ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.469
Committed: Fri Sep 5 16:21:19 2014 UTC (9 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_18
Changes since 1.468: +4 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 # define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 # define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #ifndef EV_USE_MONOTONIC
262 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 # define EV_USE_MONOTONIC EV_FEATURE_OS
264 # else
265 # define EV_USE_MONOTONIC 0
266 # endif
267 #endif
268
269 #ifndef EV_USE_REALTIME
270 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 #endif
272
273 #ifndef EV_USE_NANOSLEEP
274 # if _POSIX_C_SOURCE >= 199309L
275 # define EV_USE_NANOSLEEP EV_FEATURE_OS
276 # else
277 # define EV_USE_NANOSLEEP 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_SELECT
282 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 #endif
284
285 #ifndef EV_USE_POLL
286 # ifdef _WIN32
287 # define EV_USE_POLL 0
288 # else
289 # define EV_USE_POLL EV_FEATURE_BACKENDS
290 # endif
291 #endif
292
293 #ifndef EV_USE_EPOLL
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 # else
297 # define EV_USE_EPOLL 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_KQUEUE
302 # define EV_USE_KQUEUE 0
303 #endif
304
305 #ifndef EV_USE_PORT
306 # define EV_USE_PORT 0
307 #endif
308
309 #ifndef EV_USE_INOTIFY
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 # define EV_USE_INOTIFY EV_FEATURE_OS
312 # else
313 # define EV_USE_INOTIFY 0
314 # endif
315 #endif
316
317 #ifndef EV_PID_HASHSIZE
318 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 #endif
320
321 #ifndef EV_INOTIFY_HASHSIZE
322 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 #endif
324
325 #ifndef EV_USE_EVENTFD
326 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 # define EV_USE_EVENTFD EV_FEATURE_OS
328 # else
329 # define EV_USE_EVENTFD 0
330 # endif
331 #endif
332
333 #ifndef EV_USE_SIGNALFD
334 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 # define EV_USE_SIGNALFD EV_FEATURE_OS
336 # else
337 # define EV_USE_SIGNALFD 0
338 # endif
339 #endif
340
341 #if 0 /* debugging */
342 # define EV_VERIFY 3
343 # define EV_USE_4HEAP 1
344 # define EV_HEAP_CACHE_AT 1
345 #endif
346
347 #ifndef EV_VERIFY
348 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 #endif
350
351 #ifndef EV_USE_4HEAP
352 # define EV_USE_4HEAP EV_FEATURE_DATA
353 #endif
354
355 #ifndef EV_HEAP_CACHE_AT
356 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 #endif
358
359 #ifdef ANDROID
360 /* supposedly, android doesn't typedef fd_mask */
361 # undef EV_USE_SELECT
362 # define EV_USE_SELECT 0
363 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364 # undef EV_USE_CLOCK_SYSCALL
365 # define EV_USE_CLOCK_SYSCALL 0
366 #endif
367
368 /* aix's poll.h seems to cause lots of trouble */
369 #ifdef _AIX
370 /* AIX has a completely broken poll.h header */
371 # undef EV_USE_POLL
372 # define EV_USE_POLL 0
373 #endif
374
375 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376 /* which makes programs even slower. might work on other unices, too. */
377 #if EV_USE_CLOCK_SYSCALL
378 # include <sys/syscall.h>
379 # ifdef SYS_clock_gettime
380 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381 # undef EV_USE_MONOTONIC
382 # define EV_USE_MONOTONIC 1
383 # else
384 # undef EV_USE_CLOCK_SYSCALL
385 # define EV_USE_CLOCK_SYSCALL 0
386 # endif
387 #endif
388
389 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391 #ifndef CLOCK_MONOTONIC
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 0
394 #endif
395
396 #ifndef CLOCK_REALTIME
397 # undef EV_USE_REALTIME
398 # define EV_USE_REALTIME 0
399 #endif
400
401 #if !EV_STAT_ENABLE
402 # undef EV_USE_INOTIFY
403 # define EV_USE_INOTIFY 0
404 #endif
405
406 #if !EV_USE_NANOSLEEP
407 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 # if !defined _WIN32 && !defined __hpux
409 # include <sys/select.h>
410 # endif
411 #endif
412
413 #if EV_USE_INOTIFY
414 # include <sys/statfs.h>
415 # include <sys/inotify.h>
416 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417 # ifndef IN_DONT_FOLLOW
418 # undef EV_USE_INOTIFY
419 # define EV_USE_INOTIFY 0
420 # endif
421 #endif
422
423 #if EV_USE_EVENTFD
424 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 # include <stdint.h>
426 # ifndef EFD_NONBLOCK
427 # define EFD_NONBLOCK O_NONBLOCK
428 # endif
429 # ifndef EFD_CLOEXEC
430 # ifdef O_CLOEXEC
431 # define EFD_CLOEXEC O_CLOEXEC
432 # else
433 # define EFD_CLOEXEC 02000000
434 # endif
435 # endif
436 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 #endif
438
439 #if EV_USE_SIGNALFD
440 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441 # include <stdint.h>
442 # ifndef SFD_NONBLOCK
443 # define SFD_NONBLOCK O_NONBLOCK
444 # endif
445 # ifndef SFD_CLOEXEC
446 # ifdef O_CLOEXEC
447 # define SFD_CLOEXEC O_CLOEXEC
448 # else
449 # define SFD_CLOEXEC 02000000
450 # endif
451 # endif
452 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454 struct signalfd_siginfo
455 {
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458 };
459 #endif
460
461 /**/
462
463 #if EV_VERIFY >= 3
464 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 #else
466 # define EV_FREQUENT_CHECK do { } while (0)
467 #endif
468
469 /*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
477 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483 /* ECB.H BEGIN */
484 /*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524 #ifndef ECB_H
525 #define ECB_H
526
527 /* 16 bits major, 16 bits minor */
528 #define ECB_VERSION 0x00010003
529
530 #ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
537 #if __GNUC__
538 typedef signed long long int64_t;
539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
553 #else
554 #include <inttypes.h>
555 #if UINTMAX_MAX > 0xffffffffU
556 #define ECB_PTRSIZE 8
557 #else
558 #define ECB_PTRSIZE 4
559 #endif
560 #endif
561
562 /* work around x32 idiocy by defining proper macros */
563 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
568 #endif
569 #endif
570
571 /* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578 #ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584 #endif
585
586 #define ECB_CPP (__cplusplus+0)
587 #define ECB_CPP11 (__cplusplus >= 201103L)
588
589 #if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592 #else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595 #endif
596
597 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600 #if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604 #else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608 #endif
609
610 /*****************************************************************************/
611
612 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615 #if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617 #endif
618
619 #if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621 #endif
622
623 #ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668 #endif
669
670 #ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712 #endif
713
714 #ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729 #endif
730
731 #ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747 #endif
748
749 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751 #endif
752
753 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755 #endif
756
757 /*****************************************************************************/
758
759 #if __cplusplus
760 #define ecb_inline static inline
761 #elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763 #elif ECB_C99
764 #define ecb_inline static inline
765 #else
766 #define ecb_inline static
767 #endif
768
769 #if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771 #elif ECB_C99
772 #define ecb_restrict restrict
773 #else
774 #define ecb_restrict
775 #endif
776
777 typedef int ecb_bool;
778
779 #define ECB_CONCAT_(a, b) a ## b
780 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781 #define ECB_STRINGIFY_(a) # a
782 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784 #define ecb_function_ ecb_inline
785
786 #if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791 #else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801 #endif
802
803 /* no emulation for ecb_decltype */
804 #if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806 #elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808 #endif
809
810 #if _MSC_VER >= 1300
811 #define ecb_deprecated __declspec(deprecated)
812 #else
813 #define ecb_deprecated ecb_attribute ((__deprecated__))
814 #endif
815
816 #define ecb_noinline ecb_attribute ((__noinline__))
817 #define ecb_unused ecb_attribute ((__unused__))
818 #define ecb_const ecb_attribute ((__const__))
819 #define ecb_pure ecb_attribute ((__pure__))
820
821 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
822 #if ECB_C11
823 #define ecb_noreturn _Noreturn
824 #else
825 #define ecb_noreturn ecb_attribute ((__noreturn__))
826 #endif
827
828 #if ECB_GCC_VERSION(4,3)
829 #define ecb_artificial ecb_attribute ((__artificial__))
830 #define ecb_hot ecb_attribute ((__hot__))
831 #define ecb_cold ecb_attribute ((__cold__))
832 #else
833 #define ecb_artificial
834 #define ecb_hot
835 #define ecb_cold
836 #endif
837
838 /* put around conditional expressions if you are very sure that the */
839 /* expression is mostly true or mostly false. note that these return */
840 /* booleans, not the expression. */
841 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
842 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
843 /* for compatibility to the rest of the world */
844 #define ecb_likely(expr) ecb_expect_true (expr)
845 #define ecb_unlikely(expr) ecb_expect_false (expr)
846
847 /* count trailing zero bits and count # of one bits */
848 #if ECB_GCC_VERSION(3,4)
849 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
850 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
851 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
852 #define ecb_ctz32(x) __builtin_ctz (x)
853 #define ecb_ctz64(x) __builtin_ctzll (x)
854 #define ecb_popcount32(x) __builtin_popcount (x)
855 /* no popcountll */
856 #else
857 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
858 ecb_function_ int
859 ecb_ctz32 (uint32_t x)
860 {
861 int r = 0;
862
863 x &= ~x + 1; /* this isolates the lowest bit */
864
865 #if ECB_branchless_on_i386
866 r += !!(x & 0xaaaaaaaa) << 0;
867 r += !!(x & 0xcccccccc) << 1;
868 r += !!(x & 0xf0f0f0f0) << 2;
869 r += !!(x & 0xff00ff00) << 3;
870 r += !!(x & 0xffff0000) << 4;
871 #else
872 if (x & 0xaaaaaaaa) r += 1;
873 if (x & 0xcccccccc) r += 2;
874 if (x & 0xf0f0f0f0) r += 4;
875 if (x & 0xff00ff00) r += 8;
876 if (x & 0xffff0000) r += 16;
877 #endif
878
879 return r;
880 }
881
882 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
883 ecb_function_ int
884 ecb_ctz64 (uint64_t x)
885 {
886 int shift = x & 0xffffffffU ? 0 : 32;
887 return ecb_ctz32 (x >> shift) + shift;
888 }
889
890 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
891 ecb_function_ int
892 ecb_popcount32 (uint32_t x)
893 {
894 x -= (x >> 1) & 0x55555555;
895 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
896 x = ((x >> 4) + x) & 0x0f0f0f0f;
897 x *= 0x01010101;
898
899 return x >> 24;
900 }
901
902 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
903 ecb_function_ int ecb_ld32 (uint32_t x)
904 {
905 int r = 0;
906
907 if (x >> 16) { x >>= 16; r += 16; }
908 if (x >> 8) { x >>= 8; r += 8; }
909 if (x >> 4) { x >>= 4; r += 4; }
910 if (x >> 2) { x >>= 2; r += 2; }
911 if (x >> 1) { r += 1; }
912
913 return r;
914 }
915
916 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
917 ecb_function_ int ecb_ld64 (uint64_t x)
918 {
919 int r = 0;
920
921 if (x >> 32) { x >>= 32; r += 32; }
922
923 return r + ecb_ld32 (x);
924 }
925 #endif
926
927 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
928 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
929 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
930 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
931
932 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
933 ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
934 {
935 return ( (x * 0x0802U & 0x22110U)
936 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
937 }
938
939 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
940 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
941 {
942 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
943 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
944 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
945 x = ( x >> 8 ) | ( x << 8);
946
947 return x;
948 }
949
950 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
951 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
952 {
953 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
954 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
955 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
956 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
957 x = ( x >> 16 ) | ( x << 16);
958
959 return x;
960 }
961
962 /* popcount64 is only available on 64 bit cpus as gcc builtin */
963 /* so for this version we are lazy */
964 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
965 ecb_function_ int
966 ecb_popcount64 (uint64_t x)
967 {
968 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
969 }
970
971 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
972 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
973 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
974 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
975 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
976 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
977 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
978 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
979
980 ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
981 ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
982 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
983 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
984 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
985 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
986 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
987 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
988
989 #if ECB_GCC_VERSION(4,3)
990 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
991 #define ecb_bswap32(x) __builtin_bswap32 (x)
992 #define ecb_bswap64(x) __builtin_bswap64 (x)
993 #else
994 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
995 ecb_function_ uint16_t
996 ecb_bswap16 (uint16_t x)
997 {
998 return ecb_rotl16 (x, 8);
999 }
1000
1001 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
1002 ecb_function_ uint32_t
1003 ecb_bswap32 (uint32_t x)
1004 {
1005 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1006 }
1007
1008 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1009 ecb_function_ uint64_t
1010 ecb_bswap64 (uint64_t x)
1011 {
1012 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1013 }
1014 #endif
1015
1016 #if ECB_GCC_VERSION(4,5)
1017 #define ecb_unreachable() __builtin_unreachable ()
1018 #else
1019 /* this seems to work fine, but gcc always emits a warning for it :/ */
1020 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1021 ecb_inline void ecb_unreachable (void) { }
1022 #endif
1023
1024 /* try to tell the compiler that some condition is definitely true */
1025 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1026
1027 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1028 ecb_inline unsigned char
1029 ecb_byteorder_helper (void)
1030 {
1031 /* the union code still generates code under pressure in gcc, */
1032 /* but less than using pointers, and always seems to */
1033 /* successfully return a constant. */
1034 /* the reason why we have this horrible preprocessor mess */
1035 /* is to avoid it in all cases, at least on common architectures */
1036 /* or when using a recent enough gcc version (>= 4.6) */
1037 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1038 return 0x44;
1039 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1040 return 0x44;
1041 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1042 return 0x11;
1043 #else
1044 union
1045 {
1046 uint32_t i;
1047 uint8_t c;
1048 } u = { 0x11223344 };
1049 return u.c;
1050 #endif
1051 }
1052
1053 ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1054 ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1055 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1056 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1057
1058 #if ECB_GCC_VERSION(3,0) || ECB_C99
1059 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1060 #else
1061 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1062 #endif
1063
1064 #if __cplusplus
1065 template<typename T>
1066 static inline T ecb_div_rd (T val, T div)
1067 {
1068 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1069 }
1070 template<typename T>
1071 static inline T ecb_div_ru (T val, T div)
1072 {
1073 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1074 }
1075 #else
1076 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1077 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1078 #endif
1079
1080 #if ecb_cplusplus_does_not_suck
1081 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1082 template<typename T, int N>
1083 static inline int ecb_array_length (const T (&arr)[N])
1084 {
1085 return N;
1086 }
1087 #else
1088 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1089 #endif
1090
1091 /*******************************************************************************/
1092 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1093
1094 /* basically, everything uses "ieee pure-endian" floating point numbers */
1095 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1096 #if 0 \
1097 || __i386 || __i386__ \
1098 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1099 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1100 || defined __s390__ || defined __s390x__ \
1101 || defined __mips__ \
1102 || defined __alpha__ \
1103 || defined __hppa__ \
1104 || defined __ia64__ \
1105 || defined __m68k__ \
1106 || defined __m88k__ \
1107 || defined __sh__ \
1108 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1109 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1110 || defined __aarch64__
1111 #define ECB_STDFP 1
1112 #include <string.h> /* for memcpy */
1113 #else
1114 #define ECB_STDFP 0
1115 #endif
1116
1117 #ifndef ECB_NO_LIBM
1118
1119 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1120
1121 /* only the oldest of old doesn't have this one. solaris. */
1122 #ifdef INFINITY
1123 #define ECB_INFINITY INFINITY
1124 #else
1125 #define ECB_INFINITY HUGE_VAL
1126 #endif
1127
1128 #ifdef NAN
1129 #define ECB_NAN NAN
1130 #else
1131 #define ECB_NAN ECB_INFINITY
1132 #endif
1133
1134 /* converts an ieee half/binary16 to a float */
1135 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1136 ecb_function_ float
1137 ecb_binary16_to_float (uint16_t x)
1138 {
1139 int e = (x >> 10) & 0x1f;
1140 int m = x & 0x3ff;
1141 float r;
1142
1143 if (!e ) r = ldexpf (m , -24);
1144 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1145 else if (m ) r = ECB_NAN;
1146 else r = ECB_INFINITY;
1147
1148 return x & 0x8000 ? -r : r;
1149 }
1150
1151 /* convert a float to ieee single/binary32 */
1152 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1153 ecb_function_ uint32_t
1154 ecb_float_to_binary32 (float x)
1155 {
1156 uint32_t r;
1157
1158 #if ECB_STDFP
1159 memcpy (&r, &x, 4);
1160 #else
1161 /* slow emulation, works for anything but -0 */
1162 uint32_t m;
1163 int e;
1164
1165 if (x == 0e0f ) return 0x00000000U;
1166 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1167 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1168 if (x != x ) return 0x7fbfffffU;
1169
1170 m = frexpf (x, &e) * 0x1000000U;
1171
1172 r = m & 0x80000000U;
1173
1174 if (r)
1175 m = -m;
1176
1177 if (e <= -126)
1178 {
1179 m &= 0xffffffU;
1180 m >>= (-125 - e);
1181 e = -126;
1182 }
1183
1184 r |= (e + 126) << 23;
1185 r |= m & 0x7fffffU;
1186 #endif
1187
1188 return r;
1189 }
1190
1191 /* converts an ieee single/binary32 to a float */
1192 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1193 ecb_function_ float
1194 ecb_binary32_to_float (uint32_t x)
1195 {
1196 float r;
1197
1198 #if ECB_STDFP
1199 memcpy (&r, &x, 4);
1200 #else
1201 /* emulation, only works for normals and subnormals and +0 */
1202 int neg = x >> 31;
1203 int e = (x >> 23) & 0xffU;
1204
1205 x &= 0x7fffffU;
1206
1207 if (e)
1208 x |= 0x800000U;
1209 else
1210 e = 1;
1211
1212 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1213 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1214
1215 r = neg ? -r : r;
1216 #endif
1217
1218 return r;
1219 }
1220
1221 /* convert a double to ieee double/binary64 */
1222 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1223 ecb_function_ uint64_t
1224 ecb_double_to_binary64 (double x)
1225 {
1226 uint64_t r;
1227
1228 #if ECB_STDFP
1229 memcpy (&r, &x, 8);
1230 #else
1231 /* slow emulation, works for anything but -0 */
1232 uint64_t m;
1233 int e;
1234
1235 if (x == 0e0 ) return 0x0000000000000000U;
1236 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1237 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1238 if (x != x ) return 0X7ff7ffffffffffffU;
1239
1240 m = frexp (x, &e) * 0x20000000000000U;
1241
1242 r = m & 0x8000000000000000;;
1243
1244 if (r)
1245 m = -m;
1246
1247 if (e <= -1022)
1248 {
1249 m &= 0x1fffffffffffffU;
1250 m >>= (-1021 - e);
1251 e = -1022;
1252 }
1253
1254 r |= ((uint64_t)(e + 1022)) << 52;
1255 r |= m & 0xfffffffffffffU;
1256 #endif
1257
1258 return r;
1259 }
1260
1261 /* converts an ieee double/binary64 to a double */
1262 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1263 ecb_function_ double
1264 ecb_binary64_to_double (uint64_t x)
1265 {
1266 double r;
1267
1268 #if ECB_STDFP
1269 memcpy (&r, &x, 8);
1270 #else
1271 /* emulation, only works for normals and subnormals and +0 */
1272 int neg = x >> 63;
1273 int e = (x >> 52) & 0x7ffU;
1274
1275 x &= 0xfffffffffffffU;
1276
1277 if (e)
1278 x |= 0x10000000000000U;
1279 else
1280 e = 1;
1281
1282 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1283 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1284
1285 r = neg ? -r : r;
1286 #endif
1287
1288 return r;
1289 }
1290
1291 #endif
1292
1293 #endif
1294
1295 /* ECB.H END */
1296
1297 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1298 /* if your architecture doesn't need memory fences, e.g. because it is
1299 * single-cpu/core, or if you use libev in a project that doesn't use libev
1300 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1301 * libev, in which cases the memory fences become nops.
1302 * alternatively, you can remove this #error and link against libpthread,
1303 * which will then provide the memory fences.
1304 */
1305 # error "memory fences not defined for your architecture, please report"
1306 #endif
1307
1308 #ifndef ECB_MEMORY_FENCE
1309 # define ECB_MEMORY_FENCE do { } while (0)
1310 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1311 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1312 #endif
1313
1314 #define expect_false(cond) ecb_expect_false (cond)
1315 #define expect_true(cond) ecb_expect_true (cond)
1316 #define noinline ecb_noinline
1317
1318 #define inline_size ecb_inline
1319
1320 #if EV_FEATURE_CODE
1321 # define inline_speed ecb_inline
1322 #else
1323 # define inline_speed static noinline
1324 #endif
1325
1326 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1327
1328 #if EV_MINPRI == EV_MAXPRI
1329 # define ABSPRI(w) (((W)w), 0)
1330 #else
1331 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1332 #endif
1333
1334 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1335 #define EMPTY2(a,b) /* used to suppress some warnings */
1336
1337 typedef ev_watcher *W;
1338 typedef ev_watcher_list *WL;
1339 typedef ev_watcher_time *WT;
1340
1341 #define ev_active(w) ((W)(w))->active
1342 #define ev_at(w) ((WT)(w))->at
1343
1344 #if EV_USE_REALTIME
1345 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1346 /* giving it a reasonably high chance of working on typical architectures */
1347 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1348 #endif
1349
1350 #if EV_USE_MONOTONIC
1351 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1352 #endif
1353
1354 #ifndef EV_FD_TO_WIN32_HANDLE
1355 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1356 #endif
1357 #ifndef EV_WIN32_HANDLE_TO_FD
1358 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1359 #endif
1360 #ifndef EV_WIN32_CLOSE_FD
1361 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1362 #endif
1363
1364 #ifdef _WIN32
1365 # include "ev_win32.c"
1366 #endif
1367
1368 /*****************************************************************************/
1369
1370 /* define a suitable floor function (only used by periodics atm) */
1371
1372 #if EV_USE_FLOOR
1373 # include <math.h>
1374 # define ev_floor(v) floor (v)
1375 #else
1376
1377 #include <float.h>
1378
1379 /* a floor() replacement function, should be independent of ev_tstamp type */
1380 static ev_tstamp noinline
1381 ev_floor (ev_tstamp v)
1382 {
1383 /* the choice of shift factor is not terribly important */
1384 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1385 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1386 #else
1387 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1388 #endif
1389
1390 /* argument too large for an unsigned long? */
1391 if (expect_false (v >= shift))
1392 {
1393 ev_tstamp f;
1394
1395 if (v == v - 1.)
1396 return v; /* very large number */
1397
1398 f = shift * ev_floor (v * (1. / shift));
1399 return f + ev_floor (v - f);
1400 }
1401
1402 /* special treatment for negative args? */
1403 if (expect_false (v < 0.))
1404 {
1405 ev_tstamp f = -ev_floor (-v);
1406
1407 return f - (f == v ? 0 : 1);
1408 }
1409
1410 /* fits into an unsigned long */
1411 return (unsigned long)v;
1412 }
1413
1414 #endif
1415
1416 /*****************************************************************************/
1417
1418 #ifdef __linux
1419 # include <sys/utsname.h>
1420 #endif
1421
1422 static unsigned int noinline ecb_cold
1423 ev_linux_version (void)
1424 {
1425 #ifdef __linux
1426 unsigned int v = 0;
1427 struct utsname buf;
1428 int i;
1429 char *p = buf.release;
1430
1431 if (uname (&buf))
1432 return 0;
1433
1434 for (i = 3+1; --i; )
1435 {
1436 unsigned int c = 0;
1437
1438 for (;;)
1439 {
1440 if (*p >= '0' && *p <= '9')
1441 c = c * 10 + *p++ - '0';
1442 else
1443 {
1444 p += *p == '.';
1445 break;
1446 }
1447 }
1448
1449 v = (v << 8) | c;
1450 }
1451
1452 return v;
1453 #else
1454 return 0;
1455 #endif
1456 }
1457
1458 /*****************************************************************************/
1459
1460 #if EV_AVOID_STDIO
1461 static void noinline ecb_cold
1462 ev_printerr (const char *msg)
1463 {
1464 write (STDERR_FILENO, msg, strlen (msg));
1465 }
1466 #endif
1467
1468 static void (*syserr_cb)(const char *msg) EV_THROW;
1469
1470 void ecb_cold
1471 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1472 {
1473 syserr_cb = cb;
1474 }
1475
1476 static void noinline ecb_cold
1477 ev_syserr (const char *msg)
1478 {
1479 if (!msg)
1480 msg = "(libev) system error";
1481
1482 if (syserr_cb)
1483 syserr_cb (msg);
1484 else
1485 {
1486 #if EV_AVOID_STDIO
1487 ev_printerr (msg);
1488 ev_printerr (": ");
1489 ev_printerr (strerror (errno));
1490 ev_printerr ("\n");
1491 #else
1492 perror (msg);
1493 #endif
1494 abort ();
1495 }
1496 }
1497
1498 static void *
1499 ev_realloc_emul (void *ptr, long size) EV_THROW
1500 {
1501 /* some systems, notably openbsd and darwin, fail to properly
1502 * implement realloc (x, 0) (as required by both ansi c-89 and
1503 * the single unix specification, so work around them here.
1504 * recently, also (at least) fedora and debian started breaking it,
1505 * despite documenting it otherwise.
1506 */
1507
1508 if (size)
1509 return realloc (ptr, size);
1510
1511 free (ptr);
1512 return 0;
1513 }
1514
1515 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1516
1517 void ecb_cold
1518 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1519 {
1520 alloc = cb;
1521 }
1522
1523 inline_speed void *
1524 ev_realloc (void *ptr, long size)
1525 {
1526 ptr = alloc (ptr, size);
1527
1528 if (!ptr && size)
1529 {
1530 #if EV_AVOID_STDIO
1531 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1532 #else
1533 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1534 #endif
1535 abort ();
1536 }
1537
1538 return ptr;
1539 }
1540
1541 #define ev_malloc(size) ev_realloc (0, (size))
1542 #define ev_free(ptr) ev_realloc ((ptr), 0)
1543
1544 /*****************************************************************************/
1545
1546 /* set in reify when reification needed */
1547 #define EV_ANFD_REIFY 1
1548
1549 /* file descriptor info structure */
1550 typedef struct
1551 {
1552 WL head;
1553 unsigned char events; /* the events watched for */
1554 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1555 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1556 unsigned char unused;
1557 #if EV_USE_EPOLL
1558 unsigned int egen; /* generation counter to counter epoll bugs */
1559 #endif
1560 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1561 SOCKET handle;
1562 #endif
1563 #if EV_USE_IOCP
1564 OVERLAPPED or, ow;
1565 #endif
1566 } ANFD;
1567
1568 /* stores the pending event set for a given watcher */
1569 typedef struct
1570 {
1571 W w;
1572 int events; /* the pending event set for the given watcher */
1573 } ANPENDING;
1574
1575 #if EV_USE_INOTIFY
1576 /* hash table entry per inotify-id */
1577 typedef struct
1578 {
1579 WL head;
1580 } ANFS;
1581 #endif
1582
1583 /* Heap Entry */
1584 #if EV_HEAP_CACHE_AT
1585 /* a heap element */
1586 typedef struct {
1587 ev_tstamp at;
1588 WT w;
1589 } ANHE;
1590
1591 #define ANHE_w(he) (he).w /* access watcher, read-write */
1592 #define ANHE_at(he) (he).at /* access cached at, read-only */
1593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1594 #else
1595 /* a heap element */
1596 typedef WT ANHE;
1597
1598 #define ANHE_w(he) (he)
1599 #define ANHE_at(he) (he)->at
1600 #define ANHE_at_cache(he)
1601 #endif
1602
1603 #if EV_MULTIPLICITY
1604
1605 struct ev_loop
1606 {
1607 ev_tstamp ev_rt_now;
1608 #define ev_rt_now ((loop)->ev_rt_now)
1609 #define VAR(name,decl) decl;
1610 #include "ev_vars.h"
1611 #undef VAR
1612 };
1613 #include "ev_wrap.h"
1614
1615 static struct ev_loop default_loop_struct;
1616 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1617
1618 #else
1619
1620 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1621 #define VAR(name,decl) static decl;
1622 #include "ev_vars.h"
1623 #undef VAR
1624
1625 static int ev_default_loop_ptr;
1626
1627 #endif
1628
1629 #if EV_FEATURE_API
1630 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1631 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1632 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1633 #else
1634 # define EV_RELEASE_CB (void)0
1635 # define EV_ACQUIRE_CB (void)0
1636 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1637 #endif
1638
1639 #define EVBREAK_RECURSE 0x80
1640
1641 /*****************************************************************************/
1642
1643 #ifndef EV_HAVE_EV_TIME
1644 ev_tstamp
1645 ev_time (void) EV_THROW
1646 {
1647 #if EV_USE_REALTIME
1648 if (expect_true (have_realtime))
1649 {
1650 struct timespec ts;
1651 clock_gettime (CLOCK_REALTIME, &ts);
1652 return ts.tv_sec + ts.tv_nsec * 1e-9;
1653 }
1654 #endif
1655
1656 struct timeval tv;
1657 gettimeofday (&tv, 0);
1658 return tv.tv_sec + tv.tv_usec * 1e-6;
1659 }
1660 #endif
1661
1662 inline_size ev_tstamp
1663 get_clock (void)
1664 {
1665 #if EV_USE_MONOTONIC
1666 if (expect_true (have_monotonic))
1667 {
1668 struct timespec ts;
1669 clock_gettime (CLOCK_MONOTONIC, &ts);
1670 return ts.tv_sec + ts.tv_nsec * 1e-9;
1671 }
1672 #endif
1673
1674 return ev_time ();
1675 }
1676
1677 #if EV_MULTIPLICITY
1678 ev_tstamp
1679 ev_now (EV_P) EV_THROW
1680 {
1681 return ev_rt_now;
1682 }
1683 #endif
1684
1685 void
1686 ev_sleep (ev_tstamp delay) EV_THROW
1687 {
1688 if (delay > 0.)
1689 {
1690 #if EV_USE_NANOSLEEP
1691 struct timespec ts;
1692
1693 EV_TS_SET (ts, delay);
1694 nanosleep (&ts, 0);
1695 #elif defined _WIN32
1696 Sleep ((unsigned long)(delay * 1e3));
1697 #else
1698 struct timeval tv;
1699
1700 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1701 /* something not guaranteed by newer posix versions, but guaranteed */
1702 /* by older ones */
1703 EV_TV_SET (tv, delay);
1704 select (0, 0, 0, 0, &tv);
1705 #endif
1706 }
1707 }
1708
1709 /*****************************************************************************/
1710
1711 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1712
1713 /* find a suitable new size for the given array, */
1714 /* hopefully by rounding to a nice-to-malloc size */
1715 inline_size int
1716 array_nextsize (int elem, int cur, int cnt)
1717 {
1718 int ncur = cur + 1;
1719
1720 do
1721 ncur <<= 1;
1722 while (cnt > ncur);
1723
1724 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1725 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1726 {
1727 ncur *= elem;
1728 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1729 ncur = ncur - sizeof (void *) * 4;
1730 ncur /= elem;
1731 }
1732
1733 return ncur;
1734 }
1735
1736 static void * noinline ecb_cold
1737 array_realloc (int elem, void *base, int *cur, int cnt)
1738 {
1739 *cur = array_nextsize (elem, *cur, cnt);
1740 return ev_realloc (base, elem * *cur);
1741 }
1742
1743 #define array_init_zero(base,count) \
1744 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1745
1746 #define array_needsize(type,base,cur,cnt,init) \
1747 if (expect_false ((cnt) > (cur))) \
1748 { \
1749 int ecb_unused ocur_ = (cur); \
1750 (base) = (type *)array_realloc \
1751 (sizeof (type), (base), &(cur), (cnt)); \
1752 init ((base) + (ocur_), (cur) - ocur_); \
1753 }
1754
1755 #if 0
1756 #define array_slim(type,stem) \
1757 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1758 { \
1759 stem ## max = array_roundsize (stem ## cnt >> 1); \
1760 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1761 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1762 }
1763 #endif
1764
1765 #define array_free(stem, idx) \
1766 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1767
1768 /*****************************************************************************/
1769
1770 /* dummy callback for pending events */
1771 static void noinline
1772 pendingcb (EV_P_ ev_prepare *w, int revents)
1773 {
1774 }
1775
1776 void noinline
1777 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1778 {
1779 W w_ = (W)w;
1780 int pri = ABSPRI (w_);
1781
1782 if (expect_false (w_->pending))
1783 pendings [pri][w_->pending - 1].events |= revents;
1784 else
1785 {
1786 w_->pending = ++pendingcnt [pri];
1787 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1788 pendings [pri][w_->pending - 1].w = w_;
1789 pendings [pri][w_->pending - 1].events = revents;
1790 }
1791
1792 pendingpri = NUMPRI - 1;
1793 }
1794
1795 inline_speed void
1796 feed_reverse (EV_P_ W w)
1797 {
1798 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1799 rfeeds [rfeedcnt++] = w;
1800 }
1801
1802 inline_size void
1803 feed_reverse_done (EV_P_ int revents)
1804 {
1805 do
1806 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1807 while (rfeedcnt);
1808 }
1809
1810 inline_speed void
1811 queue_events (EV_P_ W *events, int eventcnt, int type)
1812 {
1813 int i;
1814
1815 for (i = 0; i < eventcnt; ++i)
1816 ev_feed_event (EV_A_ events [i], type);
1817 }
1818
1819 /*****************************************************************************/
1820
1821 inline_speed void
1822 fd_event_nocheck (EV_P_ int fd, int revents)
1823 {
1824 ANFD *anfd = anfds + fd;
1825 ev_io *w;
1826
1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1828 {
1829 int ev = w->events & revents;
1830
1831 if (ev)
1832 ev_feed_event (EV_A_ (W)w, ev);
1833 }
1834 }
1835
1836 /* do not submit kernel events for fds that have reify set */
1837 /* because that means they changed while we were polling for new events */
1838 inline_speed void
1839 fd_event (EV_P_ int fd, int revents)
1840 {
1841 ANFD *anfd = anfds + fd;
1842
1843 if (expect_true (!anfd->reify))
1844 fd_event_nocheck (EV_A_ fd, revents);
1845 }
1846
1847 void
1848 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1849 {
1850 if (fd >= 0 && fd < anfdmax)
1851 fd_event_nocheck (EV_A_ fd, revents);
1852 }
1853
1854 /* make sure the external fd watch events are in-sync */
1855 /* with the kernel/libev internal state */
1856 inline_size void
1857 fd_reify (EV_P)
1858 {
1859 int i;
1860
1861 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1862 for (i = 0; i < fdchangecnt; ++i)
1863 {
1864 int fd = fdchanges [i];
1865 ANFD *anfd = anfds + fd;
1866
1867 if (anfd->reify & EV__IOFDSET && anfd->head)
1868 {
1869 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1870
1871 if (handle != anfd->handle)
1872 {
1873 unsigned long arg;
1874
1875 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1876
1877 /* handle changed, but fd didn't - we need to do it in two steps */
1878 backend_modify (EV_A_ fd, anfd->events, 0);
1879 anfd->events = 0;
1880 anfd->handle = handle;
1881 }
1882 }
1883 }
1884 #endif
1885
1886 for (i = 0; i < fdchangecnt; ++i)
1887 {
1888 int fd = fdchanges [i];
1889 ANFD *anfd = anfds + fd;
1890 ev_io *w;
1891
1892 unsigned char o_events = anfd->events;
1893 unsigned char o_reify = anfd->reify;
1894
1895 anfd->reify = 0;
1896
1897 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1898 {
1899 anfd->events = 0;
1900
1901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1902 anfd->events |= (unsigned char)w->events;
1903
1904 if (o_events != anfd->events)
1905 o_reify = EV__IOFDSET; /* actually |= */
1906 }
1907
1908 if (o_reify & EV__IOFDSET)
1909 backend_modify (EV_A_ fd, o_events, anfd->events);
1910 }
1911
1912 fdchangecnt = 0;
1913 }
1914
1915 /* something about the given fd changed */
1916 inline_size void
1917 fd_change (EV_P_ int fd, int flags)
1918 {
1919 unsigned char reify = anfds [fd].reify;
1920 anfds [fd].reify |= flags;
1921
1922 if (expect_true (!reify))
1923 {
1924 ++fdchangecnt;
1925 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1926 fdchanges [fdchangecnt - 1] = fd;
1927 }
1928 }
1929
1930 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1931 inline_speed void ecb_cold
1932 fd_kill (EV_P_ int fd)
1933 {
1934 ev_io *w;
1935
1936 while ((w = (ev_io *)anfds [fd].head))
1937 {
1938 ev_io_stop (EV_A_ w);
1939 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1940 }
1941 }
1942
1943 /* check whether the given fd is actually valid, for error recovery */
1944 inline_size int ecb_cold
1945 fd_valid (int fd)
1946 {
1947 #ifdef _WIN32
1948 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1949 #else
1950 return fcntl (fd, F_GETFD) != -1;
1951 #endif
1952 }
1953
1954 /* called on EBADF to verify fds */
1955 static void noinline ecb_cold
1956 fd_ebadf (EV_P)
1957 {
1958 int fd;
1959
1960 for (fd = 0; fd < anfdmax; ++fd)
1961 if (anfds [fd].events)
1962 if (!fd_valid (fd) && errno == EBADF)
1963 fd_kill (EV_A_ fd);
1964 }
1965
1966 /* called on ENOMEM in select/poll to kill some fds and retry */
1967 static void noinline ecb_cold
1968 fd_enomem (EV_P)
1969 {
1970 int fd;
1971
1972 for (fd = anfdmax; fd--; )
1973 if (anfds [fd].events)
1974 {
1975 fd_kill (EV_A_ fd);
1976 break;
1977 }
1978 }
1979
1980 /* usually called after fork if backend needs to re-arm all fds from scratch */
1981 static void noinline
1982 fd_rearm_all (EV_P)
1983 {
1984 int fd;
1985
1986 for (fd = 0; fd < anfdmax; ++fd)
1987 if (anfds [fd].events)
1988 {
1989 anfds [fd].events = 0;
1990 anfds [fd].emask = 0;
1991 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1992 }
1993 }
1994
1995 /* used to prepare libev internal fd's */
1996 /* this is not fork-safe */
1997 inline_speed void
1998 fd_intern (int fd)
1999 {
2000 #ifdef _WIN32
2001 unsigned long arg = 1;
2002 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2003 #else
2004 fcntl (fd, F_SETFD, FD_CLOEXEC);
2005 fcntl (fd, F_SETFL, O_NONBLOCK);
2006 #endif
2007 }
2008
2009 /*****************************************************************************/
2010
2011 /*
2012 * the heap functions want a real array index. array index 0 is guaranteed to not
2013 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2014 * the branching factor of the d-tree.
2015 */
2016
2017 /*
2018 * at the moment we allow libev the luxury of two heaps,
2019 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2020 * which is more cache-efficient.
2021 * the difference is about 5% with 50000+ watchers.
2022 */
2023 #if EV_USE_4HEAP
2024
2025 #define DHEAP 4
2026 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2027 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2028 #define UPHEAP_DONE(p,k) ((p) == (k))
2029
2030 /* away from the root */
2031 inline_speed void
2032 downheap (ANHE *heap, int N, int k)
2033 {
2034 ANHE he = heap [k];
2035 ANHE *E = heap + N + HEAP0;
2036
2037 for (;;)
2038 {
2039 ev_tstamp minat;
2040 ANHE *minpos;
2041 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2042
2043 /* find minimum child */
2044 if (expect_true (pos + DHEAP - 1 < E))
2045 {
2046 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 }
2051 else if (pos < E)
2052 {
2053 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2054 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2055 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2056 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2057 }
2058 else
2059 break;
2060
2061 if (ANHE_at (he) <= minat)
2062 break;
2063
2064 heap [k] = *minpos;
2065 ev_active (ANHE_w (*minpos)) = k;
2066
2067 k = minpos - heap;
2068 }
2069
2070 heap [k] = he;
2071 ev_active (ANHE_w (he)) = k;
2072 }
2073
2074 #else /* 4HEAP */
2075
2076 #define HEAP0 1
2077 #define HPARENT(k) ((k) >> 1)
2078 #define UPHEAP_DONE(p,k) (!(p))
2079
2080 /* away from the root */
2081 inline_speed void
2082 downheap (ANHE *heap, int N, int k)
2083 {
2084 ANHE he = heap [k];
2085
2086 for (;;)
2087 {
2088 int c = k << 1;
2089
2090 if (c >= N + HEAP0)
2091 break;
2092
2093 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2094 ? 1 : 0;
2095
2096 if (ANHE_at (he) <= ANHE_at (heap [c]))
2097 break;
2098
2099 heap [k] = heap [c];
2100 ev_active (ANHE_w (heap [k])) = k;
2101
2102 k = c;
2103 }
2104
2105 heap [k] = he;
2106 ev_active (ANHE_w (he)) = k;
2107 }
2108 #endif
2109
2110 /* towards the root */
2111 inline_speed void
2112 upheap (ANHE *heap, int k)
2113 {
2114 ANHE he = heap [k];
2115
2116 for (;;)
2117 {
2118 int p = HPARENT (k);
2119
2120 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2121 break;
2122
2123 heap [k] = heap [p];
2124 ev_active (ANHE_w (heap [k])) = k;
2125 k = p;
2126 }
2127
2128 heap [k] = he;
2129 ev_active (ANHE_w (he)) = k;
2130 }
2131
2132 /* move an element suitably so it is in a correct place */
2133 inline_size void
2134 adjustheap (ANHE *heap, int N, int k)
2135 {
2136 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2137 upheap (heap, k);
2138 else
2139 downheap (heap, N, k);
2140 }
2141
2142 /* rebuild the heap: this function is used only once and executed rarely */
2143 inline_size void
2144 reheap (ANHE *heap, int N)
2145 {
2146 int i;
2147
2148 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2149 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2150 for (i = 0; i < N; ++i)
2151 upheap (heap, i + HEAP0);
2152 }
2153
2154 /*****************************************************************************/
2155
2156 /* associate signal watchers to a signal signal */
2157 typedef struct
2158 {
2159 EV_ATOMIC_T pending;
2160 #if EV_MULTIPLICITY
2161 EV_P;
2162 #endif
2163 WL head;
2164 } ANSIG;
2165
2166 static ANSIG signals [EV_NSIG - 1];
2167
2168 /*****************************************************************************/
2169
2170 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2171
2172 static void noinline ecb_cold
2173 evpipe_init (EV_P)
2174 {
2175 if (!ev_is_active (&pipe_w))
2176 {
2177 int fds [2];
2178
2179 # if EV_USE_EVENTFD
2180 fds [0] = -1;
2181 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2182 if (fds [1] < 0 && errno == EINVAL)
2183 fds [1] = eventfd (0, 0);
2184
2185 if (fds [1] < 0)
2186 # endif
2187 {
2188 while (pipe (fds))
2189 ev_syserr ("(libev) error creating signal/async pipe");
2190
2191 fd_intern (fds [0]);
2192 }
2193
2194 evpipe [0] = fds [0];
2195
2196 if (evpipe [1] < 0)
2197 evpipe [1] = fds [1]; /* first call, set write fd */
2198 else
2199 {
2200 /* on subsequent calls, do not change evpipe [1] */
2201 /* so that evpipe_write can always rely on its value. */
2202 /* this branch does not do anything sensible on windows, */
2203 /* so must not be executed on windows */
2204
2205 dup2 (fds [1], evpipe [1]);
2206 close (fds [1]);
2207 }
2208
2209 fd_intern (evpipe [1]);
2210
2211 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2212 ev_io_start (EV_A_ &pipe_w);
2213 ev_unref (EV_A); /* watcher should not keep loop alive */
2214 }
2215 }
2216
2217 inline_speed void
2218 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2219 {
2220 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2221
2222 if (expect_true (*flag))
2223 return;
2224
2225 *flag = 1;
2226 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2227
2228 pipe_write_skipped = 1;
2229
2230 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2231
2232 if (pipe_write_wanted)
2233 {
2234 int old_errno;
2235
2236 pipe_write_skipped = 0;
2237 ECB_MEMORY_FENCE_RELEASE;
2238
2239 old_errno = errno; /* save errno because write will clobber it */
2240
2241 #if EV_USE_EVENTFD
2242 if (evpipe [0] < 0)
2243 {
2244 uint64_t counter = 1;
2245 write (evpipe [1], &counter, sizeof (uint64_t));
2246 }
2247 else
2248 #endif
2249 {
2250 #ifdef _WIN32
2251 WSABUF buf;
2252 DWORD sent;
2253 buf.buf = &buf;
2254 buf.len = 1;
2255 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2256 #else
2257 write (evpipe [1], &(evpipe [1]), 1);
2258 #endif
2259 }
2260
2261 errno = old_errno;
2262 }
2263 }
2264
2265 /* called whenever the libev signal pipe */
2266 /* got some events (signal, async) */
2267 static void
2268 pipecb (EV_P_ ev_io *iow, int revents)
2269 {
2270 int i;
2271
2272 if (revents & EV_READ)
2273 {
2274 #if EV_USE_EVENTFD
2275 if (evpipe [0] < 0)
2276 {
2277 uint64_t counter;
2278 read (evpipe [1], &counter, sizeof (uint64_t));
2279 }
2280 else
2281 #endif
2282 {
2283 char dummy[4];
2284 #ifdef _WIN32
2285 WSABUF buf;
2286 DWORD recvd;
2287 DWORD flags = 0;
2288 buf.buf = dummy;
2289 buf.len = sizeof (dummy);
2290 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2291 #else
2292 read (evpipe [0], &dummy, sizeof (dummy));
2293 #endif
2294 }
2295 }
2296
2297 pipe_write_skipped = 0;
2298
2299 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2300
2301 #if EV_SIGNAL_ENABLE
2302 if (sig_pending)
2303 {
2304 sig_pending = 0;
2305
2306 ECB_MEMORY_FENCE;
2307
2308 for (i = EV_NSIG - 1; i--; )
2309 if (expect_false (signals [i].pending))
2310 ev_feed_signal_event (EV_A_ i + 1);
2311 }
2312 #endif
2313
2314 #if EV_ASYNC_ENABLE
2315 if (async_pending)
2316 {
2317 async_pending = 0;
2318
2319 ECB_MEMORY_FENCE;
2320
2321 for (i = asynccnt; i--; )
2322 if (asyncs [i]->sent)
2323 {
2324 asyncs [i]->sent = 0;
2325 ECB_MEMORY_FENCE_RELEASE;
2326 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2327 }
2328 }
2329 #endif
2330 }
2331
2332 /*****************************************************************************/
2333
2334 void
2335 ev_feed_signal (int signum) EV_THROW
2336 {
2337 #if EV_MULTIPLICITY
2338 EV_P;
2339 ECB_MEMORY_FENCE_ACQUIRE;
2340 EV_A = signals [signum - 1].loop;
2341
2342 if (!EV_A)
2343 return;
2344 #endif
2345
2346 signals [signum - 1].pending = 1;
2347 evpipe_write (EV_A_ &sig_pending);
2348 }
2349
2350 static void
2351 ev_sighandler (int signum)
2352 {
2353 #ifdef _WIN32
2354 signal (signum, ev_sighandler);
2355 #endif
2356
2357 ev_feed_signal (signum);
2358 }
2359
2360 void noinline
2361 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2362 {
2363 WL w;
2364
2365 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2366 return;
2367
2368 --signum;
2369
2370 #if EV_MULTIPLICITY
2371 /* it is permissible to try to feed a signal to the wrong loop */
2372 /* or, likely more useful, feeding a signal nobody is waiting for */
2373
2374 if (expect_false (signals [signum].loop != EV_A))
2375 return;
2376 #endif
2377
2378 signals [signum].pending = 0;
2379 ECB_MEMORY_FENCE_RELEASE;
2380
2381 for (w = signals [signum].head; w; w = w->next)
2382 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2383 }
2384
2385 #if EV_USE_SIGNALFD
2386 static void
2387 sigfdcb (EV_P_ ev_io *iow, int revents)
2388 {
2389 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2390
2391 for (;;)
2392 {
2393 ssize_t res = read (sigfd, si, sizeof (si));
2394
2395 /* not ISO-C, as res might be -1, but works with SuS */
2396 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2397 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2398
2399 if (res < (ssize_t)sizeof (si))
2400 break;
2401 }
2402 }
2403 #endif
2404
2405 #endif
2406
2407 /*****************************************************************************/
2408
2409 #if EV_CHILD_ENABLE
2410 static WL childs [EV_PID_HASHSIZE];
2411
2412 static ev_signal childev;
2413
2414 #ifndef WIFCONTINUED
2415 # define WIFCONTINUED(status) 0
2416 #endif
2417
2418 /* handle a single child status event */
2419 inline_speed void
2420 child_reap (EV_P_ int chain, int pid, int status)
2421 {
2422 ev_child *w;
2423 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2424
2425 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2426 {
2427 if ((w->pid == pid || !w->pid)
2428 && (!traced || (w->flags & 1)))
2429 {
2430 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2431 w->rpid = pid;
2432 w->rstatus = status;
2433 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2434 }
2435 }
2436 }
2437
2438 #ifndef WCONTINUED
2439 # define WCONTINUED 0
2440 #endif
2441
2442 /* called on sigchld etc., calls waitpid */
2443 static void
2444 childcb (EV_P_ ev_signal *sw, int revents)
2445 {
2446 int pid, status;
2447
2448 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2449 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2450 if (!WCONTINUED
2451 || errno != EINVAL
2452 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2453 return;
2454
2455 /* make sure we are called again until all children have been reaped */
2456 /* we need to do it this way so that the callback gets called before we continue */
2457 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2458
2459 child_reap (EV_A_ pid, pid, status);
2460 if ((EV_PID_HASHSIZE) > 1)
2461 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2462 }
2463
2464 #endif
2465
2466 /*****************************************************************************/
2467
2468 #if EV_USE_IOCP
2469 # include "ev_iocp.c"
2470 #endif
2471 #if EV_USE_PORT
2472 # include "ev_port.c"
2473 #endif
2474 #if EV_USE_KQUEUE
2475 # include "ev_kqueue.c"
2476 #endif
2477 #if EV_USE_EPOLL
2478 # include "ev_epoll.c"
2479 #endif
2480 #if EV_USE_POLL
2481 # include "ev_poll.c"
2482 #endif
2483 #if EV_USE_SELECT
2484 # include "ev_select.c"
2485 #endif
2486
2487 int ecb_cold
2488 ev_version_major (void) EV_THROW
2489 {
2490 return EV_VERSION_MAJOR;
2491 }
2492
2493 int ecb_cold
2494 ev_version_minor (void) EV_THROW
2495 {
2496 return EV_VERSION_MINOR;
2497 }
2498
2499 /* return true if we are running with elevated privileges and should ignore env variables */
2500 int inline_size ecb_cold
2501 enable_secure (void)
2502 {
2503 #ifdef _WIN32
2504 return 0;
2505 #else
2506 return getuid () != geteuid ()
2507 || getgid () != getegid ();
2508 #endif
2509 }
2510
2511 unsigned int ecb_cold
2512 ev_supported_backends (void) EV_THROW
2513 {
2514 unsigned int flags = 0;
2515
2516 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2517 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2518 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2519 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2520 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2521
2522 return flags;
2523 }
2524
2525 unsigned int ecb_cold
2526 ev_recommended_backends (void) EV_THROW
2527 {
2528 unsigned int flags = ev_supported_backends ();
2529
2530 #ifndef __NetBSD__
2531 /* kqueue is borked on everything but netbsd apparently */
2532 /* it usually doesn't work correctly on anything but sockets and pipes */
2533 flags &= ~EVBACKEND_KQUEUE;
2534 #endif
2535 #ifdef __APPLE__
2536 /* only select works correctly on that "unix-certified" platform */
2537 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2538 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2539 #endif
2540 #ifdef __FreeBSD__
2541 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2542 #endif
2543
2544 return flags;
2545 }
2546
2547 unsigned int ecb_cold
2548 ev_embeddable_backends (void) EV_THROW
2549 {
2550 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2551
2552 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2553 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2554 flags &= ~EVBACKEND_EPOLL;
2555
2556 return flags;
2557 }
2558
2559 unsigned int
2560 ev_backend (EV_P) EV_THROW
2561 {
2562 return backend;
2563 }
2564
2565 #if EV_FEATURE_API
2566 unsigned int
2567 ev_iteration (EV_P) EV_THROW
2568 {
2569 return loop_count;
2570 }
2571
2572 unsigned int
2573 ev_depth (EV_P) EV_THROW
2574 {
2575 return loop_depth;
2576 }
2577
2578 void
2579 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2580 {
2581 io_blocktime = interval;
2582 }
2583
2584 void
2585 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2586 {
2587 timeout_blocktime = interval;
2588 }
2589
2590 void
2591 ev_set_userdata (EV_P_ void *data) EV_THROW
2592 {
2593 userdata = data;
2594 }
2595
2596 void *
2597 ev_userdata (EV_P) EV_THROW
2598 {
2599 return userdata;
2600 }
2601
2602 void
2603 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2604 {
2605 invoke_cb = invoke_pending_cb;
2606 }
2607
2608 void
2609 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2610 {
2611 release_cb = release;
2612 acquire_cb = acquire;
2613 }
2614 #endif
2615
2616 /* initialise a loop structure, must be zero-initialised */
2617 static void noinline ecb_cold
2618 loop_init (EV_P_ unsigned int flags) EV_THROW
2619 {
2620 if (!backend)
2621 {
2622 origflags = flags;
2623
2624 #if EV_USE_REALTIME
2625 if (!have_realtime)
2626 {
2627 struct timespec ts;
2628
2629 if (!clock_gettime (CLOCK_REALTIME, &ts))
2630 have_realtime = 1;
2631 }
2632 #endif
2633
2634 #if EV_USE_MONOTONIC
2635 if (!have_monotonic)
2636 {
2637 struct timespec ts;
2638
2639 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2640 have_monotonic = 1;
2641 }
2642 #endif
2643
2644 /* pid check not overridable via env */
2645 #ifndef _WIN32
2646 if (flags & EVFLAG_FORKCHECK)
2647 curpid = getpid ();
2648 #endif
2649
2650 if (!(flags & EVFLAG_NOENV)
2651 && !enable_secure ()
2652 && getenv ("LIBEV_FLAGS"))
2653 flags = atoi (getenv ("LIBEV_FLAGS"));
2654
2655 ev_rt_now = ev_time ();
2656 mn_now = get_clock ();
2657 now_floor = mn_now;
2658 rtmn_diff = ev_rt_now - mn_now;
2659 #if EV_FEATURE_API
2660 invoke_cb = ev_invoke_pending;
2661 #endif
2662
2663 io_blocktime = 0.;
2664 timeout_blocktime = 0.;
2665 backend = 0;
2666 backend_fd = -1;
2667 sig_pending = 0;
2668 #if EV_ASYNC_ENABLE
2669 async_pending = 0;
2670 #endif
2671 pipe_write_skipped = 0;
2672 pipe_write_wanted = 0;
2673 evpipe [0] = -1;
2674 evpipe [1] = -1;
2675 #if EV_USE_INOTIFY
2676 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2677 #endif
2678 #if EV_USE_SIGNALFD
2679 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2680 #endif
2681
2682 if (!(flags & EVBACKEND_MASK))
2683 flags |= ev_recommended_backends ();
2684
2685 #if EV_USE_IOCP
2686 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2687 #endif
2688 #if EV_USE_PORT
2689 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2690 #endif
2691 #if EV_USE_KQUEUE
2692 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2693 #endif
2694 #if EV_USE_EPOLL
2695 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2696 #endif
2697 #if EV_USE_POLL
2698 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2699 #endif
2700 #if EV_USE_SELECT
2701 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2702 #endif
2703
2704 ev_prepare_init (&pending_w, pendingcb);
2705
2706 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2707 ev_init (&pipe_w, pipecb);
2708 ev_set_priority (&pipe_w, EV_MAXPRI);
2709 #endif
2710 }
2711 }
2712
2713 /* free up a loop structure */
2714 void ecb_cold
2715 ev_loop_destroy (EV_P)
2716 {
2717 int i;
2718
2719 #if EV_MULTIPLICITY
2720 /* mimic free (0) */
2721 if (!EV_A)
2722 return;
2723 #endif
2724
2725 #if EV_CLEANUP_ENABLE
2726 /* queue cleanup watchers (and execute them) */
2727 if (expect_false (cleanupcnt))
2728 {
2729 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2730 EV_INVOKE_PENDING;
2731 }
2732 #endif
2733
2734 #if EV_CHILD_ENABLE
2735 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2736 {
2737 ev_ref (EV_A); /* child watcher */
2738 ev_signal_stop (EV_A_ &childev);
2739 }
2740 #endif
2741
2742 if (ev_is_active (&pipe_w))
2743 {
2744 /*ev_ref (EV_A);*/
2745 /*ev_io_stop (EV_A_ &pipe_w);*/
2746
2747 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2748 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2749 }
2750
2751 #if EV_USE_SIGNALFD
2752 if (ev_is_active (&sigfd_w))
2753 close (sigfd);
2754 #endif
2755
2756 #if EV_USE_INOTIFY
2757 if (fs_fd >= 0)
2758 close (fs_fd);
2759 #endif
2760
2761 if (backend_fd >= 0)
2762 close (backend_fd);
2763
2764 #if EV_USE_IOCP
2765 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2766 #endif
2767 #if EV_USE_PORT
2768 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2769 #endif
2770 #if EV_USE_KQUEUE
2771 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2772 #endif
2773 #if EV_USE_EPOLL
2774 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2775 #endif
2776 #if EV_USE_POLL
2777 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2778 #endif
2779 #if EV_USE_SELECT
2780 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2781 #endif
2782
2783 for (i = NUMPRI; i--; )
2784 {
2785 array_free (pending, [i]);
2786 #if EV_IDLE_ENABLE
2787 array_free (idle, [i]);
2788 #endif
2789 }
2790
2791 ev_free (anfds); anfds = 0; anfdmax = 0;
2792
2793 /* have to use the microsoft-never-gets-it-right macro */
2794 array_free (rfeed, EMPTY);
2795 array_free (fdchange, EMPTY);
2796 array_free (timer, EMPTY);
2797 #if EV_PERIODIC_ENABLE
2798 array_free (periodic, EMPTY);
2799 #endif
2800 #if EV_FORK_ENABLE
2801 array_free (fork, EMPTY);
2802 #endif
2803 #if EV_CLEANUP_ENABLE
2804 array_free (cleanup, EMPTY);
2805 #endif
2806 array_free (prepare, EMPTY);
2807 array_free (check, EMPTY);
2808 #if EV_ASYNC_ENABLE
2809 array_free (async, EMPTY);
2810 #endif
2811
2812 backend = 0;
2813
2814 #if EV_MULTIPLICITY
2815 if (ev_is_default_loop (EV_A))
2816 #endif
2817 ev_default_loop_ptr = 0;
2818 #if EV_MULTIPLICITY
2819 else
2820 ev_free (EV_A);
2821 #endif
2822 }
2823
2824 #if EV_USE_INOTIFY
2825 inline_size void infy_fork (EV_P);
2826 #endif
2827
2828 inline_size void
2829 loop_fork (EV_P)
2830 {
2831 #if EV_USE_PORT
2832 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2833 #endif
2834 #if EV_USE_KQUEUE
2835 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2836 #endif
2837 #if EV_USE_EPOLL
2838 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2839 #endif
2840 #if EV_USE_INOTIFY
2841 infy_fork (EV_A);
2842 #endif
2843
2844 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2845 if (ev_is_active (&pipe_w))
2846 {
2847 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2848
2849 ev_ref (EV_A);
2850 ev_io_stop (EV_A_ &pipe_w);
2851
2852 if (evpipe [0] >= 0)
2853 EV_WIN32_CLOSE_FD (evpipe [0]);
2854
2855 evpipe_init (EV_A);
2856 /* iterate over everything, in case we missed something before */
2857 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2858 }
2859 #endif
2860
2861 postfork = 0;
2862 }
2863
2864 #if EV_MULTIPLICITY
2865
2866 struct ev_loop * ecb_cold
2867 ev_loop_new (unsigned int flags) EV_THROW
2868 {
2869 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2870
2871 memset (EV_A, 0, sizeof (struct ev_loop));
2872 loop_init (EV_A_ flags);
2873
2874 if (ev_backend (EV_A))
2875 return EV_A;
2876
2877 ev_free (EV_A);
2878 return 0;
2879 }
2880
2881 #endif /* multiplicity */
2882
2883 #if EV_VERIFY
2884 static void noinline ecb_cold
2885 verify_watcher (EV_P_ W w)
2886 {
2887 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2888
2889 if (w->pending)
2890 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2891 }
2892
2893 static void noinline ecb_cold
2894 verify_heap (EV_P_ ANHE *heap, int N)
2895 {
2896 int i;
2897
2898 for (i = HEAP0; i < N + HEAP0; ++i)
2899 {
2900 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2901 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2902 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2903
2904 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2905 }
2906 }
2907
2908 static void noinline ecb_cold
2909 array_verify (EV_P_ W *ws, int cnt)
2910 {
2911 while (cnt--)
2912 {
2913 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2914 verify_watcher (EV_A_ ws [cnt]);
2915 }
2916 }
2917 #endif
2918
2919 #if EV_FEATURE_API
2920 void ecb_cold
2921 ev_verify (EV_P) EV_THROW
2922 {
2923 #if EV_VERIFY
2924 int i;
2925 WL w, w2;
2926
2927 assert (activecnt >= -1);
2928
2929 assert (fdchangemax >= fdchangecnt);
2930 for (i = 0; i < fdchangecnt; ++i)
2931 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2932
2933 assert (anfdmax >= 0);
2934 for (i = 0; i < anfdmax; ++i)
2935 {
2936 int j = 0;
2937
2938 for (w = w2 = anfds [i].head; w; w = w->next)
2939 {
2940 verify_watcher (EV_A_ (W)w);
2941
2942 if (j++ & 1)
2943 {
2944 assert (("libev: io watcher list contains a loop", w != w2));
2945 w2 = w2->next;
2946 }
2947
2948 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2949 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2950 }
2951 }
2952
2953 assert (timermax >= timercnt);
2954 verify_heap (EV_A_ timers, timercnt);
2955
2956 #if EV_PERIODIC_ENABLE
2957 assert (periodicmax >= periodiccnt);
2958 verify_heap (EV_A_ periodics, periodiccnt);
2959 #endif
2960
2961 for (i = NUMPRI; i--; )
2962 {
2963 assert (pendingmax [i] >= pendingcnt [i]);
2964 #if EV_IDLE_ENABLE
2965 assert (idleall >= 0);
2966 assert (idlemax [i] >= idlecnt [i]);
2967 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2968 #endif
2969 }
2970
2971 #if EV_FORK_ENABLE
2972 assert (forkmax >= forkcnt);
2973 array_verify (EV_A_ (W *)forks, forkcnt);
2974 #endif
2975
2976 #if EV_CLEANUP_ENABLE
2977 assert (cleanupmax >= cleanupcnt);
2978 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2979 #endif
2980
2981 #if EV_ASYNC_ENABLE
2982 assert (asyncmax >= asynccnt);
2983 array_verify (EV_A_ (W *)asyncs, asynccnt);
2984 #endif
2985
2986 #if EV_PREPARE_ENABLE
2987 assert (preparemax >= preparecnt);
2988 array_verify (EV_A_ (W *)prepares, preparecnt);
2989 #endif
2990
2991 #if EV_CHECK_ENABLE
2992 assert (checkmax >= checkcnt);
2993 array_verify (EV_A_ (W *)checks, checkcnt);
2994 #endif
2995
2996 # if 0
2997 #if EV_CHILD_ENABLE
2998 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2999 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3000 #endif
3001 # endif
3002 #endif
3003 }
3004 #endif
3005
3006 #if EV_MULTIPLICITY
3007 struct ev_loop * ecb_cold
3008 #else
3009 int
3010 #endif
3011 ev_default_loop (unsigned int flags) EV_THROW
3012 {
3013 if (!ev_default_loop_ptr)
3014 {
3015 #if EV_MULTIPLICITY
3016 EV_P = ev_default_loop_ptr = &default_loop_struct;
3017 #else
3018 ev_default_loop_ptr = 1;
3019 #endif
3020
3021 loop_init (EV_A_ flags);
3022
3023 if (ev_backend (EV_A))
3024 {
3025 #if EV_CHILD_ENABLE
3026 ev_signal_init (&childev, childcb, SIGCHLD);
3027 ev_set_priority (&childev, EV_MAXPRI);
3028 ev_signal_start (EV_A_ &childev);
3029 ev_unref (EV_A); /* child watcher should not keep loop alive */
3030 #endif
3031 }
3032 else
3033 ev_default_loop_ptr = 0;
3034 }
3035
3036 return ev_default_loop_ptr;
3037 }
3038
3039 void
3040 ev_loop_fork (EV_P) EV_THROW
3041 {
3042 postfork = 1;
3043 }
3044
3045 /*****************************************************************************/
3046
3047 void
3048 ev_invoke (EV_P_ void *w, int revents)
3049 {
3050 EV_CB_INVOKE ((W)w, revents);
3051 }
3052
3053 unsigned int
3054 ev_pending_count (EV_P) EV_THROW
3055 {
3056 int pri;
3057 unsigned int count = 0;
3058
3059 for (pri = NUMPRI; pri--; )
3060 count += pendingcnt [pri];
3061
3062 return count;
3063 }
3064
3065 void noinline
3066 ev_invoke_pending (EV_P)
3067 {
3068 pendingpri = NUMPRI;
3069
3070 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3071 {
3072 --pendingpri;
3073
3074 while (pendingcnt [pendingpri])
3075 {
3076 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3077
3078 p->w->pending = 0;
3079 EV_CB_INVOKE (p->w, p->events);
3080 EV_FREQUENT_CHECK;
3081 }
3082 }
3083 }
3084
3085 #if EV_IDLE_ENABLE
3086 /* make idle watchers pending. this handles the "call-idle */
3087 /* only when higher priorities are idle" logic */
3088 inline_size void
3089 idle_reify (EV_P)
3090 {
3091 if (expect_false (idleall))
3092 {
3093 int pri;
3094
3095 for (pri = NUMPRI; pri--; )
3096 {
3097 if (pendingcnt [pri])
3098 break;
3099
3100 if (idlecnt [pri])
3101 {
3102 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3103 break;
3104 }
3105 }
3106 }
3107 }
3108 #endif
3109
3110 /* make timers pending */
3111 inline_size void
3112 timers_reify (EV_P)
3113 {
3114 EV_FREQUENT_CHECK;
3115
3116 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3117 {
3118 do
3119 {
3120 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3121
3122 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3123
3124 /* first reschedule or stop timer */
3125 if (w->repeat)
3126 {
3127 ev_at (w) += w->repeat;
3128 if (ev_at (w) < mn_now)
3129 ev_at (w) = mn_now;
3130
3131 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3132
3133 ANHE_at_cache (timers [HEAP0]);
3134 downheap (timers, timercnt, HEAP0);
3135 }
3136 else
3137 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3138
3139 EV_FREQUENT_CHECK;
3140 feed_reverse (EV_A_ (W)w);
3141 }
3142 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3143
3144 feed_reverse_done (EV_A_ EV_TIMER);
3145 }
3146 }
3147
3148 #if EV_PERIODIC_ENABLE
3149
3150 static void noinline
3151 periodic_recalc (EV_P_ ev_periodic *w)
3152 {
3153 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3154 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3155
3156 /* the above almost always errs on the low side */
3157 while (at <= ev_rt_now)
3158 {
3159 ev_tstamp nat = at + w->interval;
3160
3161 /* when resolution fails us, we use ev_rt_now */
3162 if (expect_false (nat == at))
3163 {
3164 at = ev_rt_now;
3165 break;
3166 }
3167
3168 at = nat;
3169 }
3170
3171 ev_at (w) = at;
3172 }
3173
3174 /* make periodics pending */
3175 inline_size void
3176 periodics_reify (EV_P)
3177 {
3178 EV_FREQUENT_CHECK;
3179
3180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3181 {
3182 do
3183 {
3184 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3185
3186 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3187
3188 /* first reschedule or stop timer */
3189 if (w->reschedule_cb)
3190 {
3191 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3192
3193 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3194
3195 ANHE_at_cache (periodics [HEAP0]);
3196 downheap (periodics, periodiccnt, HEAP0);
3197 }
3198 else if (w->interval)
3199 {
3200 periodic_recalc (EV_A_ w);
3201 ANHE_at_cache (periodics [HEAP0]);
3202 downheap (periodics, periodiccnt, HEAP0);
3203 }
3204 else
3205 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3206
3207 EV_FREQUENT_CHECK;
3208 feed_reverse (EV_A_ (W)w);
3209 }
3210 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3211
3212 feed_reverse_done (EV_A_ EV_PERIODIC);
3213 }
3214 }
3215
3216 /* simply recalculate all periodics */
3217 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3218 static void noinline ecb_cold
3219 periodics_reschedule (EV_P)
3220 {
3221 int i;
3222
3223 /* adjust periodics after time jump */
3224 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3225 {
3226 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3227
3228 if (w->reschedule_cb)
3229 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3230 else if (w->interval)
3231 periodic_recalc (EV_A_ w);
3232
3233 ANHE_at_cache (periodics [i]);
3234 }
3235
3236 reheap (periodics, periodiccnt);
3237 }
3238 #endif
3239
3240 /* adjust all timers by a given offset */
3241 static void noinline ecb_cold
3242 timers_reschedule (EV_P_ ev_tstamp adjust)
3243 {
3244 int i;
3245
3246 for (i = 0; i < timercnt; ++i)
3247 {
3248 ANHE *he = timers + i + HEAP0;
3249 ANHE_w (*he)->at += adjust;
3250 ANHE_at_cache (*he);
3251 }
3252 }
3253
3254 /* fetch new monotonic and realtime times from the kernel */
3255 /* also detect if there was a timejump, and act accordingly */
3256 inline_speed void
3257 time_update (EV_P_ ev_tstamp max_block)
3258 {
3259 #if EV_USE_MONOTONIC
3260 if (expect_true (have_monotonic))
3261 {
3262 int i;
3263 ev_tstamp odiff = rtmn_diff;
3264
3265 mn_now = get_clock ();
3266
3267 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3268 /* interpolate in the meantime */
3269 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3270 {
3271 ev_rt_now = rtmn_diff + mn_now;
3272 return;
3273 }
3274
3275 now_floor = mn_now;
3276 ev_rt_now = ev_time ();
3277
3278 /* loop a few times, before making important decisions.
3279 * on the choice of "4": one iteration isn't enough,
3280 * in case we get preempted during the calls to
3281 * ev_time and get_clock. a second call is almost guaranteed
3282 * to succeed in that case, though. and looping a few more times
3283 * doesn't hurt either as we only do this on time-jumps or
3284 * in the unlikely event of having been preempted here.
3285 */
3286 for (i = 4; --i; )
3287 {
3288 ev_tstamp diff;
3289 rtmn_diff = ev_rt_now - mn_now;
3290
3291 diff = odiff - rtmn_diff;
3292
3293 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3294 return; /* all is well */
3295
3296 ev_rt_now = ev_time ();
3297 mn_now = get_clock ();
3298 now_floor = mn_now;
3299 }
3300
3301 /* no timer adjustment, as the monotonic clock doesn't jump */
3302 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3303 # if EV_PERIODIC_ENABLE
3304 periodics_reschedule (EV_A);
3305 # endif
3306 }
3307 else
3308 #endif
3309 {
3310 ev_rt_now = ev_time ();
3311
3312 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3313 {
3314 /* adjust timers. this is easy, as the offset is the same for all of them */
3315 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3316 #if EV_PERIODIC_ENABLE
3317 periodics_reschedule (EV_A);
3318 #endif
3319 }
3320
3321 mn_now = ev_rt_now;
3322 }
3323 }
3324
3325 int
3326 ev_run (EV_P_ int flags)
3327 {
3328 #if EV_FEATURE_API
3329 ++loop_depth;
3330 #endif
3331
3332 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3333
3334 loop_done = EVBREAK_CANCEL;
3335
3336 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3337
3338 do
3339 {
3340 #if EV_VERIFY >= 2
3341 ev_verify (EV_A);
3342 #endif
3343
3344 #ifndef _WIN32
3345 if (expect_false (curpid)) /* penalise the forking check even more */
3346 if (expect_false (getpid () != curpid))
3347 {
3348 curpid = getpid ();
3349 postfork = 1;
3350 }
3351 #endif
3352
3353 #if EV_FORK_ENABLE
3354 /* we might have forked, so queue fork handlers */
3355 if (expect_false (postfork))
3356 if (forkcnt)
3357 {
3358 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3359 EV_INVOKE_PENDING;
3360 }
3361 #endif
3362
3363 #if EV_PREPARE_ENABLE
3364 /* queue prepare watchers (and execute them) */
3365 if (expect_false (preparecnt))
3366 {
3367 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3368 EV_INVOKE_PENDING;
3369 }
3370 #endif
3371
3372 if (expect_false (loop_done))
3373 break;
3374
3375 /* we might have forked, so reify kernel state if necessary */
3376 if (expect_false (postfork))
3377 loop_fork (EV_A);
3378
3379 /* update fd-related kernel structures */
3380 fd_reify (EV_A);
3381
3382 /* calculate blocking time */
3383 {
3384 ev_tstamp waittime = 0.;
3385 ev_tstamp sleeptime = 0.;
3386
3387 /* remember old timestamp for io_blocktime calculation */
3388 ev_tstamp prev_mn_now = mn_now;
3389
3390 /* update time to cancel out callback processing overhead */
3391 time_update (EV_A_ 1e100);
3392
3393 /* from now on, we want a pipe-wake-up */
3394 pipe_write_wanted = 1;
3395
3396 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3397
3398 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3399 {
3400 waittime = MAX_BLOCKTIME;
3401
3402 if (timercnt)
3403 {
3404 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3405 if (waittime > to) waittime = to;
3406 }
3407
3408 #if EV_PERIODIC_ENABLE
3409 if (periodiccnt)
3410 {
3411 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3412 if (waittime > to) waittime = to;
3413 }
3414 #endif
3415
3416 /* don't let timeouts decrease the waittime below timeout_blocktime */
3417 if (expect_false (waittime < timeout_blocktime))
3418 waittime = timeout_blocktime;
3419
3420 /* at this point, we NEED to wait, so we have to ensure */
3421 /* to pass a minimum nonzero value to the backend */
3422 if (expect_false (waittime < backend_mintime))
3423 waittime = backend_mintime;
3424
3425 /* extra check because io_blocktime is commonly 0 */
3426 if (expect_false (io_blocktime))
3427 {
3428 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3429
3430 if (sleeptime > waittime - backend_mintime)
3431 sleeptime = waittime - backend_mintime;
3432
3433 if (expect_true (sleeptime > 0.))
3434 {
3435 ev_sleep (sleeptime);
3436 waittime -= sleeptime;
3437 }
3438 }
3439 }
3440
3441 #if EV_FEATURE_API
3442 ++loop_count;
3443 #endif
3444 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3445 backend_poll (EV_A_ waittime);
3446 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3447
3448 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3449
3450 ECB_MEMORY_FENCE_ACQUIRE;
3451 if (pipe_write_skipped)
3452 {
3453 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3454 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3455 }
3456
3457
3458 /* update ev_rt_now, do magic */
3459 time_update (EV_A_ waittime + sleeptime);
3460 }
3461
3462 /* queue pending timers and reschedule them */
3463 timers_reify (EV_A); /* relative timers called last */
3464 #if EV_PERIODIC_ENABLE
3465 periodics_reify (EV_A); /* absolute timers called first */
3466 #endif
3467
3468 #if EV_IDLE_ENABLE
3469 /* queue idle watchers unless other events are pending */
3470 idle_reify (EV_A);
3471 #endif
3472
3473 #if EV_CHECK_ENABLE
3474 /* queue check watchers, to be executed first */
3475 if (expect_false (checkcnt))
3476 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3477 #endif
3478
3479 EV_INVOKE_PENDING;
3480 }
3481 while (expect_true (
3482 activecnt
3483 && !loop_done
3484 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3485 ));
3486
3487 if (loop_done == EVBREAK_ONE)
3488 loop_done = EVBREAK_CANCEL;
3489
3490 #if EV_FEATURE_API
3491 --loop_depth;
3492 #endif
3493
3494 return activecnt;
3495 }
3496
3497 void
3498 ev_break (EV_P_ int how) EV_THROW
3499 {
3500 loop_done = how;
3501 }
3502
3503 void
3504 ev_ref (EV_P) EV_THROW
3505 {
3506 ++activecnt;
3507 }
3508
3509 void
3510 ev_unref (EV_P) EV_THROW
3511 {
3512 --activecnt;
3513 }
3514
3515 void
3516 ev_now_update (EV_P) EV_THROW
3517 {
3518 time_update (EV_A_ 1e100);
3519 }
3520
3521 void
3522 ev_suspend (EV_P) EV_THROW
3523 {
3524 ev_now_update (EV_A);
3525 }
3526
3527 void
3528 ev_resume (EV_P) EV_THROW
3529 {
3530 ev_tstamp mn_prev = mn_now;
3531
3532 ev_now_update (EV_A);
3533 timers_reschedule (EV_A_ mn_now - mn_prev);
3534 #if EV_PERIODIC_ENABLE
3535 /* TODO: really do this? */
3536 periodics_reschedule (EV_A);
3537 #endif
3538 }
3539
3540 /*****************************************************************************/
3541 /* singly-linked list management, used when the expected list length is short */
3542
3543 inline_size void
3544 wlist_add (WL *head, WL elem)
3545 {
3546 elem->next = *head;
3547 *head = elem;
3548 }
3549
3550 inline_size void
3551 wlist_del (WL *head, WL elem)
3552 {
3553 while (*head)
3554 {
3555 if (expect_true (*head == elem))
3556 {
3557 *head = elem->next;
3558 break;
3559 }
3560
3561 head = &(*head)->next;
3562 }
3563 }
3564
3565 /* internal, faster, version of ev_clear_pending */
3566 inline_speed void
3567 clear_pending (EV_P_ W w)
3568 {
3569 if (w->pending)
3570 {
3571 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3572 w->pending = 0;
3573 }
3574 }
3575
3576 int
3577 ev_clear_pending (EV_P_ void *w) EV_THROW
3578 {
3579 W w_ = (W)w;
3580 int pending = w_->pending;
3581
3582 if (expect_true (pending))
3583 {
3584 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3585 p->w = (W)&pending_w;
3586 w_->pending = 0;
3587 return p->events;
3588 }
3589 else
3590 return 0;
3591 }
3592
3593 inline_size void
3594 pri_adjust (EV_P_ W w)
3595 {
3596 int pri = ev_priority (w);
3597 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3598 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3599 ev_set_priority (w, pri);
3600 }
3601
3602 inline_speed void
3603 ev_start (EV_P_ W w, int active)
3604 {
3605 pri_adjust (EV_A_ w);
3606 w->active = active;
3607 ev_ref (EV_A);
3608 }
3609
3610 inline_size void
3611 ev_stop (EV_P_ W w)
3612 {
3613 ev_unref (EV_A);
3614 w->active = 0;
3615 }
3616
3617 /*****************************************************************************/
3618
3619 void noinline
3620 ev_io_start (EV_P_ ev_io *w) EV_THROW
3621 {
3622 int fd = w->fd;
3623
3624 if (expect_false (ev_is_active (w)))
3625 return;
3626
3627 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3628 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3629
3630 EV_FREQUENT_CHECK;
3631
3632 ev_start (EV_A_ (W)w, 1);
3633 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3634 wlist_add (&anfds[fd].head, (WL)w);
3635
3636 /* common bug, apparently */
3637 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3638
3639 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3640 w->events &= ~EV__IOFDSET;
3641
3642 EV_FREQUENT_CHECK;
3643 }
3644
3645 void noinline
3646 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3647 {
3648 clear_pending (EV_A_ (W)w);
3649 if (expect_false (!ev_is_active (w)))
3650 return;
3651
3652 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3653
3654 EV_FREQUENT_CHECK;
3655
3656 wlist_del (&anfds[w->fd].head, (WL)w);
3657 ev_stop (EV_A_ (W)w);
3658
3659 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3660
3661 EV_FREQUENT_CHECK;
3662 }
3663
3664 void noinline
3665 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3666 {
3667 if (expect_false (ev_is_active (w)))
3668 return;
3669
3670 ev_at (w) += mn_now;
3671
3672 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3673
3674 EV_FREQUENT_CHECK;
3675
3676 ++timercnt;
3677 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3678 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3679 ANHE_w (timers [ev_active (w)]) = (WT)w;
3680 ANHE_at_cache (timers [ev_active (w)]);
3681 upheap (timers, ev_active (w));
3682
3683 EV_FREQUENT_CHECK;
3684
3685 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3686 }
3687
3688 void noinline
3689 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3690 {
3691 clear_pending (EV_A_ (W)w);
3692 if (expect_false (!ev_is_active (w)))
3693 return;
3694
3695 EV_FREQUENT_CHECK;
3696
3697 {
3698 int active = ev_active (w);
3699
3700 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3701
3702 --timercnt;
3703
3704 if (expect_true (active < timercnt + HEAP0))
3705 {
3706 timers [active] = timers [timercnt + HEAP0];
3707 adjustheap (timers, timercnt, active);
3708 }
3709 }
3710
3711 ev_at (w) -= mn_now;
3712
3713 ev_stop (EV_A_ (W)w);
3714
3715 EV_FREQUENT_CHECK;
3716 }
3717
3718 void noinline
3719 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3720 {
3721 EV_FREQUENT_CHECK;
3722
3723 clear_pending (EV_A_ (W)w);
3724
3725 if (ev_is_active (w))
3726 {
3727 if (w->repeat)
3728 {
3729 ev_at (w) = mn_now + w->repeat;
3730 ANHE_at_cache (timers [ev_active (w)]);
3731 adjustheap (timers, timercnt, ev_active (w));
3732 }
3733 else
3734 ev_timer_stop (EV_A_ w);
3735 }
3736 else if (w->repeat)
3737 {
3738 ev_at (w) = w->repeat;
3739 ev_timer_start (EV_A_ w);
3740 }
3741
3742 EV_FREQUENT_CHECK;
3743 }
3744
3745 ev_tstamp
3746 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3747 {
3748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3749 }
3750
3751 #if EV_PERIODIC_ENABLE
3752 void noinline
3753 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3754 {
3755 if (expect_false (ev_is_active (w)))
3756 return;
3757
3758 if (w->reschedule_cb)
3759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3760 else if (w->interval)
3761 {
3762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3763 periodic_recalc (EV_A_ w);
3764 }
3765 else
3766 ev_at (w) = w->offset;
3767
3768 EV_FREQUENT_CHECK;
3769
3770 ++periodiccnt;
3771 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3772 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3773 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3774 ANHE_at_cache (periodics [ev_active (w)]);
3775 upheap (periodics, ev_active (w));
3776
3777 EV_FREQUENT_CHECK;
3778
3779 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3780 }
3781
3782 void noinline
3783 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3784 {
3785 clear_pending (EV_A_ (W)w);
3786 if (expect_false (!ev_is_active (w)))
3787 return;
3788
3789 EV_FREQUENT_CHECK;
3790
3791 {
3792 int active = ev_active (w);
3793
3794 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3795
3796 --periodiccnt;
3797
3798 if (expect_true (active < periodiccnt + HEAP0))
3799 {
3800 periodics [active] = periodics [periodiccnt + HEAP0];
3801 adjustheap (periodics, periodiccnt, active);
3802 }
3803 }
3804
3805 ev_stop (EV_A_ (W)w);
3806
3807 EV_FREQUENT_CHECK;
3808 }
3809
3810 void noinline
3811 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3812 {
3813 /* TODO: use adjustheap and recalculation */
3814 ev_periodic_stop (EV_A_ w);
3815 ev_periodic_start (EV_A_ w);
3816 }
3817 #endif
3818
3819 #ifndef SA_RESTART
3820 # define SA_RESTART 0
3821 #endif
3822
3823 #if EV_SIGNAL_ENABLE
3824
3825 void noinline
3826 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3827 {
3828 if (expect_false (ev_is_active (w)))
3829 return;
3830
3831 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3832
3833 #if EV_MULTIPLICITY
3834 assert (("libev: a signal must not be attached to two different loops",
3835 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3836
3837 signals [w->signum - 1].loop = EV_A;
3838 ECB_MEMORY_FENCE_RELEASE;
3839 #endif
3840
3841 EV_FREQUENT_CHECK;
3842
3843 #if EV_USE_SIGNALFD
3844 if (sigfd == -2)
3845 {
3846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3847 if (sigfd < 0 && errno == EINVAL)
3848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3849
3850 if (sigfd >= 0)
3851 {
3852 fd_intern (sigfd); /* doing it twice will not hurt */
3853
3854 sigemptyset (&sigfd_set);
3855
3856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3857 ev_set_priority (&sigfd_w, EV_MAXPRI);
3858 ev_io_start (EV_A_ &sigfd_w);
3859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3860 }
3861 }
3862
3863 if (sigfd >= 0)
3864 {
3865 /* TODO: check .head */
3866 sigaddset (&sigfd_set, w->signum);
3867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3868
3869 signalfd (sigfd, &sigfd_set, 0);
3870 }
3871 #endif
3872
3873 ev_start (EV_A_ (W)w, 1);
3874 wlist_add (&signals [w->signum - 1].head, (WL)w);
3875
3876 if (!((WL)w)->next)
3877 # if EV_USE_SIGNALFD
3878 if (sigfd < 0) /*TODO*/
3879 # endif
3880 {
3881 # ifdef _WIN32
3882 evpipe_init (EV_A);
3883
3884 signal (w->signum, ev_sighandler);
3885 # else
3886 struct sigaction sa;
3887
3888 evpipe_init (EV_A);
3889
3890 sa.sa_handler = ev_sighandler;
3891 sigfillset (&sa.sa_mask);
3892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3893 sigaction (w->signum, &sa, 0);
3894
3895 if (origflags & EVFLAG_NOSIGMASK)
3896 {
3897 sigemptyset (&sa.sa_mask);
3898 sigaddset (&sa.sa_mask, w->signum);
3899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3900 }
3901 #endif
3902 }
3903
3904 EV_FREQUENT_CHECK;
3905 }
3906
3907 void noinline
3908 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3909 {
3910 clear_pending (EV_A_ (W)w);
3911 if (expect_false (!ev_is_active (w)))
3912 return;
3913
3914 EV_FREQUENT_CHECK;
3915
3916 wlist_del (&signals [w->signum - 1].head, (WL)w);
3917 ev_stop (EV_A_ (W)w);
3918
3919 if (!signals [w->signum - 1].head)
3920 {
3921 #if EV_MULTIPLICITY
3922 signals [w->signum - 1].loop = 0; /* unattach from signal */
3923 #endif
3924 #if EV_USE_SIGNALFD
3925 if (sigfd >= 0)
3926 {
3927 sigset_t ss;
3928
3929 sigemptyset (&ss);
3930 sigaddset (&ss, w->signum);
3931 sigdelset (&sigfd_set, w->signum);
3932
3933 signalfd (sigfd, &sigfd_set, 0);
3934 sigprocmask (SIG_UNBLOCK, &ss, 0);
3935 }
3936 else
3937 #endif
3938 signal (w->signum, SIG_DFL);
3939 }
3940
3941 EV_FREQUENT_CHECK;
3942 }
3943
3944 #endif
3945
3946 #if EV_CHILD_ENABLE
3947
3948 void
3949 ev_child_start (EV_P_ ev_child *w) EV_THROW
3950 {
3951 #if EV_MULTIPLICITY
3952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3953 #endif
3954 if (expect_false (ev_is_active (w)))
3955 return;
3956
3957 EV_FREQUENT_CHECK;
3958
3959 ev_start (EV_A_ (W)w, 1);
3960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3961
3962 EV_FREQUENT_CHECK;
3963 }
3964
3965 void
3966 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3967 {
3968 clear_pending (EV_A_ (W)w);
3969 if (expect_false (!ev_is_active (w)))
3970 return;
3971
3972 EV_FREQUENT_CHECK;
3973
3974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3975 ev_stop (EV_A_ (W)w);
3976
3977 EV_FREQUENT_CHECK;
3978 }
3979
3980 #endif
3981
3982 #if EV_STAT_ENABLE
3983
3984 # ifdef _WIN32
3985 # undef lstat
3986 # define lstat(a,b) _stati64 (a,b)
3987 # endif
3988
3989 #define DEF_STAT_INTERVAL 5.0074891
3990 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3991 #define MIN_STAT_INTERVAL 0.1074891
3992
3993 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3994
3995 #if EV_USE_INOTIFY
3996
3997 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3998 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3999
4000 static void noinline
4001 infy_add (EV_P_ ev_stat *w)
4002 {
4003 w->wd = inotify_add_watch (fs_fd, w->path,
4004 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4005 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4006 | IN_DONT_FOLLOW | IN_MASK_ADD);
4007
4008 if (w->wd >= 0)
4009 {
4010 struct statfs sfs;
4011
4012 /* now local changes will be tracked by inotify, but remote changes won't */
4013 /* unless the filesystem is known to be local, we therefore still poll */
4014 /* also do poll on <2.6.25, but with normal frequency */
4015
4016 if (!fs_2625)
4017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4018 else if (!statfs (w->path, &sfs)
4019 && (sfs.f_type == 0x1373 /* devfs */
4020 || sfs.f_type == 0x4006 /* fat */
4021 || sfs.f_type == 0x4d44 /* msdos */
4022 || sfs.f_type == 0xEF53 /* ext2/3 */
4023 || sfs.f_type == 0x72b6 /* jffs2 */
4024 || sfs.f_type == 0x858458f6 /* ramfs */
4025 || sfs.f_type == 0x5346544e /* ntfs */
4026 || sfs.f_type == 0x3153464a /* jfs */
4027 || sfs.f_type == 0x9123683e /* btrfs */
4028 || sfs.f_type == 0x52654973 /* reiser3 */
4029 || sfs.f_type == 0x01021994 /* tmpfs */
4030 || sfs.f_type == 0x58465342 /* xfs */))
4031 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4032 else
4033 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4034 }
4035 else
4036 {
4037 /* can't use inotify, continue to stat */
4038 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4039
4040 /* if path is not there, monitor some parent directory for speedup hints */
4041 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4042 /* but an efficiency issue only */
4043 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4044 {
4045 char path [4096];
4046 strcpy (path, w->path);
4047
4048 do
4049 {
4050 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4051 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4052
4053 char *pend = strrchr (path, '/');
4054
4055 if (!pend || pend == path)
4056 break;
4057
4058 *pend = 0;
4059 w->wd = inotify_add_watch (fs_fd, path, mask);
4060 }
4061 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4062 }
4063 }
4064
4065 if (w->wd >= 0)
4066 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4067
4068 /* now re-arm timer, if required */
4069 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4070 ev_timer_again (EV_A_ &w->timer);
4071 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4072 }
4073
4074 static void noinline
4075 infy_del (EV_P_ ev_stat *w)
4076 {
4077 int slot;
4078 int wd = w->wd;
4079
4080 if (wd < 0)
4081 return;
4082
4083 w->wd = -2;
4084 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4085 wlist_del (&fs_hash [slot].head, (WL)w);
4086
4087 /* remove this watcher, if others are watching it, they will rearm */
4088 inotify_rm_watch (fs_fd, wd);
4089 }
4090
4091 static void noinline
4092 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4093 {
4094 if (slot < 0)
4095 /* overflow, need to check for all hash slots */
4096 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4097 infy_wd (EV_A_ slot, wd, ev);
4098 else
4099 {
4100 WL w_;
4101
4102 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4103 {
4104 ev_stat *w = (ev_stat *)w_;
4105 w_ = w_->next; /* lets us remove this watcher and all before it */
4106
4107 if (w->wd == wd || wd == -1)
4108 {
4109 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4110 {
4111 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4112 w->wd = -1;
4113 infy_add (EV_A_ w); /* re-add, no matter what */
4114 }
4115
4116 stat_timer_cb (EV_A_ &w->timer, 0);
4117 }
4118 }
4119 }
4120 }
4121
4122 static void
4123 infy_cb (EV_P_ ev_io *w, int revents)
4124 {
4125 char buf [EV_INOTIFY_BUFSIZE];
4126 int ofs;
4127 int len = read (fs_fd, buf, sizeof (buf));
4128
4129 for (ofs = 0; ofs < len; )
4130 {
4131 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4132 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4133 ofs += sizeof (struct inotify_event) + ev->len;
4134 }
4135 }
4136
4137 inline_size void ecb_cold
4138 ev_check_2625 (EV_P)
4139 {
4140 /* kernels < 2.6.25 are borked
4141 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4142 */
4143 if (ev_linux_version () < 0x020619)
4144 return;
4145
4146 fs_2625 = 1;
4147 }
4148
4149 inline_size int
4150 infy_newfd (void)
4151 {
4152 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4153 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4154 if (fd >= 0)
4155 return fd;
4156 #endif
4157 return inotify_init ();
4158 }
4159
4160 inline_size void
4161 infy_init (EV_P)
4162 {
4163 if (fs_fd != -2)
4164 return;
4165
4166 fs_fd = -1;
4167
4168 ev_check_2625 (EV_A);
4169
4170 fs_fd = infy_newfd ();
4171
4172 if (fs_fd >= 0)
4173 {
4174 fd_intern (fs_fd);
4175 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4176 ev_set_priority (&fs_w, EV_MAXPRI);
4177 ev_io_start (EV_A_ &fs_w);
4178 ev_unref (EV_A);
4179 }
4180 }
4181
4182 inline_size void
4183 infy_fork (EV_P)
4184 {
4185 int slot;
4186
4187 if (fs_fd < 0)
4188 return;
4189
4190 ev_ref (EV_A);
4191 ev_io_stop (EV_A_ &fs_w);
4192 close (fs_fd);
4193 fs_fd = infy_newfd ();
4194
4195 if (fs_fd >= 0)
4196 {
4197 fd_intern (fs_fd);
4198 ev_io_set (&fs_w, fs_fd, EV_READ);
4199 ev_io_start (EV_A_ &fs_w);
4200 ev_unref (EV_A);
4201 }
4202
4203 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4204 {
4205 WL w_ = fs_hash [slot].head;
4206 fs_hash [slot].head = 0;
4207
4208 while (w_)
4209 {
4210 ev_stat *w = (ev_stat *)w_;
4211 w_ = w_->next; /* lets us add this watcher */
4212
4213 w->wd = -1;
4214
4215 if (fs_fd >= 0)
4216 infy_add (EV_A_ w); /* re-add, no matter what */
4217 else
4218 {
4219 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4220 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4221 ev_timer_again (EV_A_ &w->timer);
4222 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4223 }
4224 }
4225 }
4226 }
4227
4228 #endif
4229
4230 #ifdef _WIN32
4231 # define EV_LSTAT(p,b) _stati64 (p, b)
4232 #else
4233 # define EV_LSTAT(p,b) lstat (p, b)
4234 #endif
4235
4236 void
4237 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4238 {
4239 if (lstat (w->path, &w->attr) < 0)
4240 w->attr.st_nlink = 0;
4241 else if (!w->attr.st_nlink)
4242 w->attr.st_nlink = 1;
4243 }
4244
4245 static void noinline
4246 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4247 {
4248 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4249
4250 ev_statdata prev = w->attr;
4251 ev_stat_stat (EV_A_ w);
4252
4253 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4254 if (
4255 prev.st_dev != w->attr.st_dev
4256 || prev.st_ino != w->attr.st_ino
4257 || prev.st_mode != w->attr.st_mode
4258 || prev.st_nlink != w->attr.st_nlink
4259 || prev.st_uid != w->attr.st_uid
4260 || prev.st_gid != w->attr.st_gid
4261 || prev.st_rdev != w->attr.st_rdev
4262 || prev.st_size != w->attr.st_size
4263 || prev.st_atime != w->attr.st_atime
4264 || prev.st_mtime != w->attr.st_mtime
4265 || prev.st_ctime != w->attr.st_ctime
4266 ) {
4267 /* we only update w->prev on actual differences */
4268 /* in case we test more often than invoke the callback, */
4269 /* to ensure that prev is always different to attr */
4270 w->prev = prev;
4271
4272 #if EV_USE_INOTIFY
4273 if (fs_fd >= 0)
4274 {
4275 infy_del (EV_A_ w);
4276 infy_add (EV_A_ w);
4277 ev_stat_stat (EV_A_ w); /* avoid race... */
4278 }
4279 #endif
4280
4281 ev_feed_event (EV_A_ w, EV_STAT);
4282 }
4283 }
4284
4285 void
4286 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4287 {
4288 if (expect_false (ev_is_active (w)))
4289 return;
4290
4291 ev_stat_stat (EV_A_ w);
4292
4293 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4294 w->interval = MIN_STAT_INTERVAL;
4295
4296 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4297 ev_set_priority (&w->timer, ev_priority (w));
4298
4299 #if EV_USE_INOTIFY
4300 infy_init (EV_A);
4301
4302 if (fs_fd >= 0)
4303 infy_add (EV_A_ w);
4304 else
4305 #endif
4306 {
4307 ev_timer_again (EV_A_ &w->timer);
4308 ev_unref (EV_A);
4309 }
4310
4311 ev_start (EV_A_ (W)w, 1);
4312
4313 EV_FREQUENT_CHECK;
4314 }
4315
4316 void
4317 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4318 {
4319 clear_pending (EV_A_ (W)w);
4320 if (expect_false (!ev_is_active (w)))
4321 return;
4322
4323 EV_FREQUENT_CHECK;
4324
4325 #if EV_USE_INOTIFY
4326 infy_del (EV_A_ w);
4327 #endif
4328
4329 if (ev_is_active (&w->timer))
4330 {
4331 ev_ref (EV_A);
4332 ev_timer_stop (EV_A_ &w->timer);
4333 }
4334
4335 ev_stop (EV_A_ (W)w);
4336
4337 EV_FREQUENT_CHECK;
4338 }
4339 #endif
4340
4341 #if EV_IDLE_ENABLE
4342 void
4343 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4344 {
4345 if (expect_false (ev_is_active (w)))
4346 return;
4347
4348 pri_adjust (EV_A_ (W)w);
4349
4350 EV_FREQUENT_CHECK;
4351
4352 {
4353 int active = ++idlecnt [ABSPRI (w)];
4354
4355 ++idleall;
4356 ev_start (EV_A_ (W)w, active);
4357
4358 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4359 idles [ABSPRI (w)][active - 1] = w;
4360 }
4361
4362 EV_FREQUENT_CHECK;
4363 }
4364
4365 void
4366 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4367 {
4368 clear_pending (EV_A_ (W)w);
4369 if (expect_false (!ev_is_active (w)))
4370 return;
4371
4372 EV_FREQUENT_CHECK;
4373
4374 {
4375 int active = ev_active (w);
4376
4377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4379
4380 ev_stop (EV_A_ (W)w);
4381 --idleall;
4382 }
4383
4384 EV_FREQUENT_CHECK;
4385 }
4386 #endif
4387
4388 #if EV_PREPARE_ENABLE
4389 void
4390 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4391 {
4392 if (expect_false (ev_is_active (w)))
4393 return;
4394
4395 EV_FREQUENT_CHECK;
4396
4397 ev_start (EV_A_ (W)w, ++preparecnt);
4398 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4399 prepares [preparecnt - 1] = w;
4400
4401 EV_FREQUENT_CHECK;
4402 }
4403
4404 void
4405 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4406 {
4407 clear_pending (EV_A_ (W)w);
4408 if (expect_false (!ev_is_active (w)))
4409 return;
4410
4411 EV_FREQUENT_CHECK;
4412
4413 {
4414 int active = ev_active (w);
4415
4416 prepares [active - 1] = prepares [--preparecnt];
4417 ev_active (prepares [active - 1]) = active;
4418 }
4419
4420 ev_stop (EV_A_ (W)w);
4421
4422 EV_FREQUENT_CHECK;
4423 }
4424 #endif
4425
4426 #if EV_CHECK_ENABLE
4427 void
4428 ev_check_start (EV_P_ ev_check *w) EV_THROW
4429 {
4430 if (expect_false (ev_is_active (w)))
4431 return;
4432
4433 EV_FREQUENT_CHECK;
4434
4435 ev_start (EV_A_ (W)w, ++checkcnt);
4436 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4437 checks [checkcnt - 1] = w;
4438
4439 EV_FREQUENT_CHECK;
4440 }
4441
4442 void
4443 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4444 {
4445 clear_pending (EV_A_ (W)w);
4446 if (expect_false (!ev_is_active (w)))
4447 return;
4448
4449 EV_FREQUENT_CHECK;
4450
4451 {
4452 int active = ev_active (w);
4453
4454 checks [active - 1] = checks [--checkcnt];
4455 ev_active (checks [active - 1]) = active;
4456 }
4457
4458 ev_stop (EV_A_ (W)w);
4459
4460 EV_FREQUENT_CHECK;
4461 }
4462 #endif
4463
4464 #if EV_EMBED_ENABLE
4465 void noinline
4466 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4467 {
4468 ev_run (w->other, EVRUN_NOWAIT);
4469 }
4470
4471 static void
4472 embed_io_cb (EV_P_ ev_io *io, int revents)
4473 {
4474 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4475
4476 if (ev_cb (w))
4477 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4478 else
4479 ev_run (w->other, EVRUN_NOWAIT);
4480 }
4481
4482 static void
4483 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4484 {
4485 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4486
4487 {
4488 EV_P = w->other;
4489
4490 while (fdchangecnt)
4491 {
4492 fd_reify (EV_A);
4493 ev_run (EV_A_ EVRUN_NOWAIT);
4494 }
4495 }
4496 }
4497
4498 static void
4499 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4500 {
4501 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4502
4503 ev_embed_stop (EV_A_ w);
4504
4505 {
4506 EV_P = w->other;
4507
4508 ev_loop_fork (EV_A);
4509 ev_run (EV_A_ EVRUN_NOWAIT);
4510 }
4511
4512 ev_embed_start (EV_A_ w);
4513 }
4514
4515 #if 0
4516 static void
4517 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4518 {
4519 ev_idle_stop (EV_A_ idle);
4520 }
4521 #endif
4522
4523 void
4524 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4525 {
4526 if (expect_false (ev_is_active (w)))
4527 return;
4528
4529 {
4530 EV_P = w->other;
4531 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4532 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4533 }
4534
4535 EV_FREQUENT_CHECK;
4536
4537 ev_set_priority (&w->io, ev_priority (w));
4538 ev_io_start (EV_A_ &w->io);
4539
4540 ev_prepare_init (&w->prepare, embed_prepare_cb);
4541 ev_set_priority (&w->prepare, EV_MINPRI);
4542 ev_prepare_start (EV_A_ &w->prepare);
4543
4544 ev_fork_init (&w->fork, embed_fork_cb);
4545 ev_fork_start (EV_A_ &w->fork);
4546
4547 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4548
4549 ev_start (EV_A_ (W)w, 1);
4550
4551 EV_FREQUENT_CHECK;
4552 }
4553
4554 void
4555 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4556 {
4557 clear_pending (EV_A_ (W)w);
4558 if (expect_false (!ev_is_active (w)))
4559 return;
4560
4561 EV_FREQUENT_CHECK;
4562
4563 ev_io_stop (EV_A_ &w->io);
4564 ev_prepare_stop (EV_A_ &w->prepare);
4565 ev_fork_stop (EV_A_ &w->fork);
4566
4567 ev_stop (EV_A_ (W)w);
4568
4569 EV_FREQUENT_CHECK;
4570 }
4571 #endif
4572
4573 #if EV_FORK_ENABLE
4574 void
4575 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4576 {
4577 if (expect_false (ev_is_active (w)))
4578 return;
4579
4580 EV_FREQUENT_CHECK;
4581
4582 ev_start (EV_A_ (W)w, ++forkcnt);
4583 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4584 forks [forkcnt - 1] = w;
4585
4586 EV_FREQUENT_CHECK;
4587 }
4588
4589 void
4590 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4591 {
4592 clear_pending (EV_A_ (W)w);
4593 if (expect_false (!ev_is_active (w)))
4594 return;
4595
4596 EV_FREQUENT_CHECK;
4597
4598 {
4599 int active = ev_active (w);
4600
4601 forks [active - 1] = forks [--forkcnt];
4602 ev_active (forks [active - 1]) = active;
4603 }
4604
4605 ev_stop (EV_A_ (W)w);
4606
4607 EV_FREQUENT_CHECK;
4608 }
4609 #endif
4610
4611 #if EV_CLEANUP_ENABLE
4612 void
4613 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4614 {
4615 if (expect_false (ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619
4620 ev_start (EV_A_ (W)w, ++cleanupcnt);
4621 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4622 cleanups [cleanupcnt - 1] = w;
4623
4624 /* cleanup watchers should never keep a refcount on the loop */
4625 ev_unref (EV_A);
4626 EV_FREQUENT_CHECK;
4627 }
4628
4629 void
4630 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4631 {
4632 clear_pending (EV_A_ (W)w);
4633 if (expect_false (!ev_is_active (w)))
4634 return;
4635
4636 EV_FREQUENT_CHECK;
4637 ev_ref (EV_A);
4638
4639 {
4640 int active = ev_active (w);
4641
4642 cleanups [active - 1] = cleanups [--cleanupcnt];
4643 ev_active (cleanups [active - 1]) = active;
4644 }
4645
4646 ev_stop (EV_A_ (W)w);
4647
4648 EV_FREQUENT_CHECK;
4649 }
4650 #endif
4651
4652 #if EV_ASYNC_ENABLE
4653 void
4654 ev_async_start (EV_P_ ev_async *w) EV_THROW
4655 {
4656 if (expect_false (ev_is_active (w)))
4657 return;
4658
4659 w->sent = 0;
4660
4661 evpipe_init (EV_A);
4662
4663 EV_FREQUENT_CHECK;
4664
4665 ev_start (EV_A_ (W)w, ++asynccnt);
4666 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4667 asyncs [asynccnt - 1] = w;
4668
4669 EV_FREQUENT_CHECK;
4670 }
4671
4672 void
4673 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4674 {
4675 clear_pending (EV_A_ (W)w);
4676 if (expect_false (!ev_is_active (w)))
4677 return;
4678
4679 EV_FREQUENT_CHECK;
4680
4681 {
4682 int active = ev_active (w);
4683
4684 asyncs [active - 1] = asyncs [--asynccnt];
4685 ev_active (asyncs [active - 1]) = active;
4686 }
4687
4688 ev_stop (EV_A_ (W)w);
4689
4690 EV_FREQUENT_CHECK;
4691 }
4692
4693 void
4694 ev_async_send (EV_P_ ev_async *w) EV_THROW
4695 {
4696 w->sent = 1;
4697 evpipe_write (EV_A_ &async_pending);
4698 }
4699 #endif
4700
4701 /*****************************************************************************/
4702
4703 struct ev_once
4704 {
4705 ev_io io;
4706 ev_timer to;
4707 void (*cb)(int revents, void *arg);
4708 void *arg;
4709 };
4710
4711 static void
4712 once_cb (EV_P_ struct ev_once *once, int revents)
4713 {
4714 void (*cb)(int revents, void *arg) = once->cb;
4715 void *arg = once->arg;
4716
4717 ev_io_stop (EV_A_ &once->io);
4718 ev_timer_stop (EV_A_ &once->to);
4719 ev_free (once);
4720
4721 cb (revents, arg);
4722 }
4723
4724 static void
4725 once_cb_io (EV_P_ ev_io *w, int revents)
4726 {
4727 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4728
4729 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4730 }
4731
4732 static void
4733 once_cb_to (EV_P_ ev_timer *w, int revents)
4734 {
4735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4736
4737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4738 }
4739
4740 void
4741 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4742 {
4743 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4744
4745 if (expect_false (!once))
4746 {
4747 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4748 return;
4749 }
4750
4751 once->cb = cb;
4752 once->arg = arg;
4753
4754 ev_init (&once->io, once_cb_io);
4755 if (fd >= 0)
4756 {
4757 ev_io_set (&once->io, fd, events);
4758 ev_io_start (EV_A_ &once->io);
4759 }
4760
4761 ev_init (&once->to, once_cb_to);
4762 if (timeout >= 0.)
4763 {
4764 ev_timer_set (&once->to, timeout, 0.);
4765 ev_timer_start (EV_A_ &once->to);
4766 }
4767 }
4768
4769 /*****************************************************************************/
4770
4771 #if EV_WALK_ENABLE
4772 void ecb_cold
4773 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4774 {
4775 int i, j;
4776 ev_watcher_list *wl, *wn;
4777
4778 if (types & (EV_IO | EV_EMBED))
4779 for (i = 0; i < anfdmax; ++i)
4780 for (wl = anfds [i].head; wl; )
4781 {
4782 wn = wl->next;
4783
4784 #if EV_EMBED_ENABLE
4785 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4786 {
4787 if (types & EV_EMBED)
4788 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4789 }
4790 else
4791 #endif
4792 #if EV_USE_INOTIFY
4793 if (ev_cb ((ev_io *)wl) == infy_cb)
4794 ;
4795 else
4796 #endif
4797 if ((ev_io *)wl != &pipe_w)
4798 if (types & EV_IO)
4799 cb (EV_A_ EV_IO, wl);
4800
4801 wl = wn;
4802 }
4803
4804 if (types & (EV_TIMER | EV_STAT))
4805 for (i = timercnt + HEAP0; i-- > HEAP0; )
4806 #if EV_STAT_ENABLE
4807 /*TODO: timer is not always active*/
4808 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4809 {
4810 if (types & EV_STAT)
4811 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4812 }
4813 else
4814 #endif
4815 if (types & EV_TIMER)
4816 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4817
4818 #if EV_PERIODIC_ENABLE
4819 if (types & EV_PERIODIC)
4820 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4821 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4822 #endif
4823
4824 #if EV_IDLE_ENABLE
4825 if (types & EV_IDLE)
4826 for (j = NUMPRI; j--; )
4827 for (i = idlecnt [j]; i--; )
4828 cb (EV_A_ EV_IDLE, idles [j][i]);
4829 #endif
4830
4831 #if EV_FORK_ENABLE
4832 if (types & EV_FORK)
4833 for (i = forkcnt; i--; )
4834 if (ev_cb (forks [i]) != embed_fork_cb)
4835 cb (EV_A_ EV_FORK, forks [i]);
4836 #endif
4837
4838 #if EV_ASYNC_ENABLE
4839 if (types & EV_ASYNC)
4840 for (i = asynccnt; i--; )
4841 cb (EV_A_ EV_ASYNC, asyncs [i]);
4842 #endif
4843
4844 #if EV_PREPARE_ENABLE
4845 if (types & EV_PREPARE)
4846 for (i = preparecnt; i--; )
4847 # if EV_EMBED_ENABLE
4848 if (ev_cb (prepares [i]) != embed_prepare_cb)
4849 # endif
4850 cb (EV_A_ EV_PREPARE, prepares [i]);
4851 #endif
4852
4853 #if EV_CHECK_ENABLE
4854 if (types & EV_CHECK)
4855 for (i = checkcnt; i--; )
4856 cb (EV_A_ EV_CHECK, checks [i]);
4857 #endif
4858
4859 #if EV_SIGNAL_ENABLE
4860 if (types & EV_SIGNAL)
4861 for (i = 0; i < EV_NSIG - 1; ++i)
4862 for (wl = signals [i].head; wl; )
4863 {
4864 wn = wl->next;
4865 cb (EV_A_ EV_SIGNAL, wl);
4866 wl = wn;
4867 }
4868 #endif
4869
4870 #if EV_CHILD_ENABLE
4871 if (types & EV_CHILD)
4872 for (i = (EV_PID_HASHSIZE); i--; )
4873 for (wl = childs [i]; wl; )
4874 {
4875 wn = wl->next;
4876 cb (EV_A_ EV_CHILD, wl);
4877 wl = wn;
4878 }
4879 #endif
4880 /* EV_STAT 0x00001000 /* stat data changed */
4881 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4882 }
4883 #endif
4884
4885 #if EV_MULTIPLICITY
4886 #include "ev_wrap.h"
4887 #endif
4888