ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.459
Committed: Tue Oct 29 12:13:37 2013 UTC (10 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.458: +1 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ >= 2
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #ifndef EV_USE_MONOTONIC
262 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 # else
265 # define EV_USE_MONOTONIC 0
266 # endif
267 #endif
268
269 #ifndef EV_USE_REALTIME
270 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 #endif
272
273 #ifndef EV_USE_NANOSLEEP
274 # if _POSIX_C_SOURCE >= 199309L
275 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 # else
277 # define EV_USE_NANOSLEEP 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_SELECT
282 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 #endif
284
285 #ifndef EV_USE_POLL
286 # ifdef _WIN32
287 # define EV_USE_POLL 0
288 # else
289 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 # endif
291 #endif
292
293 #ifndef EV_USE_EPOLL
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 # else
297 # define EV_USE_EPOLL 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_KQUEUE
302 # define EV_USE_KQUEUE 0
303 #endif
304
305 #ifndef EV_USE_PORT
306 # define EV_USE_PORT 0
307 #endif
308
309 #ifndef EV_USE_INOTIFY
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 # define EV_USE_INOTIFY EV_FEATURE_OS
312 # else
313 # define EV_USE_INOTIFY 0
314 # endif
315 #endif
316
317 #ifndef EV_PID_HASHSIZE
318 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 #endif
320
321 #ifndef EV_INOTIFY_HASHSIZE
322 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 #endif
324
325 #ifndef EV_USE_EVENTFD
326 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 # define EV_USE_EVENTFD EV_FEATURE_OS
328 # else
329 # define EV_USE_EVENTFD 0
330 # endif
331 #endif
332
333 #ifndef EV_USE_SIGNALFD
334 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 # else
337 # define EV_USE_SIGNALFD 0
338 # endif
339 #endif
340
341 #if 0 /* debugging */
342 # define EV_VERIFY 3
343 # define EV_USE_4HEAP 1
344 # define EV_HEAP_CACHE_AT 1
345 #endif
346
347 #ifndef EV_VERIFY
348 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 #endif
350
351 #ifndef EV_USE_4HEAP
352 # define EV_USE_4HEAP EV_FEATURE_DATA
353 #endif
354
355 #ifndef EV_HEAP_CACHE_AT
356 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 #endif
358
359 #ifdef ANDROID
360 /* supposedly, android doesn't typedef fd_mask */
361 # undef EV_USE_SELECT
362 # define EV_USE_SELECT 0
363 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364 # undef EV_USE_CLOCK_SYSCALL
365 # define EV_USE_CLOCK_SYSCALL 0
366 #endif
367
368 /* aix's poll.h seems to cause lots of trouble */
369 #ifdef _AIX
370 /* AIX has a completely broken poll.h header */
371 # undef EV_USE_POLL
372 # define EV_USE_POLL 0
373 #endif
374
375 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376 /* which makes programs even slower. might work on other unices, too. */
377 #if EV_USE_CLOCK_SYSCALL
378 # include <sys/syscall.h>
379 # ifdef SYS_clock_gettime
380 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381 # undef EV_USE_MONOTONIC
382 # define EV_USE_MONOTONIC 1
383 # else
384 # undef EV_USE_CLOCK_SYSCALL
385 # define EV_USE_CLOCK_SYSCALL 0
386 # endif
387 #endif
388
389 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391 #ifndef CLOCK_MONOTONIC
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 0
394 #endif
395
396 #ifndef CLOCK_REALTIME
397 # undef EV_USE_REALTIME
398 # define EV_USE_REALTIME 0
399 #endif
400
401 #if !EV_STAT_ENABLE
402 # undef EV_USE_INOTIFY
403 # define EV_USE_INOTIFY 0
404 #endif
405
406 #if !EV_USE_NANOSLEEP
407 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 # if !defined _WIN32 && !defined __hpux
409 # include <sys/select.h>
410 # endif
411 #endif
412
413 #if EV_USE_INOTIFY
414 # include <sys/statfs.h>
415 # include <sys/inotify.h>
416 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417 # ifndef IN_DONT_FOLLOW
418 # undef EV_USE_INOTIFY
419 # define EV_USE_INOTIFY 0
420 # endif
421 #endif
422
423 #if EV_USE_EVENTFD
424 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 # include <stdint.h>
426 # ifndef EFD_NONBLOCK
427 # define EFD_NONBLOCK O_NONBLOCK
428 # endif
429 # ifndef EFD_CLOEXEC
430 # ifdef O_CLOEXEC
431 # define EFD_CLOEXEC O_CLOEXEC
432 # else
433 # define EFD_CLOEXEC 02000000
434 # endif
435 # endif
436 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 #endif
438
439 #if EV_USE_SIGNALFD
440 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441 # include <stdint.h>
442 # ifndef SFD_NONBLOCK
443 # define SFD_NONBLOCK O_NONBLOCK
444 # endif
445 # ifndef SFD_CLOEXEC
446 # ifdef O_CLOEXEC
447 # define SFD_CLOEXEC O_CLOEXEC
448 # else
449 # define SFD_CLOEXEC 02000000
450 # endif
451 # endif
452 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454 struct signalfd_siginfo
455 {
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458 };
459 #endif
460
461 /**/
462
463 #if EV_VERIFY >= 3
464 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 #else
466 # define EV_FREQUENT_CHECK do { } while (0)
467 #endif
468
469 /*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483 /* ECB.H BEGIN */
484 /*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513 #ifndef ECB_H
514 #define ECB_H
515
516 /* 16 bits major, 16 bits minor */
517 #define ECB_VERSION 0x00010003
518
519 #ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
526 #if __GNUC__
527 typedef signed long long int64_t;
528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
542 #else
543 #include <inttypes.h>
544 #if UINTMAX_MAX > 0xffffffffU
545 #define ECB_PTRSIZE 8
546 #else
547 #define ECB_PTRSIZE 4
548 #endif
549 #endif
550
551 /* work around x32 idiocy by defining proper macros */
552 #if __x86_64 || _M_AMD64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
557 #endif
558 #endif
559
560 /* many compilers define _GNUC_ to some versions but then only implement
561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567 #ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573 #endif
574
575 #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
576 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
577 #define ECB_C11 (__STDC_VERSION__ >= 201112L)
578 #define ECB_CPP (__cplusplus+0)
579 #define ECB_CPP11 (__cplusplus >= 201103L)
580
581 #if ECB_CPP
582 #define ECB_EXTERN_C extern "C"
583 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
584 #define ECB_EXTERN_C_END }
585 #else
586 #define ECB_EXTERN_C extern
587 #define ECB_EXTERN_C_BEG
588 #define ECB_EXTERN_C_END
589 #endif
590
591 /*****************************************************************************/
592
593 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
594 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
595
596 #if ECB_NO_THREADS
597 #define ECB_NO_SMP 1
598 #endif
599
600 #if ECB_NO_SMP
601 #define ECB_MEMORY_FENCE do { } while (0)
602 #endif
603
604 #ifndef ECB_MEMORY_FENCE
605 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
606 #if __i386 || __i386__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
608 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
612 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
613 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
614 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
616 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
617 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
619 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
620 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
622 #elif __sparc || __sparc__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
624 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
625 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
626 #elif defined __s390__ || defined __s390x__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
628 #elif defined __mips__
629 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
630 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
632 #elif defined __alpha__
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
634 #elif defined __hppa__
635 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
636 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
637 #elif defined __ia64__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
639 #elif defined __m68k__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
641 #elif defined __m88k__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
643 #elif defined __sh__
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
645 #endif
646 #endif
647 #endif
648
649 #ifndef ECB_MEMORY_FENCE
650 #if ECB_GCC_VERSION(4,7)
651 /* see comment below (stdatomic.h) about the C11 memory model. */
652 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
653
654 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
655 * without risking compile time errors with other compilers. We *could*
656 * define our own ecb_clang_has_feature, but I just can't be bothered to work
657 * around this shit time and again.
658 * #elif defined __clang && __has_feature (cxx_atomic)
659 * // see comment below (stdatomic.h) about the C11 memory model.
660 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
661 */
662
663 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
664 #define ECB_MEMORY_FENCE __sync_synchronize ()
665 #elif _MSC_VER >= 1400 /* VC++ 2005 */
666 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
667 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
668 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
669 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
670 #elif defined _WIN32
671 #include <WinNT.h>
672 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
673 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
674 #include <mbarrier.h>
675 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
676 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
677 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
678 #elif __xlC__
679 #define ECB_MEMORY_FENCE __sync ()
680 #endif
681 #endif
682
683 #ifndef ECB_MEMORY_FENCE
684 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
685 /* we assume that these memory fences work on all variables/all memory accesses, */
686 /* not just C11 atomics and atomic accesses */
687 #include <stdatomic.h>
688 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
689 /* any fence other than seq_cst, which isn't very efficient for us. */
690 /* Why that is, we don't know - either the C11 memory model is quite useless */
691 /* for most usages, or gcc and clang have a bug */
692 /* I *currently* lean towards the latter, and inefficiently implement */
693 /* all three of ecb's fences as a seq_cst fence */
694 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
695 #endif
696 #endif
697
698 #ifndef ECB_MEMORY_FENCE
699 #if !ECB_AVOID_PTHREADS
700 /*
701 * if you get undefined symbol references to pthread_mutex_lock,
702 * or failure to find pthread.h, then you should implement
703 * the ECB_MEMORY_FENCE operations for your cpu/compiler
704 * OR provide pthread.h and link against the posix thread library
705 * of your system.
706 */
707 #include <pthread.h>
708 #define ECB_NEEDS_PTHREADS 1
709 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
710
711 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
712 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
713 #endif
714 #endif
715
716 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
717 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
718 #endif
719
720 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
721 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
722 #endif
723
724 /*****************************************************************************/
725
726 #if __cplusplus
727 #define ecb_inline static inline
728 #elif ECB_GCC_VERSION(2,5)
729 #define ecb_inline static __inline__
730 #elif ECB_C99
731 #define ecb_inline static inline
732 #else
733 #define ecb_inline static
734 #endif
735
736 #if ECB_GCC_VERSION(3,3)
737 #define ecb_restrict __restrict__
738 #elif ECB_C99
739 #define ecb_restrict restrict
740 #else
741 #define ecb_restrict
742 #endif
743
744 typedef int ecb_bool;
745
746 #define ECB_CONCAT_(a, b) a ## b
747 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
748 #define ECB_STRINGIFY_(a) # a
749 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
750
751 #define ecb_function_ ecb_inline
752
753 #if ECB_GCC_VERSION(3,1)
754 #define ecb_attribute(attrlist) __attribute__(attrlist)
755 #define ecb_is_constant(expr) __builtin_constant_p (expr)
756 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
757 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
758 #else
759 #define ecb_attribute(attrlist)
760 #define ecb_is_constant(expr) 0
761 #define ecb_expect(expr,value) (expr)
762 #define ecb_prefetch(addr,rw,locality)
763 #endif
764
765 /* no emulation for ecb_decltype */
766 #if ECB_GCC_VERSION(4,5)
767 #define ecb_decltype(x) __decltype(x)
768 #elif ECB_GCC_VERSION(3,0)
769 #define ecb_decltype(x) __typeof(x)
770 #endif
771
772 #define ecb_noinline ecb_attribute ((__noinline__))
773 #define ecb_unused ecb_attribute ((__unused__))
774 #define ecb_const ecb_attribute ((__const__))
775 #define ecb_pure ecb_attribute ((__pure__))
776
777 #if ECB_C11
778 #define ecb_noreturn _Noreturn
779 #else
780 #define ecb_noreturn ecb_attribute ((__noreturn__))
781 #endif
782
783 #if ECB_GCC_VERSION(4,3)
784 #define ecb_artificial ecb_attribute ((__artificial__))
785 #define ecb_hot ecb_attribute ((__hot__))
786 #define ecb_cold ecb_attribute ((__cold__))
787 #else
788 #define ecb_artificial
789 #define ecb_hot
790 #define ecb_cold
791 #endif
792
793 /* put around conditional expressions if you are very sure that the */
794 /* expression is mostly true or mostly false. note that these return */
795 /* booleans, not the expression. */
796 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
797 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
798 /* for compatibility to the rest of the world */
799 #define ecb_likely(expr) ecb_expect_true (expr)
800 #define ecb_unlikely(expr) ecb_expect_false (expr)
801
802 /* count trailing zero bits and count # of one bits */
803 #if ECB_GCC_VERSION(3,4)
804 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
805 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
806 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
807 #define ecb_ctz32(x) __builtin_ctz (x)
808 #define ecb_ctz64(x) __builtin_ctzll (x)
809 #define ecb_popcount32(x) __builtin_popcount (x)
810 /* no popcountll */
811 #else
812 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
813 ecb_function_ int
814 ecb_ctz32 (uint32_t x)
815 {
816 int r = 0;
817
818 x &= ~x + 1; /* this isolates the lowest bit */
819
820 #if ECB_branchless_on_i386
821 r += !!(x & 0xaaaaaaaa) << 0;
822 r += !!(x & 0xcccccccc) << 1;
823 r += !!(x & 0xf0f0f0f0) << 2;
824 r += !!(x & 0xff00ff00) << 3;
825 r += !!(x & 0xffff0000) << 4;
826 #else
827 if (x & 0xaaaaaaaa) r += 1;
828 if (x & 0xcccccccc) r += 2;
829 if (x & 0xf0f0f0f0) r += 4;
830 if (x & 0xff00ff00) r += 8;
831 if (x & 0xffff0000) r += 16;
832 #endif
833
834 return r;
835 }
836
837 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
838 ecb_function_ int
839 ecb_ctz64 (uint64_t x)
840 {
841 int shift = x & 0xffffffffU ? 0 : 32;
842 return ecb_ctz32 (x >> shift) + shift;
843 }
844
845 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
846 ecb_function_ int
847 ecb_popcount32 (uint32_t x)
848 {
849 x -= (x >> 1) & 0x55555555;
850 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
851 x = ((x >> 4) + x) & 0x0f0f0f0f;
852 x *= 0x01010101;
853
854 return x >> 24;
855 }
856
857 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
858 ecb_function_ int ecb_ld32 (uint32_t x)
859 {
860 int r = 0;
861
862 if (x >> 16) { x >>= 16; r += 16; }
863 if (x >> 8) { x >>= 8; r += 8; }
864 if (x >> 4) { x >>= 4; r += 4; }
865 if (x >> 2) { x >>= 2; r += 2; }
866 if (x >> 1) { r += 1; }
867
868 return r;
869 }
870
871 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
872 ecb_function_ int ecb_ld64 (uint64_t x)
873 {
874 int r = 0;
875
876 if (x >> 32) { x >>= 32; r += 32; }
877
878 return r + ecb_ld32 (x);
879 }
880 #endif
881
882 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
883 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
884 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
885 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
886
887 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
888 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
889 {
890 return ( (x * 0x0802U & 0x22110U)
891 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
892 }
893
894 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
895 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
896 {
897 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
898 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
899 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
900 x = ( x >> 8 ) | ( x << 8);
901
902 return x;
903 }
904
905 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
906 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
907 {
908 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
909 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
910 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
911 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
912 x = ( x >> 16 ) | ( x << 16);
913
914 return x;
915 }
916
917 /* popcount64 is only available on 64 bit cpus as gcc builtin */
918 /* so for this version we are lazy */
919 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
920 ecb_function_ int
921 ecb_popcount64 (uint64_t x)
922 {
923 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
924 }
925
926 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
927 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
928 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
929 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
930 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
931 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
932 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
933 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
934
935 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
936 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
937 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
938 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
939 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
940 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
941 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
942 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
943
944 #if ECB_GCC_VERSION(4,3)
945 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
946 #define ecb_bswap32(x) __builtin_bswap32 (x)
947 #define ecb_bswap64(x) __builtin_bswap64 (x)
948 #else
949 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
950 ecb_function_ uint16_t
951 ecb_bswap16 (uint16_t x)
952 {
953 return ecb_rotl16 (x, 8);
954 }
955
956 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
957 ecb_function_ uint32_t
958 ecb_bswap32 (uint32_t x)
959 {
960 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
961 }
962
963 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
964 ecb_function_ uint64_t
965 ecb_bswap64 (uint64_t x)
966 {
967 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
968 }
969 #endif
970
971 #if ECB_GCC_VERSION(4,5)
972 #define ecb_unreachable() __builtin_unreachable ()
973 #else
974 /* this seems to work fine, but gcc always emits a warning for it :/ */
975 ecb_inline void ecb_unreachable (void) ecb_noreturn;
976 ecb_inline void ecb_unreachable (void) { }
977 #endif
978
979 /* try to tell the compiler that some condition is definitely true */
980 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
981
982 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
983 ecb_inline unsigned char
984 ecb_byteorder_helper (void)
985 {
986 /* the union code still generates code under pressure in gcc, */
987 /* but less than using pointers, and always seems to */
988 /* successfully return a constant. */
989 /* the reason why we have this horrible preprocessor mess */
990 /* is to avoid it in all cases, at least on common architectures */
991 /* or when using a recent enough gcc version (>= 4.6) */
992 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
993 return 0x44;
994 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
995 return 0x44;
996 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
997 return 0x11;
998 #else
999 union
1000 {
1001 uint32_t i;
1002 uint8_t c;
1003 } u = { 0x11223344 };
1004 return u.c;
1005 #endif
1006 }
1007
1008 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1009 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1010 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1011 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1012
1013 #if ECB_GCC_VERSION(3,0) || ECB_C99
1014 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1015 #else
1016 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1017 #endif
1018
1019 #if __cplusplus
1020 template<typename T>
1021 static inline T ecb_div_rd (T val, T div)
1022 {
1023 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1024 }
1025 template<typename T>
1026 static inline T ecb_div_ru (T val, T div)
1027 {
1028 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1029 }
1030 #else
1031 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1032 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1033 #endif
1034
1035 #if ecb_cplusplus_does_not_suck
1036 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1037 template<typename T, int N>
1038 static inline int ecb_array_length (const T (&arr)[N])
1039 {
1040 return N;
1041 }
1042 #else
1043 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1044 #endif
1045
1046 /*******************************************************************************/
1047 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1048
1049 /* basically, everything uses "ieee pure-endian" floating point numbers */
1050 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1051 #if 0 \
1052 || __i386 || __i386__ \
1053 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1054 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1055 || defined __arm__ && defined __ARM_EABI__ \
1056 || defined __s390__ || defined __s390x__ \
1057 || defined __mips__ \
1058 || defined __alpha__ \
1059 || defined __hppa__ \
1060 || defined __ia64__ \
1061 || defined __m68k__ \
1062 || defined __m88k__ \
1063 || defined __sh__ \
1064 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1065 #define ECB_STDFP 1
1066 #include <string.h> /* for memcpy */
1067 #else
1068 #define ECB_STDFP 0
1069 #endif
1070
1071 #ifndef ECB_NO_LIBM
1072
1073 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1074
1075 #ifdef NEN
1076 #define ECB_NAN NAN
1077 #else
1078 #define ECB_NAN INFINITY
1079 #endif
1080
1081 /* converts an ieee half/binary16 to a float */
1082 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1083 ecb_function_ float
1084 ecb_binary16_to_float (uint16_t x)
1085 {
1086 int e = (x >> 10) & 0x1f;
1087 int m = x & 0x3ff;
1088 float r;
1089
1090 if (!e ) r = ldexpf (m , -24);
1091 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1092 else if (m ) r = ECB_NAN;
1093 else r = INFINITY;
1094
1095 return x & 0x8000 ? -r : r;
1096 }
1097
1098 /* convert a float to ieee single/binary32 */
1099 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1100 ecb_function_ uint32_t
1101 ecb_float_to_binary32 (float x)
1102 {
1103 uint32_t r;
1104
1105 #if ECB_STDFP
1106 memcpy (&r, &x, 4);
1107 #else
1108 /* slow emulation, works for anything but -0 */
1109 uint32_t m;
1110 int e;
1111
1112 if (x == 0e0f ) return 0x00000000U;
1113 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1114 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1115 if (x != x ) return 0x7fbfffffU;
1116
1117 m = frexpf (x, &e) * 0x1000000U;
1118
1119 r = m & 0x80000000U;
1120
1121 if (r)
1122 m = -m;
1123
1124 if (e <= -126)
1125 {
1126 m &= 0xffffffU;
1127 m >>= (-125 - e);
1128 e = -126;
1129 }
1130
1131 r |= (e + 126) << 23;
1132 r |= m & 0x7fffffU;
1133 #endif
1134
1135 return r;
1136 }
1137
1138 /* converts an ieee single/binary32 to a float */
1139 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1140 ecb_function_ float
1141 ecb_binary32_to_float (uint32_t x)
1142 {
1143 float r;
1144
1145 #if ECB_STDFP
1146 memcpy (&r, &x, 4);
1147 #else
1148 /* emulation, only works for normals and subnormals and +0 */
1149 int neg = x >> 31;
1150 int e = (x >> 23) & 0xffU;
1151
1152 x &= 0x7fffffU;
1153
1154 if (e)
1155 x |= 0x800000U;
1156 else
1157 e = 1;
1158
1159 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1160 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1161
1162 r = neg ? -r : r;
1163 #endif
1164
1165 return r;
1166 }
1167
1168 /* convert a double to ieee double/binary64 */
1169 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1170 ecb_function_ uint64_t
1171 ecb_double_to_binary64 (double x)
1172 {
1173 uint64_t r;
1174
1175 #if ECB_STDFP
1176 memcpy (&r, &x, 8);
1177 #else
1178 /* slow emulation, works for anything but -0 */
1179 uint64_t m;
1180 int e;
1181
1182 if (x == 0e0 ) return 0x0000000000000000U;
1183 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1184 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1185 if (x != x ) return 0X7ff7ffffffffffffU;
1186
1187 m = frexp (x, &e) * 0x20000000000000U;
1188
1189 r = m & 0x8000000000000000;;
1190
1191 if (r)
1192 m = -m;
1193
1194 if (e <= -1022)
1195 {
1196 m &= 0x1fffffffffffffU;
1197 m >>= (-1021 - e);
1198 e = -1022;
1199 }
1200
1201 r |= ((uint64_t)(e + 1022)) << 52;
1202 r |= m & 0xfffffffffffffU;
1203 #endif
1204
1205 return r;
1206 }
1207
1208 /* converts an ieee double/binary64 to a double */
1209 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1210 ecb_function_ double
1211 ecb_binary64_to_double (uint64_t x)
1212 {
1213 double r;
1214
1215 #if ECB_STDFP
1216 memcpy (&r, &x, 8);
1217 #else
1218 /* emulation, only works for normals and subnormals and +0 */
1219 int neg = x >> 63;
1220 int e = (x >> 52) & 0x7ffU;
1221
1222 x &= 0xfffffffffffffU;
1223
1224 if (e)
1225 x |= 0x10000000000000U;
1226 else
1227 e = 1;
1228
1229 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1230 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1231
1232 r = neg ? -r : r;
1233 #endif
1234
1235 return r;
1236 }
1237
1238 #endif
1239
1240 #endif
1241
1242 /* ECB.H END */
1243
1244 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1245 /* if your architecture doesn't need memory fences, e.g. because it is
1246 * single-cpu/core, or if you use libev in a project that doesn't use libev
1247 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1248 * libev, in which cases the memory fences become nops.
1249 * alternatively, you can remove this #error and link against libpthread,
1250 * which will then provide the memory fences.
1251 */
1252 # error "memory fences not defined for your architecture, please report"
1253 #endif
1254
1255 #ifndef ECB_MEMORY_FENCE
1256 # define ECB_MEMORY_FENCE do { } while (0)
1257 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1258 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1259 #endif
1260
1261 #define expect_false(cond) ecb_expect_false (cond)
1262 #define expect_true(cond) ecb_expect_true (cond)
1263 #define noinline ecb_noinline
1264
1265 #define inline_size ecb_inline
1266
1267 #if EV_FEATURE_CODE
1268 # define inline_speed ecb_inline
1269 #else
1270 # define inline_speed static noinline
1271 #endif
1272
1273 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1274
1275 #if EV_MINPRI == EV_MAXPRI
1276 # define ABSPRI(w) (((W)w), 0)
1277 #else
1278 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1279 #endif
1280
1281 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1282 #define EMPTY2(a,b) /* used to suppress some warnings */
1283
1284 typedef ev_watcher *W;
1285 typedef ev_watcher_list *WL;
1286 typedef ev_watcher_time *WT;
1287
1288 #define ev_active(w) ((W)(w))->active
1289 #define ev_at(w) ((WT)(w))->at
1290
1291 #if EV_USE_REALTIME
1292 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1293 /* giving it a reasonably high chance of working on typical architectures */
1294 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1295 #endif
1296
1297 #if EV_USE_MONOTONIC
1298 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1299 #endif
1300
1301 #ifndef EV_FD_TO_WIN32_HANDLE
1302 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1303 #endif
1304 #ifndef EV_WIN32_HANDLE_TO_FD
1305 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1306 #endif
1307 #ifndef EV_WIN32_CLOSE_FD
1308 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1309 #endif
1310
1311 #ifdef _WIN32
1312 # include "ev_win32.c"
1313 #endif
1314
1315 /*****************************************************************************/
1316
1317 /* define a suitable floor function (only used by periodics atm) */
1318
1319 #if EV_USE_FLOOR
1320 # include <math.h>
1321 # define ev_floor(v) floor (v)
1322 #else
1323
1324 #include <float.h>
1325
1326 /* a floor() replacement function, should be independent of ev_tstamp type */
1327 static ev_tstamp noinline
1328 ev_floor (ev_tstamp v)
1329 {
1330 /* the choice of shift factor is not terribly important */
1331 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1332 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1333 #else
1334 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1335 #endif
1336
1337 /* argument too large for an unsigned long? */
1338 if (expect_false (v >= shift))
1339 {
1340 ev_tstamp f;
1341
1342 if (v == v - 1.)
1343 return v; /* very large number */
1344
1345 f = shift * ev_floor (v * (1. / shift));
1346 return f + ev_floor (v - f);
1347 }
1348
1349 /* special treatment for negative args? */
1350 if (expect_false (v < 0.))
1351 {
1352 ev_tstamp f = -ev_floor (-v);
1353
1354 return f - (f == v ? 0 : 1);
1355 }
1356
1357 /* fits into an unsigned long */
1358 return (unsigned long)v;
1359 }
1360
1361 #endif
1362
1363 /*****************************************************************************/
1364
1365 #ifdef __linux
1366 # include <sys/utsname.h>
1367 #endif
1368
1369 static unsigned int noinline ecb_cold
1370 ev_linux_version (void)
1371 {
1372 #ifdef __linux
1373 unsigned int v = 0;
1374 struct utsname buf;
1375 int i;
1376 char *p = buf.release;
1377
1378 if (uname (&buf))
1379 return 0;
1380
1381 for (i = 3+1; --i; )
1382 {
1383 unsigned int c = 0;
1384
1385 for (;;)
1386 {
1387 if (*p >= '0' && *p <= '9')
1388 c = c * 10 + *p++ - '0';
1389 else
1390 {
1391 p += *p == '.';
1392 break;
1393 }
1394 }
1395
1396 v = (v << 8) | c;
1397 }
1398
1399 return v;
1400 #else
1401 return 0;
1402 #endif
1403 }
1404
1405 /*****************************************************************************/
1406
1407 #if EV_AVOID_STDIO
1408 static void noinline ecb_cold
1409 ev_printerr (const char *msg)
1410 {
1411 write (STDERR_FILENO, msg, strlen (msg));
1412 }
1413 #endif
1414
1415 static void (*syserr_cb)(const char *msg) EV_THROW;
1416
1417 void ecb_cold
1418 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1419 {
1420 syserr_cb = cb;
1421 }
1422
1423 static void noinline ecb_cold
1424 ev_syserr (const char *msg)
1425 {
1426 if (!msg)
1427 msg = "(libev) system error";
1428
1429 if (syserr_cb)
1430 syserr_cb (msg);
1431 else
1432 {
1433 #if EV_AVOID_STDIO
1434 ev_printerr (msg);
1435 ev_printerr (": ");
1436 ev_printerr (strerror (errno));
1437 ev_printerr ("\n");
1438 #else
1439 perror (msg);
1440 #endif
1441 abort ();
1442 }
1443 }
1444
1445 static void *
1446 ev_realloc_emul (void *ptr, long size) EV_THROW
1447 {
1448 /* some systems, notably openbsd and darwin, fail to properly
1449 * implement realloc (x, 0) (as required by both ansi c-89 and
1450 * the single unix specification, so work around them here.
1451 * recently, also (at least) fedora and debian started breaking it,
1452 * despite documenting it otherwise.
1453 */
1454
1455 if (size)
1456 return realloc (ptr, size);
1457
1458 free (ptr);
1459 return 0;
1460 }
1461
1462 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1463
1464 void ecb_cold
1465 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1466 {
1467 alloc = cb;
1468 }
1469
1470 inline_speed void *
1471 ev_realloc (void *ptr, long size)
1472 {
1473 ptr = alloc (ptr, size);
1474
1475 if (!ptr && size)
1476 {
1477 #if EV_AVOID_STDIO
1478 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1479 #else
1480 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1481 #endif
1482 abort ();
1483 }
1484
1485 return ptr;
1486 }
1487
1488 #define ev_malloc(size) ev_realloc (0, (size))
1489 #define ev_free(ptr) ev_realloc ((ptr), 0)
1490
1491 /*****************************************************************************/
1492
1493 /* set in reify when reification needed */
1494 #define EV_ANFD_REIFY 1
1495
1496 /* file descriptor info structure */
1497 typedef struct
1498 {
1499 WL head;
1500 unsigned char events; /* the events watched for */
1501 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1502 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1503 unsigned char unused;
1504 #if EV_USE_EPOLL
1505 unsigned int egen; /* generation counter to counter epoll bugs */
1506 #endif
1507 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1508 SOCKET handle;
1509 #endif
1510 #if EV_USE_IOCP
1511 OVERLAPPED or, ow;
1512 #endif
1513 } ANFD;
1514
1515 /* stores the pending event set for a given watcher */
1516 typedef struct
1517 {
1518 W w;
1519 int events; /* the pending event set for the given watcher */
1520 } ANPENDING;
1521
1522 #if EV_USE_INOTIFY
1523 /* hash table entry per inotify-id */
1524 typedef struct
1525 {
1526 WL head;
1527 } ANFS;
1528 #endif
1529
1530 /* Heap Entry */
1531 #if EV_HEAP_CACHE_AT
1532 /* a heap element */
1533 typedef struct {
1534 ev_tstamp at;
1535 WT w;
1536 } ANHE;
1537
1538 #define ANHE_w(he) (he).w /* access watcher, read-write */
1539 #define ANHE_at(he) (he).at /* access cached at, read-only */
1540 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1541 #else
1542 /* a heap element */
1543 typedef WT ANHE;
1544
1545 #define ANHE_w(he) (he)
1546 #define ANHE_at(he) (he)->at
1547 #define ANHE_at_cache(he)
1548 #endif
1549
1550 #if EV_MULTIPLICITY
1551
1552 struct ev_loop
1553 {
1554 ev_tstamp ev_rt_now;
1555 #define ev_rt_now ((loop)->ev_rt_now)
1556 #define VAR(name,decl) decl;
1557 #include "ev_vars.h"
1558 #undef VAR
1559 };
1560 #include "ev_wrap.h"
1561
1562 static struct ev_loop default_loop_struct;
1563 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1564
1565 #else
1566
1567 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1568 #define VAR(name,decl) static decl;
1569 #include "ev_vars.h"
1570 #undef VAR
1571
1572 static int ev_default_loop_ptr;
1573
1574 #endif
1575
1576 #if EV_FEATURE_API
1577 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1578 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1579 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1580 #else
1581 # define EV_RELEASE_CB (void)0
1582 # define EV_ACQUIRE_CB (void)0
1583 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1584 #endif
1585
1586 #define EVBREAK_RECURSE 0x80
1587
1588 /*****************************************************************************/
1589
1590 #ifndef EV_HAVE_EV_TIME
1591 ev_tstamp
1592 ev_time (void) EV_THROW
1593 {
1594 #if EV_USE_REALTIME
1595 if (expect_true (have_realtime))
1596 {
1597 struct timespec ts;
1598 clock_gettime (CLOCK_REALTIME, &ts);
1599 return ts.tv_sec + ts.tv_nsec * 1e-9;
1600 }
1601 #endif
1602
1603 struct timeval tv;
1604 gettimeofday (&tv, 0);
1605 return tv.tv_sec + tv.tv_usec * 1e-6;
1606 }
1607 #endif
1608
1609 inline_size ev_tstamp
1610 get_clock (void)
1611 {
1612 #if EV_USE_MONOTONIC
1613 if (expect_true (have_monotonic))
1614 {
1615 struct timespec ts;
1616 clock_gettime (CLOCK_MONOTONIC, &ts);
1617 return ts.tv_sec + ts.tv_nsec * 1e-9;
1618 }
1619 #endif
1620
1621 return ev_time ();
1622 }
1623
1624 #if EV_MULTIPLICITY
1625 ev_tstamp
1626 ev_now (EV_P) EV_THROW
1627 {
1628 return ev_rt_now;
1629 }
1630 #endif
1631
1632 void
1633 ev_sleep (ev_tstamp delay) EV_THROW
1634 {
1635 if (delay > 0.)
1636 {
1637 #if EV_USE_NANOSLEEP
1638 struct timespec ts;
1639
1640 EV_TS_SET (ts, delay);
1641 nanosleep (&ts, 0);
1642 #elif defined _WIN32
1643 Sleep ((unsigned long)(delay * 1e3));
1644 #else
1645 struct timeval tv;
1646
1647 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1648 /* something not guaranteed by newer posix versions, but guaranteed */
1649 /* by older ones */
1650 EV_TV_SET (tv, delay);
1651 select (0, 0, 0, 0, &tv);
1652 #endif
1653 }
1654 }
1655
1656 /*****************************************************************************/
1657
1658 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1659
1660 /* find a suitable new size for the given array, */
1661 /* hopefully by rounding to a nice-to-malloc size */
1662 inline_size int
1663 array_nextsize (int elem, int cur, int cnt)
1664 {
1665 int ncur = cur + 1;
1666
1667 do
1668 ncur <<= 1;
1669 while (cnt > ncur);
1670
1671 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1672 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1673 {
1674 ncur *= elem;
1675 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1676 ncur = ncur - sizeof (void *) * 4;
1677 ncur /= elem;
1678 }
1679
1680 return ncur;
1681 }
1682
1683 static void * noinline ecb_cold
1684 array_realloc (int elem, void *base, int *cur, int cnt)
1685 {
1686 *cur = array_nextsize (elem, *cur, cnt);
1687 return ev_realloc (base, elem * *cur);
1688 }
1689
1690 #define array_init_zero(base,count) \
1691 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1692
1693 #define array_needsize(type,base,cur,cnt,init) \
1694 if (expect_false ((cnt) > (cur))) \
1695 { \
1696 int ecb_unused ocur_ = (cur); \
1697 (base) = (type *)array_realloc \
1698 (sizeof (type), (base), &(cur), (cnt)); \
1699 init ((base) + (ocur_), (cur) - ocur_); \
1700 }
1701
1702 #if 0
1703 #define array_slim(type,stem) \
1704 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1705 { \
1706 stem ## max = array_roundsize (stem ## cnt >> 1); \
1707 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1708 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1709 }
1710 #endif
1711
1712 #define array_free(stem, idx) \
1713 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1714
1715 /*****************************************************************************/
1716
1717 /* dummy callback for pending events */
1718 static void noinline
1719 pendingcb (EV_P_ ev_prepare *w, int revents)
1720 {
1721 }
1722
1723 void noinline
1724 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1725 {
1726 W w_ = (W)w;
1727 int pri = ABSPRI (w_);
1728
1729 if (expect_false (w_->pending))
1730 pendings [pri][w_->pending - 1].events |= revents;
1731 else
1732 {
1733 w_->pending = ++pendingcnt [pri];
1734 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1735 pendings [pri][w_->pending - 1].w = w_;
1736 pendings [pri][w_->pending - 1].events = revents;
1737 }
1738
1739 pendingpri = NUMPRI - 1;
1740 }
1741
1742 inline_speed void
1743 feed_reverse (EV_P_ W w)
1744 {
1745 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1746 rfeeds [rfeedcnt++] = w;
1747 }
1748
1749 inline_size void
1750 feed_reverse_done (EV_P_ int revents)
1751 {
1752 do
1753 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1754 while (rfeedcnt);
1755 }
1756
1757 inline_speed void
1758 queue_events (EV_P_ W *events, int eventcnt, int type)
1759 {
1760 int i;
1761
1762 for (i = 0; i < eventcnt; ++i)
1763 ev_feed_event (EV_A_ events [i], type);
1764 }
1765
1766 /*****************************************************************************/
1767
1768 inline_speed void
1769 fd_event_nocheck (EV_P_ int fd, int revents)
1770 {
1771 ANFD *anfd = anfds + fd;
1772 ev_io *w;
1773
1774 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1775 {
1776 int ev = w->events & revents;
1777
1778 if (ev)
1779 ev_feed_event (EV_A_ (W)w, ev);
1780 }
1781 }
1782
1783 /* do not submit kernel events for fds that have reify set */
1784 /* because that means they changed while we were polling for new events */
1785 inline_speed void
1786 fd_event (EV_P_ int fd, int revents)
1787 {
1788 ANFD *anfd = anfds + fd;
1789
1790 if (expect_true (!anfd->reify))
1791 fd_event_nocheck (EV_A_ fd, revents);
1792 }
1793
1794 void
1795 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1796 {
1797 if (fd >= 0 && fd < anfdmax)
1798 fd_event_nocheck (EV_A_ fd, revents);
1799 }
1800
1801 /* make sure the external fd watch events are in-sync */
1802 /* with the kernel/libev internal state */
1803 inline_size void
1804 fd_reify (EV_P)
1805 {
1806 int i;
1807
1808 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1809 for (i = 0; i < fdchangecnt; ++i)
1810 {
1811 int fd = fdchanges [i];
1812 ANFD *anfd = anfds + fd;
1813
1814 if (anfd->reify & EV__IOFDSET && anfd->head)
1815 {
1816 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1817
1818 if (handle != anfd->handle)
1819 {
1820 unsigned long arg;
1821
1822 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1823
1824 /* handle changed, but fd didn't - we need to do it in two steps */
1825 backend_modify (EV_A_ fd, anfd->events, 0);
1826 anfd->events = 0;
1827 anfd->handle = handle;
1828 }
1829 }
1830 }
1831 #endif
1832
1833 for (i = 0; i < fdchangecnt; ++i)
1834 {
1835 int fd = fdchanges [i];
1836 ANFD *anfd = anfds + fd;
1837 ev_io *w;
1838
1839 unsigned char o_events = anfd->events;
1840 unsigned char o_reify = anfd->reify;
1841
1842 anfd->reify = 0;
1843
1844 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1845 {
1846 anfd->events = 0;
1847
1848 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1849 anfd->events |= (unsigned char)w->events;
1850
1851 if (o_events != anfd->events)
1852 o_reify = EV__IOFDSET; /* actually |= */
1853 }
1854
1855 if (o_reify & EV__IOFDSET)
1856 backend_modify (EV_A_ fd, o_events, anfd->events);
1857 }
1858
1859 fdchangecnt = 0;
1860 }
1861
1862 /* something about the given fd changed */
1863 inline_size void
1864 fd_change (EV_P_ int fd, int flags)
1865 {
1866 unsigned char reify = anfds [fd].reify;
1867 anfds [fd].reify |= flags;
1868
1869 if (expect_true (!reify))
1870 {
1871 ++fdchangecnt;
1872 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1873 fdchanges [fdchangecnt - 1] = fd;
1874 }
1875 }
1876
1877 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1878 inline_speed void ecb_cold
1879 fd_kill (EV_P_ int fd)
1880 {
1881 ev_io *w;
1882
1883 while ((w = (ev_io *)anfds [fd].head))
1884 {
1885 ev_io_stop (EV_A_ w);
1886 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1887 }
1888 }
1889
1890 /* check whether the given fd is actually valid, for error recovery */
1891 inline_size int ecb_cold
1892 fd_valid (int fd)
1893 {
1894 #ifdef _WIN32
1895 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1896 #else
1897 return fcntl (fd, F_GETFD) != -1;
1898 #endif
1899 }
1900
1901 /* called on EBADF to verify fds */
1902 static void noinline ecb_cold
1903 fd_ebadf (EV_P)
1904 {
1905 int fd;
1906
1907 for (fd = 0; fd < anfdmax; ++fd)
1908 if (anfds [fd].events)
1909 if (!fd_valid (fd) && errno == EBADF)
1910 fd_kill (EV_A_ fd);
1911 }
1912
1913 /* called on ENOMEM in select/poll to kill some fds and retry */
1914 static void noinline ecb_cold
1915 fd_enomem (EV_P)
1916 {
1917 int fd;
1918
1919 for (fd = anfdmax; fd--; )
1920 if (anfds [fd].events)
1921 {
1922 fd_kill (EV_A_ fd);
1923 break;
1924 }
1925 }
1926
1927 /* usually called after fork if backend needs to re-arm all fds from scratch */
1928 static void noinline
1929 fd_rearm_all (EV_P)
1930 {
1931 int fd;
1932
1933 for (fd = 0; fd < anfdmax; ++fd)
1934 if (anfds [fd].events)
1935 {
1936 anfds [fd].events = 0;
1937 anfds [fd].emask = 0;
1938 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1939 }
1940 }
1941
1942 /* used to prepare libev internal fd's */
1943 /* this is not fork-safe */
1944 inline_speed void
1945 fd_intern (int fd)
1946 {
1947 #ifdef _WIN32
1948 unsigned long arg = 1;
1949 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1950 #else
1951 fcntl (fd, F_SETFD, FD_CLOEXEC);
1952 fcntl (fd, F_SETFL, O_NONBLOCK);
1953 #endif
1954 }
1955
1956 /*****************************************************************************/
1957
1958 /*
1959 * the heap functions want a real array index. array index 0 is guaranteed to not
1960 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1961 * the branching factor of the d-tree.
1962 */
1963
1964 /*
1965 * at the moment we allow libev the luxury of two heaps,
1966 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1967 * which is more cache-efficient.
1968 * the difference is about 5% with 50000+ watchers.
1969 */
1970 #if EV_USE_4HEAP
1971
1972 #define DHEAP 4
1973 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1974 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1975 #define UPHEAP_DONE(p,k) ((p) == (k))
1976
1977 /* away from the root */
1978 inline_speed void
1979 downheap (ANHE *heap, int N, int k)
1980 {
1981 ANHE he = heap [k];
1982 ANHE *E = heap + N + HEAP0;
1983
1984 for (;;)
1985 {
1986 ev_tstamp minat;
1987 ANHE *minpos;
1988 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1989
1990 /* find minimum child */
1991 if (expect_true (pos + DHEAP - 1 < E))
1992 {
1993 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1994 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1995 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1996 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1997 }
1998 else if (pos < E)
1999 {
2000 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2001 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2002 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2003 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2004 }
2005 else
2006 break;
2007
2008 if (ANHE_at (he) <= minat)
2009 break;
2010
2011 heap [k] = *minpos;
2012 ev_active (ANHE_w (*minpos)) = k;
2013
2014 k = minpos - heap;
2015 }
2016
2017 heap [k] = he;
2018 ev_active (ANHE_w (he)) = k;
2019 }
2020
2021 #else /* 4HEAP */
2022
2023 #define HEAP0 1
2024 #define HPARENT(k) ((k) >> 1)
2025 #define UPHEAP_DONE(p,k) (!(p))
2026
2027 /* away from the root */
2028 inline_speed void
2029 downheap (ANHE *heap, int N, int k)
2030 {
2031 ANHE he = heap [k];
2032
2033 for (;;)
2034 {
2035 int c = k << 1;
2036
2037 if (c >= N + HEAP0)
2038 break;
2039
2040 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2041 ? 1 : 0;
2042
2043 if (ANHE_at (he) <= ANHE_at (heap [c]))
2044 break;
2045
2046 heap [k] = heap [c];
2047 ev_active (ANHE_w (heap [k])) = k;
2048
2049 k = c;
2050 }
2051
2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054 }
2055 #endif
2056
2057 /* towards the root */
2058 inline_speed void
2059 upheap (ANHE *heap, int k)
2060 {
2061 ANHE he = heap [k];
2062
2063 for (;;)
2064 {
2065 int p = HPARENT (k);
2066
2067 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2068 break;
2069
2070 heap [k] = heap [p];
2071 ev_active (ANHE_w (heap [k])) = k;
2072 k = p;
2073 }
2074
2075 heap [k] = he;
2076 ev_active (ANHE_w (he)) = k;
2077 }
2078
2079 /* move an element suitably so it is in a correct place */
2080 inline_size void
2081 adjustheap (ANHE *heap, int N, int k)
2082 {
2083 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2084 upheap (heap, k);
2085 else
2086 downheap (heap, N, k);
2087 }
2088
2089 /* rebuild the heap: this function is used only once and executed rarely */
2090 inline_size void
2091 reheap (ANHE *heap, int N)
2092 {
2093 int i;
2094
2095 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2096 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2097 for (i = 0; i < N; ++i)
2098 upheap (heap, i + HEAP0);
2099 }
2100
2101 /*****************************************************************************/
2102
2103 /* associate signal watchers to a signal signal */
2104 typedef struct
2105 {
2106 EV_ATOMIC_T pending;
2107 #if EV_MULTIPLICITY
2108 EV_P;
2109 #endif
2110 WL head;
2111 } ANSIG;
2112
2113 static ANSIG signals [EV_NSIG - 1];
2114
2115 /*****************************************************************************/
2116
2117 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2118
2119 static void noinline ecb_cold
2120 evpipe_init (EV_P)
2121 {
2122 if (!ev_is_active (&pipe_w))
2123 {
2124 int fds [2];
2125
2126 # if EV_USE_EVENTFD
2127 fds [0] = -1;
2128 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2129 if (fds [1] < 0 && errno == EINVAL)
2130 fds [1] = eventfd (0, 0);
2131
2132 if (fds [1] < 0)
2133 # endif
2134 {
2135 while (pipe (fds))
2136 ev_syserr ("(libev) error creating signal/async pipe");
2137
2138 fd_intern (fds [0]);
2139 }
2140
2141 evpipe [0] = fds [0];
2142
2143 if (evpipe [1] < 0)
2144 evpipe [1] = fds [1]; /* first call, set write fd */
2145 else
2146 {
2147 /* on subsequent calls, do not change evpipe [1] */
2148 /* so that evpipe_write can always rely on its value. */
2149 /* this branch does not do anything sensible on windows, */
2150 /* so must not be executed on windows */
2151
2152 dup2 (fds [1], evpipe [1]);
2153 close (fds [1]);
2154 }
2155
2156 fd_intern (evpipe [1]);
2157
2158 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2159 ev_io_start (EV_A_ &pipe_w);
2160 ev_unref (EV_A); /* watcher should not keep loop alive */
2161 }
2162 }
2163
2164 inline_speed void
2165 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2166 {
2167 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2168
2169 if (expect_true (*flag))
2170 return;
2171
2172 *flag = 1;
2173 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2174
2175 pipe_write_skipped = 1;
2176
2177 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2178
2179 if (pipe_write_wanted)
2180 {
2181 int old_errno;
2182
2183 pipe_write_skipped = 0;
2184 ECB_MEMORY_FENCE_RELEASE;
2185
2186 old_errno = errno; /* save errno because write will clobber it */
2187
2188 #if EV_USE_EVENTFD
2189 if (evpipe [0] < 0)
2190 {
2191 uint64_t counter = 1;
2192 write (evpipe [1], &counter, sizeof (uint64_t));
2193 }
2194 else
2195 #endif
2196 {
2197 #ifdef _WIN32
2198 WSABUF buf;
2199 DWORD sent;
2200 buf.buf = &buf;
2201 buf.len = 1;
2202 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2203 #else
2204 write (evpipe [1], &(evpipe [1]), 1);
2205 #endif
2206 }
2207
2208 errno = old_errno;
2209 }
2210 }
2211
2212 /* called whenever the libev signal pipe */
2213 /* got some events (signal, async) */
2214 static void
2215 pipecb (EV_P_ ev_io *iow, int revents)
2216 {
2217 int i;
2218
2219 if (revents & EV_READ)
2220 {
2221 #if EV_USE_EVENTFD
2222 if (evpipe [0] < 0)
2223 {
2224 uint64_t counter;
2225 read (evpipe [1], &counter, sizeof (uint64_t));
2226 }
2227 else
2228 #endif
2229 {
2230 char dummy[4];
2231 #ifdef _WIN32
2232 WSABUF buf;
2233 DWORD recvd;
2234 DWORD flags = 0;
2235 buf.buf = dummy;
2236 buf.len = sizeof (dummy);
2237 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2238 #else
2239 read (evpipe [0], &dummy, sizeof (dummy));
2240 #endif
2241 }
2242 }
2243
2244 pipe_write_skipped = 0;
2245
2246 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2247
2248 #if EV_SIGNAL_ENABLE
2249 if (sig_pending)
2250 {
2251 sig_pending = 0;
2252
2253 ECB_MEMORY_FENCE;
2254
2255 for (i = EV_NSIG - 1; i--; )
2256 if (expect_false (signals [i].pending))
2257 ev_feed_signal_event (EV_A_ i + 1);
2258 }
2259 #endif
2260
2261 #if EV_ASYNC_ENABLE
2262 if (async_pending)
2263 {
2264 async_pending = 0;
2265
2266 ECB_MEMORY_FENCE;
2267
2268 for (i = asynccnt; i--; )
2269 if (asyncs [i]->sent)
2270 {
2271 asyncs [i]->sent = 0;
2272 ECB_MEMORY_FENCE_RELEASE;
2273 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2274 }
2275 }
2276 #endif
2277 }
2278
2279 /*****************************************************************************/
2280
2281 void
2282 ev_feed_signal (int signum) EV_THROW
2283 {
2284 #if EV_MULTIPLICITY
2285 EV_P;
2286 ECB_MEMORY_FENCE_ACQUIRE;
2287 EV_A = signals [signum - 1].loop;
2288
2289 if (!EV_A)
2290 return;
2291 #endif
2292
2293 signals [signum - 1].pending = 1;
2294 evpipe_write (EV_A_ &sig_pending);
2295 }
2296
2297 static void
2298 ev_sighandler (int signum)
2299 {
2300 #ifdef _WIN32
2301 signal (signum, ev_sighandler);
2302 #endif
2303
2304 ev_feed_signal (signum);
2305 }
2306
2307 void noinline
2308 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2309 {
2310 WL w;
2311
2312 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2313 return;
2314
2315 --signum;
2316
2317 #if EV_MULTIPLICITY
2318 /* it is permissible to try to feed a signal to the wrong loop */
2319 /* or, likely more useful, feeding a signal nobody is waiting for */
2320
2321 if (expect_false (signals [signum].loop != EV_A))
2322 return;
2323 #endif
2324
2325 signals [signum].pending = 0;
2326 ECB_MEMORY_FENCE_RELEASE;
2327
2328 for (w = signals [signum].head; w; w = w->next)
2329 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2330 }
2331
2332 #if EV_USE_SIGNALFD
2333 static void
2334 sigfdcb (EV_P_ ev_io *iow, int revents)
2335 {
2336 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2337
2338 for (;;)
2339 {
2340 ssize_t res = read (sigfd, si, sizeof (si));
2341
2342 /* not ISO-C, as res might be -1, but works with SuS */
2343 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2344 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2345
2346 if (res < (ssize_t)sizeof (si))
2347 break;
2348 }
2349 }
2350 #endif
2351
2352 #endif
2353
2354 /*****************************************************************************/
2355
2356 #if EV_CHILD_ENABLE
2357 static WL childs [EV_PID_HASHSIZE];
2358
2359 static ev_signal childev;
2360
2361 #ifndef WIFCONTINUED
2362 # define WIFCONTINUED(status) 0
2363 #endif
2364
2365 /* handle a single child status event */
2366 inline_speed void
2367 child_reap (EV_P_ int chain, int pid, int status)
2368 {
2369 ev_child *w;
2370 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2371
2372 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2373 {
2374 if ((w->pid == pid || !w->pid)
2375 && (!traced || (w->flags & 1)))
2376 {
2377 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2378 w->rpid = pid;
2379 w->rstatus = status;
2380 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2381 }
2382 }
2383 }
2384
2385 #ifndef WCONTINUED
2386 # define WCONTINUED 0
2387 #endif
2388
2389 /* called on sigchld etc., calls waitpid */
2390 static void
2391 childcb (EV_P_ ev_signal *sw, int revents)
2392 {
2393 int pid, status;
2394
2395 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2396 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2397 if (!WCONTINUED
2398 || errno != EINVAL
2399 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2400 return;
2401
2402 /* make sure we are called again until all children have been reaped */
2403 /* we need to do it this way so that the callback gets called before we continue */
2404 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2405
2406 child_reap (EV_A_ pid, pid, status);
2407 if ((EV_PID_HASHSIZE) > 1)
2408 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2409 }
2410
2411 #endif
2412
2413 /*****************************************************************************/
2414
2415 #if EV_USE_IOCP
2416 # include "ev_iocp.c"
2417 #endif
2418 #if EV_USE_PORT
2419 # include "ev_port.c"
2420 #endif
2421 #if EV_USE_KQUEUE
2422 # include "ev_kqueue.c"
2423 #endif
2424 #if EV_USE_EPOLL
2425 # include "ev_epoll.c"
2426 #endif
2427 #if EV_USE_POLL
2428 # include "ev_poll.c"
2429 #endif
2430 #if EV_USE_SELECT
2431 # include "ev_select.c"
2432 #endif
2433
2434 int ecb_cold
2435 ev_version_major (void) EV_THROW
2436 {
2437 return EV_VERSION_MAJOR;
2438 }
2439
2440 int ecb_cold
2441 ev_version_minor (void) EV_THROW
2442 {
2443 return EV_VERSION_MINOR;
2444 }
2445
2446 /* return true if we are running with elevated privileges and should ignore env variables */
2447 int inline_size ecb_cold
2448 enable_secure (void)
2449 {
2450 #ifdef _WIN32
2451 return 0;
2452 #else
2453 return getuid () != geteuid ()
2454 || getgid () != getegid ();
2455 #endif
2456 }
2457
2458 unsigned int ecb_cold
2459 ev_supported_backends (void) EV_THROW
2460 {
2461 unsigned int flags = 0;
2462
2463 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2464 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2465 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2466 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2467 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2468
2469 return flags;
2470 }
2471
2472 unsigned int ecb_cold
2473 ev_recommended_backends (void) EV_THROW
2474 {
2475 unsigned int flags = ev_supported_backends ();
2476
2477 #ifndef __NetBSD__
2478 /* kqueue is borked on everything but netbsd apparently */
2479 /* it usually doesn't work correctly on anything but sockets and pipes */
2480 flags &= ~EVBACKEND_KQUEUE;
2481 #endif
2482 #ifdef __APPLE__
2483 /* only select works correctly on that "unix-certified" platform */
2484 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2485 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2486 #endif
2487 #ifdef __FreeBSD__
2488 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2489 #endif
2490
2491 return flags;
2492 }
2493
2494 unsigned int ecb_cold
2495 ev_embeddable_backends (void) EV_THROW
2496 {
2497 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2498
2499 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2500 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2501 flags &= ~EVBACKEND_EPOLL;
2502
2503 return flags;
2504 }
2505
2506 unsigned int
2507 ev_backend (EV_P) EV_THROW
2508 {
2509 return backend;
2510 }
2511
2512 #if EV_FEATURE_API
2513 unsigned int
2514 ev_iteration (EV_P) EV_THROW
2515 {
2516 return loop_count;
2517 }
2518
2519 unsigned int
2520 ev_depth (EV_P) EV_THROW
2521 {
2522 return loop_depth;
2523 }
2524
2525 void
2526 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2527 {
2528 io_blocktime = interval;
2529 }
2530
2531 void
2532 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2533 {
2534 timeout_blocktime = interval;
2535 }
2536
2537 void
2538 ev_set_userdata (EV_P_ void *data) EV_THROW
2539 {
2540 userdata = data;
2541 }
2542
2543 void *
2544 ev_userdata (EV_P) EV_THROW
2545 {
2546 return userdata;
2547 }
2548
2549 void
2550 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2551 {
2552 invoke_cb = invoke_pending_cb;
2553 }
2554
2555 void
2556 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2557 {
2558 release_cb = release;
2559 acquire_cb = acquire;
2560 }
2561 #endif
2562
2563 /* initialise a loop structure, must be zero-initialised */
2564 static void noinline ecb_cold
2565 loop_init (EV_P_ unsigned int flags) EV_THROW
2566 {
2567 if (!backend)
2568 {
2569 origflags = flags;
2570
2571 #if EV_USE_REALTIME
2572 if (!have_realtime)
2573 {
2574 struct timespec ts;
2575
2576 if (!clock_gettime (CLOCK_REALTIME, &ts))
2577 have_realtime = 1;
2578 }
2579 #endif
2580
2581 #if EV_USE_MONOTONIC
2582 if (!have_monotonic)
2583 {
2584 struct timespec ts;
2585
2586 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2587 have_monotonic = 1;
2588 }
2589 #endif
2590
2591 /* pid check not overridable via env */
2592 #ifndef _WIN32
2593 if (flags & EVFLAG_FORKCHECK)
2594 curpid = getpid ();
2595 #endif
2596
2597 if (!(flags & EVFLAG_NOENV)
2598 && !enable_secure ()
2599 && getenv ("LIBEV_FLAGS"))
2600 flags = atoi (getenv ("LIBEV_FLAGS"));
2601
2602 ev_rt_now = ev_time ();
2603 mn_now = get_clock ();
2604 now_floor = mn_now;
2605 rtmn_diff = ev_rt_now - mn_now;
2606 #if EV_FEATURE_API
2607 invoke_cb = ev_invoke_pending;
2608 #endif
2609
2610 io_blocktime = 0.;
2611 timeout_blocktime = 0.;
2612 backend = 0;
2613 backend_fd = -1;
2614 sig_pending = 0;
2615 #if EV_ASYNC_ENABLE
2616 async_pending = 0;
2617 #endif
2618 pipe_write_skipped = 0;
2619 pipe_write_wanted = 0;
2620 evpipe [0] = -1;
2621 evpipe [1] = -1;
2622 #if EV_USE_INOTIFY
2623 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2624 #endif
2625 #if EV_USE_SIGNALFD
2626 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2627 #endif
2628
2629 if (!(flags & EVBACKEND_MASK))
2630 flags |= ev_recommended_backends ();
2631
2632 #if EV_USE_IOCP
2633 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2634 #endif
2635 #if EV_USE_PORT
2636 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2637 #endif
2638 #if EV_USE_KQUEUE
2639 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2640 #endif
2641 #if EV_USE_EPOLL
2642 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2643 #endif
2644 #if EV_USE_POLL
2645 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2646 #endif
2647 #if EV_USE_SELECT
2648 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2649 #endif
2650
2651 ev_prepare_init (&pending_w, pendingcb);
2652
2653 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2654 ev_init (&pipe_w, pipecb);
2655 ev_set_priority (&pipe_w, EV_MAXPRI);
2656 #endif
2657 }
2658 }
2659
2660 /* free up a loop structure */
2661 void ecb_cold
2662 ev_loop_destroy (EV_P)
2663 {
2664 int i;
2665
2666 #if EV_MULTIPLICITY
2667 /* mimic free (0) */
2668 if (!EV_A)
2669 return;
2670 #endif
2671
2672 #if EV_CLEANUP_ENABLE
2673 /* queue cleanup watchers (and execute them) */
2674 if (expect_false (cleanupcnt))
2675 {
2676 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2677 EV_INVOKE_PENDING;
2678 }
2679 #endif
2680
2681 #if EV_CHILD_ENABLE
2682 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2683 {
2684 ev_ref (EV_A); /* child watcher */
2685 ev_signal_stop (EV_A_ &childev);
2686 }
2687 #endif
2688
2689 if (ev_is_active (&pipe_w))
2690 {
2691 /*ev_ref (EV_A);*/
2692 /*ev_io_stop (EV_A_ &pipe_w);*/
2693
2694 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2695 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2696 }
2697
2698 #if EV_USE_SIGNALFD
2699 if (ev_is_active (&sigfd_w))
2700 close (sigfd);
2701 #endif
2702
2703 #if EV_USE_INOTIFY
2704 if (fs_fd >= 0)
2705 close (fs_fd);
2706 #endif
2707
2708 if (backend_fd >= 0)
2709 close (backend_fd);
2710
2711 #if EV_USE_IOCP
2712 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2713 #endif
2714 #if EV_USE_PORT
2715 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2716 #endif
2717 #if EV_USE_KQUEUE
2718 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2719 #endif
2720 #if EV_USE_EPOLL
2721 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2722 #endif
2723 #if EV_USE_POLL
2724 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2725 #endif
2726 #if EV_USE_SELECT
2727 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2728 #endif
2729
2730 for (i = NUMPRI; i--; )
2731 {
2732 array_free (pending, [i]);
2733 #if EV_IDLE_ENABLE
2734 array_free (idle, [i]);
2735 #endif
2736 }
2737
2738 ev_free (anfds); anfds = 0; anfdmax = 0;
2739
2740 /* have to use the microsoft-never-gets-it-right macro */
2741 array_free (rfeed, EMPTY);
2742 array_free (fdchange, EMPTY);
2743 array_free (timer, EMPTY);
2744 #if EV_PERIODIC_ENABLE
2745 array_free (periodic, EMPTY);
2746 #endif
2747 #if EV_FORK_ENABLE
2748 array_free (fork, EMPTY);
2749 #endif
2750 #if EV_CLEANUP_ENABLE
2751 array_free (cleanup, EMPTY);
2752 #endif
2753 array_free (prepare, EMPTY);
2754 array_free (check, EMPTY);
2755 #if EV_ASYNC_ENABLE
2756 array_free (async, EMPTY);
2757 #endif
2758
2759 backend = 0;
2760
2761 #if EV_MULTIPLICITY
2762 if (ev_is_default_loop (EV_A))
2763 #endif
2764 ev_default_loop_ptr = 0;
2765 #if EV_MULTIPLICITY
2766 else
2767 ev_free (EV_A);
2768 #endif
2769 }
2770
2771 #if EV_USE_INOTIFY
2772 inline_size void infy_fork (EV_P);
2773 #endif
2774
2775 inline_size void
2776 loop_fork (EV_P)
2777 {
2778 #if EV_USE_PORT
2779 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2780 #endif
2781 #if EV_USE_KQUEUE
2782 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2783 #endif
2784 #if EV_USE_EPOLL
2785 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2786 #endif
2787 #if EV_USE_INOTIFY
2788 infy_fork (EV_A);
2789 #endif
2790
2791 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2792 if (ev_is_active (&pipe_w))
2793 {
2794 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2795
2796 ev_ref (EV_A);
2797 ev_io_stop (EV_A_ &pipe_w);
2798
2799 if (evpipe [0] >= 0)
2800 EV_WIN32_CLOSE_FD (evpipe [0]);
2801
2802 evpipe_init (EV_A);
2803 /* iterate over everything, in case we missed something before */
2804 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2805 }
2806 #endif
2807
2808 postfork = 0;
2809 }
2810
2811 #if EV_MULTIPLICITY
2812
2813 struct ev_loop * ecb_cold
2814 ev_loop_new (unsigned int flags) EV_THROW
2815 {
2816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2817
2818 memset (EV_A, 0, sizeof (struct ev_loop));
2819 loop_init (EV_A_ flags);
2820
2821 if (ev_backend (EV_A))
2822 return EV_A;
2823
2824 ev_free (EV_A);
2825 return 0;
2826 }
2827
2828 #endif /* multiplicity */
2829
2830 #if EV_VERIFY
2831 static void noinline ecb_cold
2832 verify_watcher (EV_P_ W w)
2833 {
2834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2835
2836 if (w->pending)
2837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2838 }
2839
2840 static void noinline ecb_cold
2841 verify_heap (EV_P_ ANHE *heap, int N)
2842 {
2843 int i;
2844
2845 for (i = HEAP0; i < N + HEAP0; ++i)
2846 {
2847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2850
2851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2852 }
2853 }
2854
2855 static void noinline ecb_cold
2856 array_verify (EV_P_ W *ws, int cnt)
2857 {
2858 while (cnt--)
2859 {
2860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2861 verify_watcher (EV_A_ ws [cnt]);
2862 }
2863 }
2864 #endif
2865
2866 #if EV_FEATURE_API
2867 void ecb_cold
2868 ev_verify (EV_P) EV_THROW
2869 {
2870 #if EV_VERIFY
2871 int i;
2872 WL w, w2;
2873
2874 assert (activecnt >= -1);
2875
2876 assert (fdchangemax >= fdchangecnt);
2877 for (i = 0; i < fdchangecnt; ++i)
2878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2879
2880 assert (anfdmax >= 0);
2881 for (i = 0; i < anfdmax; ++i)
2882 {
2883 int j = 0;
2884
2885 for (w = w2 = anfds [i].head; w; w = w->next)
2886 {
2887 verify_watcher (EV_A_ (W)w);
2888
2889 if (j++ & 1)
2890 {
2891 assert (("libev: io watcher list contains a loop", w != w2));
2892 w2 = w2->next;
2893 }
2894
2895 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2896 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2897 }
2898 }
2899
2900 assert (timermax >= timercnt);
2901 verify_heap (EV_A_ timers, timercnt);
2902
2903 #if EV_PERIODIC_ENABLE
2904 assert (periodicmax >= periodiccnt);
2905 verify_heap (EV_A_ periodics, periodiccnt);
2906 #endif
2907
2908 for (i = NUMPRI; i--; )
2909 {
2910 assert (pendingmax [i] >= pendingcnt [i]);
2911 #if EV_IDLE_ENABLE
2912 assert (idleall >= 0);
2913 assert (idlemax [i] >= idlecnt [i]);
2914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2915 #endif
2916 }
2917
2918 #if EV_FORK_ENABLE
2919 assert (forkmax >= forkcnt);
2920 array_verify (EV_A_ (W *)forks, forkcnt);
2921 #endif
2922
2923 #if EV_CLEANUP_ENABLE
2924 assert (cleanupmax >= cleanupcnt);
2925 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2926 #endif
2927
2928 #if EV_ASYNC_ENABLE
2929 assert (asyncmax >= asynccnt);
2930 array_verify (EV_A_ (W *)asyncs, asynccnt);
2931 #endif
2932
2933 #if EV_PREPARE_ENABLE
2934 assert (preparemax >= preparecnt);
2935 array_verify (EV_A_ (W *)prepares, preparecnt);
2936 #endif
2937
2938 #if EV_CHECK_ENABLE
2939 assert (checkmax >= checkcnt);
2940 array_verify (EV_A_ (W *)checks, checkcnt);
2941 #endif
2942
2943 # if 0
2944 #if EV_CHILD_ENABLE
2945 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2946 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2947 #endif
2948 # endif
2949 #endif
2950 }
2951 #endif
2952
2953 #if EV_MULTIPLICITY
2954 struct ev_loop * ecb_cold
2955 #else
2956 int
2957 #endif
2958 ev_default_loop (unsigned int flags) EV_THROW
2959 {
2960 if (!ev_default_loop_ptr)
2961 {
2962 #if EV_MULTIPLICITY
2963 EV_P = ev_default_loop_ptr = &default_loop_struct;
2964 #else
2965 ev_default_loop_ptr = 1;
2966 #endif
2967
2968 loop_init (EV_A_ flags);
2969
2970 if (ev_backend (EV_A))
2971 {
2972 #if EV_CHILD_ENABLE
2973 ev_signal_init (&childev, childcb, SIGCHLD);
2974 ev_set_priority (&childev, EV_MAXPRI);
2975 ev_signal_start (EV_A_ &childev);
2976 ev_unref (EV_A); /* child watcher should not keep loop alive */
2977 #endif
2978 }
2979 else
2980 ev_default_loop_ptr = 0;
2981 }
2982
2983 return ev_default_loop_ptr;
2984 }
2985
2986 void
2987 ev_loop_fork (EV_P) EV_THROW
2988 {
2989 postfork = 1;
2990 }
2991
2992 /*****************************************************************************/
2993
2994 void
2995 ev_invoke (EV_P_ void *w, int revents)
2996 {
2997 EV_CB_INVOKE ((W)w, revents);
2998 }
2999
3000 unsigned int
3001 ev_pending_count (EV_P) EV_THROW
3002 {
3003 int pri;
3004 unsigned int count = 0;
3005
3006 for (pri = NUMPRI; pri--; )
3007 count += pendingcnt [pri];
3008
3009 return count;
3010 }
3011
3012 void noinline
3013 ev_invoke_pending (EV_P)
3014 {
3015 pendingpri = NUMPRI;
3016
3017 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3018 {
3019 --pendingpri;
3020
3021 while (pendingcnt [pendingpri])
3022 {
3023 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3024
3025 p->w->pending = 0;
3026 EV_CB_INVOKE (p->w, p->events);
3027 EV_FREQUENT_CHECK;
3028 }
3029 }
3030 }
3031
3032 #if EV_IDLE_ENABLE
3033 /* make idle watchers pending. this handles the "call-idle */
3034 /* only when higher priorities are idle" logic */
3035 inline_size void
3036 idle_reify (EV_P)
3037 {
3038 if (expect_false (idleall))
3039 {
3040 int pri;
3041
3042 for (pri = NUMPRI; pri--; )
3043 {
3044 if (pendingcnt [pri])
3045 break;
3046
3047 if (idlecnt [pri])
3048 {
3049 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3050 break;
3051 }
3052 }
3053 }
3054 }
3055 #endif
3056
3057 /* make timers pending */
3058 inline_size void
3059 timers_reify (EV_P)
3060 {
3061 EV_FREQUENT_CHECK;
3062
3063 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3064 {
3065 do
3066 {
3067 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3068
3069 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3070
3071 /* first reschedule or stop timer */
3072 if (w->repeat)
3073 {
3074 ev_at (w) += w->repeat;
3075 if (ev_at (w) < mn_now)
3076 ev_at (w) = mn_now;
3077
3078 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3079
3080 ANHE_at_cache (timers [HEAP0]);
3081 downheap (timers, timercnt, HEAP0);
3082 }
3083 else
3084 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3085
3086 EV_FREQUENT_CHECK;
3087 feed_reverse (EV_A_ (W)w);
3088 }
3089 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3090
3091 feed_reverse_done (EV_A_ EV_TIMER);
3092 }
3093 }
3094
3095 #if EV_PERIODIC_ENABLE
3096
3097 static void noinline
3098 periodic_recalc (EV_P_ ev_periodic *w)
3099 {
3100 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3101 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3102
3103 /* the above almost always errs on the low side */
3104 while (at <= ev_rt_now)
3105 {
3106 ev_tstamp nat = at + w->interval;
3107
3108 /* when resolution fails us, we use ev_rt_now */
3109 if (expect_false (nat == at))
3110 {
3111 at = ev_rt_now;
3112 break;
3113 }
3114
3115 at = nat;
3116 }
3117
3118 ev_at (w) = at;
3119 }
3120
3121 /* make periodics pending */
3122 inline_size void
3123 periodics_reify (EV_P)
3124 {
3125 EV_FREQUENT_CHECK;
3126
3127 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3128 {
3129 do
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3132
3133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3134
3135 /* first reschedule or stop timer */
3136 if (w->reschedule_cb)
3137 {
3138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3139
3140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3141
3142 ANHE_at_cache (periodics [HEAP0]);
3143 downheap (periodics, periodiccnt, HEAP0);
3144 }
3145 else if (w->interval)
3146 {
3147 periodic_recalc (EV_A_ w);
3148 ANHE_at_cache (periodics [HEAP0]);
3149 downheap (periodics, periodiccnt, HEAP0);
3150 }
3151 else
3152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3153
3154 EV_FREQUENT_CHECK;
3155 feed_reverse (EV_A_ (W)w);
3156 }
3157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3158
3159 feed_reverse_done (EV_A_ EV_PERIODIC);
3160 }
3161 }
3162
3163 /* simply recalculate all periodics */
3164 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3165 static void noinline ecb_cold
3166 periodics_reschedule (EV_P)
3167 {
3168 int i;
3169
3170 /* adjust periodics after time jump */
3171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3172 {
3173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3174
3175 if (w->reschedule_cb)
3176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3177 else if (w->interval)
3178 periodic_recalc (EV_A_ w);
3179
3180 ANHE_at_cache (periodics [i]);
3181 }
3182
3183 reheap (periodics, periodiccnt);
3184 }
3185 #endif
3186
3187 /* adjust all timers by a given offset */
3188 static void noinline ecb_cold
3189 timers_reschedule (EV_P_ ev_tstamp adjust)
3190 {
3191 int i;
3192
3193 for (i = 0; i < timercnt; ++i)
3194 {
3195 ANHE *he = timers + i + HEAP0;
3196 ANHE_w (*he)->at += adjust;
3197 ANHE_at_cache (*he);
3198 }
3199 }
3200
3201 /* fetch new monotonic and realtime times from the kernel */
3202 /* also detect if there was a timejump, and act accordingly */
3203 inline_speed void
3204 time_update (EV_P_ ev_tstamp max_block)
3205 {
3206 #if EV_USE_MONOTONIC
3207 if (expect_true (have_monotonic))
3208 {
3209 int i;
3210 ev_tstamp odiff = rtmn_diff;
3211
3212 mn_now = get_clock ();
3213
3214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3215 /* interpolate in the meantime */
3216 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3217 {
3218 ev_rt_now = rtmn_diff + mn_now;
3219 return;
3220 }
3221
3222 now_floor = mn_now;
3223 ev_rt_now = ev_time ();
3224
3225 /* loop a few times, before making important decisions.
3226 * on the choice of "4": one iteration isn't enough,
3227 * in case we get preempted during the calls to
3228 * ev_time and get_clock. a second call is almost guaranteed
3229 * to succeed in that case, though. and looping a few more times
3230 * doesn't hurt either as we only do this on time-jumps or
3231 * in the unlikely event of having been preempted here.
3232 */
3233 for (i = 4; --i; )
3234 {
3235 ev_tstamp diff;
3236 rtmn_diff = ev_rt_now - mn_now;
3237
3238 diff = odiff - rtmn_diff;
3239
3240 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3241 return; /* all is well */
3242
3243 ev_rt_now = ev_time ();
3244 mn_now = get_clock ();
3245 now_floor = mn_now;
3246 }
3247
3248 /* no timer adjustment, as the monotonic clock doesn't jump */
3249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3250 # if EV_PERIODIC_ENABLE
3251 periodics_reschedule (EV_A);
3252 # endif
3253 }
3254 else
3255 #endif
3256 {
3257 ev_rt_now = ev_time ();
3258
3259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3260 {
3261 /* adjust timers. this is easy, as the offset is the same for all of them */
3262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3263 #if EV_PERIODIC_ENABLE
3264 periodics_reschedule (EV_A);
3265 #endif
3266 }
3267
3268 mn_now = ev_rt_now;
3269 }
3270 }
3271
3272 int
3273 ev_run (EV_P_ int flags)
3274 {
3275 #if EV_FEATURE_API
3276 ++loop_depth;
3277 #endif
3278
3279 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3280
3281 loop_done = EVBREAK_CANCEL;
3282
3283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3284
3285 do
3286 {
3287 #if EV_VERIFY >= 2
3288 ev_verify (EV_A);
3289 #endif
3290
3291 #ifndef _WIN32
3292 if (expect_false (curpid)) /* penalise the forking check even more */
3293 if (expect_false (getpid () != curpid))
3294 {
3295 curpid = getpid ();
3296 postfork = 1;
3297 }
3298 #endif
3299
3300 #if EV_FORK_ENABLE
3301 /* we might have forked, so queue fork handlers */
3302 if (expect_false (postfork))
3303 if (forkcnt)
3304 {
3305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3306 EV_INVOKE_PENDING;
3307 }
3308 #endif
3309
3310 #if EV_PREPARE_ENABLE
3311 /* queue prepare watchers (and execute them) */
3312 if (expect_false (preparecnt))
3313 {
3314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3315 EV_INVOKE_PENDING;
3316 }
3317 #endif
3318
3319 if (expect_false (loop_done))
3320 break;
3321
3322 /* we might have forked, so reify kernel state if necessary */
3323 if (expect_false (postfork))
3324 loop_fork (EV_A);
3325
3326 /* update fd-related kernel structures */
3327 fd_reify (EV_A);
3328
3329 /* calculate blocking time */
3330 {
3331 ev_tstamp waittime = 0.;
3332 ev_tstamp sleeptime = 0.;
3333
3334 /* remember old timestamp for io_blocktime calculation */
3335 ev_tstamp prev_mn_now = mn_now;
3336
3337 /* update time to cancel out callback processing overhead */
3338 time_update (EV_A_ 1e100);
3339
3340 /* from now on, we want a pipe-wake-up */
3341 pipe_write_wanted = 1;
3342
3343 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3344
3345 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3346 {
3347 waittime = MAX_BLOCKTIME;
3348
3349 if (timercnt)
3350 {
3351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3352 if (waittime > to) waittime = to;
3353 }
3354
3355 #if EV_PERIODIC_ENABLE
3356 if (periodiccnt)
3357 {
3358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3359 if (waittime > to) waittime = to;
3360 }
3361 #endif
3362
3363 /* don't let timeouts decrease the waittime below timeout_blocktime */
3364 if (expect_false (waittime < timeout_blocktime))
3365 waittime = timeout_blocktime;
3366
3367 /* at this point, we NEED to wait, so we have to ensure */
3368 /* to pass a minimum nonzero value to the backend */
3369 if (expect_false (waittime < backend_mintime))
3370 waittime = backend_mintime;
3371
3372 /* extra check because io_blocktime is commonly 0 */
3373 if (expect_false (io_blocktime))
3374 {
3375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3376
3377 if (sleeptime > waittime - backend_mintime)
3378 sleeptime = waittime - backend_mintime;
3379
3380 if (expect_true (sleeptime > 0.))
3381 {
3382 ev_sleep (sleeptime);
3383 waittime -= sleeptime;
3384 }
3385 }
3386 }
3387
3388 #if EV_FEATURE_API
3389 ++loop_count;
3390 #endif
3391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3392 backend_poll (EV_A_ waittime);
3393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3394
3395 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3396
3397 ECB_MEMORY_FENCE_ACQUIRE;
3398 if (pipe_write_skipped)
3399 {
3400 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3401 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3402 }
3403
3404
3405 /* update ev_rt_now, do magic */
3406 time_update (EV_A_ waittime + sleeptime);
3407 }
3408
3409 /* queue pending timers and reschedule them */
3410 timers_reify (EV_A); /* relative timers called last */
3411 #if EV_PERIODIC_ENABLE
3412 periodics_reify (EV_A); /* absolute timers called first */
3413 #endif
3414
3415 #if EV_IDLE_ENABLE
3416 /* queue idle watchers unless other events are pending */
3417 idle_reify (EV_A);
3418 #endif
3419
3420 #if EV_CHECK_ENABLE
3421 /* queue check watchers, to be executed first */
3422 if (expect_false (checkcnt))
3423 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3424 #endif
3425
3426 EV_INVOKE_PENDING;
3427 }
3428 while (expect_true (
3429 activecnt
3430 && !loop_done
3431 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3432 ));
3433
3434 if (loop_done == EVBREAK_ONE)
3435 loop_done = EVBREAK_CANCEL;
3436
3437 #if EV_FEATURE_API
3438 --loop_depth;
3439 #endif
3440
3441 return activecnt;
3442 }
3443
3444 void
3445 ev_break (EV_P_ int how) EV_THROW
3446 {
3447 loop_done = how;
3448 }
3449
3450 void
3451 ev_ref (EV_P) EV_THROW
3452 {
3453 ++activecnt;
3454 }
3455
3456 void
3457 ev_unref (EV_P) EV_THROW
3458 {
3459 --activecnt;
3460 }
3461
3462 void
3463 ev_now_update (EV_P) EV_THROW
3464 {
3465 time_update (EV_A_ 1e100);
3466 }
3467
3468 void
3469 ev_suspend (EV_P) EV_THROW
3470 {
3471 ev_now_update (EV_A);
3472 }
3473
3474 void
3475 ev_resume (EV_P) EV_THROW
3476 {
3477 ev_tstamp mn_prev = mn_now;
3478
3479 ev_now_update (EV_A);
3480 timers_reschedule (EV_A_ mn_now - mn_prev);
3481 #if EV_PERIODIC_ENABLE
3482 /* TODO: really do this? */
3483 periodics_reschedule (EV_A);
3484 #endif
3485 }
3486
3487 /*****************************************************************************/
3488 /* singly-linked list management, used when the expected list length is short */
3489
3490 inline_size void
3491 wlist_add (WL *head, WL elem)
3492 {
3493 elem->next = *head;
3494 *head = elem;
3495 }
3496
3497 inline_size void
3498 wlist_del (WL *head, WL elem)
3499 {
3500 while (*head)
3501 {
3502 if (expect_true (*head == elem))
3503 {
3504 *head = elem->next;
3505 break;
3506 }
3507
3508 head = &(*head)->next;
3509 }
3510 }
3511
3512 /* internal, faster, version of ev_clear_pending */
3513 inline_speed void
3514 clear_pending (EV_P_ W w)
3515 {
3516 if (w->pending)
3517 {
3518 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3519 w->pending = 0;
3520 }
3521 }
3522
3523 int
3524 ev_clear_pending (EV_P_ void *w) EV_THROW
3525 {
3526 W w_ = (W)w;
3527 int pending = w_->pending;
3528
3529 if (expect_true (pending))
3530 {
3531 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3532 p->w = (W)&pending_w;
3533 w_->pending = 0;
3534 return p->events;
3535 }
3536 else
3537 return 0;
3538 }
3539
3540 inline_size void
3541 pri_adjust (EV_P_ W w)
3542 {
3543 int pri = ev_priority (w);
3544 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3545 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3546 ev_set_priority (w, pri);
3547 }
3548
3549 inline_speed void
3550 ev_start (EV_P_ W w, int active)
3551 {
3552 pri_adjust (EV_A_ w);
3553 w->active = active;
3554 ev_ref (EV_A);
3555 }
3556
3557 inline_size void
3558 ev_stop (EV_P_ W w)
3559 {
3560 ev_unref (EV_A);
3561 w->active = 0;
3562 }
3563
3564 /*****************************************************************************/
3565
3566 void noinline
3567 ev_io_start (EV_P_ ev_io *w) EV_THROW
3568 {
3569 int fd = w->fd;
3570
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3575 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, 1);
3580 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3581 wlist_add (&anfds[fd].head, (WL)w);
3582
3583 /* common bug, apparently */
3584 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3585
3586 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3587 w->events &= ~EV__IOFDSET;
3588
3589 EV_FREQUENT_CHECK;
3590 }
3591
3592 void noinline
3593 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3594 {
3595 clear_pending (EV_A_ (W)w);
3596 if (expect_false (!ev_is_active (w)))
3597 return;
3598
3599 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3600
3601 EV_FREQUENT_CHECK;
3602
3603 wlist_del (&anfds[w->fd].head, (WL)w);
3604 ev_stop (EV_A_ (W)w);
3605
3606 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3607
3608 EV_FREQUENT_CHECK;
3609 }
3610
3611 void noinline
3612 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3613 {
3614 if (expect_false (ev_is_active (w)))
3615 return;
3616
3617 ev_at (w) += mn_now;
3618
3619 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3620
3621 EV_FREQUENT_CHECK;
3622
3623 ++timercnt;
3624 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3625 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3626 ANHE_w (timers [ev_active (w)]) = (WT)w;
3627 ANHE_at_cache (timers [ev_active (w)]);
3628 upheap (timers, ev_active (w));
3629
3630 EV_FREQUENT_CHECK;
3631
3632 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3633 }
3634
3635 void noinline
3636 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3637 {
3638 clear_pending (EV_A_ (W)w);
3639 if (expect_false (!ev_is_active (w)))
3640 return;
3641
3642 EV_FREQUENT_CHECK;
3643
3644 {
3645 int active = ev_active (w);
3646
3647 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3648
3649 --timercnt;
3650
3651 if (expect_true (active < timercnt + HEAP0))
3652 {
3653 timers [active] = timers [timercnt + HEAP0];
3654 adjustheap (timers, timercnt, active);
3655 }
3656 }
3657
3658 ev_at (w) -= mn_now;
3659
3660 ev_stop (EV_A_ (W)w);
3661
3662 EV_FREQUENT_CHECK;
3663 }
3664
3665 void noinline
3666 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3667 {
3668 EV_FREQUENT_CHECK;
3669
3670 clear_pending (EV_A_ (W)w);
3671
3672 if (ev_is_active (w))
3673 {
3674 if (w->repeat)
3675 {
3676 ev_at (w) = mn_now + w->repeat;
3677 ANHE_at_cache (timers [ev_active (w)]);
3678 adjustheap (timers, timercnt, ev_active (w));
3679 }
3680 else
3681 ev_timer_stop (EV_A_ w);
3682 }
3683 else if (w->repeat)
3684 {
3685 ev_at (w) = w->repeat;
3686 ev_timer_start (EV_A_ w);
3687 }
3688
3689 EV_FREQUENT_CHECK;
3690 }
3691
3692 ev_tstamp
3693 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3694 {
3695 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3696 }
3697
3698 #if EV_PERIODIC_ENABLE
3699 void noinline
3700 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3701 {
3702 if (expect_false (ev_is_active (w)))
3703 return;
3704
3705 if (w->reschedule_cb)
3706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3707 else if (w->interval)
3708 {
3709 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3710 periodic_recalc (EV_A_ w);
3711 }
3712 else
3713 ev_at (w) = w->offset;
3714
3715 EV_FREQUENT_CHECK;
3716
3717 ++periodiccnt;
3718 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3719 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3720 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3721 ANHE_at_cache (periodics [ev_active (w)]);
3722 upheap (periodics, ev_active (w));
3723
3724 EV_FREQUENT_CHECK;
3725
3726 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3727 }
3728
3729 void noinline
3730 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3731 {
3732 clear_pending (EV_A_ (W)w);
3733 if (expect_false (!ev_is_active (w)))
3734 return;
3735
3736 EV_FREQUENT_CHECK;
3737
3738 {
3739 int active = ev_active (w);
3740
3741 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3742
3743 --periodiccnt;
3744
3745 if (expect_true (active < periodiccnt + HEAP0))
3746 {
3747 periodics [active] = periodics [periodiccnt + HEAP0];
3748 adjustheap (periodics, periodiccnt, active);
3749 }
3750 }
3751
3752 ev_stop (EV_A_ (W)w);
3753
3754 EV_FREQUENT_CHECK;
3755 }
3756
3757 void noinline
3758 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3759 {
3760 /* TODO: use adjustheap and recalculation */
3761 ev_periodic_stop (EV_A_ w);
3762 ev_periodic_start (EV_A_ w);
3763 }
3764 #endif
3765
3766 #ifndef SA_RESTART
3767 # define SA_RESTART 0
3768 #endif
3769
3770 #if EV_SIGNAL_ENABLE
3771
3772 void noinline
3773 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3774 {
3775 if (expect_false (ev_is_active (w)))
3776 return;
3777
3778 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3779
3780 #if EV_MULTIPLICITY
3781 assert (("libev: a signal must not be attached to two different loops",
3782 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3783
3784 signals [w->signum - 1].loop = EV_A;
3785 ECB_MEMORY_FENCE_RELEASE;
3786 #endif
3787
3788 EV_FREQUENT_CHECK;
3789
3790 #if EV_USE_SIGNALFD
3791 if (sigfd == -2)
3792 {
3793 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3794 if (sigfd < 0 && errno == EINVAL)
3795 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3796
3797 if (sigfd >= 0)
3798 {
3799 fd_intern (sigfd); /* doing it twice will not hurt */
3800
3801 sigemptyset (&sigfd_set);
3802
3803 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3804 ev_set_priority (&sigfd_w, EV_MAXPRI);
3805 ev_io_start (EV_A_ &sigfd_w);
3806 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3807 }
3808 }
3809
3810 if (sigfd >= 0)
3811 {
3812 /* TODO: check .head */
3813 sigaddset (&sigfd_set, w->signum);
3814 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3815
3816 signalfd (sigfd, &sigfd_set, 0);
3817 }
3818 #endif
3819
3820 ev_start (EV_A_ (W)w, 1);
3821 wlist_add (&signals [w->signum - 1].head, (WL)w);
3822
3823 if (!((WL)w)->next)
3824 # if EV_USE_SIGNALFD
3825 if (sigfd < 0) /*TODO*/
3826 # endif
3827 {
3828 # ifdef _WIN32
3829 evpipe_init (EV_A);
3830
3831 signal (w->signum, ev_sighandler);
3832 # else
3833 struct sigaction sa;
3834
3835 evpipe_init (EV_A);
3836
3837 sa.sa_handler = ev_sighandler;
3838 sigfillset (&sa.sa_mask);
3839 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3840 sigaction (w->signum, &sa, 0);
3841
3842 if (origflags & EVFLAG_NOSIGMASK)
3843 {
3844 sigemptyset (&sa.sa_mask);
3845 sigaddset (&sa.sa_mask, w->signum);
3846 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3847 }
3848 #endif
3849 }
3850
3851 EV_FREQUENT_CHECK;
3852 }
3853
3854 void noinline
3855 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3856 {
3857 clear_pending (EV_A_ (W)w);
3858 if (expect_false (!ev_is_active (w)))
3859 return;
3860
3861 EV_FREQUENT_CHECK;
3862
3863 wlist_del (&signals [w->signum - 1].head, (WL)w);
3864 ev_stop (EV_A_ (W)w);
3865
3866 if (!signals [w->signum - 1].head)
3867 {
3868 #if EV_MULTIPLICITY
3869 signals [w->signum - 1].loop = 0; /* unattach from signal */
3870 #endif
3871 #if EV_USE_SIGNALFD
3872 if (sigfd >= 0)
3873 {
3874 sigset_t ss;
3875
3876 sigemptyset (&ss);
3877 sigaddset (&ss, w->signum);
3878 sigdelset (&sigfd_set, w->signum);
3879
3880 signalfd (sigfd, &sigfd_set, 0);
3881 sigprocmask (SIG_UNBLOCK, &ss, 0);
3882 }
3883 else
3884 #endif
3885 signal (w->signum, SIG_DFL);
3886 }
3887
3888 EV_FREQUENT_CHECK;
3889 }
3890
3891 #endif
3892
3893 #if EV_CHILD_ENABLE
3894
3895 void
3896 ev_child_start (EV_P_ ev_child *w) EV_THROW
3897 {
3898 #if EV_MULTIPLICITY
3899 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3900 #endif
3901 if (expect_false (ev_is_active (w)))
3902 return;
3903
3904 EV_FREQUENT_CHECK;
3905
3906 ev_start (EV_A_ (W)w, 1);
3907 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3908
3909 EV_FREQUENT_CHECK;
3910 }
3911
3912 void
3913 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3914 {
3915 clear_pending (EV_A_ (W)w);
3916 if (expect_false (!ev_is_active (w)))
3917 return;
3918
3919 EV_FREQUENT_CHECK;
3920
3921 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
3925 }
3926
3927 #endif
3928
3929 #if EV_STAT_ENABLE
3930
3931 # ifdef _WIN32
3932 # undef lstat
3933 # define lstat(a,b) _stati64 (a,b)
3934 # endif
3935
3936 #define DEF_STAT_INTERVAL 5.0074891
3937 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3938 #define MIN_STAT_INTERVAL 0.1074891
3939
3940 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3941
3942 #if EV_USE_INOTIFY
3943
3944 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3945 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3946
3947 static void noinline
3948 infy_add (EV_P_ ev_stat *w)
3949 {
3950 w->wd = inotify_add_watch (fs_fd, w->path,
3951 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3952 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3953 | IN_DONT_FOLLOW | IN_MASK_ADD);
3954
3955 if (w->wd >= 0)
3956 {
3957 struct statfs sfs;
3958
3959 /* now local changes will be tracked by inotify, but remote changes won't */
3960 /* unless the filesystem is known to be local, we therefore still poll */
3961 /* also do poll on <2.6.25, but with normal frequency */
3962
3963 if (!fs_2625)
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3965 else if (!statfs (w->path, &sfs)
3966 && (sfs.f_type == 0x1373 /* devfs */
3967 || sfs.f_type == 0x4006 /* fat */
3968 || sfs.f_type == 0x4d44 /* msdos */
3969 || sfs.f_type == 0xEF53 /* ext2/3 */
3970 || sfs.f_type == 0x72b6 /* jffs2 */
3971 || sfs.f_type == 0x858458f6 /* ramfs */
3972 || sfs.f_type == 0x5346544e /* ntfs */
3973 || sfs.f_type == 0x3153464a /* jfs */
3974 || sfs.f_type == 0x9123683e /* btrfs */
3975 || sfs.f_type == 0x52654973 /* reiser3 */
3976 || sfs.f_type == 0x01021994 /* tmpfs */
3977 || sfs.f_type == 0x58465342 /* xfs */))
3978 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3979 else
3980 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3981 }
3982 else
3983 {
3984 /* can't use inotify, continue to stat */
3985 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3986
3987 /* if path is not there, monitor some parent directory for speedup hints */
3988 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3989 /* but an efficiency issue only */
3990 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3991 {
3992 char path [4096];
3993 strcpy (path, w->path);
3994
3995 do
3996 {
3997 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3998 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3999
4000 char *pend = strrchr (path, '/');
4001
4002 if (!pend || pend == path)
4003 break;
4004
4005 *pend = 0;
4006 w->wd = inotify_add_watch (fs_fd, path, mask);
4007 }
4008 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4009 }
4010 }
4011
4012 if (w->wd >= 0)
4013 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4014
4015 /* now re-arm timer, if required */
4016 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4017 ev_timer_again (EV_A_ &w->timer);
4018 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4019 }
4020
4021 static void noinline
4022 infy_del (EV_P_ ev_stat *w)
4023 {
4024 int slot;
4025 int wd = w->wd;
4026
4027 if (wd < 0)
4028 return;
4029
4030 w->wd = -2;
4031 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4032 wlist_del (&fs_hash [slot].head, (WL)w);
4033
4034 /* remove this watcher, if others are watching it, they will rearm */
4035 inotify_rm_watch (fs_fd, wd);
4036 }
4037
4038 static void noinline
4039 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4040 {
4041 if (slot < 0)
4042 /* overflow, need to check for all hash slots */
4043 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4044 infy_wd (EV_A_ slot, wd, ev);
4045 else
4046 {
4047 WL w_;
4048
4049 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4050 {
4051 ev_stat *w = (ev_stat *)w_;
4052 w_ = w_->next; /* lets us remove this watcher and all before it */
4053
4054 if (w->wd == wd || wd == -1)
4055 {
4056 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4057 {
4058 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4059 w->wd = -1;
4060 infy_add (EV_A_ w); /* re-add, no matter what */
4061 }
4062
4063 stat_timer_cb (EV_A_ &w->timer, 0);
4064 }
4065 }
4066 }
4067 }
4068
4069 static void
4070 infy_cb (EV_P_ ev_io *w, int revents)
4071 {
4072 char buf [EV_INOTIFY_BUFSIZE];
4073 int ofs;
4074 int len = read (fs_fd, buf, sizeof (buf));
4075
4076 for (ofs = 0; ofs < len; )
4077 {
4078 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4079 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4080 ofs += sizeof (struct inotify_event) + ev->len;
4081 }
4082 }
4083
4084 inline_size void ecb_cold
4085 ev_check_2625 (EV_P)
4086 {
4087 /* kernels < 2.6.25 are borked
4088 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4089 */
4090 if (ev_linux_version () < 0x020619)
4091 return;
4092
4093 fs_2625 = 1;
4094 }
4095
4096 inline_size int
4097 infy_newfd (void)
4098 {
4099 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4100 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4101 if (fd >= 0)
4102 return fd;
4103 #endif
4104 return inotify_init ();
4105 }
4106
4107 inline_size void
4108 infy_init (EV_P)
4109 {
4110 if (fs_fd != -2)
4111 return;
4112
4113 fs_fd = -1;
4114
4115 ev_check_2625 (EV_A);
4116
4117 fs_fd = infy_newfd ();
4118
4119 if (fs_fd >= 0)
4120 {
4121 fd_intern (fs_fd);
4122 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4123 ev_set_priority (&fs_w, EV_MAXPRI);
4124 ev_io_start (EV_A_ &fs_w);
4125 ev_unref (EV_A);
4126 }
4127 }
4128
4129 inline_size void
4130 infy_fork (EV_P)
4131 {
4132 int slot;
4133
4134 if (fs_fd < 0)
4135 return;
4136
4137 ev_ref (EV_A);
4138 ev_io_stop (EV_A_ &fs_w);
4139 close (fs_fd);
4140 fs_fd = infy_newfd ();
4141
4142 if (fs_fd >= 0)
4143 {
4144 fd_intern (fs_fd);
4145 ev_io_set (&fs_w, fs_fd, EV_READ);
4146 ev_io_start (EV_A_ &fs_w);
4147 ev_unref (EV_A);
4148 }
4149
4150 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4151 {
4152 WL w_ = fs_hash [slot].head;
4153 fs_hash [slot].head = 0;
4154
4155 while (w_)
4156 {
4157 ev_stat *w = (ev_stat *)w_;
4158 w_ = w_->next; /* lets us add this watcher */
4159
4160 w->wd = -1;
4161
4162 if (fs_fd >= 0)
4163 infy_add (EV_A_ w); /* re-add, no matter what */
4164 else
4165 {
4166 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4167 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4168 ev_timer_again (EV_A_ &w->timer);
4169 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4170 }
4171 }
4172 }
4173 }
4174
4175 #endif
4176
4177 #ifdef _WIN32
4178 # define EV_LSTAT(p,b) _stati64 (p, b)
4179 #else
4180 # define EV_LSTAT(p,b) lstat (p, b)
4181 #endif
4182
4183 void
4184 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4185 {
4186 if (lstat (w->path, &w->attr) < 0)
4187 w->attr.st_nlink = 0;
4188 else if (!w->attr.st_nlink)
4189 w->attr.st_nlink = 1;
4190 }
4191
4192 static void noinline
4193 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4194 {
4195 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4196
4197 ev_statdata prev = w->attr;
4198 ev_stat_stat (EV_A_ w);
4199
4200 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4201 if (
4202 prev.st_dev != w->attr.st_dev
4203 || prev.st_ino != w->attr.st_ino
4204 || prev.st_mode != w->attr.st_mode
4205 || prev.st_nlink != w->attr.st_nlink
4206 || prev.st_uid != w->attr.st_uid
4207 || prev.st_gid != w->attr.st_gid
4208 || prev.st_rdev != w->attr.st_rdev
4209 || prev.st_size != w->attr.st_size
4210 || prev.st_atime != w->attr.st_atime
4211 || prev.st_mtime != w->attr.st_mtime
4212 || prev.st_ctime != w->attr.st_ctime
4213 ) {
4214 /* we only update w->prev on actual differences */
4215 /* in case we test more often than invoke the callback, */
4216 /* to ensure that prev is always different to attr */
4217 w->prev = prev;
4218
4219 #if EV_USE_INOTIFY
4220 if (fs_fd >= 0)
4221 {
4222 infy_del (EV_A_ w);
4223 infy_add (EV_A_ w);
4224 ev_stat_stat (EV_A_ w); /* avoid race... */
4225 }
4226 #endif
4227
4228 ev_feed_event (EV_A_ w, EV_STAT);
4229 }
4230 }
4231
4232 void
4233 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4234 {
4235 if (expect_false (ev_is_active (w)))
4236 return;
4237
4238 ev_stat_stat (EV_A_ w);
4239
4240 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4241 w->interval = MIN_STAT_INTERVAL;
4242
4243 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4244 ev_set_priority (&w->timer, ev_priority (w));
4245
4246 #if EV_USE_INOTIFY
4247 infy_init (EV_A);
4248
4249 if (fs_fd >= 0)
4250 infy_add (EV_A_ w);
4251 else
4252 #endif
4253 {
4254 ev_timer_again (EV_A_ &w->timer);
4255 ev_unref (EV_A);
4256 }
4257
4258 ev_start (EV_A_ (W)w, 1);
4259
4260 EV_FREQUENT_CHECK;
4261 }
4262
4263 void
4264 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4265 {
4266 clear_pending (EV_A_ (W)w);
4267 if (expect_false (!ev_is_active (w)))
4268 return;
4269
4270 EV_FREQUENT_CHECK;
4271
4272 #if EV_USE_INOTIFY
4273 infy_del (EV_A_ w);
4274 #endif
4275
4276 if (ev_is_active (&w->timer))
4277 {
4278 ev_ref (EV_A);
4279 ev_timer_stop (EV_A_ &w->timer);
4280 }
4281
4282 ev_stop (EV_A_ (W)w);
4283
4284 EV_FREQUENT_CHECK;
4285 }
4286 #endif
4287
4288 #if EV_IDLE_ENABLE
4289 void
4290 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4291 {
4292 if (expect_false (ev_is_active (w)))
4293 return;
4294
4295 pri_adjust (EV_A_ (W)w);
4296
4297 EV_FREQUENT_CHECK;
4298
4299 {
4300 int active = ++idlecnt [ABSPRI (w)];
4301
4302 ++idleall;
4303 ev_start (EV_A_ (W)w, active);
4304
4305 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4306 idles [ABSPRI (w)][active - 1] = w;
4307 }
4308
4309 EV_FREQUENT_CHECK;
4310 }
4311
4312 void
4313 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4314 {
4315 clear_pending (EV_A_ (W)w);
4316 if (expect_false (!ev_is_active (w)))
4317 return;
4318
4319 EV_FREQUENT_CHECK;
4320
4321 {
4322 int active = ev_active (w);
4323
4324 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4325 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4326
4327 ev_stop (EV_A_ (W)w);
4328 --idleall;
4329 }
4330
4331 EV_FREQUENT_CHECK;
4332 }
4333 #endif
4334
4335 #if EV_PREPARE_ENABLE
4336 void
4337 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4338 {
4339 if (expect_false (ev_is_active (w)))
4340 return;
4341
4342 EV_FREQUENT_CHECK;
4343
4344 ev_start (EV_A_ (W)w, ++preparecnt);
4345 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4346 prepares [preparecnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
4349 }
4350
4351 void
4352 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4353 {
4354 clear_pending (EV_A_ (W)w);
4355 if (expect_false (!ev_is_active (w)))
4356 return;
4357
4358 EV_FREQUENT_CHECK;
4359
4360 {
4361 int active = ev_active (w);
4362
4363 prepares [active - 1] = prepares [--preparecnt];
4364 ev_active (prepares [active - 1]) = active;
4365 }
4366
4367 ev_stop (EV_A_ (W)w);
4368
4369 EV_FREQUENT_CHECK;
4370 }
4371 #endif
4372
4373 #if EV_CHECK_ENABLE
4374 void
4375 ev_check_start (EV_P_ ev_check *w) EV_THROW
4376 {
4377 if (expect_false (ev_is_active (w)))
4378 return;
4379
4380 EV_FREQUENT_CHECK;
4381
4382 ev_start (EV_A_ (W)w, ++checkcnt);
4383 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4384 checks [checkcnt - 1] = w;
4385
4386 EV_FREQUENT_CHECK;
4387 }
4388
4389 void
4390 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4391 {
4392 clear_pending (EV_A_ (W)w);
4393 if (expect_false (!ev_is_active (w)))
4394 return;
4395
4396 EV_FREQUENT_CHECK;
4397
4398 {
4399 int active = ev_active (w);
4400
4401 checks [active - 1] = checks [--checkcnt];
4402 ev_active (checks [active - 1]) = active;
4403 }
4404
4405 ev_stop (EV_A_ (W)w);
4406
4407 EV_FREQUENT_CHECK;
4408 }
4409 #endif
4410
4411 #if EV_EMBED_ENABLE
4412 void noinline
4413 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4414 {
4415 ev_run (w->other, EVRUN_NOWAIT);
4416 }
4417
4418 static void
4419 embed_io_cb (EV_P_ ev_io *io, int revents)
4420 {
4421 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4422
4423 if (ev_cb (w))
4424 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4425 else
4426 ev_run (w->other, EVRUN_NOWAIT);
4427 }
4428
4429 static void
4430 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4431 {
4432 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4433
4434 {
4435 EV_P = w->other;
4436
4437 while (fdchangecnt)
4438 {
4439 fd_reify (EV_A);
4440 ev_run (EV_A_ EVRUN_NOWAIT);
4441 }
4442 }
4443 }
4444
4445 static void
4446 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4447 {
4448 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4449
4450 ev_embed_stop (EV_A_ w);
4451
4452 {
4453 EV_P = w->other;
4454
4455 ev_loop_fork (EV_A);
4456 ev_run (EV_A_ EVRUN_NOWAIT);
4457 }
4458
4459 ev_embed_start (EV_A_ w);
4460 }
4461
4462 #if 0
4463 static void
4464 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4465 {
4466 ev_idle_stop (EV_A_ idle);
4467 }
4468 #endif
4469
4470 void
4471 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4472 {
4473 if (expect_false (ev_is_active (w)))
4474 return;
4475
4476 {
4477 EV_P = w->other;
4478 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4480 }
4481
4482 EV_FREQUENT_CHECK;
4483
4484 ev_set_priority (&w->io, ev_priority (w));
4485 ev_io_start (EV_A_ &w->io);
4486
4487 ev_prepare_init (&w->prepare, embed_prepare_cb);
4488 ev_set_priority (&w->prepare, EV_MINPRI);
4489 ev_prepare_start (EV_A_ &w->prepare);
4490
4491 ev_fork_init (&w->fork, embed_fork_cb);
4492 ev_fork_start (EV_A_ &w->fork);
4493
4494 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4495
4496 ev_start (EV_A_ (W)w, 1);
4497
4498 EV_FREQUENT_CHECK;
4499 }
4500
4501 void
4502 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4503 {
4504 clear_pending (EV_A_ (W)w);
4505 if (expect_false (!ev_is_active (w)))
4506 return;
4507
4508 EV_FREQUENT_CHECK;
4509
4510 ev_io_stop (EV_A_ &w->io);
4511 ev_prepare_stop (EV_A_ &w->prepare);
4512 ev_fork_stop (EV_A_ &w->fork);
4513
4514 ev_stop (EV_A_ (W)w);
4515
4516 EV_FREQUENT_CHECK;
4517 }
4518 #endif
4519
4520 #if EV_FORK_ENABLE
4521 void
4522 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4523 {
4524 if (expect_false (ev_is_active (w)))
4525 return;
4526
4527 EV_FREQUENT_CHECK;
4528
4529 ev_start (EV_A_ (W)w, ++forkcnt);
4530 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4531 forks [forkcnt - 1] = w;
4532
4533 EV_FREQUENT_CHECK;
4534 }
4535
4536 void
4537 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4538 {
4539 clear_pending (EV_A_ (W)w);
4540 if (expect_false (!ev_is_active (w)))
4541 return;
4542
4543 EV_FREQUENT_CHECK;
4544
4545 {
4546 int active = ev_active (w);
4547
4548 forks [active - 1] = forks [--forkcnt];
4549 ev_active (forks [active - 1]) = active;
4550 }
4551
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555 }
4556 #endif
4557
4558 #if EV_CLEANUP_ENABLE
4559 void
4560 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4561 {
4562 if (expect_false (ev_is_active (w)))
4563 return;
4564
4565 EV_FREQUENT_CHECK;
4566
4567 ev_start (EV_A_ (W)w, ++cleanupcnt);
4568 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4569 cleanups [cleanupcnt - 1] = w;
4570
4571 /* cleanup watchers should never keep a refcount on the loop */
4572 ev_unref (EV_A);
4573 EV_FREQUENT_CHECK;
4574 }
4575
4576 void
4577 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4578 {
4579 clear_pending (EV_A_ (W)w);
4580 if (expect_false (!ev_is_active (w)))
4581 return;
4582
4583 EV_FREQUENT_CHECK;
4584 ev_ref (EV_A);
4585
4586 {
4587 int active = ev_active (w);
4588
4589 cleanups [active - 1] = cleanups [--cleanupcnt];
4590 ev_active (cleanups [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596 }
4597 #endif
4598
4599 #if EV_ASYNC_ENABLE
4600 void
4601 ev_async_start (EV_P_ ev_async *w) EV_THROW
4602 {
4603 if (expect_false (ev_is_active (w)))
4604 return;
4605
4606 w->sent = 0;
4607
4608 evpipe_init (EV_A);
4609
4610 EV_FREQUENT_CHECK;
4611
4612 ev_start (EV_A_ (W)w, ++asynccnt);
4613 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4614 asyncs [asynccnt - 1] = w;
4615
4616 EV_FREQUENT_CHECK;
4617 }
4618
4619 void
4620 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4621 {
4622 clear_pending (EV_A_ (W)w);
4623 if (expect_false (!ev_is_active (w)))
4624 return;
4625
4626 EV_FREQUENT_CHECK;
4627
4628 {
4629 int active = ev_active (w);
4630
4631 asyncs [active - 1] = asyncs [--asynccnt];
4632 ev_active (asyncs [active - 1]) = active;
4633 }
4634
4635 ev_stop (EV_A_ (W)w);
4636
4637 EV_FREQUENT_CHECK;
4638 }
4639
4640 void
4641 ev_async_send (EV_P_ ev_async *w) EV_THROW
4642 {
4643 w->sent = 1;
4644 evpipe_write (EV_A_ &async_pending);
4645 }
4646 #endif
4647
4648 /*****************************************************************************/
4649
4650 struct ev_once
4651 {
4652 ev_io io;
4653 ev_timer to;
4654 void (*cb)(int revents, void *arg);
4655 void *arg;
4656 };
4657
4658 static void
4659 once_cb (EV_P_ struct ev_once *once, int revents)
4660 {
4661 void (*cb)(int revents, void *arg) = once->cb;
4662 void *arg = once->arg;
4663
4664 ev_io_stop (EV_A_ &once->io);
4665 ev_timer_stop (EV_A_ &once->to);
4666 ev_free (once);
4667
4668 cb (revents, arg);
4669 }
4670
4671 static void
4672 once_cb_io (EV_P_ ev_io *w, int revents)
4673 {
4674 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4675
4676 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4677 }
4678
4679 static void
4680 once_cb_to (EV_P_ ev_timer *w, int revents)
4681 {
4682 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4683
4684 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4685 }
4686
4687 void
4688 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4689 {
4690 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4691
4692 if (expect_false (!once))
4693 {
4694 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4695 return;
4696 }
4697
4698 once->cb = cb;
4699 once->arg = arg;
4700
4701 ev_init (&once->io, once_cb_io);
4702 if (fd >= 0)
4703 {
4704 ev_io_set (&once->io, fd, events);
4705 ev_io_start (EV_A_ &once->io);
4706 }
4707
4708 ev_init (&once->to, once_cb_to);
4709 if (timeout >= 0.)
4710 {
4711 ev_timer_set (&once->to, timeout, 0.);
4712 ev_timer_start (EV_A_ &once->to);
4713 }
4714 }
4715
4716 /*****************************************************************************/
4717
4718 #if EV_WALK_ENABLE
4719 void ecb_cold
4720 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4721 {
4722 int i, j;
4723 ev_watcher_list *wl, *wn;
4724
4725 if (types & (EV_IO | EV_EMBED))
4726 for (i = 0; i < anfdmax; ++i)
4727 for (wl = anfds [i].head; wl; )
4728 {
4729 wn = wl->next;
4730
4731 #if EV_EMBED_ENABLE
4732 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4733 {
4734 if (types & EV_EMBED)
4735 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4736 }
4737 else
4738 #endif
4739 #if EV_USE_INOTIFY
4740 if (ev_cb ((ev_io *)wl) == infy_cb)
4741 ;
4742 else
4743 #endif
4744 if ((ev_io *)wl != &pipe_w)
4745 if (types & EV_IO)
4746 cb (EV_A_ EV_IO, wl);
4747
4748 wl = wn;
4749 }
4750
4751 if (types & (EV_TIMER | EV_STAT))
4752 for (i = timercnt + HEAP0; i-- > HEAP0; )
4753 #if EV_STAT_ENABLE
4754 /*TODO: timer is not always active*/
4755 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4756 {
4757 if (types & EV_STAT)
4758 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4759 }
4760 else
4761 #endif
4762 if (types & EV_TIMER)
4763 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4764
4765 #if EV_PERIODIC_ENABLE
4766 if (types & EV_PERIODIC)
4767 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4768 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4769 #endif
4770
4771 #if EV_IDLE_ENABLE
4772 if (types & EV_IDLE)
4773 for (j = NUMPRI; j--; )
4774 for (i = idlecnt [j]; i--; )
4775 cb (EV_A_ EV_IDLE, idles [j][i]);
4776 #endif
4777
4778 #if EV_FORK_ENABLE
4779 if (types & EV_FORK)
4780 for (i = forkcnt; i--; )
4781 if (ev_cb (forks [i]) != embed_fork_cb)
4782 cb (EV_A_ EV_FORK, forks [i]);
4783 #endif
4784
4785 #if EV_ASYNC_ENABLE
4786 if (types & EV_ASYNC)
4787 for (i = asynccnt; i--; )
4788 cb (EV_A_ EV_ASYNC, asyncs [i]);
4789 #endif
4790
4791 #if EV_PREPARE_ENABLE
4792 if (types & EV_PREPARE)
4793 for (i = preparecnt; i--; )
4794 # if EV_EMBED_ENABLE
4795 if (ev_cb (prepares [i]) != embed_prepare_cb)
4796 # endif
4797 cb (EV_A_ EV_PREPARE, prepares [i]);
4798 #endif
4799
4800 #if EV_CHECK_ENABLE
4801 if (types & EV_CHECK)
4802 for (i = checkcnt; i--; )
4803 cb (EV_A_ EV_CHECK, checks [i]);
4804 #endif
4805
4806 #if EV_SIGNAL_ENABLE
4807 if (types & EV_SIGNAL)
4808 for (i = 0; i < EV_NSIG - 1; ++i)
4809 for (wl = signals [i].head; wl; )
4810 {
4811 wn = wl->next;
4812 cb (EV_A_ EV_SIGNAL, wl);
4813 wl = wn;
4814 }
4815 #endif
4816
4817 #if EV_CHILD_ENABLE
4818 if (types & EV_CHILD)
4819 for (i = (EV_PID_HASHSIZE); i--; )
4820 for (wl = childs [i]; wl; )
4821 {
4822 wn = wl->next;
4823 cb (EV_A_ EV_CHILD, wl);
4824 wl = wn;
4825 }
4826 #endif
4827 /* EV_STAT 0x00001000 /* stat data changed */
4828 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4829 }
4830 #endif
4831
4832 #if EV_MULTIPLICITY
4833 #include "ev_wrap.h"
4834 #endif
4835