINVAL
2358 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2359 return;
2360
2361 /* make sure we are called again until all children have been reaped */
2362 /* we need to do it this way so that the callback gets called before we continue */
2363 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2364
2365 child_reap (EV_A_ pid, pid, status);
2366 if ((EV_PID_HASHSIZE) > 1)
2367 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2368 }
2369
2370 #endif
2371
2372 /*****************************************************************************/
2373
2374 #if EV_USE_IOCP
2375 # include "ev_iocp.c"
2376 #endif
2377 #if EV_USE_PORT
2378 # include "ev_port.c"
2379 #endif
2380 #if EV_USE_KQUEUE
2381 # include "ev_kqueue.c"
2382 #endif
2383 #if EV_USE_EPOLL
2384 # include "ev_epoll.c"
2385 #endif
2386 #if EV_USE_POLL
2387 # include "ev_poll.c"
2388 #endif
2389 #if EV_USE_SELECT
2390 # include "ev_select.c"
2391 #endif
2392
2393 int ecb_cold
2394 ev_version_major (void) EV_THROW
2395 {
2396 return EV_VERSION_MAJOR;
2397 }
2398
2399 int ecb_cold
2400 ev_version_minor (void) EV_THROW
2401 {
2402 return EV_VERSION_MINOR;
2403 }
2404
2405 /* return true if we are running with elevated privileges and should ignore env variables */
2406 int inline_size ecb_cold
2407 enable_secure (void)
2408 {
2409 #ifdef _WIN32
2410 return 0;
2411 #else
2412 return getuid () != geteuid ()
2413 || getgid () != getegid ();
2414 #endif
2415 }
2416
2417 unsigned int ecb_cold
2418 ev_supported_backends (void) EV_THROW
2419 {
2420 unsigned int flags = 0;
2421
2422 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2423 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2424 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2425 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2426 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2427
2428 return flags;
2429 }
2430
2431 unsigned int ecb_cold
2432 ev_recommended_backends (void) EV_THROW
2433 {
2434 unsigned int flags = ev_supported_backends ();
2435
2436 #ifndef __NetBSD__
2437 /* kqueue is borked on everything but netbsd apparently */
2438 /* it usually doesn't work correctly on anything but sockets and pipes */
2439 flags &= ~EVBACKEND_KQUEUE;
2440 #endif
2441 #ifdef __APPLE__
2442 /* only select works correctly on that "unix-certified" platform */
2443 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2444 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2445 #endif
2446 #ifdef __FreeBSD__
2447 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2448 #endif
2449
2450 return flags;
2451 }
2452
2453 unsigned int ecb_cold
2454 ev_embeddable_backends (void) EV_THROW
2455 {
2456 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2457
2458 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2459 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2460 flags &= ~EVBACKEND_EPOLL;
2461
2462 return flags;
2463 }
2464
2465 unsigned int
2466 ev_backend (EV_P) EV_THROW
2467 {
2468 return backend;
2469 }
2470
2471 #if EV_FEATURE_API
2472 unsigned int
2473 ev_iteration (EV_P) EV_THROW
2474 {
2475 return loop_count;
2476 }
2477
2478 unsigned int
2479 ev_depth (EV_P) EV_THROW
2480 {
2481 return loop_depth;
2482 }
2483
2484 void
2485 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2486 {
2487 io_blocktime = interval;
2488 }
2489
2490 void
2491 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2492 {
2493 timeout_blocktime = interval;
2494 }
2495
2496 void
2497 ev_set_userdata (EV_P_ void *data) EV_THROW
2498 {
2499 userdata = data;
2500 }
2501
2502 void *
2503 ev_userdata (EV_P) EV_THROW
2504 {
2505 return userdata;
2506 }
2507
2508 void
2509 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2510 {
2511 invoke_cb = invoke_pending_cb;
2512 }
2513
2514 void
2515 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2516 {
2517 release_cb = release;
2518 acquire_cb = acquire;
2519 }
2520 #endif
2521
2522 /* initialise a loop structure, must be zero-initialised */
2523 static void noinline ecb_cold
2524 loop_init (EV_P_ unsigned int flags) EV_THROW
2525 {
2526 if (!backend)
2527 {
2528 origflags = flags;
2529
2530 #if EV_USE_REALTIME
2531 if (!have_realtime)
2532 {
2533 struct timespec ts;
2534
2535 if (!clock_gettime (CLOCK_REALTIME, &ts))
2536 have_realtime = 1;
2537 }
2538 #endif
2539
2540 #if EV_USE_MONOTONIC
2541 if (!have_monotonic)
2542 {
2543 struct timespec ts;
2544
2545 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2546 have_monotonic = 1;
2547 }
2548 #endif
2549
2550 /* pid check not overridable via env */
2551 #ifndef _WIN32
2552 if (flags & EVFLAG_FORKCHECK)
2553 curpid = getpid ();
2554 #endif
2555
2556 if (!(flags & EVFLAG_NOENV)
2557 && !enable_secure ()
2558 && getenv ("LIBEV_FLAGS"))
2559 flags = atoi (getenv ("LIBEV_FLAGS"));
2560
2561 ev_rt_now = ev_time ();
2562 mn_now = get_clock ();
2563 now_floor = mn_now;
2564 rtmn_diff = ev_rt_now - mn_now;
2565 #if EV_FEATURE_API
2566 invoke_cb = ev_invoke_pending;
2567 #endif
2568
2569 io_blocktime = 0.;
2570 timeout_blocktime = 0.;
2571 backend = 0;
2572 backend_fd = -1;
2573 sig_pending = 0;
2574 #if EV_ASYNC_ENABLE
2575 async_pending = 0;
2576 #endif
2577 pipe_write_skipped = 0;
2578 pipe_write_wanted = 0;
2579 evpipe [0] = -1;
2580 evpipe [1] = -1;
2581 #if EV_USE_INOTIFY
2582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2583 #endif
2584 #if EV_USE_SIGNALFD
2585 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2586 #endif
2587
2588 if (!(flags & EVBACKEND_MASK))
2589 flags |= ev_recommended_backends ();
2590
2591 #if EV_USE_IOCP
2592 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2593 #endif
2594 #if EV_USE_PORT
2595 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2596 #endif
2597 #if EV_USE_KQUEUE
2598 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2599 #endif
2600 #if EV_USE_EPOLL
2601 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2602 #endif
2603 #if EV_USE_POLL
2604 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2605 #endif
2606 #if EV_USE_SELECT
2607 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2608 #endif
2609
2610 ev_prepare_init (&pending_w, pendingcb);
2611
2612 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2613 ev_init (&pipe_w, pipecb);
2614 ev_set_priority (&pipe_w, EV_MAXPRI);
2615 #endif
2616 }
2617 }
2618
2619 /* free up a loop structure */
2620 void ecb_cold
2621 ev_loop_destroy (EV_P)
2622 {
2623 int i;
2624
2625 #if EV_MULTIPLICITY
2626 /* mimic free (0) */
2627 if (!EV_A)
2628 return;
2629 #endif
2630
2631 #if EV_CLEANUP_ENABLE
2632 /* queue cleanup watchers (and execute them) */
2633 if (expect_false (cleanupcnt))
2634 {
2635 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2636 EV_INVOKE_PENDING;
2637 }
2638 #endif
2639
2640 #if EV_CHILD_ENABLE
2641 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2642 {
2643 ev_ref (EV_A); /* child watcher */
2644 ev_signal_stop (EV_A_ &childev);
2645 }
2646 #endif
2647
2648 if (ev_is_active (&pipe_w))
2649 {
2650 /*ev_ref (EV_A);*/
2651 /*ev_io_stop (EV_A_ &pipe_w);*/
2652
2653 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2654 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2655 }
2656
2657 #if EV_USE_SIGNALFD
2658 if (ev_is_active (&sigfd_w))
2659 close (sigfd);
2660 #endif
2661
2662 #if EV_USE_INOTIFY
2663 if (fs_fd >= 0)
2664 close (fs_fd);
2665 #endif
2666
2667 if (backend_fd >= 0)
2668 close (backend_fd);
2669
2670 #if EV_USE_IOCP
2671 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2672 #endif
2673 #if EV_USE_PORT
2674 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2675 #endif
2676 #if EV_USE_KQUEUE
2677 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2678 #endif
2679 #if EV_USE_EPOLL
2680 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2681 #endif
2682 #if EV_USE_POLL
2683 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2684 #endif
2685 #if EV_USE_SELECT
2686 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2687 #endif
2688
2689 for (i = NUMPRI; i--; )
2690 {
2691 array_free (pending, [i]);
2692 #if EV_IDLE_ENABLE
2693 array_free (idle, [i]);
2694 #endif
2695 }
2696
2697 ev_free (anfds); anfds = 0; anfdmax = 0;
2698
2699 /* have to use the microsoft-never-gets-it-right macro */
2700 array_free (rfeed, EMPTY);
2701 array_free (fdchange, EMPTY);
2702 array_free (timer, EMPTY);
2703 #if EV_PERIODIC_ENABLE
2704 array_free (periodic, EMPTY);
2705 #endif
2706 #if EV_FORK_ENABLE
2707 array_free (fork, EMPTY);
2708 #endif
2709 #if EV_CLEANUP_ENABLE
2710 array_free (cleanup, EMPTY);
2711 #endif
2712 array_free (prepare, EMPTY);
2713 array_free (check, EMPTY);
2714 #if EV_ASYNC_ENABLE
2715 array_free (async, EMPTY);
2716 #endif
2717
2718 backend = 0;
2719
2720 #if EV_MULTIPLICITY
2721 if (ev_is_default_loop (EV_A))
2722 #endif
2723 ev_default_loop_ptr = 0;
2724 #if EV_MULTIPLICITY
2725 else
2726 ev_free (EV_A);
2727 #endif
2728 }
2729
2730 #if EV_USE_INOTIFY
2731 inline_size void infy_fork (EV_P);
2732 #endif
2733
2734 inline_size void
2735 loop_fork (EV_P)
2736 {
2737 #if EV_USE_PORT
2738 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2739 #endif
2740 #if EV_USE_KQUEUE
2741 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2742 #endif
2743 #if EV_USE_EPOLL
2744 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2745 #endif
2746 #if EV_USE_INOTIFY
2747 infy_fork (EV_A);
2748 #endif
2749
2750 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2751 if (ev_is_active (&pipe_w))
2752 {
2753 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2754
2755 ev_ref (EV_A);
2756 ev_io_stop (EV_A_ &pipe_w);
2757
2758 if (evpipe [0] >= 0)
2759 EV_WIN32_CLOSE_FD (evpipe [0]);
2760
2761 evpipe_init (EV_A);
2762 /* iterate over everything, in case we missed something before */
2763 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2764 }
2765 #endif
2766
2767 postfork = 0;
2768 }
2769
2770 #if EV_MULTIPLICITY
2771
2772 struct ev_loop * ecb_cold
2773 ev_loop_new (unsigned int flags) EV_THROW
2774 {
2775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2776
2777 memset (EV_A, 0, sizeof (struct ev_loop));
2778 loop_init (EV_A_ flags);
2779
2780 if (ev_backend (EV_A))
2781 return EV_A;
2782
2783 ev_free (EV_A);
2784 return 0;
2785 }
2786
2787 #endif /* multiplicity */
2788
2789 #if EV_VERIFY
2790 static void noinline ecb_cold
2791 verify_watcher (EV_P_ W w)
2792 {
2793 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2794
2795 if (w->pending)
2796 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2797 }
2798
2799 static void noinline ecb_cold
2800 verify_heap (EV_P_ ANHE *heap, int N)
2801 {
2802 int i;
2803
2804 for (i = HEAP0; i < N + HEAP0; ++i)
2805 {
2806 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2807 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2808 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2809
2810 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2811 }
2812 }
2813
2814 static void noinline ecb_cold
2815 array_verify (EV_P_ W *ws, int cnt)
2816 {
2817 while (cnt--)
2818 {
2819 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2820 verify_watcher (EV_A_ ws [cnt]);
2821 }
2822 }
2823 #endif
2824
2825 #if EV_FEATURE_API
2826 void ecb_cold
2827 ev_verify (EV_P) EV_THROW
2828 {
2829 #if EV_VERIFY
2830 int i;
2831 WL w, w2;
2832
2833 assert (activecnt >= -1);
2834
2835 assert (fdchangemax >= fdchangecnt);
2836 for (i = 0; i < fdchangecnt; ++i)
2837 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2838
2839 assert (anfdmax >= 0);
2840 for (i = 0; i < anfdmax; ++i)
2841 {
2842 int j = 0;
2843
2844 for (w = w2 = anfds [i].head; w; w = w->next)
2845 {
2846 verify_watcher (EV_A_ (W)w);
2847
2848 if (j++ & 1)
2849 {
2850 assert (("libev: io watcher list contains a loop", w != w2));
2851 w2 = w2->next;
2852 }
2853
2854 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2855 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2856 }
2857 }
2858
2859 assert (timermax >= timercnt);
2860 verify_heap (EV_A_ timers, timercnt);
2861
2862 #if EV_PERIODIC_ENABLE
2863 assert (periodicmax >= periodiccnt);
2864 verify_heap (EV_A_ periodics, periodiccnt);
2865 #endif
2866
2867 for (i = NUMPRI; i--; )
2868 {
2869 assert (pendingmax [i] >= pendingcnt [i]);
2870 #if EV_IDLE_ENABLE
2871 assert (idleall >= 0);
2872 assert (idlemax [i] >= idlecnt [i]);
2873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2874 #endif
2875 }
2876
2877 #if EV_FORK_ENABLE
2878 assert (forkmax >= forkcnt);
2879 array_verify (EV_A_ (W *)forks, forkcnt);
2880 #endif
2881
2882 #if EV_CLEANUP_ENABLE
2883 assert (cleanupmax >= cleanupcnt);
2884 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2885 #endif
2886
2887 #if EV_ASYNC_ENABLE
2888 assert (asyncmax >= asynccnt);
2889 array_verify (EV_A_ (W *)asyncs, asynccnt);
2890 #endif
2891
2892 #if EV_PREPARE_ENABLE
2893 assert (preparemax >= preparecnt);
2894 array_verify (EV_A_ (W *)prepares, preparecnt);
2895 #endif
2896
2897 #if EV_CHECK_ENABLE
2898 assert (checkmax >= checkcnt);
2899 array_verify (EV_A_ (W *)checks, checkcnt);
2900 #endif
2901
2902 # if 0
2903 #if EV_CHILD_ENABLE
2904 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2905 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2906 #endif
2907 # endif
2908 #endif
2909 }
2910 #endif
2911
2912 #if EV_MULTIPLICITY
2913 struct ev_loop * ecb_cold
2914 #else
2915 int
2916 #endif
2917 ev_default_loop (unsigned int flags) EV_THROW
2918 {
2919 if (!ev_default_loop_ptr)
2920 {
2921 #if EV_MULTIPLICITY
2922 EV_P = ev_default_loop_ptr = &default_loop_struct;
2923 #else
2924 ev_default_loop_ptr = 1;
2925 #endif
2926
2927 loop_init (EV_A_ flags);
2928
2929 if (ev_backend (EV_A))
2930 {
2931 #if EV_CHILD_ENABLE
2932 ev_signal_init (&childev, childcb, SIGCHLD);
2933 ev_set_priority (&childev, EV_MAXPRI);
2934 ev_signal_start (EV_A_ &childev);
2935 ev_unref (EV_A); /* child watcher should not keep loop alive */
2936 #endif
2937 }
2938 else
2939 ev_default_loop_ptr = 0;
2940 }
2941
2942 return ev_default_loop_ptr;
2943 }
2944
2945 void
2946 ev_loop_fork (EV_P) EV_THROW
2947 {
2948 postfork = 1;
2949 }
2950
2951 /*****************************************************************************/
2952
2953 void
2954 ev_invoke (EV_P_ void *w, int revents)
2955 {
2956 EV_CB_INVOKE ((W)w, revents);
2957 }
2958
2959 unsigned int
2960 ev_pending_count (EV_P) EV_THROW
2961 {
2962 int pri;
2963 unsigned int count = 0;
2964
2965 for (pri = NUMPRI; pri--; )
2966 count += pendingcnt [pri];
2967
2968 return count;
2969 }
2970
2971 void noinline
2972 ev_invoke_pending (EV_P)
2973 {
2974 pendingpri = NUMPRI;
2975
2976 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2977 {
2978 --pendingpri;
2979
2980 while (pendingcnt [pendingpri])
2981 {
2982 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2983
2984 p->w->pending = 0;
2985 EV_CB_INVOKE (p->w, p->events);
2986 EV_FREQUENT_CHECK;
2987 }
2988 }
2989 }
2990
2991 #if EV_IDLE_ENABLE
2992 /* make idle watchers pending. this handles the "call-idle */
2993 /* only when higher priorities are idle" logic */
2994 inline_size void
2995 idle_reify (EV_P)
2996 {
2997 if (expect_false (idleall))
2998 {
2999 int pri;
3000
3001 for (pri = NUMPRI; pri--; )
3002 {
3003 if (pendingcnt [pri])
3004 break;
3005
3006 if (idlecnt [pri])
3007 {
3008 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3009 break;
3010 }
3011 }
3012 }
3013 }
3014 #endif
3015
3016 /* make timers pending */
3017 inline_size void
3018 timers_reify (EV_P)
3019 {
3020 EV_FREQUENT_CHECK;
3021
3022 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3023 {
3024 do
3025 {
3026 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3027
3028 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3029
3030 /* first reschedule or stop timer */
3031 if (w->repeat)
3032 {
3033 ev_at (w) += w->repeat;
3034 if (ev_at (w) < mn_now)
3035 ev_at (w) = mn_now;
3036
3037 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3038
3039 ANHE_at_cache (timers [HEAP0]);
3040 downheap (timers, timercnt, HEAP0);
3041 }
3042 else
3043 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3044
3045 EV_FREQUENT_CHECK;
3046 feed_reverse (EV_A_ (W)w);
3047 }
3048 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3049
3050 feed_reverse_done (EV_A_ EV_TIMER);
3051 }
3052 }
3053
3054 #if EV_PERIODIC_ENABLE
3055
3056 static void noinline
3057 periodic_recalc (EV_P_ ev_periodic *w)
3058 {
3059 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3060 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3061
3062 /* the above almost always errs on the low side */
3063 while (at <= ev_rt_now)
3064 {
3065 ev_tstamp nat = at + w->interval;
3066
3067 /* when resolution fails us, we use ev_rt_now */
3068 if (expect_false (nat == at))
3069 {
3070 at = ev_rt_now;
3071 break;
3072 }
3073
3074 at = nat;
3075 }
3076
3077 ev_at (w) = at;
3078 }
3079
3080 /* make periodics pending */
3081 inline_size void
3082 periodics_reify (EV_P)
3083 {
3084 EV_FREQUENT_CHECK;
3085
3086 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3087 {
3088 do
3089 {
3090 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3091
3092 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3093
3094 /* first reschedule or stop timer */
3095 if (w->reschedule_cb)
3096 {
3097 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3098
3099 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3100
3101 ANHE_at_cache (periodics [HEAP0]);
3102 downheap (periodics, periodiccnt, HEAP0);
3103 }
3104 else if (w->interval)
3105 {
3106 periodic_recalc (EV_A_ w);
3107 ANHE_at_cache (periodics [HEAP0]);
3108 downheap (periodics, periodiccnt, HEAP0);
3109 }
3110 else
3111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3112
3113 EV_FREQUENT_CHECK;
3114 feed_reverse (EV_A_ (W)w);
3115 }
3116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3117
3118 feed_reverse_done (EV_A_ EV_PERIODIC);
3119 }
3120 }
3121
3122 /* simply recalculate all periodics */
3123 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3124 static void noinline ecb_cold
3125 periodics_reschedule (EV_P)
3126 {
3127 int i;
3128
3129 /* adjust periodics after time jump */
3130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3131 {
3132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3133
3134 if (w->reschedule_cb)
3135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3136 else if (w->interval)
3137 periodic_recalc (EV_A_ w);
3138
3139 ANHE_at_cache (periodics [i]);
3140 }
3141
3142 reheap (periodics, periodiccnt);
3143 }
3144 #endif
3145
3146 /* adjust all timers by a given offset */
3147 static void noinline ecb_cold
3148 timers_reschedule (EV_P_ ev_tstamp adjust)
3149 {
3150 int i;
3151
3152 for (i = 0; i < timercnt; ++i)
3153 {
3154 ANHE *he = timers + i + HEAP0;
3155 ANHE_w (*he)->at += adjust;
3156 ANHE_at_cache (*he);
3157 }
3158 }
3159
3160 /* fetch new monotonic and realtime times from the kernel */
3161 /* also detect if there was a timejump, and act accordingly */
3162 inline_speed void
3163 time_update (EV_P_ ev_tstamp max_block)
3164 {
3165 #if EV_USE_MONOTONIC
3166 if (expect_true (have_monotonic))
3167 {
3168 int i;
3169 ev_tstamp odiff = rtmn_diff;
3170
3171 mn_now = get_clock ();
3172
3173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3174 /* interpolate in the meantime */
3175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3176 {
3177 ev_rt_now = rtmn_diff + mn_now;
3178 return;
3179 }
3180
3181 now_floor = mn_now;
3182 ev_rt_now = ev_time ();
3183
3184 /* loop a few times, before making important decisions.
3185 * on the choice of "4": one iteration isn't enough,
3186 * in case we get preempted during the calls to
3187 * ev_time and get_clock. a second call is almost guaranteed
3188 * to succeed in that case, though. and looping a few more times
3189 * doesn't hurt either as we only do this on time-jumps or
3190 * in the unlikely event of having been preempted here.
3191 */
3192 for (i = 4; --i; )
3193 {
3194 ev_tstamp diff;
3195 rtmn_diff = ev_rt_now - mn_now;
3196
3197 diff = odiff - rtmn_diff;
3198
3199 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3200 return; /* all is well */
3201
3202 ev_rt_now = ev_time ();
3203 mn_now = get_clock ();
3204 now_floor = mn_now;
3205 }
3206
3207 /* no timer adjustment, as the monotonic clock doesn't jump */
3208 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3209 # if EV_PERIODIC_ENABLE
3210 periodics_reschedule (EV_A);
3211 # endif
3212 }
3213 else
3214 #endif
3215 {
3216 ev_rt_now = ev_time ();
3217
3218 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3219 {
3220 /* adjust timers. this is easy, as the offset is the same for all of them */
3221 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3222 #if EV_PERIODIC_ENABLE
3223 periodics_reschedule (EV_A);
3224 #endif
3225 }
3226
3227 mn_now = ev_rt_now;
3228 }
3229 }
3230
3231 int
3232 ev_run (EV_P_ int flags)
3233 {
3234 #if EV_FEATURE_API
3235 ++loop_depth;
3236 #endif
3237
3238 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3239
3240 loop_done = EVBREAK_CANCEL;
3241
3242 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3243
3244 do
3245 {
3246 #if EV_VERIFY >= 2
3247 ev_verify (EV_A);
3248 #endif
3249
3250 #ifndef _WIN32
3251 if (expect_false (curpid)) /* penalise the forking check even more */
3252 if (expect_false (getpid () != curpid))
3253 {
3254 curpid = getpid ();
3255 postfork = 1;
3256 }
3257 #endif
3258
3259 #if EV_FORK_ENABLE
3260 /* we might have forked, so queue fork handlers */
3261 if (expect_false (postfork))
3262 if (forkcnt)
3263 {
3264 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3265 EV_INVOKE_PENDING;
3266 }
3267 #endif
3268
3269 #if EV_PREPARE_ENABLE
3270 /* queue prepare watchers (and execute them) */
3271 if (expect_false (preparecnt))
3272 {
3273 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3274 EV_INVOKE_PENDING;
3275 }
3276 #endif
3277
3278 if (expect_false (loop_done))
3279 break;
3280
3281 /* we might have forked, so reify kernel state if necessary */
3282 if (expect_false (postfork))
3283 loop_fork (EV_A);
3284
3285 /* update fd-related kernel structures */
3286 fd_reify (EV_A);
3287
3288 /* calculate blocking time */
3289 {
3290 ev_tstamp waittime = 0.;
3291 ev_tstamp sleeptime = 0.;
3292
3293 /* remember old timestamp for io_blocktime calculation */
3294 ev_tstamp prev_mn_now = mn_now;
3295
3296 /* update time to cancel out callback processing overhead */
3297 time_update (EV_A_ 1e100);
3298
3299 /* from now on, we want a pipe-wake-up */
3300 pipe_write_wanted = 1;
3301
3302 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3303
3304 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3305 {
3306 waittime = MAX_BLOCKTIME;
3307
3308 if (timercnt)
3309 {
3310 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3311 if (waittime > to) waittime = to;
3312 }
3313
3314 #if EV_PERIODIC_ENABLE
3315 if (periodiccnt)
3316 {
3317 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3318 if (waittime > to) waittime = to;
3319 }
3320 #endif
3321
3322 /* don't let timeouts decrease the waittime below timeout_blocktime */
3323 if (expect_false (waittime < timeout_blocktime))
3324 waittime = timeout_blocktime;
3325
3326 /* at this point, we NEED to wait, so we have to ensure */
3327 /* to pass a minimum nonzero value to the backend */
3328 if (expect_false (waittime < backend_mintime))
3329 waittime = backend_mintime;
3330
3331 /* extra check because io_blocktime is commonly 0 */
3332 if (expect_false (io_blocktime))
3333 {
3334 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3335
3336 if (sleeptime > waittime - backend_mintime)
3337 sleeptime = waittime - backend_mintime;
3338
3339 if (expect_true (sleeptime > 0.))
3340 {
3341 ev_sleep (sleeptime);
3342 waittime -= sleeptime;
3343 }
3344 }
3345 }
3346
3347 #if EV_FEATURE_API
3348 ++loop_count;
3349 #endif
3350 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3351 backend_poll (EV_A_ waittime);
3352 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3353
3354 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3355
3356 ECB_MEMORY_FENCE_ACQUIRE;
3357 if (pipe_write_skipped)
3358 {
3359 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3360 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3361 }
3362
3363
3364 /* update ev_rt_now, do magic */
3365 time_update (EV_A_ waittime + sleeptime);
3366 }
3367
3368 /* queue pending timers and reschedule them */
3369 timers_reify (EV_A); /* relative timers called last */
3370 #if EV_PERIODIC_ENABLE
3371 periodics_reify (EV_A); /* absolute timers called first */
3372 #endif
3373
3374 #if EV_IDLE_ENABLE
3375 /* queue idle watchers unless other events are pending */
3376 idle_reify (EV_A);
3377 #endif
3378
3379 #if EV_CHECK_ENABLE
3380 /* queue check watchers, to be executed first */
3381 if (expect_false (checkcnt))
3382 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3383 #endif
3384
3385 EV_INVOKE_PENDING;
3386 }
3387 while (expect_true (
3388 activecnt
3389 && !loop_done
3390 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3391 ));
3392
3393 if (loop_done == EVBREAK_ONE)
3394 loop_done = EVBREAK_CANCEL;
3395
3396 #if EV_FEATURE_API
3397 --loop_depth;
3398 #endif
3399
3400 return activecnt;
3401 }
3402
3403 void
3404 ev_break (EV_P_ int how) EV_THROW
3405 {
3406 loop_done = how;
3407 }
3408
3409 void
3410 ev_ref (EV_P) EV_THROW
3411 {
3412 ++activecnt;
3413 }
3414
3415 void
3416 ev_unref (EV_P) EV_THROW
3417 {
3418 --activecnt;
3419 }
3420
3421 void
3422 ev_now_update (EV_P) EV_THROW
3423 {
3424 time_update (EV_A_ 1e100);
3425 }
3426
3427 void
3428 ev_suspend (EV_P) EV_THROW
3429 {
3430 ev_now_update (EV_A);
3431 }
3432
3433 void
3434 ev_resume (EV_P) EV_THROW
3435 {
3436 ev_tstamp mn_prev = mn_now;
3437
3438 ev_now_update (EV_A);
3439 timers_reschedule (EV_A_ mn_now - mn_prev);
3440 #if EV_PERIODIC_ENABLE
3441 /* TODO: really do this? */
3442 periodics_reschedule (EV_A);
3443 #endif
3444 }
3445
3446 /*****************************************************************************/
3447 /* singly-linked list management, used when the expected list length is short */
3448
3449 inline_size void
3450 wlist_add (WL *head, WL elem)
3451 {
3452 elem->next = *head;
3453 *head = elem;
3454 }
3455
3456 inline_size void
3457 wlist_del (WL *head, WL elem)
3458 {
3459 while (*head)
3460 {
3461 if (expect_true (*head == elem))
3462 {
3463 *head = elem->next;
3464 break;
3465 }
3466
3467 head = &(*head)->next;
3468 }
3469 }
3470
3471 /* internal, faster, version of ev_clear_pending */
3472 inline_speed void
3473 clear_pending (EV_P_ W w)
3474 {
3475 if (w->pending)
3476 {
3477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3478 w->pending = 0;
3479 }
3480 }
3481
3482 int
3483 ev_clear_pending (EV_P_ void *w) EV_THROW
3484 {
3485 W w_ = (W)w;
3486 int pending = w_->pending;
3487
3488 if (expect_true (pending))
3489 {
3490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3491 p->w = (W)&pending_w;
3492 w_->pending = 0;
3493 return p->events;
3494 }
3495 else
3496 return 0;
3497 }
3498
3499 inline_size void
3500 pri_adjust (EV_P_ W w)
3501 {
3502 int pri = ev_priority (w);
3503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3505 ev_set_priority (w, pri);
3506 }
3507
3508 inline_speed void
3509 ev_start (EV_P_ W w, int active)
3510 {
3511 pri_adjust (EV_A_ w);
3512 w->active = active;
3513 ev_ref (EV_A);
3514 }
3515
3516 inline_size void
3517 ev_stop (EV_P_ W w)
3518 {
3519 ev_unref (EV_A);
3520 w->active = 0;
3521 }
3522
3523 /*****************************************************************************/
3524
3525 void noinline
3526 ev_io_start (EV_P_ ev_io *w) EV_THROW
3527 {
3528 int fd = w->fd;
3529
3530 if (expect_false (ev_is_active (w)))
3531 return;
3532
3533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3535
3536 EV_FREQUENT_CHECK;
3537
3538 ev_start (EV_A_ (W)w, 1);
3539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3540 wlist_add (&anfds[fd].head, (WL)w);
3541
3542 /* common bug, apparently */
3543 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3544
3545 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3546 w->events &= ~EV__IOFDSET;
3547
3548 EV_FREQUENT_CHECK;
3549 }
3550
3551 void noinline
3552 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3553 {
3554 clear_pending (EV_A_ (W)w);
3555 if (expect_false (!ev_is_active (w)))
3556 return;
3557
3558 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3559
3560 EV_FREQUENT_CHECK;
3561
3562 wlist_del (&anfds[w->fd].head, (WL)w);
3563 ev_stop (EV_A_ (W)w);
3564
3565 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3566
3567 EV_FREQUENT_CHECK;
3568 }
3569
3570 void noinline
3571 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3572 {
3573 if (expect_false (ev_is_active (w)))
3574 return;
3575
3576 ev_at (w) += mn_now;
3577
3578 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3579
3580 EV_FREQUENT_CHECK;
3581
3582 ++timercnt;
3583 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3584 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3585 ANHE_w (timers [ev_active (w)]) = (WT)w;
3586 ANHE_at_cache (timers [ev_active (w)]);
3587 upheap (timers, ev_active (w));
3588
3589 EV_FREQUENT_CHECK;
3590
3591 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3592 }
3593
3594 void noinline
3595 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3596 {
3597 clear_pending (EV_A_ (W)w);
3598 if (expect_false (!ev_is_active (w)))
3599 return;
3600
3601 EV_FREQUENT_CHECK;
3602
3603 {
3604 int active = ev_active (w);
3605
3606 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3607
3608 --timercnt;
3609
3610 if (expect_true (active < timercnt + HEAP0))
3611 {
3612 timers [active] = timers [timercnt + HEAP0];
3613 adjustheap (timers, timercnt, active);
3614 }
3615 }
3616
3617 ev_at (w) -= mn_now;
3618
3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
3622 }
3623
3624 void noinline
3625 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3626 {
3627 EV_FREQUENT_CHECK;
3628
3629 clear_pending (EV_A_ (W)w);
3630
3631 if (ev_is_active (w))
3632 {
3633 if (w->repeat)
3634 {
3635 ev_at (w) = mn_now + w->repeat;
3636 ANHE_at_cache (timers [ev_active (w)]);
3637 adjustheap (timers, timercnt, ev_active (w));
3638 }
3639 else
3640 ev_timer_stop (EV_A_ w);
3641 }
3642 else if (w->repeat)
3643 {
3644 ev_at (w) = w->repeat;
3645 ev_timer_start (EV_A_ w);
3646 }
3647
3648 EV_FREQUENT_CHECK;
3649 }
3650
3651 ev_tstamp
3652 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3653 {
3654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3655 }
3656
3657 #if EV_PERIODIC_ENABLE
3658 void noinline
3659 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3660 {
3661 if (expect_false (ev_is_active (w)))
3662 return;
3663
3664 if (w->reschedule_cb)
3665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3666 else if (w->interval)
3667 {
3668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3669 periodic_recalc (EV_A_ w);
3670 }
3671 else
3672 ev_at (w) = w->offset;
3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++periodiccnt;
3677 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3678 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3679 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3680 ANHE_at_cache (periodics [ev_active (w)]);
3681 upheap (periodics, ev_active (w));
3682
3683 EV_FREQUENT_CHECK;
3684
3685 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3686 }
3687
3688 void noinline
3689 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3690 {
3691 clear_pending (EV_A_ (W)w);
3692 if (expect_false (!ev_is_active (w)))
3693 return;
3694
3695 EV_FREQUENT_CHECK;
3696
3697 {
3698 int active = ev_active (w);
3699
3700 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3701
3702 --periodiccnt;
3703
3704 if (expect_true (active < periodiccnt + HEAP0))
3705 {
3706 periodics [active] = periodics [periodiccnt + HEAP0];
3707 adjustheap (periodics, periodiccnt, active);
3708 }
3709 }
3710
3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
3714 }
3715
3716 void noinline
3717 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3718 {
3719 /* TODO: use adjustheap and recalculation */
3720 ev_periodic_stop (EV_A_ w);
3721 ev_periodic_start (EV_A_ w);
3722 }
3723 #endif
3724
3725 #ifndef SA_RESTART
3726 # define SA_RESTART 0
3727 #endif
3728
3729 #if EV_SIGNAL_ENABLE
3730
3731 void noinline
3732 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3733 {
3734 if (expect_false (ev_is_active (w)))
3735 return;
3736
3737 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3738
3739 #if EV_MULTIPLICITY
3740 assert (("libev: a signal must not be attached to two different loops",
3741 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3742
3743 signals [w->signum - 1].loop = EV_A;
3744 ECB_MEMORY_FENCE_RELEASE;
3745 #endif
3746
3747 EV_FREQUENT_CHECK;
3748
3749 #if EV_USE_SIGNALFD
3750 if (sigfd == -2)
3751 {
3752 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3753 if (sigfd < 0 && errno == EINVAL)
3754 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3755
3756 if (sigfd >= 0)
3757 {
3758 fd_intern (sigfd); /* doing it twice will not hurt */
3759
3760 sigemptyset (&sigfd_set);
3761
3762 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3763 ev_set_priority (&sigfd_w, EV_MAXPRI);
3764 ev_io_start (EV_A_ &sigfd_w);
3765 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3766 }
3767 }
3768
3769 if (sigfd >= 0)
3770 {
3771 /* TODO: check .head */
3772 sigaddset (&sigfd_set, w->signum);
3773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3774
3775 signalfd (sigfd, &sigfd_set, 0);
3776 }
3777 #endif
3778
3779 ev_start (EV_A_ (W)w, 1);
3780 wlist_add (&signals [w->signum - 1].head, (WL)w);
3781
3782 if (!((WL)w)->next)
3783 # if EV_USE_SIGNALFD
3784 if (sigfd < 0) /*TODO*/
3785 # endif
3786 {
3787 # ifdef _WIN32
3788 evpipe_init (EV_A);
3789
3790 signal (w->signum, ev_sighandler);
3791 # else
3792 struct sigaction sa;
3793
3794 evpipe_init (EV_A);
3795
3796 sa.sa_handler = ev_sighandler;
3797 sigfillset (&sa.sa_mask);
3798 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3799 sigaction (w->signum, &sa, 0);
3800
3801 if (origflags & EVFLAG_NOSIGMASK)
3802 {
3803 sigemptyset (&sa.sa_mask);
3804 sigaddset (&sa.sa_mask, w->signum);
3805 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3806 }
3807 #endif
3808 }
3809
3810 EV_FREQUENT_CHECK;
3811 }
3812
3813 void noinline
3814 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3815 {
3816 clear_pending (EV_A_ (W)w);
3817 if (expect_false (!ev_is_active (w)))
3818 return;
3819
3820 EV_FREQUENT_CHECK;
3821
3822 wlist_del (&signals [w->signum - 1].head, (WL)w);
3823 ev_stop (EV_A_ (W)w);
3824
3825 if (!signals [w->signum - 1].head)
3826 {
3827 #if EV_MULTIPLICITY
3828 signals [w->signum - 1].loop = 0; /* unattach from signal */
3829 #endif
3830 #if EV_USE_SIGNALFD
3831 if (sigfd >= 0)
3832 {
3833 sigset_t ss;
3834
3835 sigemptyset (&ss);
3836 sigaddset (&ss, w->signum);
3837 sigdelset (&sigfd_set, w->signum);
3838
3839 signalfd (sigfd, &sigfd_set, 0);
3840 sigprocmask (SIG_UNBLOCK, &ss, 0);
3841 }
3842 else
3843 #endif
3844 signal (w->signum, SIG_DFL);
3845 }
3846
3847 EV_FREQUENT_CHECK;
3848 }
3849
3850 #endif
3851
3852 #if EV_CHILD_ENABLE
3853
3854 void
3855 ev_child_start (EV_P_ ev_child *w) EV_THROW
3856 {
3857 #if EV_MULTIPLICITY
3858 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3859 #endif
3860 if (expect_false (ev_is_active (w)))
3861 return;
3862
3863 EV_FREQUENT_CHECK;
3864
3865 ev_start (EV_A_ (W)w, 1);
3866 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3867
3868 EV_FREQUENT_CHECK;
3869 }
3870
3871 void
3872 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3873 {
3874 clear_pending (EV_A_ (W)w);
3875 if (expect_false (!ev_is_active (w)))
3876 return;
3877
3878 EV_FREQUENT_CHECK;
3879
3880 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3881 ev_stop (EV_A_ (W)w);
3882
3883 EV_FREQUENT_CHECK;
3884 }
3885
3886 #endif
3887
3888 #if EV_STAT_ENABLE
3889
3890 # ifdef _WIN32
3891 # undef lstat
3892 # define lstat(a,b) _stati64 (a,b)
3893 # endif
3894
3895 #define DEF_STAT_INTERVAL 5.0074891
3896 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3897 #define MIN_STAT_INTERVAL 0.1074891
3898
3899 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3900
3901 #if EV_USE_INOTIFY
3902
3903 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3904 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3905
3906 static void noinline
3907 infy_add (EV_P_ ev_stat *w)
3908 {
3909 w->wd = inotify_add_watch (fs_fd, w->path,
3910 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3911 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3912 | IN_DONT_FOLLOW | IN_MASK_ADD);
3913
3914 if (w->wd >= 0)
3915 {
3916 struct statfs sfs;
3917
3918 /* now local changes will be tracked by inotify, but remote changes won't */
3919 /* unless the filesystem is known to be local, we therefore still poll */
3920 /* also do poll on <2.6.25, but with normal frequency */
3921
3922 if (!fs_2625)
3923 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3924 else if (!statfs (w->path, &sfs)
3925 && (sfs.f_type == 0x1373 /* devfs */
3926 || sfs.f_type == 0x4006 /* fat */
3927 || sfs.f_type == 0x4d44 /* msdos */
3928 || sfs.f_type == 0xEF53 /* ext2/3 */
3929 || sfs.f_type == 0x72b6 /* jffs2 */
3930 || sfs.f_type == 0x858458f6 /* ramfs */
3931 || sfs.f_type == 0x5346544e /* ntfs */
3932 || sfs.f_type == 0x3153464a /* jfs */
3933 || sfs.f_type == 0x9123683e /* btrfs */
3934 || sfs.f_type == 0x52654973 /* reiser3 */
3935 || sfs.f_type == 0x01021994 /* tmpfs */
3936 || sfs.f_type == 0x58465342 /* xfs */))
3937 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3938 else
3939 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3940 }
3941 else
3942 {
3943 /* can't use inotify, continue to stat */
3944 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3945
3946 /* if path is not there, monitor some parent directory for speedup hints */
3947 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3948 /* but an efficiency issue only */
3949 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3950 {
3951 char path [4096];
3952 strcpy (path, w->path);
3953
3954 do
3955 {
3956 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3957 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3958
3959 char *pend = strrchr (path, '/');
3960
3961 if (!pend || pend == path)
3962 break;
3963
3964 *pend = 0;
3965 w->wd = inotify_add_watch (fs_fd, path, mask);
3966 }
3967 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3968 }
3969 }
3970
3971 if (w->wd >= 0)
3972 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3973
3974 /* now re-arm timer, if required */
3975 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3976 ev_timer_again (EV_A_ &w->timer);
3977 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3978 }
3979
3980 static void noinline
3981 infy_del (EV_P_ ev_stat *w)
3982 {
3983 int slot;
3984 int wd = w->wd;
3985
3986 if (wd < 0)
3987 return;
3988
3989 w->wd = -2;
3990 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3991 wlist_del (&fs_hash [slot].head, (WL)w);
3992
3993 /* remove this watcher, if others are watching it, they will rearm */
3994 inotify_rm_watch (fs_fd, wd);
3995 }
3996
3997 static void noinline
3998 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3999 {
4000 if (slot < 0)
4001 /* overflow, need to check for all hash slots */
4002 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4003 infy_wd (EV_A_ slot, wd, ev);
4004 else
4005 {
4006 WL w_;
4007
4008 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4009 {
4010 ev_stat *w = (ev_stat *)w_;
4011 w_ = w_->next; /* lets us remove this watcher and all before it */
4012
4013 if (w->wd == wd || wd == -1)
4014 {
4015 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4016 {
4017 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4018 w->wd = -1;
4019 infy_add (EV_A_ w); /* re-add, no matter what */
4020 }
4021
4022 stat_timer_cb (EV_A_ &w->timer, 0);
4023 }
4024 }
4025 }
4026 }
4027
4028 static void
4029 infy_cb (EV_P_ ev_io *w, int revents)
4030 {
4031 char buf [EV_INOTIFY_BUFSIZE];
4032 int ofs;
4033 int len = read (fs_fd, buf, sizeof (buf));
4034
4035 for (ofs = 0; ofs < len; )
4036 {
4037 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4038 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4039 ofs += sizeof (struct inotify_event) + ev->len;
4040 }
4041 }
4042
4043 inline_size void ecb_cold
4044 ev_check_2625 (EV_P)
4045 {
4046 /* kernels < 2.6.25 are borked
4047 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4048 */
4049 if (ev_linux_version () < 0x020619)
4050 return;
4051
4052 fs_2625 = 1;
4053 }
4054
4055 inline_size int
4056 infy_newfd (void)
4057 {
4058 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4059 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4060 if (fd >= 0)
4061 return fd;
4062 #endif
4063 return inotify_init ();
4064 }
4065
4066 inline_size void
4067 infy_init (EV_P)
4068 {
4069 if (fs_fd != -2)
4070 return;
4071
4072 fs_fd = -1;
4073
4074 ev_check_2625 (EV_A);
4075
4076 fs_fd = infy_newfd ();
4077
4078 if (fs_fd >= 0)
4079 {
4080 fd_intern (fs_fd);
4081 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4082 ev_set_priority (&fs_w, EV_MAXPRI);
4083 ev_io_start (EV_A_ &fs_w);
4084 ev_unref (EV_A);
4085 }
4086 }
4087
4088 inline_size void
4089 infy_fork (EV_P)
4090 {
4091 int slot;
4092
4093 if (fs_fd < 0)
4094 return;
4095
4096 ev_ref (EV_A);
4097 ev_io_stop (EV_A_ &fs_w);
4098 close (fs_fd);
4099 fs_fd = infy_newfd ();
4100
4101 if (fs_fd >= 0)
4102 {
4103 fd_intern (fs_fd);
4104 ev_io_set (&fs_w, fs_fd, EV_READ);
4105 ev_io_start (EV_A_ &fs_w);
4106 ev_unref (EV_A);
4107 }
4108
4109 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4110 {
4111 WL w_ = fs_hash [slot].head;
4112 fs_hash [slot].head = 0;
4113
4114 while (w_)
4115 {
4116 ev_stat *w = (ev_stat *)w_;
4117 w_ = w_->next; /* lets us add this watcher */
4118
4119 w->wd = -1;
4120
4121 if (fs_fd >= 0)
4122 infy_add (EV_A_ w); /* re-add, no matter what */
4123 else
4124 {
4125 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4126 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4127 ev_timer_again (EV_A_ &w->timer);
4128 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4129 }
4130 }
4131 }
4132 }
4133
4134 #endif
4135
4136 #ifdef _WIN32
4137 # define EV_LSTAT(p,b) _stati64 (p, b)
4138 #else
4139 # define EV_LSTAT(p,b) lstat (p, b)
4140 #endif
4141
4142 void
4143 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4144 {
4145 if (lstat (w->path, &w->attr) < 0)
4146 w->attr.st_nlink = 0;
4147 else if (!w->attr.st_nlink)
4148 w->attr.st_nlink = 1;
4149 }
4150
4151 static void noinline
4152 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4153 {
4154 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4155
4156 ev_statdata prev = w->attr;
4157 ev_stat_stat (EV_A_ w);
4158
4159 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4160 if (
4161 prev.st_dev != w->attr.st_dev
4162 || prev.st_ino != w->attr.st_ino
4163 || prev.st_mode != w->attr.st_mode
4164 || prev.st_nlink != w->attr.st_nlink
4165 || prev.st_uid != w->attr.st_uid
4166 || prev.st_gid != w->attr.st_gid
4167 || prev.st_rdev != w->attr.st_rdev
4168 || prev.st_size != w->attr.st_size
4169 || prev.st_atime != w->attr.st_atime
4170 || prev.st_mtime != w->attr.st_mtime
4171 || prev.st_ctime != w->attr.st_ctime
4172 ) {
4173 /* we only update w->prev on actual differences */
4174 /* in case we test more often than invoke the callback, */
4175 /* to ensure that prev is always different to attr */
4176 w->prev = prev;
4177
4178 #if EV_USE_INOTIFY
4179 if (fs_fd >= 0)
4180 {
4181 infy_del (EV_A_ w);
4182 infy_add (EV_A_ w);
4183 ev_stat_stat (EV_A_ w); /* avoid race... */
4184 }
4185 #endif
4186
4187 ev_feed_event (EV_A_ w, EV_STAT);
4188 }
4189 }
4190
4191 void
4192 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4193 {
4194 if (expect_false (ev_is_active (w)))
4195 return;
4196
4197 ev_stat_stat (EV_A_ w);
4198
4199 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4200 w->interval = MIN_STAT_INTERVAL;
4201
4202 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4203 ev_set_priority (&w->timer, ev_priority (w));
4204
4205 #if EV_USE_INOTIFY
4206 infy_init (EV_A);
4207
4208 if (fs_fd >= 0)
4209 infy_add (EV_A_ w);
4210 else
4211 #endif
4212 {
4213 ev_timer_again (EV_A_ &w->timer);
4214 ev_unref (EV_A);
4215 }
4216
4217 ev_start (EV_A_ (W)w, 1);
4218
4219 EV_FREQUENT_CHECK;
4220 }
4221
4222 void
4223 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4224 {
4225 clear_pending (EV_A_ (W)w);
4226 if (expect_false (!ev_is_active (w)))
4227 return;
4228
4229 EV_FREQUENT_CHECK;
4230
4231 #if EV_USE_INOTIFY
4232 infy_del (EV_A_ w);
4233 #endif
4234
4235 if (ev_is_active (&w->timer))
4236 {
4237 ev_ref (EV_A);
4238 ev_timer_stop (EV_A_ &w->timer);
4239 }
4240
4241 ev_stop (EV_A_ (W)w);
4242
4243 EV_FREQUENT_CHECK;
4244 }
4245 #endif
4246
4247 #if EV_IDLE_ENABLE
4248 void
4249 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4250 {
4251 if (expect_false (ev_is_active (w)))
4252 return;
4253
4254 pri_adjust (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
4257
4258 {
4259 int active = ++idlecnt [ABSPRI (w)];
4260
4261 ++idleall;
4262 ev_start (EV_A_ (W)w, active);
4263
4264 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4265 idles [ABSPRI (w)][active - 1] = w;
4266 }
4267
4268 EV_FREQUENT_CHECK;
4269 }
4270
4271 void
4272 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4273 {
4274 clear_pending (EV_A_ (W)w);
4275 if (expect_false (!ev_is_active (w)))
4276 return;
4277
4278 EV_FREQUENT_CHECK;
4279
4280 {
4281 int active = ev_active (w);
4282
4283 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4284 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4285
4286 ev_stop (EV_A_ (W)w);
4287 --idleall;
4288 }
4289
4290 EV_FREQUENT_CHECK;
4291 }
4292 #endif
4293
4294 #if EV_PREPARE_ENABLE
4295 void
4296 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4297 {
4298 if (expect_false (ev_is_active (w)))
4299 return;
4300
4301 EV_FREQUENT_CHECK;
4302
4303 ev_start (EV_A_ (W)w, ++preparecnt);
4304 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4305 prepares [preparecnt - 1] = w;
4306
4307 EV_FREQUENT_CHECK;
4308 }
4309
4310 void
4311 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4312 {
4313 clear_pending (EV_A_ (W)w);
4314 if (expect_false (!ev_is_active (w)))
4315 return;
4316
4317 EV_FREQUENT_CHECK;
4318
4319 {
4320 int active = ev_active (w);
4321
4322 prepares [active - 1] = prepares [--preparecnt];
4323 ev_active (prepares [active - 1]) = active;
4324 }
4325
4326 ev_stop (EV_A_ (W)w);
4327
4328 EV_FREQUENT_CHECK;
4329 }
4330 #endif
4331
4332 #if EV_CHECK_ENABLE
4333 void
4334 ev_check_start (EV_P_ ev_check *w) EV_THROW
4335 {
4336 if (expect_false (ev_is_active (w)))
4337 return;
4338
4339 EV_FREQUENT_CHECK;
4340
4341 ev_start (EV_A_ (W)w, ++checkcnt);
4342 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4343 checks [checkcnt - 1] = w;
4344
4345 EV_FREQUENT_CHECK;
4346 }
4347
4348 void
4349 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4350 {
4351 clear_pending (EV_A_ (W)w);
4352 if (expect_false (!ev_is_active (w)))
4353 return;
4354
4355 EV_FREQUENT_CHECK;
4356
4357 {
4358 int active = ev_active (w);
4359
4360 checks [active - 1] = checks [--checkcnt];
4361 ev_active (checks [active - 1]) = active;
4362 }
4363
4364 ev_stop (EV_A_ (W)w);
4365
4366 EV_FREQUENT_CHECK;
4367 }
4368 #endif
4369
4370 #if EV_EMBED_ENABLE
4371 void noinline
4372 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4373 {
4374 ev_run (w->other, EVRUN_NOWAIT);
4375 }
4376
4377 static void
4378 embed_io_cb (EV_P_ ev_io *io, int revents)
4379 {
4380 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4381
4382 if (ev_cb (w))
4383 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4384 else
4385 ev_run (w->other, EVRUN_NOWAIT);
4386 }
4387
4388 static void
4389 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4390 {
4391 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4392
4393 {
4394 EV_P = w->other;
4395
4396 while (fdchangecnt)
4397 {
4398 fd_reify (EV_A);
4399 ev_run (EV_A_ EVRUN_NOWAIT);
4400 }
4401 }
4402 }
4403
4404 static void
4405 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4406 {
4407 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4408
4409 ev_embed_stop (EV_A_ w);
4410
4411 {
4412 EV_P = w->other;
4413
4414 ev_loop_fork (EV_A);
4415 ev_run (EV_A_ EVRUN_NOWAIT);
4416 }
4417
4418 ev_embed_start (EV_A_ w);
4419 }
4420
4421 #if 0
4422 static void
4423 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4424 {
4425 ev_idle_stop (EV_A_ idle);
4426 }
4427 #endif
4428
4429 void
4430 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4431 {
4432 if (expect_false (ev_is_active (w)))
4433 return;
4434
4435 {
4436 EV_P = w->other;
4437 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4438 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4439 }
4440
4441 EV_FREQUENT_CHECK;
4442
4443 ev_set_priority (&w->io, ev_priority (w));
4444 ev_io_start (EV_A_ &w->io);
4445
4446 ev_prepare_init (&w->prepare, embed_prepare_cb);
4447 ev_set_priority (&w->prepare, EV_MINPRI);
4448 ev_prepare_start (EV_A_ &w->prepare);
4449
4450 ev_fork_init (&w->fork, embed_fork_cb);
4451 ev_fork_start (EV_A_ &w->fork);
4452
4453 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4454
4455 ev_start (EV_A_ (W)w, 1);
4456
4457 EV_FREQUENT_CHECK;
4458 }
4459
4460 void
4461 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4462 {
4463 clear_pending (EV_A_ (W)w);
4464 if (expect_false (!ev_is_active (w)))
4465 return;
4466
4467 EV_FREQUENT_CHECK;
4468
4469 ev_io_stop (EV_A_ &w->io);
4470 ev_prepare_stop (EV_A_ &w->prepare);
4471 ev_fork_stop (EV_A_ &w->fork);
4472
4473 ev_stop (EV_A_ (W)w);
4474
4475 EV_FREQUENT_CHECK;
4476 }
4477 #endif
4478
4479 #if EV_FORK_ENABLE
4480 void
4481 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4482 {
4483 if (expect_false (ev_is_active (w)))
4484 return;
4485
4486 EV_FREQUENT_CHECK;
4487
4488 ev_start (EV_A_ (W)w, ++forkcnt);
4489 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4490 forks [forkcnt - 1] = w;
4491
4492 EV_FREQUENT_CHECK;
4493 }
4494
4495 void
4496 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4497 {
4498 clear_pending (EV_A_ (W)w);
4499 if (expect_false (!ev_is_active (w)))
4500 return;
4501
4502 EV_FREQUENT_CHECK;
4503
4504 {
4505 int active = ev_active (w);
4506
4507 forks [active - 1] = forks [--forkcnt];
4508 ev_active (forks [active - 1]) = active;
4509 }
4510
4511 ev_stop (EV_A_ (W)w);
4512
4513 EV_FREQUENT_CHECK;
4514 }
4515 #endif
4516
4517 #if EV_CLEANUP_ENABLE
4518 void
4519 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4520 {
4521 if (expect_false (ev_is_active (w)))
4522 return;
4523
4524 EV_FREQUENT_CHECK;
4525
4526 ev_start (EV_A_ (W)w, ++cleanupcnt);
4527 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4528 cleanups [cleanupcnt - 1] = w;
4529
4530 /* cleanup watchers should never keep a refcount on the loop */
4531 ev_unref (EV_A);
4532 EV_FREQUENT_CHECK;
4533 }
4534
4535 void
4536 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4537 {
4538 clear_pending (EV_A_ (W)w);
4539 if (expect_false (!ev_is_active (w)))
4540 return;
4541
4542 EV_FREQUENT_CHECK;
4543 ev_ref (EV_A);
4544
4545 {
4546 int active = ev_active (w);
4547
4548 cleanups [active - 1] = cleanups [--cleanupcnt];
4549 ev_active (cleanups [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555 }
4556 #endif
4557
4558 #if EV_ASYNC_ENABLE
4559 void
4560 ev_async_start (EV_P_ ev_async *w) EV_THROW
4561 {
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 w->sent = 0;
4566
4567 evpipe_init (EV_A);
4568
4569 EV_FREQUENT_CHECK;
4570
4571 ev_start (EV_A_ (W)w, ++asynccnt);
4572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4573 asyncs [asynccnt - 1] = w;
4574
4575 EV_FREQUENT_CHECK;
4576 }
4577
4578 void
4579 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4580 {
4581 clear_pending (EV_A_ (W)w);
4582 if (expect_false (!ev_is_active (w)))
4583 return;
4584
4585 EV_FREQUENT_CHECK;
4586
4587 {
4588 int active = ev_active (w);
4589
4590 asyncs [active - 1] = asyncs [--asynccnt];
4591 ev_active (asyncs [active - 1]) = active;
4592 }
4593
4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
4597 }
4598
4599 void
4600 ev_async_send (EV_P_ ev_async *w) EV_THROW
4601 {
4602 w->sent = 1;
4603 evpipe_write (EV_A_ &async_pending);
4604 }
4605 #endif
4606
4607 /*****************************************************************************/
4608
4609 struct ev_once
4610 {
4611 ev_io io;
4612 ev_timer to;
4613 void (*cb)(int revents, void *arg);
4614 void *arg;
4615 };
4616
4617 static void
4618 once_cb (EV_P_ struct ev_once *once, int revents)
4619 {
4620 void (*cb)(int revents, void *arg) = once->cb;
4621 void *arg = once->arg;
4622
4623 ev_io_stop (EV_A_ &once->io);
4624 ev_timer_stop (EV_A_ &once->to);
4625 ev_free (once);
4626
4627 cb (revents, arg);
4628 }
4629
4630 static void
4631 once_cb_io (EV_P_ ev_io *w, int revents)
4632 {
4633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4634
4635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4636 }
4637
4638 static void
4639 once_cb_to (EV_P_ ev_timer *w, int revents)
4640 {
4641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4642
4643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4644 }
4645
4646 void
4647 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4648 {
4649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4650
4651 if (expect_false (!once))
4652 {
4653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4654 return;
4655 }
4656
4657 once->cb = cb;
4658 once->arg = arg;
4659
4660 ev_init (&once->io, once_cb_io);
4661 if (fd >= 0)
4662 {
4663 ev_io_set (&once->io, fd, events);
4664 ev_io_start (EV_A_ &once->io);
4665 }
4666
4667 ev_init (&once->to, once_cb_to);
4668 if (timeout >= 0.)
4669 {
4670 ev_timer_set (&once->to, timeout, 0.);
4671 ev_timer_start (EV_A_ &once->to);
4672 }
4673 }
4674
4675 /*****************************************************************************/
4676
4677 #if EV_WALK_ENABLE
4678 void ecb_cold
4679 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4680 {
4681 int i, j;
4682 ev_watcher_list *wl, *wn;
4683
4684 if (types & (EV_IO | EV_EMBED))
4685 for (i = 0; i < anfdmax; ++i)
4686 for (wl = anfds [i].head; wl; )
4687 {
4688 wn = wl->next;
4689
4690 #if EV_EMBED_ENABLE
4691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4692 {
4693 if (types & EV_EMBED)
4694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4695 }
4696 else
4697 #endif
4698 #if EV_USE_INOTIFY
4699 if (ev_cb ((ev_io *)wl) == infy_cb)
4700 ;
4701 else
4702 #endif
4703 if ((ev_io *)wl != &pipe_w)
4704 if (types & EV_IO)
4705 cb (EV_A_ EV_IO, wl);
4706
4707 wl = wn;
4708 }
4709
4710 if (types & (EV_TIMER | EV_STAT))
4711 for (i = timercnt + HEAP0; i-- > HEAP0; )
4712 #if EV_STAT_ENABLE
4713 /*TODO: timer is not always active*/
4714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4715 {
4716 if (types & EV_STAT)
4717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4718 }
4719 else
4720 #endif
4721 if (types & EV_TIMER)
4722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4723
4724 #if EV_PERIODIC_ENABLE
4725 if (types & EV_PERIODIC)
4726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4728 #endif
4729
4730 #if EV_IDLE_ENABLE
4731 if (types & EV_IDLE)
4732 for (j = NUMPRI; j--; )
4733 for (i = idlecnt [j]; i--; )
4734 cb (EV_A_ EV_IDLE, idles [j][i]);
4735 #endif
4736
4737 #if EV_FORK_ENABLE
4738 if (types & EV_FORK)
4739 for (i = forkcnt; i--; )
4740 if (ev_cb (forks [i]) != embed_fork_cb)
4741 cb (EV_A_ EV_FORK, forks [i]);
4742 #endif
4743
4744 #if EV_ASYNC_ENABLE
4745 if (types & EV_ASYNC)
4746 for (i = asynccnt; i--; )
4747 cb (EV_A_ EV_ASYNC, asyncs [i]);
4748 #endif
4749
4750 #if EV_PREPARE_ENABLE
4751 if (types & EV_PREPARE)
4752 for (i = preparecnt; i--; )
4753 # if EV_EMBED_ENABLE
4754 if (ev_cb (prepares [i]) != embed_prepare_cb)
4755 # endif
4756 cb (EV_A_ EV_PREPARE, prepares [i]);
4757 #endif
4758
4759 #if EV_CHECK_ENABLE
4760 if (types & EV_CHECK)
4761 for (i = checkcnt; i--; )
4762 cb (EV_A_ EV_CHECK, checks [i]);
4763 #endif
4764
4765 #if EV_SIGNAL_ENABLE
4766 if (types & EV_SIGNAL)
4767 for (i = 0; i < EV_NSIG - 1; ++i)
4768 for (wl = signals [i].head; wl; )
4769 {
4770 wn = wl->next;
4771 cb (EV_A_ EV_SIGNAL, wl);
4772 wl = wn;
4773 }
4774 #endif
4775
4776 #if EV_CHILD_ENABLE
4777 if (types & EV_CHILD)
4778 for (i = (EV_PID_HASHSIZE); i--; )
4779 for (wl = childs [i]; wl; )
4780 {
4781 wn = wl->next;
4782 cb (EV_A_ EV_CHILD, wl);
4783 wl = wn;
4784 }
4785 #endif
4786 /* EV_STAT 0x00001000 /* stat data changed */
4787 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4788 }
4789 #endif
4790
4791 #if EV_MULTIPLICITY
4792 #include "ev_wrap.h"
4793 #endif
4794