ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.457
Committed: Thu Sep 5 18:45:29 2013 UTC (10 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.456: +9 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 # define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 # define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 # define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 # define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 # define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 # define EV_USE_POLL 0
291 # else
292 # define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 # define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 # define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 # define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 # define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 # define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 # define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 # undef EV_USE_MONOTONIC
385 # define EV_USE_MONOTONIC 1
386 # else
387 # undef EV_USE_CLOCK_SYSCALL
388 # define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 # include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 # undef EV_USE_INOTIFY
422 # define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 # define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 # ifdef O_CLOEXEC
434 # define EFD_CLOEXEC O_CLOEXEC
435 # else
436 # define EFD_CLOEXEC 02000000
437 # endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 # define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 # ifdef O_CLOEXEC
450 # define SFD_CLOEXEC O_CLOEXEC
451 # else
452 # define SFD_CLOEXEC 02000000
453 # endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010003
521
522 #ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
529 #if __GNUC__
530 typedef signed long long int64_t;
531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
545 #else
546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
551 #endif
552 #endif
553
554 /* work around x32 idiocy by defining proper macros */
555 #if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
560 #endif
561 #endif
562
563 /* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570 #ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576 #endif
577
578 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
580 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
581 #define ECB_CPP (__cplusplus+0)
582 #define ECB_CPP11 (__cplusplus >= 201103L)
583
584 #if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588 #else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592 #endif
593
594 /*****************************************************************************/
595
596 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599 #if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601 #endif
602
603 #if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605 #endif
606
607 #ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650 #endif
651
652 #ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684 #endif
685
686 #ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699 #endif
700
701 #ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717 #endif
718
719 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721 #endif
722
723 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725 #endif
726
727 /*****************************************************************************/
728
729 #if __cplusplus
730 #define ecb_inline static inline
731 #elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733 #elif ECB_C99
734 #define ecb_inline static inline
735 #else
736 #define ecb_inline static
737 #endif
738
739 #if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741 #elif ECB_C99
742 #define ecb_restrict restrict
743 #else
744 #define ecb_restrict
745 #endif
746
747 typedef int ecb_bool;
748
749 #define ECB_CONCAT_(a, b) a ## b
750 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751 #define ECB_STRINGIFY_(a) # a
752 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754 #define ecb_function_ ecb_inline
755
756 #if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761 #else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766 #endif
767
768 /* no emulation for ecb_decltype */
769 #if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771 #elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773 #endif
774
775 #define ecb_noinline ecb_attribute ((__noinline__))
776 #define ecb_unused ecb_attribute ((__unused__))
777 #define ecb_const ecb_attribute ((__const__))
778 #define ecb_pure ecb_attribute ((__pure__))
779
780 #if ECB_C11
781 #define ecb_noreturn _Noreturn
782 #else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784 #endif
785
786 #if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790 #else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794 #endif
795
796 /* put around conditional expressions if you are very sure that the */
797 /* expression is mostly true or mostly false. note that these return */
798 /* booleans, not the expression. */
799 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
800 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801 /* for compatibility to the rest of the world */
802 #define ecb_likely(expr) ecb_expect_true (expr)
803 #define ecb_unlikely(expr) ecb_expect_false (expr)
804
805 /* count trailing zero bits and count # of one bits */
806 #if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814 #else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823 #if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829 #else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835 #endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883 #endif
884
885 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892 {
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895 }
896
897 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899 {
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906 }
907
908 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910 {
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918 }
919
920 /* popcount64 is only available on 64 bit cpus as gcc builtin */
921 /* so for this version we are lazy */
922 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923 ecb_function_ int
924 ecb_popcount64 (uint64_t x)
925 {
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927 }
928
929 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947 #if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951 #else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972 #endif
973
974 #if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976 #else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980 #endif
981
982 /* try to tell the compiler that some condition is definitely true */
983 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986 ecb_inline unsigned char
987 ecb_byteorder_helper (void)
988 {
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001 #else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008 #endif
1009 }
1010
1011 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016 #if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018 #else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020 #endif
1021
1022 #if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033 #else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036 #endif
1037
1038 #if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045 #else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047 #endif
1048
1049 /*******************************************************************************/
1050 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052 /* basically, everything uses "ieee pure-endian" floating point numbers */
1053 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054 #if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070 #else
1071 #define ECB_STDFP 0
1072 #include <math.h> /* for frexp*, ldexp* */
1073 #endif
1074
1075 #ifndef ECB_NO_LIBM
1076
1077 /* convert a float to ieee single/binary32 */
1078 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1079 ecb_function_ uint32_t
1080 ecb_float_to_binary32 (float x)
1081 {
1082 uint32_t r;
1083
1084 #if ECB_STDFP
1085 memcpy (&r, &x, 4);
1086 #else
1087 /* slow emulation, works for anything but -0 */
1088 uint32_t m;
1089 int e;
1090
1091 if (x == 0e0f ) return 0x00000000U;
1092 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1093 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1094 if (x != x ) return 0x7fbfffffU;
1095
1096 m = frexpf (x, &e) * 0x1000000U;
1097
1098 r = m & 0x80000000U;
1099
1100 if (r)
1101 m = -m;
1102
1103 if (e <= -126)
1104 {
1105 m &= 0xffffffU;
1106 m >>= (-125 - e);
1107 e = -126;
1108 }
1109
1110 r |= (e + 126) << 23;
1111 r |= m & 0x7fffffU;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* converts an ieee single/binary32 to a float */
1118 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1119 ecb_function_ float
1120 ecb_binary32_to_float (uint32_t x)
1121 {
1122 float r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 4);
1126 #else
1127 /* emulation, only works for normals and subnormals and +0 */
1128 int neg = x >> 31;
1129 int e = (x >> 23) & 0xffU;
1130
1131 x &= 0x7fffffU;
1132
1133 if (e)
1134 x |= 0x800000U;
1135 else
1136 e = 1;
1137
1138 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1139 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1140
1141 r = neg ? -r : r;
1142 #endif
1143
1144 return r;
1145 }
1146
1147 /* convert a double to ieee double/binary64 */
1148 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1149 ecb_function_ uint64_t
1150 ecb_double_to_binary64 (double x)
1151 {
1152 uint64_t r;
1153
1154 #if ECB_STDFP
1155 memcpy (&r, &x, 8);
1156 #else
1157 /* slow emulation, works for anything but -0 */
1158 uint64_t m;
1159 int e;
1160
1161 if (x == 0e0 ) return 0x0000000000000000U;
1162 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1163 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1164 if (x != x ) return 0X7ff7ffffffffffffU;
1165
1166 m = frexp (x, &e) * 0x20000000000000U;
1167
1168 r = m & 0x8000000000000000;;
1169
1170 if (r)
1171 m = -m;
1172
1173 if (e <= -1022)
1174 {
1175 m &= 0x1fffffffffffffU;
1176 m >>= (-1021 - e);
1177 e = -1022;
1178 }
1179
1180 r |= ((uint64_t)(e + 1022)) << 52;
1181 r |= m & 0xfffffffffffffU;
1182 #endif
1183
1184 return r;
1185 }
1186
1187 /* converts an ieee double/binary64 to a double */
1188 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1189 ecb_function_ double
1190 ecb_binary64_to_double (uint64_t x)
1191 {
1192 double r;
1193
1194 #if ECB_STDFP
1195 memcpy (&r, &x, 8);
1196 #else
1197 /* emulation, only works for normals and subnormals and +0 */
1198 int neg = x >> 63;
1199 int e = (x >> 52) & 0x7ffU;
1200
1201 x &= 0xfffffffffffffU;
1202
1203 if (e)
1204 x |= 0x10000000000000U;
1205 else
1206 e = 1;
1207
1208 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1209 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1210
1211 r = neg ? -r : r;
1212 #endif
1213
1214 return r;
1215 }
1216
1217 #endif
1218
1219 #endif
1220
1221 /* ECB.H END */
1222
1223 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1224 /* if your architecture doesn't need memory fences, e.g. because it is
1225 * single-cpu/core, or if you use libev in a project that doesn't use libev
1226 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1227 * libev, in which cases the memory fences become nops.
1228 * alternatively, you can remove this #error and link against libpthread,
1229 * which will then provide the memory fences.
1230 */
1231 # error "memory fences not defined for your architecture, please report"
1232 #endif
1233
1234 #ifndef ECB_MEMORY_FENCE
1235 # define ECB_MEMORY_FENCE do { } while (0)
1236 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1237 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1238 #endif
1239
1240 #define expect_false(cond) ecb_expect_false (cond)
1241 #define expect_true(cond) ecb_expect_true (cond)
1242 #define noinline ecb_noinline
1243
1244 #define inline_size ecb_inline
1245
1246 #if EV_FEATURE_CODE
1247 # define inline_speed ecb_inline
1248 #else
1249 # define inline_speed static noinline
1250 #endif
1251
1252 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1253
1254 #if EV_MINPRI == EV_MAXPRI
1255 # define ABSPRI(w) (((W)w), 0)
1256 #else
1257 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1258 #endif
1259
1260 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1261 #define EMPTY2(a,b) /* used to suppress some warnings */
1262
1263 typedef ev_watcher *W;
1264 typedef ev_watcher_list *WL;
1265 typedef ev_watcher_time *WT;
1266
1267 #define ev_active(w) ((W)(w))->active
1268 #define ev_at(w) ((WT)(w))->at
1269
1270 #if EV_USE_REALTIME
1271 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1272 /* giving it a reasonably high chance of working on typical architectures */
1273 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1274 #endif
1275
1276 #if EV_USE_MONOTONIC
1277 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1278 #endif
1279
1280 #ifndef EV_FD_TO_WIN32_HANDLE
1281 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1282 #endif
1283 #ifndef EV_WIN32_HANDLE_TO_FD
1284 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1285 #endif
1286 #ifndef EV_WIN32_CLOSE_FD
1287 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1288 #endif
1289
1290 #ifdef _WIN32
1291 # include "ev_win32.c"
1292 #endif
1293
1294 /*****************************************************************************/
1295
1296 /* define a suitable floor function (only used by periodics atm) */
1297
1298 #if EV_USE_FLOOR
1299 # include <math.h>
1300 # define ev_floor(v) floor (v)
1301 #else
1302
1303 #include <float.h>
1304
1305 /* a floor() replacement function, should be independent of ev_tstamp type */
1306 static ev_tstamp noinline
1307 ev_floor (ev_tstamp v)
1308 {
1309 /* the choice of shift factor is not terribly important */
1310 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1311 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1312 #else
1313 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1314 #endif
1315
1316 /* argument too large for an unsigned long? */
1317 if (expect_false (v >= shift))
1318 {
1319 ev_tstamp f;
1320
1321 if (v == v - 1.)
1322 return v; /* very large number */
1323
1324 f = shift * ev_floor (v * (1. / shift));
1325 return f + ev_floor (v - f);
1326 }
1327
1328 /* special treatment for negative args? */
1329 if (expect_false (v < 0.))
1330 {
1331 ev_tstamp f = -ev_floor (-v);
1332
1333 return f - (f == v ? 0 : 1);
1334 }
1335
1336 /* fits into an unsigned long */
1337 return (unsigned long)v;
1338 }
1339
1340 #endif
1341
1342 /*****************************************************************************/
1343
1344 #ifdef __linux
1345 # include <sys/utsname.h>
1346 #endif
1347
1348 static unsigned int noinline ecb_cold
1349 ev_linux_version (void)
1350 {
1351 #ifdef __linux
1352 unsigned int v = 0;
1353 struct utsname buf;
1354 int i;
1355 char *p = buf.release;
1356
1357 if (uname (&buf))
1358 return 0;
1359
1360 for (i = 3+1; --i; )
1361 {
1362 unsigned int c = 0;
1363
1364 for (;;)
1365 {
1366 if (*p >= '0' && *p <= '9')
1367 c = c * 10 + *p++ - '0';
1368 else
1369 {
1370 p += *p == '.';
1371 break;
1372 }
1373 }
1374
1375 v = (v << 8) | c;
1376 }
1377
1378 return v;
1379 #else
1380 return 0;
1381 #endif
1382 }
1383
1384 /*****************************************************************************/
1385
1386 #if EV_AVOID_STDIO
1387 static void noinline ecb_cold
1388 ev_printerr (const char *msg)
1389 {
1390 write (STDERR_FILENO, msg, strlen (msg));
1391 }
1392 #endif
1393
1394 static void (*syserr_cb)(const char *msg) EV_THROW;
1395
1396 void ecb_cold
1397 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1398 {
1399 syserr_cb = cb;
1400 }
1401
1402 static void noinline ecb_cold
1403 ev_syserr (const char *msg)
1404 {
1405 if (!msg)
1406 msg = "(libev) system error";
1407
1408 if (syserr_cb)
1409 syserr_cb (msg);
1410 else
1411 {
1412 #if EV_AVOID_STDIO
1413 ev_printerr (msg);
1414 ev_printerr (": ");
1415 ev_printerr (strerror (errno));
1416 ev_printerr ("\n");
1417 #else
1418 perror (msg);
1419 #endif
1420 abort ();
1421 }
1422 }
1423
1424 static void *
1425 ev_realloc_emul (void *ptr, long size) EV_THROW
1426 {
1427 /* some systems, notably openbsd and darwin, fail to properly
1428 * implement realloc (x, 0) (as required by both ansi c-89 and
1429 * the single unix specification, so work around them here.
1430 * recently, also (at least) fedora and debian started breaking it,
1431 * despite documenting it otherwise.
1432 */
1433
1434 if (size)
1435 return realloc (ptr, size);
1436
1437 free (ptr);
1438 return 0;
1439 }
1440
1441 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1442
1443 void ecb_cold
1444 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1445 {
1446 alloc = cb;
1447 }
1448
1449 inline_speed void *
1450 ev_realloc (void *ptr, long size)
1451 {
1452 ptr = alloc (ptr, size);
1453
1454 if (!ptr && size)
1455 {
1456 #if EV_AVOID_STDIO
1457 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1458 #else
1459 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1460 #endif
1461 abort ();
1462 }
1463
1464 return ptr;
1465 }
1466
1467 #define ev_malloc(size) ev_realloc (0, (size))
1468 #define ev_free(ptr) ev_realloc ((ptr), 0)
1469
1470 /*****************************************************************************/
1471
1472 /* set in reify when reification needed */
1473 #define EV_ANFD_REIFY 1
1474
1475 /* file descriptor info structure */
1476 typedef struct
1477 {
1478 WL head;
1479 unsigned char events; /* the events watched for */
1480 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1481 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1482 unsigned char unused;
1483 #if EV_USE_EPOLL
1484 unsigned int egen; /* generation counter to counter epoll bugs */
1485 #endif
1486 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1487 SOCKET handle;
1488 #endif
1489 #if EV_USE_IOCP
1490 OVERLAPPED or, ow;
1491 #endif
1492 } ANFD;
1493
1494 /* stores the pending event set for a given watcher */
1495 typedef struct
1496 {
1497 W w;
1498 int events; /* the pending event set for the given watcher */
1499 } ANPENDING;
1500
1501 #if EV_USE_INOTIFY
1502 /* hash table entry per inotify-id */
1503 typedef struct
1504 {
1505 WL head;
1506 } ANFS;
1507 #endif
1508
1509 /* Heap Entry */
1510 #if EV_HEAP_CACHE_AT
1511 /* a heap element */
1512 typedef struct {
1513 ev_tstamp at;
1514 WT w;
1515 } ANHE;
1516
1517 #define ANHE_w(he) (he).w /* access watcher, read-write */
1518 #define ANHE_at(he) (he).at /* access cached at, read-only */
1519 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1520 #else
1521 /* a heap element */
1522 typedef WT ANHE;
1523
1524 #define ANHE_w(he) (he)
1525 #define ANHE_at(he) (he)->at
1526 #define ANHE_at_cache(he)
1527 #endif
1528
1529 #if EV_MULTIPLICITY
1530
1531 struct ev_loop
1532 {
1533 ev_tstamp ev_rt_now;
1534 #define ev_rt_now ((loop)->ev_rt_now)
1535 #define VAR(name,decl) decl;
1536 #include "ev_vars.h"
1537 #undef VAR
1538 };
1539 #include "ev_wrap.h"
1540
1541 static struct ev_loop default_loop_struct;
1542 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1543
1544 #else
1545
1546 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1547 #define VAR(name,decl) static decl;
1548 #include "ev_vars.h"
1549 #undef VAR
1550
1551 static int ev_default_loop_ptr;
1552
1553 #endif
1554
1555 #if EV_FEATURE_API
1556 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1557 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1558 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1559 #else
1560 # define EV_RELEASE_CB (void)0
1561 # define EV_ACQUIRE_CB (void)0
1562 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1563 #endif
1564
1565 #define EVBREAK_RECURSE 0x80
1566
1567 /*****************************************************************************/
1568
1569 #ifndef EV_HAVE_EV_TIME
1570 ev_tstamp
1571 ev_time (void) EV_THROW
1572 {
1573 #if EV_USE_REALTIME
1574 if (expect_true (have_realtime))
1575 {
1576 struct timespec ts;
1577 clock_gettime (CLOCK_REALTIME, &ts);
1578 return ts.tv_sec + ts.tv_nsec * 1e-9;
1579 }
1580 #endif
1581
1582 struct timeval tv;
1583 gettimeofday (&tv, 0);
1584 return tv.tv_sec + tv.tv_usec * 1e-6;
1585 }
1586 #endif
1587
1588 inline_size ev_tstamp
1589 get_clock (void)
1590 {
1591 #if EV_USE_MONOTONIC
1592 if (expect_true (have_monotonic))
1593 {
1594 struct timespec ts;
1595 clock_gettime (CLOCK_MONOTONIC, &ts);
1596 return ts.tv_sec + ts.tv_nsec * 1e-9;
1597 }
1598 #endif
1599
1600 return ev_time ();
1601 }
1602
1603 #if EV_MULTIPLICITY
1604 ev_tstamp
1605 ev_now (EV_P) EV_THROW
1606 {
1607 return ev_rt_now;
1608 }
1609 #endif
1610
1611 void
1612 ev_sleep (ev_tstamp delay) EV_THROW
1613 {
1614 if (delay > 0.)
1615 {
1616 #if EV_USE_NANOSLEEP
1617 struct timespec ts;
1618
1619 EV_TS_SET (ts, delay);
1620 nanosleep (&ts, 0);
1621 #elif defined _WIN32
1622 Sleep ((unsigned long)(delay * 1e3));
1623 #else
1624 struct timeval tv;
1625
1626 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1627 /* something not guaranteed by newer posix versions, but guaranteed */
1628 /* by older ones */
1629 EV_TV_SET (tv, delay);
1630 select (0, 0, 0, 0, &tv);
1631 #endif
1632 }
1633 }
1634
1635 /*****************************************************************************/
1636
1637 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1638
1639 /* find a suitable new size for the given array, */
1640 /* hopefully by rounding to a nice-to-malloc size */
1641 inline_size int
1642 array_nextsize (int elem, int cur, int cnt)
1643 {
1644 int ncur = cur + 1;
1645
1646 do
1647 ncur <<= 1;
1648 while (cnt > ncur);
1649
1650 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1651 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1652 {
1653 ncur *= elem;
1654 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1655 ncur = ncur - sizeof (void *) * 4;
1656 ncur /= elem;
1657 }
1658
1659 return ncur;
1660 }
1661
1662 static void * noinline ecb_cold
1663 array_realloc (int elem, void *base, int *cur, int cnt)
1664 {
1665 *cur = array_nextsize (elem, *cur, cnt);
1666 return ev_realloc (base, elem * *cur);
1667 }
1668
1669 #define array_init_zero(base,count) \
1670 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1671
1672 #define array_needsize(type,base,cur,cnt,init) \
1673 if (expect_false ((cnt) > (cur))) \
1674 { \
1675 int ecb_unused ocur_ = (cur); \
1676 (base) = (type *)array_realloc \
1677 (sizeof (type), (base), &(cur), (cnt)); \
1678 init ((base) + (ocur_), (cur) - ocur_); \
1679 }
1680
1681 #if 0
1682 #define array_slim(type,stem) \
1683 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1684 { \
1685 stem ## max = array_roundsize (stem ## cnt >> 1); \
1686 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1687 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1688 }
1689 #endif
1690
1691 #define array_free(stem, idx) \
1692 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1693
1694 /*****************************************************************************/
1695
1696 /* dummy callback for pending events */
1697 static void noinline
1698 pendingcb (EV_P_ ev_prepare *w, int revents)
1699 {
1700 }
1701
1702 void noinline
1703 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1704 {
1705 W w_ = (W)w;
1706 int pri = ABSPRI (w_);
1707
1708 if (expect_false (w_->pending))
1709 pendings [pri][w_->pending - 1].events |= revents;
1710 else
1711 {
1712 w_->pending = ++pendingcnt [pri];
1713 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1714 pendings [pri][w_->pending - 1].w = w_;
1715 pendings [pri][w_->pending - 1].events = revents;
1716 }
1717
1718 pendingpri = NUMPRI - 1;
1719 }
1720
1721 inline_speed void
1722 feed_reverse (EV_P_ W w)
1723 {
1724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1725 rfeeds [rfeedcnt++] = w;
1726 }
1727
1728 inline_size void
1729 feed_reverse_done (EV_P_ int revents)
1730 {
1731 do
1732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1733 while (rfeedcnt);
1734 }
1735
1736 inline_speed void
1737 queue_events (EV_P_ W *events, int eventcnt, int type)
1738 {
1739 int i;
1740
1741 for (i = 0; i < eventcnt; ++i)
1742 ev_feed_event (EV_A_ events [i], type);
1743 }
1744
1745 /*****************************************************************************/
1746
1747 inline_speed void
1748 fd_event_nocheck (EV_P_ int fd, int revents)
1749 {
1750 ANFD *anfd = anfds + fd;
1751 ev_io *w;
1752
1753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1754 {
1755 int ev = w->events & revents;
1756
1757 if (ev)
1758 ev_feed_event (EV_A_ (W)w, ev);
1759 }
1760 }
1761
1762 /* do not submit kernel events for fds that have reify set */
1763 /* because that means they changed while we were polling for new events */
1764 inline_speed void
1765 fd_event (EV_P_ int fd, int revents)
1766 {
1767 ANFD *anfd = anfds + fd;
1768
1769 if (expect_true (!anfd->reify))
1770 fd_event_nocheck (EV_A_ fd, revents);
1771 }
1772
1773 void
1774 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1775 {
1776 if (fd >= 0 && fd < anfdmax)
1777 fd_event_nocheck (EV_A_ fd, revents);
1778 }
1779
1780 /* make sure the external fd watch events are in-sync */
1781 /* with the kernel/libev internal state */
1782 inline_size void
1783 fd_reify (EV_P)
1784 {
1785 int i;
1786
1787 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 for (i = 0; i < fdchangecnt; ++i)
1789 {
1790 int fd = fdchanges [i];
1791 ANFD *anfd = anfds + fd;
1792
1793 if (anfd->reify & EV__IOFDSET && anfd->head)
1794 {
1795 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1796
1797 if (handle != anfd->handle)
1798 {
1799 unsigned long arg;
1800
1801 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1802
1803 /* handle changed, but fd didn't - we need to do it in two steps */
1804 backend_modify (EV_A_ fd, anfd->events, 0);
1805 anfd->events = 0;
1806 anfd->handle = handle;
1807 }
1808 }
1809 }
1810 #endif
1811
1812 for (i = 0; i < fdchangecnt; ++i)
1813 {
1814 int fd = fdchanges [i];
1815 ANFD *anfd = anfds + fd;
1816 ev_io *w;
1817
1818 unsigned char o_events = anfd->events;
1819 unsigned char o_reify = anfd->reify;
1820
1821 anfd->reify = 0;
1822
1823 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1824 {
1825 anfd->events = 0;
1826
1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1828 anfd->events |= (unsigned char)w->events;
1829
1830 if (o_events != anfd->events)
1831 o_reify = EV__IOFDSET; /* actually |= */
1832 }
1833
1834 if (o_reify & EV__IOFDSET)
1835 backend_modify (EV_A_ fd, o_events, anfd->events);
1836 }
1837
1838 fdchangecnt = 0;
1839 }
1840
1841 /* something about the given fd changed */
1842 inline_size void
1843 fd_change (EV_P_ int fd, int flags)
1844 {
1845 unsigned char reify = anfds [fd].reify;
1846 anfds [fd].reify |= flags;
1847
1848 if (expect_true (!reify))
1849 {
1850 ++fdchangecnt;
1851 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1852 fdchanges [fdchangecnt - 1] = fd;
1853 }
1854 }
1855
1856 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1857 inline_speed void ecb_cold
1858 fd_kill (EV_P_ int fd)
1859 {
1860 ev_io *w;
1861
1862 while ((w = (ev_io *)anfds [fd].head))
1863 {
1864 ev_io_stop (EV_A_ w);
1865 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1866 }
1867 }
1868
1869 /* check whether the given fd is actually valid, for error recovery */
1870 inline_size int ecb_cold
1871 fd_valid (int fd)
1872 {
1873 #ifdef _WIN32
1874 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1875 #else
1876 return fcntl (fd, F_GETFD) != -1;
1877 #endif
1878 }
1879
1880 /* called on EBADF to verify fds */
1881 static void noinline ecb_cold
1882 fd_ebadf (EV_P)
1883 {
1884 int fd;
1885
1886 for (fd = 0; fd < anfdmax; ++fd)
1887 if (anfds [fd].events)
1888 if (!fd_valid (fd) && errno == EBADF)
1889 fd_kill (EV_A_ fd);
1890 }
1891
1892 /* called on ENOMEM in select/poll to kill some fds and retry */
1893 static void noinline ecb_cold
1894 fd_enomem (EV_P)
1895 {
1896 int fd;
1897
1898 for (fd = anfdmax; fd--; )
1899 if (anfds [fd].events)
1900 {
1901 fd_kill (EV_A_ fd);
1902 break;
1903 }
1904 }
1905
1906 /* usually called after fork if backend needs to re-arm all fds from scratch */
1907 static void noinline
1908 fd_rearm_all (EV_P)
1909 {
1910 int fd;
1911
1912 for (fd = 0; fd < anfdmax; ++fd)
1913 if (anfds [fd].events)
1914 {
1915 anfds [fd].events = 0;
1916 anfds [fd].emask = 0;
1917 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1918 }
1919 }
1920
1921 /* used to prepare libev internal fd's */
1922 /* this is not fork-safe */
1923 inline_speed void
1924 fd_intern (int fd)
1925 {
1926 #ifdef _WIN32
1927 unsigned long arg = 1;
1928 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1929 #else
1930 fcntl (fd, F_SETFD, FD_CLOEXEC);
1931 fcntl (fd, F_SETFL, O_NONBLOCK);
1932 #endif
1933 }
1934
1935 /*****************************************************************************/
1936
1937 /*
1938 * the heap functions want a real array index. array index 0 is guaranteed to not
1939 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1940 * the branching factor of the d-tree.
1941 */
1942
1943 /*
1944 * at the moment we allow libev the luxury of two heaps,
1945 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1946 * which is more cache-efficient.
1947 * the difference is about 5% with 50000+ watchers.
1948 */
1949 #if EV_USE_4HEAP
1950
1951 #define DHEAP 4
1952 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1953 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1954 #define UPHEAP_DONE(p,k) ((p) == (k))
1955
1956 /* away from the root */
1957 inline_speed void
1958 downheap (ANHE *heap, int N, int k)
1959 {
1960 ANHE he = heap [k];
1961 ANHE *E = heap + N + HEAP0;
1962
1963 for (;;)
1964 {
1965 ev_tstamp minat;
1966 ANHE *minpos;
1967 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1968
1969 /* find minimum child */
1970 if (expect_true (pos + DHEAP - 1 < E))
1971 {
1972 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1973 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1974 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1975 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1976 }
1977 else if (pos < E)
1978 {
1979 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1980 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1981 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1982 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1983 }
1984 else
1985 break;
1986
1987 if (ANHE_at (he) <= minat)
1988 break;
1989
1990 heap [k] = *minpos;
1991 ev_active (ANHE_w (*minpos)) = k;
1992
1993 k = minpos - heap;
1994 }
1995
1996 heap [k] = he;
1997 ev_active (ANHE_w (he)) = k;
1998 }
1999
2000 #else /* 4HEAP */
2001
2002 #define HEAP0 1
2003 #define HPARENT(k) ((k) >> 1)
2004 #define UPHEAP_DONE(p,k) (!(p))
2005
2006 /* away from the root */
2007 inline_speed void
2008 downheap (ANHE *heap, int N, int k)
2009 {
2010 ANHE he = heap [k];
2011
2012 for (;;)
2013 {
2014 int c = k << 1;
2015
2016 if (c >= N + HEAP0)
2017 break;
2018
2019 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2020 ? 1 : 0;
2021
2022 if (ANHE_at (he) <= ANHE_at (heap [c]))
2023 break;
2024
2025 heap [k] = heap [c];
2026 ev_active (ANHE_w (heap [k])) = k;
2027
2028 k = c;
2029 }
2030
2031 heap [k] = he;
2032 ev_active (ANHE_w (he)) = k;
2033 }
2034 #endif
2035
2036 /* towards the root */
2037 inline_speed void
2038 upheap (ANHE *heap, int k)
2039 {
2040 ANHE he = heap [k];
2041
2042 for (;;)
2043 {
2044 int p = HPARENT (k);
2045
2046 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2047 break;
2048
2049 heap [k] = heap [p];
2050 ev_active (ANHE_w (heap [k])) = k;
2051 k = p;
2052 }
2053
2054 heap [k] = he;
2055 ev_active (ANHE_w (he)) = k;
2056 }
2057
2058 /* move an element suitably so it is in a correct place */
2059 inline_size void
2060 adjustheap (ANHE *heap, int N, int k)
2061 {
2062 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2063 upheap (heap, k);
2064 else
2065 downheap (heap, N, k);
2066 }
2067
2068 /* rebuild the heap: this function is used only once and executed rarely */
2069 inline_size void
2070 reheap (ANHE *heap, int N)
2071 {
2072 int i;
2073
2074 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2075 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2076 for (i = 0; i < N; ++i)
2077 upheap (heap, i + HEAP0);
2078 }
2079
2080 /*****************************************************************************/
2081
2082 /* associate signal watchers to a signal signal */
2083 typedef struct
2084 {
2085 EV_ATOMIC_T pending;
2086 #if EV_MULTIPLICITY
2087 EV_P;
2088 #endif
2089 WL head;
2090 } ANSIG;
2091
2092 static ANSIG signals [EV_NSIG - 1];
2093
2094 /*****************************************************************************/
2095
2096 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2097
2098 static void noinline ecb_cold
2099 evpipe_init (EV_P)
2100 {
2101 if (!ev_is_active (&pipe_w))
2102 {
2103 int fds [2];
2104
2105 # if EV_USE_EVENTFD
2106 fds [0] = -1;
2107 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2108 if (fds [1] < 0 && errno == EINVAL)
2109 fds [1] = eventfd (0, 0);
2110
2111 if (fds [1] < 0)
2112 # endif
2113 {
2114 while (pipe (fds))
2115 ev_syserr ("(libev) error creating signal/async pipe");
2116
2117 fd_intern (fds [0]);
2118 }
2119
2120 evpipe [0] = fds [0];
2121
2122 if (evpipe [1] < 0)
2123 evpipe [1] = fds [1]; /* first call, set write fd */
2124 else
2125 {
2126 /* on subsequent calls, do not change evpipe [1] */
2127 /* so that evpipe_write can always rely on its value. */
2128 /* this branch does not do anything sensible on windows, */
2129 /* so must not be executed on windows */
2130
2131 dup2 (fds [1], evpipe [1]);
2132 close (fds [1]);
2133 }
2134
2135 fd_intern (evpipe [1]);
2136
2137 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2138 ev_io_start (EV_A_ &pipe_w);
2139 ev_unref (EV_A); /* watcher should not keep loop alive */
2140 }
2141 }
2142
2143 inline_speed void
2144 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2145 {
2146 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2147
2148 if (expect_true (*flag))
2149 return;
2150
2151 *flag = 1;
2152 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2153
2154 pipe_write_skipped = 1;
2155
2156 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2157
2158 if (pipe_write_wanted)
2159 {
2160 int old_errno;
2161
2162 pipe_write_skipped = 0;
2163 ECB_MEMORY_FENCE_RELEASE;
2164
2165 old_errno = errno; /* save errno because write will clobber it */
2166
2167 #if EV_USE_EVENTFD
2168 if (evpipe [0] < 0)
2169 {
2170 uint64_t counter = 1;
2171 write (evpipe [1], &counter, sizeof (uint64_t));
2172 }
2173 else
2174 #endif
2175 {
2176 #ifdef _WIN32
2177 WSABUF buf;
2178 DWORD sent;
2179 buf.buf = &buf;
2180 buf.len = 1;
2181 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2182 #else
2183 write (evpipe [1], &(evpipe [1]), 1);
2184 #endif
2185 }
2186
2187 errno = old_errno;
2188 }
2189 }
2190
2191 /* called whenever the libev signal pipe */
2192 /* got some events (signal, async) */
2193 static void
2194 pipecb (EV_P_ ev_io *iow, int revents)
2195 {
2196 int i;
2197
2198 if (revents & EV_READ)
2199 {
2200 #if EV_USE_EVENTFD
2201 if (evpipe [0] < 0)
2202 {
2203 uint64_t counter;
2204 read (evpipe [1], &counter, sizeof (uint64_t));
2205 }
2206 else
2207 #endif
2208 {
2209 char dummy[4];
2210 #ifdef _WIN32
2211 WSABUF buf;
2212 DWORD recvd;
2213 DWORD flags = 0;
2214 buf.buf = dummy;
2215 buf.len = sizeof (dummy);
2216 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2217 #else
2218 read (evpipe [0], &dummy, sizeof (dummy));
2219 #endif
2220 }
2221 }
2222
2223 pipe_write_skipped = 0;
2224
2225 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2226
2227 #if EV_SIGNAL_ENABLE
2228 if (sig_pending)
2229 {
2230 sig_pending = 0;
2231
2232 ECB_MEMORY_FENCE;
2233
2234 for (i = EV_NSIG - 1; i--; )
2235 if (expect_false (signals [i].pending))
2236 ev_feed_signal_event (EV_A_ i + 1);
2237 }
2238 #endif
2239
2240 #if EV_ASYNC_ENABLE
2241 if (async_pending)
2242 {
2243 async_pending = 0;
2244
2245 ECB_MEMORY_FENCE;
2246
2247 for (i = asynccnt; i--; )
2248 if (asyncs [i]->sent)
2249 {
2250 asyncs [i]->sent = 0;
2251 ECB_MEMORY_FENCE_RELEASE;
2252 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2253 }
2254 }
2255 #endif
2256 }
2257
2258 /*****************************************************************************/
2259
2260 void
2261 ev_feed_signal (int signum) EV_THROW
2262 {
2263 #if EV_MULTIPLICITY
2264 EV_P;
2265 ECB_MEMORY_FENCE_ACQUIRE;
2266 EV_A = signals [signum - 1].loop;
2267
2268 if (!EV_A)
2269 return;
2270 #endif
2271
2272 signals [signum - 1].pending = 1;
2273 evpipe_write (EV_A_ &sig_pending);
2274 }
2275
2276 static void
2277 ev_sighandler (int signum)
2278 {
2279 #ifdef _WIN32
2280 signal (signum, ev_sighandler);
2281 #endif
2282
2283 ev_feed_signal (signum);
2284 }
2285
2286 void noinline
2287 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2288 {
2289 WL w;
2290
2291 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2292 return;
2293
2294 --signum;
2295
2296 #if EV_MULTIPLICITY
2297 /* it is permissible to try to feed a signal to the wrong loop */
2298 /* or, likely more useful, feeding a signal nobody is waiting for */
2299
2300 if (expect_false (signals [signum].loop != EV_A))
2301 return;
2302 #endif
2303
2304 signals [signum].pending = 0;
2305 ECB_MEMORY_FENCE_RELEASE;
2306
2307 for (w = signals [signum].head; w; w = w->next)
2308 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2309 }
2310
2311 #if EV_USE_SIGNALFD
2312 static void
2313 sigfdcb (EV_P_ ev_io *iow, int revents)
2314 {
2315 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2316
2317 for (;;)
2318 {
2319 ssize_t res = read (sigfd, si, sizeof (si));
2320
2321 /* not ISO-C, as res might be -1, but works with SuS */
2322 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2323 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2324
2325 if (res < (ssize_t)sizeof (si))
2326 break;
2327 }
2328 }
2329 #endif
2330
2331 #endif
2332
2333 /*****************************************************************************/
2334
2335 #if EV_CHILD_ENABLE
2336 static WL childs [EV_PID_HASHSIZE];
2337
2338 static ev_signal childev;
2339
2340 #ifndef WIFCONTINUED
2341 # define WIFCONTINUED(status) 0
2342 #endif
2343
2344 /* handle a single child status event */
2345 inline_speed void
2346 child_reap (EV_P_ int chain, int pid, int status)
2347 {
2348 ev_child *w;
2349 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2350
2351 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2352 {
2353 if ((w->pid == pid || !w->pid)
2354 && (!traced || (w->flags & 1)))
2355 {
2356 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2357 w->rpid = pid;
2358 w->rstatus = status;
2359 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2360 }
2361 }
2362 }
2363
2364 #ifndef WCONTINUED
2365 # define WCONTINUED 0
2366 #endif
2367
2368 /* called on sigchld etc., calls waitpid */
2369 static void
2370 childcb (EV_P_ ev_signal *sw, int revents)
2371 {
2372 int pid, status;
2373
2374 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2375 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2376 if (!WCONTINUED
2377 || errno != EINVAL
2378 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2379 return;
2380
2381 /* make sure we are called again until all children have been reaped */
2382 /* we need to do it this way so that the callback gets called before we continue */
2383 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2384
2385 child_reap (EV_A_ pid, pid, status);
2386 if ((EV_PID_HASHSIZE) > 1)
2387 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2388 }
2389
2390 #endif
2391
2392 /*****************************************************************************/
2393
2394 #if EV_USE_IOCP
2395 # include "ev_iocp.c"
2396 #endif
2397 #if EV_USE_PORT
2398 # include "ev_port.c"
2399 #endif
2400 #if EV_USE_KQUEUE
2401 # include "ev_kqueue.c"
2402 #endif
2403 #if EV_USE_EPOLL
2404 # include "ev_epoll.c"
2405 #endif
2406 #if EV_USE_POLL
2407 # include "ev_poll.c"
2408 #endif
2409 #if EV_USE_SELECT
2410 # include "ev_select.c"
2411 #endif
2412
2413 int ecb_cold
2414 ev_version_major (void) EV_THROW
2415 {
2416 return EV_VERSION_MAJOR;
2417 }
2418
2419 int ecb_cold
2420 ev_version_minor (void) EV_THROW
2421 {
2422 return EV_VERSION_MINOR;
2423 }
2424
2425 /* return true if we are running with elevated privileges and should ignore env variables */
2426 int inline_size ecb_cold
2427 enable_secure (void)
2428 {
2429 #ifdef _WIN32
2430 return 0;
2431 #else
2432 return getuid () != geteuid ()
2433 || getgid () != getegid ();
2434 #endif
2435 }
2436
2437 unsigned int ecb_cold
2438 ev_supported_backends (void) EV_THROW
2439 {
2440 unsigned int flags = 0;
2441
2442 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2443 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2444 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2445 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2446 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2447
2448 return flags;
2449 }
2450
2451 unsigned int ecb_cold
2452 ev_recommended_backends (void) EV_THROW
2453 {
2454 unsigned int flags = ev_supported_backends ();
2455
2456 #ifndef __NetBSD__
2457 /* kqueue is borked on everything but netbsd apparently */
2458 /* it usually doesn't work correctly on anything but sockets and pipes */
2459 flags &= ~EVBACKEND_KQUEUE;
2460 #endif
2461 #ifdef __APPLE__
2462 /* only select works correctly on that "unix-certified" platform */
2463 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2464 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2465 #endif
2466 #ifdef __FreeBSD__
2467 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2468 #endif
2469
2470 return flags;
2471 }
2472
2473 unsigned int ecb_cold
2474 ev_embeddable_backends (void) EV_THROW
2475 {
2476 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2477
2478 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2479 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2480 flags &= ~EVBACKEND_EPOLL;
2481
2482 return flags;
2483 }
2484
2485 unsigned int
2486 ev_backend (EV_P) EV_THROW
2487 {
2488 return backend;
2489 }
2490
2491 #if EV_FEATURE_API
2492 unsigned int
2493 ev_iteration (EV_P) EV_THROW
2494 {
2495 return loop_count;
2496 }
2497
2498 unsigned int
2499 ev_depth (EV_P) EV_THROW
2500 {
2501 return loop_depth;
2502 }
2503
2504 void
2505 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2506 {
2507 io_blocktime = interval;
2508 }
2509
2510 void
2511 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2512 {
2513 timeout_blocktime = interval;
2514 }
2515
2516 void
2517 ev_set_userdata (EV_P_ void *data) EV_THROW
2518 {
2519 userdata = data;
2520 }
2521
2522 void *
2523 ev_userdata (EV_P) EV_THROW
2524 {
2525 return userdata;
2526 }
2527
2528 void
2529 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2530 {
2531 invoke_cb = invoke_pending_cb;
2532 }
2533
2534 void
2535 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2536 {
2537 release_cb = release;
2538 acquire_cb = acquire;
2539 }
2540 #endif
2541
2542 /* initialise a loop structure, must be zero-initialised */
2543 static void noinline ecb_cold
2544 loop_init (EV_P_ unsigned int flags) EV_THROW
2545 {
2546 if (!backend)
2547 {
2548 origflags = flags;
2549
2550 #if EV_USE_REALTIME
2551 if (!have_realtime)
2552 {
2553 struct timespec ts;
2554
2555 if (!clock_gettime (CLOCK_REALTIME, &ts))
2556 have_realtime = 1;
2557 }
2558 #endif
2559
2560 #if EV_USE_MONOTONIC
2561 if (!have_monotonic)
2562 {
2563 struct timespec ts;
2564
2565 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2566 have_monotonic = 1;
2567 }
2568 #endif
2569
2570 /* pid check not overridable via env */
2571 #ifndef _WIN32
2572 if (flags & EVFLAG_FORKCHECK)
2573 curpid = getpid ();
2574 #endif
2575
2576 if (!(flags & EVFLAG_NOENV)
2577 && !enable_secure ()
2578 && getenv ("LIBEV_FLAGS"))
2579 flags = atoi (getenv ("LIBEV_FLAGS"));
2580
2581 ev_rt_now = ev_time ();
2582 mn_now = get_clock ();
2583 now_floor = mn_now;
2584 rtmn_diff = ev_rt_now - mn_now;
2585 #if EV_FEATURE_API
2586 invoke_cb = ev_invoke_pending;
2587 #endif
2588
2589 io_blocktime = 0.;
2590 timeout_blocktime = 0.;
2591 backend = 0;
2592 backend_fd = -1;
2593 sig_pending = 0;
2594 #if EV_ASYNC_ENABLE
2595 async_pending = 0;
2596 #endif
2597 pipe_write_skipped = 0;
2598 pipe_write_wanted = 0;
2599 evpipe [0] = -1;
2600 evpipe [1] = -1;
2601 #if EV_USE_INOTIFY
2602 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2603 #endif
2604 #if EV_USE_SIGNALFD
2605 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2606 #endif
2607
2608 if (!(flags & EVBACKEND_MASK))
2609 flags |= ev_recommended_backends ();
2610
2611 #if EV_USE_IOCP
2612 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2613 #endif
2614 #if EV_USE_PORT
2615 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2616 #endif
2617 #if EV_USE_KQUEUE
2618 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2619 #endif
2620 #if EV_USE_EPOLL
2621 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2622 #endif
2623 #if EV_USE_POLL
2624 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2625 #endif
2626 #if EV_USE_SELECT
2627 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2628 #endif
2629
2630 ev_prepare_init (&pending_w, pendingcb);
2631
2632 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2633 ev_init (&pipe_w, pipecb);
2634 ev_set_priority (&pipe_w, EV_MAXPRI);
2635 #endif
2636 }
2637 }
2638
2639 /* free up a loop structure */
2640 void ecb_cold
2641 ev_loop_destroy (EV_P)
2642 {
2643 int i;
2644
2645 #if EV_MULTIPLICITY
2646 /* mimic free (0) */
2647 if (!EV_A)
2648 return;
2649 #endif
2650
2651 #if EV_CLEANUP_ENABLE
2652 /* queue cleanup watchers (and execute them) */
2653 if (expect_false (cleanupcnt))
2654 {
2655 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2656 EV_INVOKE_PENDING;
2657 }
2658 #endif
2659
2660 #if EV_CHILD_ENABLE
2661 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2662 {
2663 ev_ref (EV_A); /* child watcher */
2664 ev_signal_stop (EV_A_ &childev);
2665 }
2666 #endif
2667
2668 if (ev_is_active (&pipe_w))
2669 {
2670 /*ev_ref (EV_A);*/
2671 /*ev_io_stop (EV_A_ &pipe_w);*/
2672
2673 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2674 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2675 }
2676
2677 #if EV_USE_SIGNALFD
2678 if (ev_is_active (&sigfd_w))
2679 close (sigfd);
2680 #endif
2681
2682 #if EV_USE_INOTIFY
2683 if (fs_fd >= 0)
2684 close (fs_fd);
2685 #endif
2686
2687 if (backend_fd >= 0)
2688 close (backend_fd);
2689
2690 #if EV_USE_IOCP
2691 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2692 #endif
2693 #if EV_USE_PORT
2694 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2695 #endif
2696 #if EV_USE_KQUEUE
2697 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2698 #endif
2699 #if EV_USE_EPOLL
2700 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2701 #endif
2702 #if EV_USE_POLL
2703 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2704 #endif
2705 #if EV_USE_SELECT
2706 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2707 #endif
2708
2709 for (i = NUMPRI; i--; )
2710 {
2711 array_free (pending, [i]);
2712 #if EV_IDLE_ENABLE
2713 array_free (idle, [i]);
2714 #endif
2715 }
2716
2717 ev_free (anfds); anfds = 0; anfdmax = 0;
2718
2719 /* have to use the microsoft-never-gets-it-right macro */
2720 array_free (rfeed, EMPTY);
2721 array_free (fdchange, EMPTY);
2722 array_free (timer, EMPTY);
2723 #if EV_PERIODIC_ENABLE
2724 array_free (periodic, EMPTY);
2725 #endif
2726 #if EV_FORK_ENABLE
2727 array_free (fork, EMPTY);
2728 #endif
2729 #if EV_CLEANUP_ENABLE
2730 array_free (cleanup, EMPTY);
2731 #endif
2732 array_free (prepare, EMPTY);
2733 array_free (check, EMPTY);
2734 #if EV_ASYNC_ENABLE
2735 array_free (async, EMPTY);
2736 #endif
2737
2738 backend = 0;
2739
2740 #if EV_MULTIPLICITY
2741 if (ev_is_default_loop (EV_A))
2742 #endif
2743 ev_default_loop_ptr = 0;
2744 #if EV_MULTIPLICITY
2745 else
2746 ev_free (EV_A);
2747 #endif
2748 }
2749
2750 #if EV_USE_INOTIFY
2751 inline_size void infy_fork (EV_P);
2752 #endif
2753
2754 inline_size void
2755 loop_fork (EV_P)
2756 {
2757 #if EV_USE_PORT
2758 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2759 #endif
2760 #if EV_USE_KQUEUE
2761 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2762 #endif
2763 #if EV_USE_EPOLL
2764 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2765 #endif
2766 #if EV_USE_INOTIFY
2767 infy_fork (EV_A);
2768 #endif
2769
2770 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2771 if (ev_is_active (&pipe_w))
2772 {
2773 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2774
2775 ev_ref (EV_A);
2776 ev_io_stop (EV_A_ &pipe_w);
2777
2778 if (evpipe [0] >= 0)
2779 EV_WIN32_CLOSE_FD (evpipe [0]);
2780
2781 evpipe_init (EV_A);
2782 /* iterate over everything, in case we missed something before */
2783 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2784 }
2785 #endif
2786
2787 postfork = 0;
2788 }
2789
2790 #if EV_MULTIPLICITY
2791
2792 struct ev_loop * ecb_cold
2793 ev_loop_new (unsigned int flags) EV_THROW
2794 {
2795 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2796
2797 memset (EV_A, 0, sizeof (struct ev_loop));
2798 loop_init (EV_A_ flags);
2799
2800 if (ev_backend (EV_A))
2801 return EV_A;
2802
2803 ev_free (EV_A);
2804 return 0;
2805 }
2806
2807 #endif /* multiplicity */
2808
2809 #if EV_VERIFY
2810 static void noinline ecb_cold
2811 verify_watcher (EV_P_ W w)
2812 {
2813 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2814
2815 if (w->pending)
2816 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2817 }
2818
2819 static void noinline ecb_cold
2820 verify_heap (EV_P_ ANHE *heap, int N)
2821 {
2822 int i;
2823
2824 for (i = HEAP0; i < N + HEAP0; ++i)
2825 {
2826 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2827 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2828 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2829
2830 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2831 }
2832 }
2833
2834 static void noinline ecb_cold
2835 array_verify (EV_P_ W *ws, int cnt)
2836 {
2837 while (cnt--)
2838 {
2839 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2840 verify_watcher (EV_A_ ws [cnt]);
2841 }
2842 }
2843 #endif
2844
2845 #if EV_FEATURE_API
2846 void ecb_cold
2847 ev_verify (EV_P) EV_THROW
2848 {
2849 #if EV_VERIFY
2850 int i;
2851 WL w, w2;
2852
2853 assert (activecnt >= -1);
2854
2855 assert (fdchangemax >= fdchangecnt);
2856 for (i = 0; i < fdchangecnt; ++i)
2857 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2858
2859 assert (anfdmax >= 0);
2860 for (i = 0; i < anfdmax; ++i)
2861 {
2862 int j = 0;
2863
2864 for (w = w2 = anfds [i].head; w; w = w->next)
2865 {
2866 verify_watcher (EV_A_ (W)w);
2867
2868 if (j++ & 1)
2869 {
2870 assert (("libev: io watcher list contains a loop", w != w2));
2871 w2 = w2->next;
2872 }
2873
2874 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2875 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2876 }
2877 }
2878
2879 assert (timermax >= timercnt);
2880 verify_heap (EV_A_ timers, timercnt);
2881
2882 #if EV_PERIODIC_ENABLE
2883 assert (periodicmax >= periodiccnt);
2884 verify_heap (EV_A_ periodics, periodiccnt);
2885 #endif
2886
2887 for (i = NUMPRI; i--; )
2888 {
2889 assert (pendingmax [i] >= pendingcnt [i]);
2890 #if EV_IDLE_ENABLE
2891 assert (idleall >= 0);
2892 assert (idlemax [i] >= idlecnt [i]);
2893 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2894 #endif
2895 }
2896
2897 #if EV_FORK_ENABLE
2898 assert (forkmax >= forkcnt);
2899 array_verify (EV_A_ (W *)forks, forkcnt);
2900 #endif
2901
2902 #if EV_CLEANUP_ENABLE
2903 assert (cleanupmax >= cleanupcnt);
2904 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2905 #endif
2906
2907 #if EV_ASYNC_ENABLE
2908 assert (asyncmax >= asynccnt);
2909 array_verify (EV_A_ (W *)asyncs, asynccnt);
2910 #endif
2911
2912 #if EV_PREPARE_ENABLE
2913 assert (preparemax >= preparecnt);
2914 array_verify (EV_A_ (W *)prepares, preparecnt);
2915 #endif
2916
2917 #if EV_CHECK_ENABLE
2918 assert (checkmax >= checkcnt);
2919 array_verify (EV_A_ (W *)checks, checkcnt);
2920 #endif
2921
2922 # if 0
2923 #if EV_CHILD_ENABLE
2924 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2926 #endif
2927 # endif
2928 #endif
2929 }
2930 #endif
2931
2932 #if EV_MULTIPLICITY
2933 struct ev_loop * ecb_cold
2934 #else
2935 int
2936 #endif
2937 ev_default_loop (unsigned int flags) EV_THROW
2938 {
2939 if (!ev_default_loop_ptr)
2940 {
2941 #if EV_MULTIPLICITY
2942 EV_P = ev_default_loop_ptr = &default_loop_struct;
2943 #else
2944 ev_default_loop_ptr = 1;
2945 #endif
2946
2947 loop_init (EV_A_ flags);
2948
2949 if (ev_backend (EV_A))
2950 {
2951 #if EV_CHILD_ENABLE
2952 ev_signal_init (&childev, childcb, SIGCHLD);
2953 ev_set_priority (&childev, EV_MAXPRI);
2954 ev_signal_start (EV_A_ &childev);
2955 ev_unref (EV_A); /* child watcher should not keep loop alive */
2956 #endif
2957 }
2958 else
2959 ev_default_loop_ptr = 0;
2960 }
2961
2962 return ev_default_loop_ptr;
2963 }
2964
2965 void
2966 ev_loop_fork (EV_P) EV_THROW
2967 {
2968 postfork = 1;
2969 }
2970
2971 /*****************************************************************************/
2972
2973 void
2974 ev_invoke (EV_P_ void *w, int revents)
2975 {
2976 EV_CB_INVOKE ((W)w, revents);
2977 }
2978
2979 unsigned int
2980 ev_pending_count (EV_P) EV_THROW
2981 {
2982 int pri;
2983 unsigned int count = 0;
2984
2985 for (pri = NUMPRI; pri--; )
2986 count += pendingcnt [pri];
2987
2988 return count;
2989 }
2990
2991 void noinline
2992 ev_invoke_pending (EV_P)
2993 {
2994 pendingpri = NUMPRI;
2995
2996 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2997 {
2998 --pendingpri;
2999
3000 while (pendingcnt [pendingpri])
3001 {
3002 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3003
3004 p->w->pending = 0;
3005 EV_CB_INVOKE (p->w, p->events);
3006 EV_FREQUENT_CHECK;
3007 }
3008 }
3009 }
3010
3011 #if EV_IDLE_ENABLE
3012 /* make idle watchers pending. this handles the "call-idle */
3013 /* only when higher priorities are idle" logic */
3014 inline_size void
3015 idle_reify (EV_P)
3016 {
3017 if (expect_false (idleall))
3018 {
3019 int pri;
3020
3021 for (pri = NUMPRI; pri--; )
3022 {
3023 if (pendingcnt [pri])
3024 break;
3025
3026 if (idlecnt [pri])
3027 {
3028 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3029 break;
3030 }
3031 }
3032 }
3033 }
3034 #endif
3035
3036 /* make timers pending */
3037 inline_size void
3038 timers_reify (EV_P)
3039 {
3040 EV_FREQUENT_CHECK;
3041
3042 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3043 {
3044 do
3045 {
3046 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3047
3048 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3049
3050 /* first reschedule or stop timer */
3051 if (w->repeat)
3052 {
3053 ev_at (w) += w->repeat;
3054 if (ev_at (w) < mn_now)
3055 ev_at (w) = mn_now;
3056
3057 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3058
3059 ANHE_at_cache (timers [HEAP0]);
3060 downheap (timers, timercnt, HEAP0);
3061 }
3062 else
3063 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3064
3065 EV_FREQUENT_CHECK;
3066 feed_reverse (EV_A_ (W)w);
3067 }
3068 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3069
3070 feed_reverse_done (EV_A_ EV_TIMER);
3071 }
3072 }
3073
3074 #if EV_PERIODIC_ENABLE
3075
3076 static void noinline
3077 periodic_recalc (EV_P_ ev_periodic *w)
3078 {
3079 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3080 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3081
3082 /* the above almost always errs on the low side */
3083 while (at <= ev_rt_now)
3084 {
3085 ev_tstamp nat = at + w->interval;
3086
3087 /* when resolution fails us, we use ev_rt_now */
3088 if (expect_false (nat == at))
3089 {
3090 at = ev_rt_now;
3091 break;
3092 }
3093
3094 at = nat;
3095 }
3096
3097 ev_at (w) = at;
3098 }
3099
3100 /* make periodics pending */
3101 inline_size void
3102 periodics_reify (EV_P)
3103 {
3104 EV_FREQUENT_CHECK;
3105
3106 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3107 {
3108 do
3109 {
3110 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3111
3112 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3113
3114 /* first reschedule or stop timer */
3115 if (w->reschedule_cb)
3116 {
3117 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3118
3119 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3120
3121 ANHE_at_cache (periodics [HEAP0]);
3122 downheap (periodics, periodiccnt, HEAP0);
3123 }
3124 else if (w->interval)
3125 {
3126 periodic_recalc (EV_A_ w);
3127 ANHE_at_cache (periodics [HEAP0]);
3128 downheap (periodics, periodiccnt, HEAP0);
3129 }
3130 else
3131 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3132
3133 EV_FREQUENT_CHECK;
3134 feed_reverse (EV_A_ (W)w);
3135 }
3136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3137
3138 feed_reverse_done (EV_A_ EV_PERIODIC);
3139 }
3140 }
3141
3142 /* simply recalculate all periodics */
3143 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3144 static void noinline ecb_cold
3145 periodics_reschedule (EV_P)
3146 {
3147 int i;
3148
3149 /* adjust periodics after time jump */
3150 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3151 {
3152 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3153
3154 if (w->reschedule_cb)
3155 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3156 else if (w->interval)
3157 periodic_recalc (EV_A_ w);
3158
3159 ANHE_at_cache (periodics [i]);
3160 }
3161
3162 reheap (periodics, periodiccnt);
3163 }
3164 #endif
3165
3166 /* adjust all timers by a given offset */
3167 static void noinline ecb_cold
3168 timers_reschedule (EV_P_ ev_tstamp adjust)
3169 {
3170 int i;
3171
3172 for (i = 0; i < timercnt; ++i)
3173 {
3174 ANHE *he = timers + i + HEAP0;
3175 ANHE_w (*he)->at += adjust;
3176 ANHE_at_cache (*he);
3177 }
3178 }
3179
3180 /* fetch new monotonic and realtime times from the kernel */
3181 /* also detect if there was a timejump, and act accordingly */
3182 inline_speed void
3183 time_update (EV_P_ ev_tstamp max_block)
3184 {
3185 #if EV_USE_MONOTONIC
3186 if (expect_true (have_monotonic))
3187 {
3188 int i;
3189 ev_tstamp odiff = rtmn_diff;
3190
3191 mn_now = get_clock ();
3192
3193 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3194 /* interpolate in the meantime */
3195 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3196 {
3197 ev_rt_now = rtmn_diff + mn_now;
3198 return;
3199 }
3200
3201 now_floor = mn_now;
3202 ev_rt_now = ev_time ();
3203
3204 /* loop a few times, before making important decisions.
3205 * on the choice of "4": one iteration isn't enough,
3206 * in case we get preempted during the calls to
3207 * ev_time and get_clock. a second call is almost guaranteed
3208 * to succeed in that case, though. and looping a few more times
3209 * doesn't hurt either as we only do this on time-jumps or
3210 * in the unlikely event of having been preempted here.
3211 */
3212 for (i = 4; --i; )
3213 {
3214 ev_tstamp diff;
3215 rtmn_diff = ev_rt_now - mn_now;
3216
3217 diff = odiff - rtmn_diff;
3218
3219 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3220 return; /* all is well */
3221
3222 ev_rt_now = ev_time ();
3223 mn_now = get_clock ();
3224 now_floor = mn_now;
3225 }
3226
3227 /* no timer adjustment, as the monotonic clock doesn't jump */
3228 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3229 # if EV_PERIODIC_ENABLE
3230 periodics_reschedule (EV_A);
3231 # endif
3232 }
3233 else
3234 #endif
3235 {
3236 ev_rt_now = ev_time ();
3237
3238 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3239 {
3240 /* adjust timers. this is easy, as the offset is the same for all of them */
3241 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3242 #if EV_PERIODIC_ENABLE
3243 periodics_reschedule (EV_A);
3244 #endif
3245 }
3246
3247 mn_now = ev_rt_now;
3248 }
3249 }
3250
3251 int
3252 ev_run (EV_P_ int flags)
3253 {
3254 #if EV_FEATURE_API
3255 ++loop_depth;
3256 #endif
3257
3258 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3259
3260 loop_done = EVBREAK_CANCEL;
3261
3262 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3263
3264 do
3265 {
3266 #if EV_VERIFY >= 2
3267 ev_verify (EV_A);
3268 #endif
3269
3270 #ifndef _WIN32
3271 if (expect_false (curpid)) /* penalise the forking check even more */
3272 if (expect_false (getpid () != curpid))
3273 {
3274 curpid = getpid ();
3275 postfork = 1;
3276 }
3277 #endif
3278
3279 #if EV_FORK_ENABLE
3280 /* we might have forked, so queue fork handlers */
3281 if (expect_false (postfork))
3282 if (forkcnt)
3283 {
3284 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3285 EV_INVOKE_PENDING;
3286 }
3287 #endif
3288
3289 #if EV_PREPARE_ENABLE
3290 /* queue prepare watchers (and execute them) */
3291 if (expect_false (preparecnt))
3292 {
3293 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3294 EV_INVOKE_PENDING;
3295 }
3296 #endif
3297
3298 if (expect_false (loop_done))
3299 break;
3300
3301 /* we might have forked, so reify kernel state if necessary */
3302 if (expect_false (postfork))
3303 loop_fork (EV_A);
3304
3305 /* update fd-related kernel structures */
3306 fd_reify (EV_A);
3307
3308 /* calculate blocking time */
3309 {
3310 ev_tstamp waittime = 0.;
3311 ev_tstamp sleeptime = 0.;
3312
3313 /* remember old timestamp for io_blocktime calculation */
3314 ev_tstamp prev_mn_now = mn_now;
3315
3316 /* update time to cancel out callback processing overhead */
3317 time_update (EV_A_ 1e100);
3318
3319 /* from now on, we want a pipe-wake-up */
3320 pipe_write_wanted = 1;
3321
3322 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3323
3324 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3325 {
3326 waittime = MAX_BLOCKTIME;
3327
3328 if (timercnt)
3329 {
3330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3331 if (waittime > to) waittime = to;
3332 }
3333
3334 #if EV_PERIODIC_ENABLE
3335 if (periodiccnt)
3336 {
3337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3338 if (waittime > to) waittime = to;
3339 }
3340 #endif
3341
3342 /* don't let timeouts decrease the waittime below timeout_blocktime */
3343 if (expect_false (waittime < timeout_blocktime))
3344 waittime = timeout_blocktime;
3345
3346 /* at this point, we NEED to wait, so we have to ensure */
3347 /* to pass a minimum nonzero value to the backend */
3348 if (expect_false (waittime < backend_mintime))
3349 waittime = backend_mintime;
3350
3351 /* extra check because io_blocktime is commonly 0 */
3352 if (expect_false (io_blocktime))
3353 {
3354 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3355
3356 if (sleeptime > waittime - backend_mintime)
3357 sleeptime = waittime - backend_mintime;
3358
3359 if (expect_true (sleeptime > 0.))
3360 {
3361 ev_sleep (sleeptime);
3362 waittime -= sleeptime;
3363 }
3364 }
3365 }
3366
3367 #if EV_FEATURE_API
3368 ++loop_count;
3369 #endif
3370 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3371 backend_poll (EV_A_ waittime);
3372 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3373
3374 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3375
3376 ECB_MEMORY_FENCE_ACQUIRE;
3377 if (pipe_write_skipped)
3378 {
3379 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3380 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3381 }
3382
3383
3384 /* update ev_rt_now, do magic */
3385 time_update (EV_A_ waittime + sleeptime);
3386 }
3387
3388 /* queue pending timers and reschedule them */
3389 timers_reify (EV_A); /* relative timers called last */
3390 #if EV_PERIODIC_ENABLE
3391 periodics_reify (EV_A); /* absolute timers called first */
3392 #endif
3393
3394 #if EV_IDLE_ENABLE
3395 /* queue idle watchers unless other events are pending */
3396 idle_reify (EV_A);
3397 #endif
3398
3399 #if EV_CHECK_ENABLE
3400 /* queue check watchers, to be executed first */
3401 if (expect_false (checkcnt))
3402 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3403 #endif
3404
3405 EV_INVOKE_PENDING;
3406 }
3407 while (expect_true (
3408 activecnt
3409 && !loop_done
3410 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3411 ));
3412
3413 if (loop_done == EVBREAK_ONE)
3414 loop_done = EVBREAK_CANCEL;
3415
3416 #if EV_FEATURE_API
3417 --loop_depth;
3418 #endif
3419
3420 return activecnt;
3421 }
3422
3423 void
3424 ev_break (EV_P_ int how) EV_THROW
3425 {
3426 loop_done = how;
3427 }
3428
3429 void
3430 ev_ref (EV_P) EV_THROW
3431 {
3432 ++activecnt;
3433 }
3434
3435 void
3436 ev_unref (EV_P) EV_THROW
3437 {
3438 --activecnt;
3439 }
3440
3441 void
3442 ev_now_update (EV_P) EV_THROW
3443 {
3444 time_update (EV_A_ 1e100);
3445 }
3446
3447 void
3448 ev_suspend (EV_P) EV_THROW
3449 {
3450 ev_now_update (EV_A);
3451 }
3452
3453 void
3454 ev_resume (EV_P) EV_THROW
3455 {
3456 ev_tstamp mn_prev = mn_now;
3457
3458 ev_now_update (EV_A);
3459 timers_reschedule (EV_A_ mn_now - mn_prev);
3460 #if EV_PERIODIC_ENABLE
3461 /* TODO: really do this? */
3462 periodics_reschedule (EV_A);
3463 #endif
3464 }
3465
3466 /*****************************************************************************/
3467 /* singly-linked list management, used when the expected list length is short */
3468
3469 inline_size void
3470 wlist_add (WL *head, WL elem)
3471 {
3472 elem->next = *head;
3473 *head = elem;
3474 }
3475
3476 inline_size void
3477 wlist_del (WL *head, WL elem)
3478 {
3479 while (*head)
3480 {
3481 if (expect_true (*head == elem))
3482 {
3483 *head = elem->next;
3484 break;
3485 }
3486
3487 head = &(*head)->next;
3488 }
3489 }
3490
3491 /* internal, faster, version of ev_clear_pending */
3492 inline_speed void
3493 clear_pending (EV_P_ W w)
3494 {
3495 if (w->pending)
3496 {
3497 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3498 w->pending = 0;
3499 }
3500 }
3501
3502 int
3503 ev_clear_pending (EV_P_ void *w) EV_THROW
3504 {
3505 W w_ = (W)w;
3506 int pending = w_->pending;
3507
3508 if (expect_true (pending))
3509 {
3510 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3511 p->w = (W)&pending_w;
3512 w_->pending = 0;
3513 return p->events;
3514 }
3515 else
3516 return 0;
3517 }
3518
3519 inline_size void
3520 pri_adjust (EV_P_ W w)
3521 {
3522 int pri = ev_priority (w);
3523 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3524 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3525 ev_set_priority (w, pri);
3526 }
3527
3528 inline_speed void
3529 ev_start (EV_P_ W w, int active)
3530 {
3531 pri_adjust (EV_A_ w);
3532 w->active = active;
3533 ev_ref (EV_A);
3534 }
3535
3536 inline_size void
3537 ev_stop (EV_P_ W w)
3538 {
3539 ev_unref (EV_A);
3540 w->active = 0;
3541 }
3542
3543 /*****************************************************************************/
3544
3545 void noinline
3546 ev_io_start (EV_P_ ev_io *w) EV_THROW
3547 {
3548 int fd = w->fd;
3549
3550 if (expect_false (ev_is_active (w)))
3551 return;
3552
3553 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3554 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3555
3556 EV_FREQUENT_CHECK;
3557
3558 ev_start (EV_A_ (W)w, 1);
3559 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3560 wlist_add (&anfds[fd].head, (WL)w);
3561
3562 /* common bug, apparently */
3563 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3564
3565 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3566 w->events &= ~EV__IOFDSET;
3567
3568 EV_FREQUENT_CHECK;
3569 }
3570
3571 void noinline
3572 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3573 {
3574 clear_pending (EV_A_ (W)w);
3575 if (expect_false (!ev_is_active (w)))
3576 return;
3577
3578 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3579
3580 EV_FREQUENT_CHECK;
3581
3582 wlist_del (&anfds[w->fd].head, (WL)w);
3583 ev_stop (EV_A_ (W)w);
3584
3585 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3586
3587 EV_FREQUENT_CHECK;
3588 }
3589
3590 void noinline
3591 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3592 {
3593 if (expect_false (ev_is_active (w)))
3594 return;
3595
3596 ev_at (w) += mn_now;
3597
3598 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3599
3600 EV_FREQUENT_CHECK;
3601
3602 ++timercnt;
3603 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3604 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3605 ANHE_w (timers [ev_active (w)]) = (WT)w;
3606 ANHE_at_cache (timers [ev_active (w)]);
3607 upheap (timers, ev_active (w));
3608
3609 EV_FREQUENT_CHECK;
3610
3611 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3612 }
3613
3614 void noinline
3615 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3616 {
3617 clear_pending (EV_A_ (W)w);
3618 if (expect_false (!ev_is_active (w)))
3619 return;
3620
3621 EV_FREQUENT_CHECK;
3622
3623 {
3624 int active = ev_active (w);
3625
3626 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3627
3628 --timercnt;
3629
3630 if (expect_true (active < timercnt + HEAP0))
3631 {
3632 timers [active] = timers [timercnt + HEAP0];
3633 adjustheap (timers, timercnt, active);
3634 }
3635 }
3636
3637 ev_at (w) -= mn_now;
3638
3639 ev_stop (EV_A_ (W)w);
3640
3641 EV_FREQUENT_CHECK;
3642 }
3643
3644 void noinline
3645 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3646 {
3647 EV_FREQUENT_CHECK;
3648
3649 clear_pending (EV_A_ (W)w);
3650
3651 if (ev_is_active (w))
3652 {
3653 if (w->repeat)
3654 {
3655 ev_at (w) = mn_now + w->repeat;
3656 ANHE_at_cache (timers [ev_active (w)]);
3657 adjustheap (timers, timercnt, ev_active (w));
3658 }
3659 else
3660 ev_timer_stop (EV_A_ w);
3661 }
3662 else if (w->repeat)
3663 {
3664 ev_at (w) = w->repeat;
3665 ev_timer_start (EV_A_ w);
3666 }
3667
3668 EV_FREQUENT_CHECK;
3669 }
3670
3671 ev_tstamp
3672 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3673 {
3674 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3675 }
3676
3677 #if EV_PERIODIC_ENABLE
3678 void noinline
3679 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3680 {
3681 if (expect_false (ev_is_active (w)))
3682 return;
3683
3684 if (w->reschedule_cb)
3685 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3686 else if (w->interval)
3687 {
3688 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3689 periodic_recalc (EV_A_ w);
3690 }
3691 else
3692 ev_at (w) = w->offset;
3693
3694 EV_FREQUENT_CHECK;
3695
3696 ++periodiccnt;
3697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3700 ANHE_at_cache (periodics [ev_active (w)]);
3701 upheap (periodics, ev_active (w));
3702
3703 EV_FREQUENT_CHECK;
3704
3705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3706 }
3707
3708 void noinline
3709 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3710 {
3711 clear_pending (EV_A_ (W)w);
3712 if (expect_false (!ev_is_active (w)))
3713 return;
3714
3715 EV_FREQUENT_CHECK;
3716
3717 {
3718 int active = ev_active (w);
3719
3720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3721
3722 --periodiccnt;
3723
3724 if (expect_true (active < periodiccnt + HEAP0))
3725 {
3726 periodics [active] = periodics [periodiccnt + HEAP0];
3727 adjustheap (periodics, periodiccnt, active);
3728 }
3729 }
3730
3731 ev_stop (EV_A_ (W)w);
3732
3733 EV_FREQUENT_CHECK;
3734 }
3735
3736 void noinline
3737 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3738 {
3739 /* TODO: use adjustheap and recalculation */
3740 ev_periodic_stop (EV_A_ w);
3741 ev_periodic_start (EV_A_ w);
3742 }
3743 #endif
3744
3745 #ifndef SA_RESTART
3746 # define SA_RESTART 0
3747 #endif
3748
3749 #if EV_SIGNAL_ENABLE
3750
3751 void noinline
3752 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3753 {
3754 if (expect_false (ev_is_active (w)))
3755 return;
3756
3757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3758
3759 #if EV_MULTIPLICITY
3760 assert (("libev: a signal must not be attached to two different loops",
3761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3762
3763 signals [w->signum - 1].loop = EV_A;
3764 ECB_MEMORY_FENCE_RELEASE;
3765 #endif
3766
3767 EV_FREQUENT_CHECK;
3768
3769 #if EV_USE_SIGNALFD
3770 if (sigfd == -2)
3771 {
3772 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3773 if (sigfd < 0 && errno == EINVAL)
3774 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3775
3776 if (sigfd >= 0)
3777 {
3778 fd_intern (sigfd); /* doing it twice will not hurt */
3779
3780 sigemptyset (&sigfd_set);
3781
3782 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3783 ev_set_priority (&sigfd_w, EV_MAXPRI);
3784 ev_io_start (EV_A_ &sigfd_w);
3785 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3786 }
3787 }
3788
3789 if (sigfd >= 0)
3790 {
3791 /* TODO: check .head */
3792 sigaddset (&sigfd_set, w->signum);
3793 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3794
3795 signalfd (sigfd, &sigfd_set, 0);
3796 }
3797 #endif
3798
3799 ev_start (EV_A_ (W)w, 1);
3800 wlist_add (&signals [w->signum - 1].head, (WL)w);
3801
3802 if (!((WL)w)->next)
3803 # if EV_USE_SIGNALFD
3804 if (sigfd < 0) /*TODO*/
3805 # endif
3806 {
3807 # ifdef _WIN32
3808 evpipe_init (EV_A);
3809
3810 signal (w->signum, ev_sighandler);
3811 # else
3812 struct sigaction sa;
3813
3814 evpipe_init (EV_A);
3815
3816 sa.sa_handler = ev_sighandler;
3817 sigfillset (&sa.sa_mask);
3818 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3819 sigaction (w->signum, &sa, 0);
3820
3821 if (origflags & EVFLAG_NOSIGMASK)
3822 {
3823 sigemptyset (&sa.sa_mask);
3824 sigaddset (&sa.sa_mask, w->signum);
3825 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3826 }
3827 #endif
3828 }
3829
3830 EV_FREQUENT_CHECK;
3831 }
3832
3833 void noinline
3834 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3835 {
3836 clear_pending (EV_A_ (W)w);
3837 if (expect_false (!ev_is_active (w)))
3838 return;
3839
3840 EV_FREQUENT_CHECK;
3841
3842 wlist_del (&signals [w->signum - 1].head, (WL)w);
3843 ev_stop (EV_A_ (W)w);
3844
3845 if (!signals [w->signum - 1].head)
3846 {
3847 #if EV_MULTIPLICITY
3848 signals [w->signum - 1].loop = 0; /* unattach from signal */
3849 #endif
3850 #if EV_USE_SIGNALFD
3851 if (sigfd >= 0)
3852 {
3853 sigset_t ss;
3854
3855 sigemptyset (&ss);
3856 sigaddset (&ss, w->signum);
3857 sigdelset (&sigfd_set, w->signum);
3858
3859 signalfd (sigfd, &sigfd_set, 0);
3860 sigprocmask (SIG_UNBLOCK, &ss, 0);
3861 }
3862 else
3863 #endif
3864 signal (w->signum, SIG_DFL);
3865 }
3866
3867 EV_FREQUENT_CHECK;
3868 }
3869
3870 #endif
3871
3872 #if EV_CHILD_ENABLE
3873
3874 void
3875 ev_child_start (EV_P_ ev_child *w) EV_THROW
3876 {
3877 #if EV_MULTIPLICITY
3878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3879 #endif
3880 if (expect_false (ev_is_active (w)))
3881 return;
3882
3883 EV_FREQUENT_CHECK;
3884
3885 ev_start (EV_A_ (W)w, 1);
3886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3887
3888 EV_FREQUENT_CHECK;
3889 }
3890
3891 void
3892 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3893 {
3894 clear_pending (EV_A_ (W)w);
3895 if (expect_false (!ev_is_active (w)))
3896 return;
3897
3898 EV_FREQUENT_CHECK;
3899
3900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3901 ev_stop (EV_A_ (W)w);
3902
3903 EV_FREQUENT_CHECK;
3904 }
3905
3906 #endif
3907
3908 #if EV_STAT_ENABLE
3909
3910 # ifdef _WIN32
3911 # undef lstat
3912 # define lstat(a,b) _stati64 (a,b)
3913 # endif
3914
3915 #define DEF_STAT_INTERVAL 5.0074891
3916 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3917 #define MIN_STAT_INTERVAL 0.1074891
3918
3919 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3920
3921 #if EV_USE_INOTIFY
3922
3923 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3924 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3925
3926 static void noinline
3927 infy_add (EV_P_ ev_stat *w)
3928 {
3929 w->wd = inotify_add_watch (fs_fd, w->path,
3930 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3931 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3932 | IN_DONT_FOLLOW | IN_MASK_ADD);
3933
3934 if (w->wd >= 0)
3935 {
3936 struct statfs sfs;
3937
3938 /* now local changes will be tracked by inotify, but remote changes won't */
3939 /* unless the filesystem is known to be local, we therefore still poll */
3940 /* also do poll on <2.6.25, but with normal frequency */
3941
3942 if (!fs_2625)
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944 else if (!statfs (w->path, &sfs)
3945 && (sfs.f_type == 0x1373 /* devfs */
3946 || sfs.f_type == 0x4006 /* fat */
3947 || sfs.f_type == 0x4d44 /* msdos */
3948 || sfs.f_type == 0xEF53 /* ext2/3 */
3949 || sfs.f_type == 0x72b6 /* jffs2 */
3950 || sfs.f_type == 0x858458f6 /* ramfs */
3951 || sfs.f_type == 0x5346544e /* ntfs */
3952 || sfs.f_type == 0x3153464a /* jfs */
3953 || sfs.f_type == 0x9123683e /* btrfs */
3954 || sfs.f_type == 0x52654973 /* reiser3 */
3955 || sfs.f_type == 0x01021994 /* tmpfs */
3956 || sfs.f_type == 0x58465342 /* xfs */))
3957 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3958 else
3959 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3960 }
3961 else
3962 {
3963 /* can't use inotify, continue to stat */
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965
3966 /* if path is not there, monitor some parent directory for speedup hints */
3967 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3968 /* but an efficiency issue only */
3969 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3970 {
3971 char path [4096];
3972 strcpy (path, w->path);
3973
3974 do
3975 {
3976 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3977 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3978
3979 char *pend = strrchr (path, '/');
3980
3981 if (!pend || pend == path)
3982 break;
3983
3984 *pend = 0;
3985 w->wd = inotify_add_watch (fs_fd, path, mask);
3986 }
3987 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3988 }
3989 }
3990
3991 if (w->wd >= 0)
3992 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3993
3994 /* now re-arm timer, if required */
3995 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3996 ev_timer_again (EV_A_ &w->timer);
3997 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3998 }
3999
4000 static void noinline
4001 infy_del (EV_P_ ev_stat *w)
4002 {
4003 int slot;
4004 int wd = w->wd;
4005
4006 if (wd < 0)
4007 return;
4008
4009 w->wd = -2;
4010 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4011 wlist_del (&fs_hash [slot].head, (WL)w);
4012
4013 /* remove this watcher, if others are watching it, they will rearm */
4014 inotify_rm_watch (fs_fd, wd);
4015 }
4016
4017 static void noinline
4018 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4019 {
4020 if (slot < 0)
4021 /* overflow, need to check for all hash slots */
4022 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4023 infy_wd (EV_A_ slot, wd, ev);
4024 else
4025 {
4026 WL w_;
4027
4028 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4029 {
4030 ev_stat *w = (ev_stat *)w_;
4031 w_ = w_->next; /* lets us remove this watcher and all before it */
4032
4033 if (w->wd == wd || wd == -1)
4034 {
4035 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4036 {
4037 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4038 w->wd = -1;
4039 infy_add (EV_A_ w); /* re-add, no matter what */
4040 }
4041
4042 stat_timer_cb (EV_A_ &w->timer, 0);
4043 }
4044 }
4045 }
4046 }
4047
4048 static void
4049 infy_cb (EV_P_ ev_io *w, int revents)
4050 {
4051 char buf [EV_INOTIFY_BUFSIZE];
4052 int ofs;
4053 int len = read (fs_fd, buf, sizeof (buf));
4054
4055 for (ofs = 0; ofs < len; )
4056 {
4057 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4058 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4059 ofs += sizeof (struct inotify_event) + ev->len;
4060 }
4061 }
4062
4063 inline_size void ecb_cold
4064 ev_check_2625 (EV_P)
4065 {
4066 /* kernels < 2.6.25 are borked
4067 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4068 */
4069 if (ev_linux_version () < 0x020619)
4070 return;
4071
4072 fs_2625 = 1;
4073 }
4074
4075 inline_size int
4076 infy_newfd (void)
4077 {
4078 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4079 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4080 if (fd >= 0)
4081 return fd;
4082 #endif
4083 return inotify_init ();
4084 }
4085
4086 inline_size void
4087 infy_init (EV_P)
4088 {
4089 if (fs_fd != -2)
4090 return;
4091
4092 fs_fd = -1;
4093
4094 ev_check_2625 (EV_A);
4095
4096 fs_fd = infy_newfd ();
4097
4098 if (fs_fd >= 0)
4099 {
4100 fd_intern (fs_fd);
4101 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4102 ev_set_priority (&fs_w, EV_MAXPRI);
4103 ev_io_start (EV_A_ &fs_w);
4104 ev_unref (EV_A);
4105 }
4106 }
4107
4108 inline_size void
4109 infy_fork (EV_P)
4110 {
4111 int slot;
4112
4113 if (fs_fd < 0)
4114 return;
4115
4116 ev_ref (EV_A);
4117 ev_io_stop (EV_A_ &fs_w);
4118 close (fs_fd);
4119 fs_fd = infy_newfd ();
4120
4121 if (fs_fd >= 0)
4122 {
4123 fd_intern (fs_fd);
4124 ev_io_set (&fs_w, fs_fd, EV_READ);
4125 ev_io_start (EV_A_ &fs_w);
4126 ev_unref (EV_A);
4127 }
4128
4129 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4130 {
4131 WL w_ = fs_hash [slot].head;
4132 fs_hash [slot].head = 0;
4133
4134 while (w_)
4135 {
4136 ev_stat *w = (ev_stat *)w_;
4137 w_ = w_->next; /* lets us add this watcher */
4138
4139 w->wd = -1;
4140
4141 if (fs_fd >= 0)
4142 infy_add (EV_A_ w); /* re-add, no matter what */
4143 else
4144 {
4145 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4146 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4147 ev_timer_again (EV_A_ &w->timer);
4148 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4149 }
4150 }
4151 }
4152 }
4153
4154 #endif
4155
4156 #ifdef _WIN32
4157 # define EV_LSTAT(p,b) _stati64 (p, b)
4158 #else
4159 # define EV_LSTAT(p,b) lstat (p, b)
4160 #endif
4161
4162 void
4163 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4164 {
4165 if (lstat (w->path, &w->attr) < 0)
4166 w->attr.st_nlink = 0;
4167 else if (!w->attr.st_nlink)
4168 w->attr.st_nlink = 1;
4169 }
4170
4171 static void noinline
4172 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4173 {
4174 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4175
4176 ev_statdata prev = w->attr;
4177 ev_stat_stat (EV_A_ w);
4178
4179 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4180 if (
4181 prev.st_dev != w->attr.st_dev
4182 || prev.st_ino != w->attr.st_ino
4183 || prev.st_mode != w->attr.st_mode
4184 || prev.st_nlink != w->attr.st_nlink
4185 || prev.st_uid != w->attr.st_uid
4186 || prev.st_gid != w->attr.st_gid
4187 || prev.st_rdev != w->attr.st_rdev
4188 || prev.st_size != w->attr.st_size
4189 || prev.st_atime != w->attr.st_atime
4190 || prev.st_mtime != w->attr.st_mtime
4191 || prev.st_ctime != w->attr.st_ctime
4192 ) {
4193 /* we only update w->prev on actual differences */
4194 /* in case we test more often than invoke the callback, */
4195 /* to ensure that prev is always different to attr */
4196 w->prev = prev;
4197
4198 #if EV_USE_INOTIFY
4199 if (fs_fd >= 0)
4200 {
4201 infy_del (EV_A_ w);
4202 infy_add (EV_A_ w);
4203 ev_stat_stat (EV_A_ w); /* avoid race... */
4204 }
4205 #endif
4206
4207 ev_feed_event (EV_A_ w, EV_STAT);
4208 }
4209 }
4210
4211 void
4212 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4213 {
4214 if (expect_false (ev_is_active (w)))
4215 return;
4216
4217 ev_stat_stat (EV_A_ w);
4218
4219 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4220 w->interval = MIN_STAT_INTERVAL;
4221
4222 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4223 ev_set_priority (&w->timer, ev_priority (w));
4224
4225 #if EV_USE_INOTIFY
4226 infy_init (EV_A);
4227
4228 if (fs_fd >= 0)
4229 infy_add (EV_A_ w);
4230 else
4231 #endif
4232 {
4233 ev_timer_again (EV_A_ &w->timer);
4234 ev_unref (EV_A);
4235 }
4236
4237 ev_start (EV_A_ (W)w, 1);
4238
4239 EV_FREQUENT_CHECK;
4240 }
4241
4242 void
4243 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4244 {
4245 clear_pending (EV_A_ (W)w);
4246 if (expect_false (!ev_is_active (w)))
4247 return;
4248
4249 EV_FREQUENT_CHECK;
4250
4251 #if EV_USE_INOTIFY
4252 infy_del (EV_A_ w);
4253 #endif
4254
4255 if (ev_is_active (&w->timer))
4256 {
4257 ev_ref (EV_A);
4258 ev_timer_stop (EV_A_ &w->timer);
4259 }
4260
4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
4264 }
4265 #endif
4266
4267 #if EV_IDLE_ENABLE
4268 void
4269 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4270 {
4271 if (expect_false (ev_is_active (w)))
4272 return;
4273
4274 pri_adjust (EV_A_ (W)w);
4275
4276 EV_FREQUENT_CHECK;
4277
4278 {
4279 int active = ++idlecnt [ABSPRI (w)];
4280
4281 ++idleall;
4282 ev_start (EV_A_ (W)w, active);
4283
4284 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4285 idles [ABSPRI (w)][active - 1] = w;
4286 }
4287
4288 EV_FREQUENT_CHECK;
4289 }
4290
4291 void
4292 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4293 {
4294 clear_pending (EV_A_ (W)w);
4295 if (expect_false (!ev_is_active (w)))
4296 return;
4297
4298 EV_FREQUENT_CHECK;
4299
4300 {
4301 int active = ev_active (w);
4302
4303 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4304 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4305
4306 ev_stop (EV_A_ (W)w);
4307 --idleall;
4308 }
4309
4310 EV_FREQUENT_CHECK;
4311 }
4312 #endif
4313
4314 #if EV_PREPARE_ENABLE
4315 void
4316 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4317 {
4318 if (expect_false (ev_is_active (w)))
4319 return;
4320
4321 EV_FREQUENT_CHECK;
4322
4323 ev_start (EV_A_ (W)w, ++preparecnt);
4324 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4325 prepares [preparecnt - 1] = w;
4326
4327 EV_FREQUENT_CHECK;
4328 }
4329
4330 void
4331 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4332 {
4333 clear_pending (EV_A_ (W)w);
4334 if (expect_false (!ev_is_active (w)))
4335 return;
4336
4337 EV_FREQUENT_CHECK;
4338
4339 {
4340 int active = ev_active (w);
4341
4342 prepares [active - 1] = prepares [--preparecnt];
4343 ev_active (prepares [active - 1]) = active;
4344 }
4345
4346 ev_stop (EV_A_ (W)w);
4347
4348 EV_FREQUENT_CHECK;
4349 }
4350 #endif
4351
4352 #if EV_CHECK_ENABLE
4353 void
4354 ev_check_start (EV_P_ ev_check *w) EV_THROW
4355 {
4356 if (expect_false (ev_is_active (w)))
4357 return;
4358
4359 EV_FREQUENT_CHECK;
4360
4361 ev_start (EV_A_ (W)w, ++checkcnt);
4362 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4363 checks [checkcnt - 1] = w;
4364
4365 EV_FREQUENT_CHECK;
4366 }
4367
4368 void
4369 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4370 {
4371 clear_pending (EV_A_ (W)w);
4372 if (expect_false (!ev_is_active (w)))
4373 return;
4374
4375 EV_FREQUENT_CHECK;
4376
4377 {
4378 int active = ev_active (w);
4379
4380 checks [active - 1] = checks [--checkcnt];
4381 ev_active (checks [active - 1]) = active;
4382 }
4383
4384 ev_stop (EV_A_ (W)w);
4385
4386 EV_FREQUENT_CHECK;
4387 }
4388 #endif
4389
4390 #if EV_EMBED_ENABLE
4391 void noinline
4392 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4393 {
4394 ev_run (w->other, EVRUN_NOWAIT);
4395 }
4396
4397 static void
4398 embed_io_cb (EV_P_ ev_io *io, int revents)
4399 {
4400 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4401
4402 if (ev_cb (w))
4403 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4404 else
4405 ev_run (w->other, EVRUN_NOWAIT);
4406 }
4407
4408 static void
4409 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4410 {
4411 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4412
4413 {
4414 EV_P = w->other;
4415
4416 while (fdchangecnt)
4417 {
4418 fd_reify (EV_A);
4419 ev_run (EV_A_ EVRUN_NOWAIT);
4420 }
4421 }
4422 }
4423
4424 static void
4425 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4426 {
4427 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4428
4429 ev_embed_stop (EV_A_ w);
4430
4431 {
4432 EV_P = w->other;
4433
4434 ev_loop_fork (EV_A);
4435 ev_run (EV_A_ EVRUN_NOWAIT);
4436 }
4437
4438 ev_embed_start (EV_A_ w);
4439 }
4440
4441 #if 0
4442 static void
4443 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4444 {
4445 ev_idle_stop (EV_A_ idle);
4446 }
4447 #endif
4448
4449 void
4450 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4451 {
4452 if (expect_false (ev_is_active (w)))
4453 return;
4454
4455 {
4456 EV_P = w->other;
4457 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4458 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4459 }
4460
4461 EV_FREQUENT_CHECK;
4462
4463 ev_set_priority (&w->io, ev_priority (w));
4464 ev_io_start (EV_A_ &w->io);
4465
4466 ev_prepare_init (&w->prepare, embed_prepare_cb);
4467 ev_set_priority (&w->prepare, EV_MINPRI);
4468 ev_prepare_start (EV_A_ &w->prepare);
4469
4470 ev_fork_init (&w->fork, embed_fork_cb);
4471 ev_fork_start (EV_A_ &w->fork);
4472
4473 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4474
4475 ev_start (EV_A_ (W)w, 1);
4476
4477 EV_FREQUENT_CHECK;
4478 }
4479
4480 void
4481 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4482 {
4483 clear_pending (EV_A_ (W)w);
4484 if (expect_false (!ev_is_active (w)))
4485 return;
4486
4487 EV_FREQUENT_CHECK;
4488
4489 ev_io_stop (EV_A_ &w->io);
4490 ev_prepare_stop (EV_A_ &w->prepare);
4491 ev_fork_stop (EV_A_ &w->fork);
4492
4493 ev_stop (EV_A_ (W)w);
4494
4495 EV_FREQUENT_CHECK;
4496 }
4497 #endif
4498
4499 #if EV_FORK_ENABLE
4500 void
4501 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4502 {
4503 if (expect_false (ev_is_active (w)))
4504 return;
4505
4506 EV_FREQUENT_CHECK;
4507
4508 ev_start (EV_A_ (W)w, ++forkcnt);
4509 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4510 forks [forkcnt - 1] = w;
4511
4512 EV_FREQUENT_CHECK;
4513 }
4514
4515 void
4516 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4517 {
4518 clear_pending (EV_A_ (W)w);
4519 if (expect_false (!ev_is_active (w)))
4520 return;
4521
4522 EV_FREQUENT_CHECK;
4523
4524 {
4525 int active = ev_active (w);
4526
4527 forks [active - 1] = forks [--forkcnt];
4528 ev_active (forks [active - 1]) = active;
4529 }
4530
4531 ev_stop (EV_A_ (W)w);
4532
4533 EV_FREQUENT_CHECK;
4534 }
4535 #endif
4536
4537 #if EV_CLEANUP_ENABLE
4538 void
4539 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4540 {
4541 if (expect_false (ev_is_active (w)))
4542 return;
4543
4544 EV_FREQUENT_CHECK;
4545
4546 ev_start (EV_A_ (W)w, ++cleanupcnt);
4547 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4548 cleanups [cleanupcnt - 1] = w;
4549
4550 /* cleanup watchers should never keep a refcount on the loop */
4551 ev_unref (EV_A);
4552 EV_FREQUENT_CHECK;
4553 }
4554
4555 void
4556 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4557 {
4558 clear_pending (EV_A_ (W)w);
4559 if (expect_false (!ev_is_active (w)))
4560 return;
4561
4562 EV_FREQUENT_CHECK;
4563 ev_ref (EV_A);
4564
4565 {
4566 int active = ev_active (w);
4567
4568 cleanups [active - 1] = cleanups [--cleanupcnt];
4569 ev_active (cleanups [active - 1]) = active;
4570 }
4571
4572 ev_stop (EV_A_ (W)w);
4573
4574 EV_FREQUENT_CHECK;
4575 }
4576 #endif
4577
4578 #if EV_ASYNC_ENABLE
4579 void
4580 ev_async_start (EV_P_ ev_async *w) EV_THROW
4581 {
4582 if (expect_false (ev_is_active (w)))
4583 return;
4584
4585 w->sent = 0;
4586
4587 evpipe_init (EV_A);
4588
4589 EV_FREQUENT_CHECK;
4590
4591 ev_start (EV_A_ (W)w, ++asynccnt);
4592 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4593 asyncs [asynccnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
4596 }
4597
4598 void
4599 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4600 {
4601 clear_pending (EV_A_ (W)w);
4602 if (expect_false (!ev_is_active (w)))
4603 return;
4604
4605 EV_FREQUENT_CHECK;
4606
4607 {
4608 int active = ev_active (w);
4609
4610 asyncs [active - 1] = asyncs [--asynccnt];
4611 ev_active (asyncs [active - 1]) = active;
4612 }
4613
4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617 }
4618
4619 void
4620 ev_async_send (EV_P_ ev_async *w) EV_THROW
4621 {
4622 w->sent = 1;
4623 evpipe_write (EV_A_ &async_pending);
4624 }
4625 #endif
4626
4627 /*****************************************************************************/
4628
4629 struct ev_once
4630 {
4631 ev_io io;
4632 ev_timer to;
4633 void (*cb)(int revents, void *arg);
4634 void *arg;
4635 };
4636
4637 static void
4638 once_cb (EV_P_ struct ev_once *once, int revents)
4639 {
4640 void (*cb)(int revents, void *arg) = once->cb;
4641 void *arg = once->arg;
4642
4643 ev_io_stop (EV_A_ &once->io);
4644 ev_timer_stop (EV_A_ &once->to);
4645 ev_free (once);
4646
4647 cb (revents, arg);
4648 }
4649
4650 static void
4651 once_cb_io (EV_P_ ev_io *w, int revents)
4652 {
4653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4654
4655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4656 }
4657
4658 static void
4659 once_cb_to (EV_P_ ev_timer *w, int revents)
4660 {
4661 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4662
4663 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4664 }
4665
4666 void
4667 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4668 {
4669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4670
4671 if (expect_false (!once))
4672 {
4673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4674 return;
4675 }
4676
4677 once->cb = cb;
4678 once->arg = arg;
4679
4680 ev_init (&once->io, once_cb_io);
4681 if (fd >= 0)
4682 {
4683 ev_io_set (&once->io, fd, events);
4684 ev_io_start (EV_A_ &once->io);
4685 }
4686
4687 ev_init (&once->to, once_cb_to);
4688 if (timeout >= 0.)
4689 {
4690 ev_timer_set (&once->to, timeout, 0.);
4691 ev_timer_start (EV_A_ &once->to);
4692 }
4693 }
4694
4695 /*****************************************************************************/
4696
4697 #if EV_WALK_ENABLE
4698 void ecb_cold
4699 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4700 {
4701 int i, j;
4702 ev_watcher_list *wl, *wn;
4703
4704 if (types & (EV_IO | EV_EMBED))
4705 for (i = 0; i < anfdmax; ++i)
4706 for (wl = anfds [i].head; wl; )
4707 {
4708 wn = wl->next;
4709
4710 #if EV_EMBED_ENABLE
4711 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4712 {
4713 if (types & EV_EMBED)
4714 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4715 }
4716 else
4717 #endif
4718 #if EV_USE_INOTIFY
4719 if (ev_cb ((ev_io *)wl) == infy_cb)
4720 ;
4721 else
4722 #endif
4723 if ((ev_io *)wl != &pipe_w)
4724 if (types & EV_IO)
4725 cb (EV_A_ EV_IO, wl);
4726
4727 wl = wn;
4728 }
4729
4730 if (types & (EV_TIMER | EV_STAT))
4731 for (i = timercnt + HEAP0; i-- > HEAP0; )
4732 #if EV_STAT_ENABLE
4733 /*TODO: timer is not always active*/
4734 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4735 {
4736 if (types & EV_STAT)
4737 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4738 }
4739 else
4740 #endif
4741 if (types & EV_TIMER)
4742 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4743
4744 #if EV_PERIODIC_ENABLE
4745 if (types & EV_PERIODIC)
4746 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4747 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4748 #endif
4749
4750 #if EV_IDLE_ENABLE
4751 if (types & EV_IDLE)
4752 for (j = NUMPRI; j--; )
4753 for (i = idlecnt [j]; i--; )
4754 cb (EV_A_ EV_IDLE, idles [j][i]);
4755 #endif
4756
4757 #if EV_FORK_ENABLE
4758 if (types & EV_FORK)
4759 for (i = forkcnt; i--; )
4760 if (ev_cb (forks [i]) != embed_fork_cb)
4761 cb (EV_A_ EV_FORK, forks [i]);
4762 #endif
4763
4764 #if EV_ASYNC_ENABLE
4765 if (types & EV_ASYNC)
4766 for (i = asynccnt; i--; )
4767 cb (EV_A_ EV_ASYNC, asyncs [i]);
4768 #endif
4769
4770 #if EV_PREPARE_ENABLE
4771 if (types & EV_PREPARE)
4772 for (i = preparecnt; i--; )
4773 # if EV_EMBED_ENABLE
4774 if (ev_cb (prepares [i]) != embed_prepare_cb)
4775 # endif
4776 cb (EV_A_ EV_PREPARE, prepares [i]);
4777 #endif
4778
4779 #if EV_CHECK_ENABLE
4780 if (types & EV_CHECK)
4781 for (i = checkcnt; i--; )
4782 cb (EV_A_ EV_CHECK, checks [i]);
4783 #endif
4784
4785 #if EV_SIGNAL_ENABLE
4786 if (types & EV_SIGNAL)
4787 for (i = 0; i < EV_NSIG - 1; ++i)
4788 for (wl = signals [i].head; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_SIGNAL, wl);
4792 wl = wn;
4793 }
4794 #endif
4795
4796 #if EV_CHILD_ENABLE
4797 if (types & EV_CHILD)
4798 for (i = (EV_PID_HASHSIZE); i--; )
4799 for (wl = childs [i]; wl; )
4800 {
4801 wn = wl->next;
4802 cb (EV_A_ EV_CHILD, wl);
4803 wl = wn;
4804 }
4805 #endif
4806 /* EV_STAT 0x00001000 /* stat data changed */
4807 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4808 }
4809 #endif
4810
4811 #if EV_MULTIPLICITY
4812 #include "ev_wrap.h"
4813 #endif
4814