ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.485
Committed: Mon Aug 13 10:01:19 2018 UTC (5 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.484: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 /* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175 #define _DARWIN_UNLIMITED_SELECT 1
176
177 #include <stdlib.h>
178 #include <string.h>
179 #include <fcntl.h>
180 #include <stddef.h>
181
182 #include <stdio.h>
183
184 #include <assert.h>
185 #include <errno.h>
186 #include <sys/types.h>
187 #include <time.h>
188 #include <limits.h>
189
190 #include <signal.h>
191
192 #ifdef EV_H
193 # include EV_H
194 #else
195 # include "ev.h"
196 #endif
197
198 #if EV_NO_THREADS
199 # undef EV_NO_SMP
200 # define EV_NO_SMP 1
201 # undef ECB_NO_THREADS
202 # define ECB_NO_THREADS 1
203 #endif
204 #if EV_NO_SMP
205 # undef EV_NO_SMP
206 # define ECB_NO_SMP 1
207 #endif
208
209 #ifndef _WIN32
210 # include <sys/time.h>
211 # include <sys/wait.h>
212 # include <unistd.h>
213 #else
214 # include <io.h>
215 # define WIN32_LEAN_AND_MEAN
216 # include <winsock2.h>
217 # include <windows.h>
218 # ifndef EV_SELECT_IS_WINSOCKET
219 # define EV_SELECT_IS_WINSOCKET 1
220 # endif
221 # undef EV_AVOID_STDIO
222 #endif
223
224 /* this block tries to deduce configuration from header-defined symbols and defaults */
225
226 /* try to deduce the maximum number of signals on this platform */
227 #if defined EV_NSIG
228 /* use what's provided */
229 #elif defined NSIG
230 # define EV_NSIG (NSIG)
231 #elif defined _NSIG
232 # define EV_NSIG (_NSIG)
233 #elif defined SIGMAX
234 # define EV_NSIG (SIGMAX+1)
235 #elif defined SIG_MAX
236 # define EV_NSIG (SIG_MAX+1)
237 #elif defined _SIG_MAX
238 # define EV_NSIG (_SIG_MAX+1)
239 #elif defined MAXSIG
240 # define EV_NSIG (MAXSIG+1)
241 #elif defined MAX_SIG
242 # define EV_NSIG (MAX_SIG+1)
243 #elif defined SIGARRAYSIZE
244 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 #elif defined _sys_nsig
246 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247 #else
248 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #if !(_POSIX_TIMERS > 0)
264 # ifndef EV_USE_MONOTONIC
265 # define EV_USE_MONOTONIC 0
266 # endif
267 # ifndef EV_USE_REALTIME
268 # define EV_USE_REALTIME 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_MONOTONIC
273 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 # else
276 # define EV_USE_MONOTONIC 0
277 # endif
278 #endif
279
280 #ifndef EV_USE_REALTIME
281 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 #endif
283
284 #ifndef EV_USE_NANOSLEEP
285 # if _POSIX_C_SOURCE >= 199309L
286 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 # else
288 # define EV_USE_NANOSLEEP 0
289 # endif
290 #endif
291
292 #ifndef EV_USE_SELECT
293 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 #endif
295
296 #ifndef EV_USE_POLL
297 # ifdef _WIN32
298 # define EV_USE_POLL 0
299 # else
300 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 # endif
302 #endif
303
304 #ifndef EV_USE_EPOLL
305 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 # else
308 # define EV_USE_EPOLL 0
309 # endif
310 #endif
311
312 #ifndef EV_USE_KQUEUE
313 # define EV_USE_KQUEUE 0
314 #endif
315
316 #ifndef EV_USE_PORT
317 # define EV_USE_PORT 0
318 #endif
319
320 #ifndef EV_USE_INOTIFY
321 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322 # define EV_USE_INOTIFY EV_FEATURE_OS
323 # else
324 # define EV_USE_INOTIFY 0
325 # endif
326 #endif
327
328 #ifndef EV_PID_HASHSIZE
329 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330 #endif
331
332 #ifndef EV_INOTIFY_HASHSIZE
333 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 #endif
335
336 #ifndef EV_USE_EVENTFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_EVENTFD EV_FEATURE_OS
339 # else
340 # define EV_USE_EVENTFD 0
341 # endif
342 #endif
343
344 #ifndef EV_USE_SIGNALFD
345 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346 # define EV_USE_SIGNALFD EV_FEATURE_OS
347 # else
348 # define EV_USE_SIGNALFD 0
349 # endif
350 #endif
351
352 #if 0 /* debugging */
353 # define EV_VERIFY 3
354 # define EV_USE_4HEAP 1
355 # define EV_HEAP_CACHE_AT 1
356 #endif
357
358 #ifndef EV_VERIFY
359 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360 #endif
361
362 #ifndef EV_USE_4HEAP
363 # define EV_USE_4HEAP EV_FEATURE_DATA
364 #endif
365
366 #ifndef EV_HEAP_CACHE_AT
367 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368 #endif
369
370 #ifdef __ANDROID__
371 /* supposedly, android doesn't typedef fd_mask */
372 # undef EV_USE_SELECT
373 # define EV_USE_SELECT 0
374 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375 # undef EV_USE_CLOCK_SYSCALL
376 # define EV_USE_CLOCK_SYSCALL 0
377 #endif
378
379 /* aix's poll.h seems to cause lots of trouble */
380 #ifdef _AIX
381 /* AIX has a completely broken poll.h header */
382 # undef EV_USE_POLL
383 # define EV_USE_POLL 0
384 #endif
385
386 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387 /* which makes programs even slower. might work on other unices, too. */
388 #if EV_USE_CLOCK_SYSCALL
389 # include <sys/syscall.h>
390 # ifdef SYS_clock_gettime
391 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 1
394 # else
395 # undef EV_USE_CLOCK_SYSCALL
396 # define EV_USE_CLOCK_SYSCALL 0
397 # endif
398 #endif
399
400 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
401
402 #ifndef CLOCK_MONOTONIC
403 # undef EV_USE_MONOTONIC
404 # define EV_USE_MONOTONIC 0
405 #endif
406
407 #ifndef CLOCK_REALTIME
408 # undef EV_USE_REALTIME
409 # define EV_USE_REALTIME 0
410 #endif
411
412 #if !EV_STAT_ENABLE
413 # undef EV_USE_INOTIFY
414 # define EV_USE_INOTIFY 0
415 #endif
416
417 #if !EV_USE_NANOSLEEP
418 /* hp-ux has it in sys/time.h, which we unconditionally include above */
419 # if !defined _WIN32 && !defined __hpux
420 # include <sys/select.h>
421 # endif
422 #endif
423
424 #if EV_USE_INOTIFY
425 # include <sys/statfs.h>
426 # include <sys/inotify.h>
427 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428 # ifndef IN_DONT_FOLLOW
429 # undef EV_USE_INOTIFY
430 # define EV_USE_INOTIFY 0
431 # endif
432 #endif
433
434 #if EV_USE_EVENTFD
435 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436 # include <stdint.h>
437 # ifndef EFD_NONBLOCK
438 # define EFD_NONBLOCK O_NONBLOCK
439 # endif
440 # ifndef EFD_CLOEXEC
441 # ifdef O_CLOEXEC
442 # define EFD_CLOEXEC O_CLOEXEC
443 # else
444 # define EFD_CLOEXEC 02000000
445 # endif
446 # endif
447 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448 #endif
449
450 #if EV_USE_SIGNALFD
451 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452 # include <stdint.h>
453 # ifndef SFD_NONBLOCK
454 # define SFD_NONBLOCK O_NONBLOCK
455 # endif
456 # ifndef SFD_CLOEXEC
457 # ifdef O_CLOEXEC
458 # define SFD_CLOEXEC O_CLOEXEC
459 # else
460 # define SFD_CLOEXEC 02000000
461 # endif
462 # endif
463 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465 struct signalfd_siginfo
466 {
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469 };
470 #endif
471
472 /**/
473
474 #if EV_VERIFY >= 3
475 # define EV_FREQUENT_CHECK ev_verify (EV_A)
476 #else
477 # define EV_FREQUENT_CHECK do { } while (0)
478 #endif
479
480 /*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
486
487 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
488 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
489
490 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494 /* ECB.H BEGIN */
495 /*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535 #ifndef ECB_H
536 #define ECB_H
537
538 /* 16 bits major, 16 bits minor */
539 #define ECB_VERSION 0x00010005
540
541 #ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564 #else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571 #endif
572
573 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576 /* work around x32 idiocy by defining proper macros */
577 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583 #endif
584
585 /* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594 #else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596 #endif
597
598 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600 #if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602 #else
603 #define ECB_CLANG_BUILTIN(x) 0
604 #endif
605
606 #if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608 #else
609 #define ECB_CLANG_EXTENSION(x) 0
610 #endif
611
612 #define ECB_CPP (__cplusplus+0)
613 #define ECB_CPP11 (__cplusplus >= 201103L)
614
615 #if ECB_CPP
616 #define ECB_C 0
617 #define ECB_STDC_VERSION 0
618 #else
619 #define ECB_C 1
620 #define ECB_STDC_VERSION __STDC_VERSION__
621 #endif
622
623 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
624 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
625
626 #if ECB_CPP
627 #define ECB_EXTERN_C extern "C"
628 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
629 #define ECB_EXTERN_C_END }
630 #else
631 #define ECB_EXTERN_C extern
632 #define ECB_EXTERN_C_BEG
633 #define ECB_EXTERN_C_END
634 #endif
635
636 /*****************************************************************************/
637
638 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
639 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
640
641 #if ECB_NO_THREADS
642 #define ECB_NO_SMP 1
643 #endif
644
645 #if ECB_NO_SMP
646 #define ECB_MEMORY_FENCE do { } while (0)
647 #endif
648
649 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
650 #if __xlC__ && ECB_CPP
651 #include <builtins.h>
652 #endif
653
654 #if 1400 <= _MSC_VER
655 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
656 #endif
657
658 #ifndef ECB_MEMORY_FENCE
659 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #if __i386 || __i386__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
662 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
663 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
664 #elif ECB_GCC_AMD64
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
666 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
667 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
668 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
669 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
670 #elif defined __ARM_ARCH_2__ \
671 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
672 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
673 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
674 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
675 || defined __ARM_ARCH_5TEJ__
676 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
677 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
678 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
679 || defined __ARM_ARCH_6T2__
680 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
681 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
682 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
684 #elif __aarch64__
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
686 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
687 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
688 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
689 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
690 #elif defined __s390__ || defined __s390x__
691 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
692 #elif defined __mips__
693 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
694 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
696 #elif defined __alpha__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
698 #elif defined __hppa__
699 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
700 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
701 #elif defined __ia64__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
703 #elif defined __m68k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
705 #elif defined __m88k__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
707 #elif defined __sh__
708 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
709 #endif
710 #endif
711 #endif
712
713 #ifndef ECB_MEMORY_FENCE
714 #if ECB_GCC_VERSION(4,7)
715 /* see comment below (stdatomic.h) about the C11 memory model. */
716 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
717 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
718 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
719
720 #elif ECB_CLANG_EXTENSION(c_atomic)
721 /* see comment below (stdatomic.h) about the C11 memory model. */
722 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
723 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
724 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
725
726 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
727 #define ECB_MEMORY_FENCE __sync_synchronize ()
728 #elif _MSC_VER >= 1500 /* VC++ 2008 */
729 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
730 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
731 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
732 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
733 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
734 #elif _MSC_VER >= 1400 /* VC++ 2005 */
735 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
736 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
737 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
738 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
739 #elif defined _WIN32
740 #include <WinNT.h>
741 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
742 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
743 #include <mbarrier.h>
744 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
745 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
746 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
747 #elif __xlC__
748 #define ECB_MEMORY_FENCE __sync ()
749 #endif
750 #endif
751
752 #ifndef ECB_MEMORY_FENCE
753 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
754 /* we assume that these memory fences work on all variables/all memory accesses, */
755 /* not just C11 atomics and atomic accesses */
756 #include <stdatomic.h>
757 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
758 /* any fence other than seq_cst, which isn't very efficient for us. */
759 /* Why that is, we don't know - either the C11 memory model is quite useless */
760 /* for most usages, or gcc and clang have a bug */
761 /* I *currently* lean towards the latter, and inefficiently implement */
762 /* all three of ecb's fences as a seq_cst fence */
763 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
764 /* for all __atomic_thread_fence's except seq_cst */
765 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
766 #endif
767 #endif
768
769 #ifndef ECB_MEMORY_FENCE
770 #if !ECB_AVOID_PTHREADS
771 /*
772 * if you get undefined symbol references to pthread_mutex_lock,
773 * or failure to find pthread.h, then you should implement
774 * the ECB_MEMORY_FENCE operations for your cpu/compiler
775 * OR provide pthread.h and link against the posix thread library
776 * of your system.
777 */
778 #include <pthread.h>
779 #define ECB_NEEDS_PTHREADS 1
780 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
781
782 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
783 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
784 #endif
785 #endif
786
787 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
788 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
789 #endif
790
791 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
792 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
793 #endif
794
795 /*****************************************************************************/
796
797 #if ECB_CPP
798 #define ecb_inline static inline
799 #elif ECB_GCC_VERSION(2,5)
800 #define ecb_inline static __inline__
801 #elif ECB_C99
802 #define ecb_inline static inline
803 #else
804 #define ecb_inline static
805 #endif
806
807 #if ECB_GCC_VERSION(3,3)
808 #define ecb_restrict __restrict__
809 #elif ECB_C99
810 #define ecb_restrict restrict
811 #else
812 #define ecb_restrict
813 #endif
814
815 typedef int ecb_bool;
816
817 #define ECB_CONCAT_(a, b) a ## b
818 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
819 #define ECB_STRINGIFY_(a) # a
820 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
821 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
822
823 #define ecb_function_ ecb_inline
824
825 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
826 #define ecb_attribute(attrlist) __attribute__ (attrlist)
827 #else
828 #define ecb_attribute(attrlist)
829 #endif
830
831 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
832 #define ecb_is_constant(expr) __builtin_constant_p (expr)
833 #else
834 /* possible C11 impl for integral types
835 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
836 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
837
838 #define ecb_is_constant(expr) 0
839 #endif
840
841 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
842 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
843 #else
844 #define ecb_expect(expr,value) (expr)
845 #endif
846
847 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
848 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
849 #else
850 #define ecb_prefetch(addr,rw,locality)
851 #endif
852
853 /* no emulation for ecb_decltype */
854 #if ECB_CPP11
855 // older implementations might have problems with decltype(x)::type, work around it
856 template<class T> struct ecb_decltype_t { typedef T type; };
857 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
858 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
859 #define ecb_decltype(x) __typeof__ (x)
860 #endif
861
862 #if _MSC_VER >= 1300
863 #define ecb_deprecated __declspec (deprecated)
864 #else
865 #define ecb_deprecated ecb_attribute ((__deprecated__))
866 #endif
867
868 #if _MSC_VER >= 1500
869 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
870 #elif ECB_GCC_VERSION(4,5)
871 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
872 #else
873 #define ecb_deprecated_message(msg) ecb_deprecated
874 #endif
875
876 #if _MSC_VER >= 1400
877 #define ecb_noinline __declspec (noinline)
878 #else
879 #define ecb_noinline ecb_attribute ((__noinline__))
880 #endif
881
882 #define ecb_unused ecb_attribute ((__unused__))
883 #define ecb_const ecb_attribute ((__const__))
884 #define ecb_pure ecb_attribute ((__pure__))
885
886 #if ECB_C11 || __IBMC_NORETURN
887 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
888 #define ecb_noreturn _Noreturn
889 #elif ECB_CPP11
890 #define ecb_noreturn [[noreturn]]
891 #elif _MSC_VER >= 1200
892 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
893 #define ecb_noreturn __declspec (noreturn)
894 #else
895 #define ecb_noreturn ecb_attribute ((__noreturn__))
896 #endif
897
898 #if ECB_GCC_VERSION(4,3)
899 #define ecb_artificial ecb_attribute ((__artificial__))
900 #define ecb_hot ecb_attribute ((__hot__))
901 #define ecb_cold ecb_attribute ((__cold__))
902 #else
903 #define ecb_artificial
904 #define ecb_hot
905 #define ecb_cold
906 #endif
907
908 /* put around conditional expressions if you are very sure that the */
909 /* expression is mostly true or mostly false. note that these return */
910 /* booleans, not the expression. */
911 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
912 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
913 /* for compatibility to the rest of the world */
914 #define ecb_likely(expr) ecb_expect_true (expr)
915 #define ecb_unlikely(expr) ecb_expect_false (expr)
916
917 /* count trailing zero bits and count # of one bits */
918 #if ECB_GCC_VERSION(3,4) \
919 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
920 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
921 && ECB_CLANG_BUILTIN(__builtin_popcount))
922 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
923 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
924 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
925 #define ecb_ctz32(x) __builtin_ctz (x)
926 #define ecb_ctz64(x) __builtin_ctzll (x)
927 #define ecb_popcount32(x) __builtin_popcount (x)
928 /* no popcountll */
929 #else
930 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
931 ecb_function_ ecb_const int
932 ecb_ctz32 (uint32_t x)
933 {
934 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
935 unsigned long r;
936 _BitScanForward (&r, x);
937 return (int)r;
938 #else
939 int r = 0;
940
941 x &= ~x + 1; /* this isolates the lowest bit */
942
943 #if ECB_branchless_on_i386
944 r += !!(x & 0xaaaaaaaa) << 0;
945 r += !!(x & 0xcccccccc) << 1;
946 r += !!(x & 0xf0f0f0f0) << 2;
947 r += !!(x & 0xff00ff00) << 3;
948 r += !!(x & 0xffff0000) << 4;
949 #else
950 if (x & 0xaaaaaaaa) r += 1;
951 if (x & 0xcccccccc) r += 2;
952 if (x & 0xf0f0f0f0) r += 4;
953 if (x & 0xff00ff00) r += 8;
954 if (x & 0xffff0000) r += 16;
955 #endif
956
957 return r;
958 #endif
959 }
960
961 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
962 ecb_function_ ecb_const int
963 ecb_ctz64 (uint64_t x)
964 {
965 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
966 unsigned long r;
967 _BitScanForward64 (&r, x);
968 return (int)r;
969 #else
970 int shift = x & 0xffffffff ? 0 : 32;
971 return ecb_ctz32 (x >> shift) + shift;
972 #endif
973 }
974
975 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
976 ecb_function_ ecb_const int
977 ecb_popcount32 (uint32_t x)
978 {
979 x -= (x >> 1) & 0x55555555;
980 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
981 x = ((x >> 4) + x) & 0x0f0f0f0f;
982 x *= 0x01010101;
983
984 return x >> 24;
985 }
986
987 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
988 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
989 {
990 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
991 unsigned long r;
992 _BitScanReverse (&r, x);
993 return (int)r;
994 #else
995 int r = 0;
996
997 if (x >> 16) { x >>= 16; r += 16; }
998 if (x >> 8) { x >>= 8; r += 8; }
999 if (x >> 4) { x >>= 4; r += 4; }
1000 if (x >> 2) { x >>= 2; r += 2; }
1001 if (x >> 1) { r += 1; }
1002
1003 return r;
1004 #endif
1005 }
1006
1007 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1008 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1009 {
1010 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1011 unsigned long r;
1012 _BitScanReverse64 (&r, x);
1013 return (int)r;
1014 #else
1015 int r = 0;
1016
1017 if (x >> 32) { x >>= 32; r += 32; }
1018
1019 return r + ecb_ld32 (x);
1020 #endif
1021 }
1022 #endif
1023
1024 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1025 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1026 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1027 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1028
1029 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1030 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1031 {
1032 return ( (x * 0x0802U & 0x22110U)
1033 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1034 }
1035
1036 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1037 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1038 {
1039 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1040 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1041 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1042 x = ( x >> 8 ) | ( x << 8);
1043
1044 return x;
1045 }
1046
1047 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1048 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1049 {
1050 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1051 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1052 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1053 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1054 x = ( x >> 16 ) | ( x << 16);
1055
1056 return x;
1057 }
1058
1059 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1060 /* so for this version we are lazy */
1061 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1062 ecb_function_ ecb_const int
1063 ecb_popcount64 (uint64_t x)
1064 {
1065 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1066 }
1067
1068 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1069 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1070 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1071 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1072 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1073 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1074 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1075 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1076
1077 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1078 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1079 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1080 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1081 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1082 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1083 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1084 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1085
1086 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1087 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1088 #define ecb_bswap16(x) __builtin_bswap16 (x)
1089 #else
1090 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1091 #endif
1092 #define ecb_bswap32(x) __builtin_bswap32 (x)
1093 #define ecb_bswap64(x) __builtin_bswap64 (x)
1094 #elif _MSC_VER
1095 #include <stdlib.h>
1096 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1097 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1098 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1099 #else
1100 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1101 ecb_function_ ecb_const uint16_t
1102 ecb_bswap16 (uint16_t x)
1103 {
1104 return ecb_rotl16 (x, 8);
1105 }
1106
1107 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1108 ecb_function_ ecb_const uint32_t
1109 ecb_bswap32 (uint32_t x)
1110 {
1111 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1112 }
1113
1114 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1115 ecb_function_ ecb_const uint64_t
1116 ecb_bswap64 (uint64_t x)
1117 {
1118 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1119 }
1120 #endif
1121
1122 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1123 #define ecb_unreachable() __builtin_unreachable ()
1124 #else
1125 /* this seems to work fine, but gcc always emits a warning for it :/ */
1126 ecb_inline ecb_noreturn void ecb_unreachable (void);
1127 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1128 #endif
1129
1130 /* try to tell the compiler that some condition is definitely true */
1131 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1132
1133 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1134 ecb_inline ecb_const uint32_t
1135 ecb_byteorder_helper (void)
1136 {
1137 /* the union code still generates code under pressure in gcc, */
1138 /* but less than using pointers, and always seems to */
1139 /* successfully return a constant. */
1140 /* the reason why we have this horrible preprocessor mess */
1141 /* is to avoid it in all cases, at least on common architectures */
1142 /* or when using a recent enough gcc version (>= 4.6) */
1143 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1144 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1145 #define ECB_LITTLE_ENDIAN 1
1146 return 0x44332211;
1147 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1148 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1149 #define ECB_BIG_ENDIAN 1
1150 return 0x11223344;
1151 #else
1152 union
1153 {
1154 uint8_t c[4];
1155 uint32_t u;
1156 } u = { 0x11, 0x22, 0x33, 0x44 };
1157 return u.u;
1158 #endif
1159 }
1160
1161 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1162 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1163 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1164 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1165
1166 #if ECB_GCC_VERSION(3,0) || ECB_C99
1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1168 #else
1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1170 #endif
1171
1172 #if ECB_CPP
1173 template<typename T>
1174 static inline T ecb_div_rd (T val, T div)
1175 {
1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1177 }
1178 template<typename T>
1179 static inline T ecb_div_ru (T val, T div)
1180 {
1181 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1182 }
1183 #else
1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1186 #endif
1187
1188 #if ecb_cplusplus_does_not_suck
1189 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1190 template<typename T, int N>
1191 static inline int ecb_array_length (const T (&arr)[N])
1192 {
1193 return N;
1194 }
1195 #else
1196 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1197 #endif
1198
1199 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1200 ecb_function_ ecb_const uint32_t
1201 ecb_binary16_to_binary32 (uint32_t x)
1202 {
1203 unsigned int s = (x & 0x8000) << (31 - 15);
1204 int e = (x >> 10) & 0x001f;
1205 unsigned int m = x & 0x03ff;
1206
1207 if (ecb_expect_false (e == 31))
1208 /* infinity or NaN */
1209 e = 255 - (127 - 15);
1210 else if (ecb_expect_false (!e))
1211 {
1212 if (ecb_expect_true (!m))
1213 /* zero, handled by code below by forcing e to 0 */
1214 e = 0 - (127 - 15);
1215 else
1216 {
1217 /* subnormal, renormalise */
1218 unsigned int s = 10 - ecb_ld32 (m);
1219
1220 m = (m << s) & 0x3ff; /* mask implicit bit */
1221 e -= s - 1;
1222 }
1223 }
1224
1225 /* e and m now are normalised, or zero, (or inf or nan) */
1226 e += 127 - 15;
1227
1228 return s | (e << 23) | (m << (23 - 10));
1229 }
1230
1231 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1232 ecb_function_ ecb_const uint16_t
1233 ecb_binary32_to_binary16 (uint32_t x)
1234 {
1235 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1236 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1237 unsigned int m = x & 0x007fffff;
1238
1239 x &= 0x7fffffff;
1240
1241 /* if it's within range of binary16 normals, use fast path */
1242 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1243 {
1244 /* mantissa round-to-even */
1245 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1246
1247 /* handle overflow */
1248 if (ecb_expect_false (m >= 0x00800000))
1249 {
1250 m >>= 1;
1251 e += 1;
1252 }
1253
1254 return s | (e << 10) | (m >> (23 - 10));
1255 }
1256
1257 /* handle large numbers and infinity */
1258 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1259 return s | 0x7c00;
1260
1261 /* handle zero, subnormals and small numbers */
1262 if (ecb_expect_true (x < 0x38800000))
1263 {
1264 /* zero */
1265 if (ecb_expect_true (!x))
1266 return s;
1267
1268 /* handle subnormals */
1269
1270 /* too small, will be zero */
1271 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1272 return s;
1273
1274 m |= 0x00800000; /* make implicit bit explicit */
1275
1276 /* very tricky - we need to round to the nearest e (+10) bit value */
1277 {
1278 unsigned int bits = 14 - e;
1279 unsigned int half = (1 << (bits - 1)) - 1;
1280 unsigned int even = (m >> bits) & 1;
1281
1282 /* if this overflows, we will end up with a normalised number */
1283 m = (m + half + even) >> bits;
1284 }
1285
1286 return s | m;
1287 }
1288
1289 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1290 m >>= 13;
1291
1292 return s | 0x7c00 | m | !m;
1293 }
1294
1295 /*******************************************************************************/
1296 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1297
1298 /* basically, everything uses "ieee pure-endian" floating point numbers */
1299 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1300 #if 0 \
1301 || __i386 || __i386__ \
1302 || ECB_GCC_AMD64 \
1303 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1304 || defined __s390__ || defined __s390x__ \
1305 || defined __mips__ \
1306 || defined __alpha__ \
1307 || defined __hppa__ \
1308 || defined __ia64__ \
1309 || defined __m68k__ \
1310 || defined __m88k__ \
1311 || defined __sh__ \
1312 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1313 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1314 || defined __aarch64__
1315 #define ECB_STDFP 1
1316 #include <string.h> /* for memcpy */
1317 #else
1318 #define ECB_STDFP 0
1319 #endif
1320
1321 #ifndef ECB_NO_LIBM
1322
1323 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1324
1325 /* only the oldest of old doesn't have this one. solaris. */
1326 #ifdef INFINITY
1327 #define ECB_INFINITY INFINITY
1328 #else
1329 #define ECB_INFINITY HUGE_VAL
1330 #endif
1331
1332 #ifdef NAN
1333 #define ECB_NAN NAN
1334 #else
1335 #define ECB_NAN ECB_INFINITY
1336 #endif
1337
1338 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1339 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1340 #define ecb_frexpf(x,e) frexpf ((x), (e))
1341 #else
1342 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1343 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1344 #endif
1345
1346 /* convert a float to ieee single/binary32 */
1347 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1348 ecb_function_ ecb_const uint32_t
1349 ecb_float_to_binary32 (float x)
1350 {
1351 uint32_t r;
1352
1353 #if ECB_STDFP
1354 memcpy (&r, &x, 4);
1355 #else
1356 /* slow emulation, works for anything but -0 */
1357 uint32_t m;
1358 int e;
1359
1360 if (x == 0e0f ) return 0x00000000U;
1361 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1362 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1363 if (x != x ) return 0x7fbfffffU;
1364
1365 m = ecb_frexpf (x, &e) * 0x1000000U;
1366
1367 r = m & 0x80000000U;
1368
1369 if (r)
1370 m = -m;
1371
1372 if (e <= -126)
1373 {
1374 m &= 0xffffffU;
1375 m >>= (-125 - e);
1376 e = -126;
1377 }
1378
1379 r |= (e + 126) << 23;
1380 r |= m & 0x7fffffU;
1381 #endif
1382
1383 return r;
1384 }
1385
1386 /* converts an ieee single/binary32 to a float */
1387 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1388 ecb_function_ ecb_const float
1389 ecb_binary32_to_float (uint32_t x)
1390 {
1391 float r;
1392
1393 #if ECB_STDFP
1394 memcpy (&r, &x, 4);
1395 #else
1396 /* emulation, only works for normals and subnormals and +0 */
1397 int neg = x >> 31;
1398 int e = (x >> 23) & 0xffU;
1399
1400 x &= 0x7fffffU;
1401
1402 if (e)
1403 x |= 0x800000U;
1404 else
1405 e = 1;
1406
1407 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1408 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1409
1410 r = neg ? -r : r;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* convert a double to ieee double/binary64 */
1417 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1418 ecb_function_ ecb_const uint64_t
1419 ecb_double_to_binary64 (double x)
1420 {
1421 uint64_t r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 8);
1425 #else
1426 /* slow emulation, works for anything but -0 */
1427 uint64_t m;
1428 int e;
1429
1430 if (x == 0e0 ) return 0x0000000000000000U;
1431 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1432 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1433 if (x != x ) return 0X7ff7ffffffffffffU;
1434
1435 m = frexp (x, &e) * 0x20000000000000U;
1436
1437 r = m & 0x8000000000000000;;
1438
1439 if (r)
1440 m = -m;
1441
1442 if (e <= -1022)
1443 {
1444 m &= 0x1fffffffffffffU;
1445 m >>= (-1021 - e);
1446 e = -1022;
1447 }
1448
1449 r |= ((uint64_t)(e + 1022)) << 52;
1450 r |= m & 0xfffffffffffffU;
1451 #endif
1452
1453 return r;
1454 }
1455
1456 /* converts an ieee double/binary64 to a double */
1457 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1458 ecb_function_ ecb_const double
1459 ecb_binary64_to_double (uint64_t x)
1460 {
1461 double r;
1462
1463 #if ECB_STDFP
1464 memcpy (&r, &x, 8);
1465 #else
1466 /* emulation, only works for normals and subnormals and +0 */
1467 int neg = x >> 63;
1468 int e = (x >> 52) & 0x7ffU;
1469
1470 x &= 0xfffffffffffffU;
1471
1472 if (e)
1473 x |= 0x10000000000000U;
1474 else
1475 e = 1;
1476
1477 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1478 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1479
1480 r = neg ? -r : r;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* convert a float to ieee half/binary16 */
1487 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1488 ecb_function_ ecb_const uint16_t
1489 ecb_float_to_binary16 (float x)
1490 {
1491 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1492 }
1493
1494 /* convert an ieee half/binary16 to float */
1495 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1496 ecb_function_ ecb_const float
1497 ecb_binary16_to_float (uint16_t x)
1498 {
1499 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1500 }
1501
1502 #endif
1503
1504 #endif
1505
1506 /* ECB.H END */
1507
1508 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1509 /* if your architecture doesn't need memory fences, e.g. because it is
1510 * single-cpu/core, or if you use libev in a project that doesn't use libev
1511 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1512 * libev, in which cases the memory fences become nops.
1513 * alternatively, you can remove this #error and link against libpthread,
1514 * which will then provide the memory fences.
1515 */
1516 # error "memory fences not defined for your architecture, please report"
1517 #endif
1518
1519 #ifndef ECB_MEMORY_FENCE
1520 # define ECB_MEMORY_FENCE do { } while (0)
1521 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1522 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1523 #endif
1524
1525 #define expect_false(cond) ecb_expect_false (cond)
1526 #define expect_true(cond) ecb_expect_true (cond)
1527 #define noinline ecb_noinline
1528
1529 #define inline_size ecb_inline
1530
1531 #if EV_FEATURE_CODE
1532 # define inline_speed ecb_inline
1533 #else
1534 # define inline_speed noinline static
1535 #endif
1536
1537 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1538
1539 #if EV_MINPRI == EV_MAXPRI
1540 # define ABSPRI(w) (((W)w), 0)
1541 #else
1542 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1543 #endif
1544
1545 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1546 #define EMPTY2(a,b) /* used to suppress some warnings */
1547
1548 typedef ev_watcher *W;
1549 typedef ev_watcher_list *WL;
1550 typedef ev_watcher_time *WT;
1551
1552 #define ev_active(w) ((W)(w))->active
1553 #define ev_at(w) ((WT)(w))->at
1554
1555 #if EV_USE_REALTIME
1556 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1557 /* giving it a reasonably high chance of working on typical architectures */
1558 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1559 #endif
1560
1561 #if EV_USE_MONOTONIC
1562 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1563 #endif
1564
1565 #ifndef EV_FD_TO_WIN32_HANDLE
1566 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1567 #endif
1568 #ifndef EV_WIN32_HANDLE_TO_FD
1569 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1570 #endif
1571 #ifndef EV_WIN32_CLOSE_FD
1572 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1573 #endif
1574
1575 #ifdef _WIN32
1576 # include "ev_win32.c"
1577 #endif
1578
1579 /*****************************************************************************/
1580
1581 /* define a suitable floor function (only used by periodics atm) */
1582
1583 #if EV_USE_FLOOR
1584 # include <math.h>
1585 # define ev_floor(v) floor (v)
1586 #else
1587
1588 #include <float.h>
1589
1590 /* a floor() replacement function, should be independent of ev_tstamp type */
1591 noinline
1592 static ev_tstamp
1593 ev_floor (ev_tstamp v)
1594 {
1595 /* the choice of shift factor is not terribly important */
1596 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1597 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1598 #else
1599 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1600 #endif
1601
1602 /* argument too large for an unsigned long? */
1603 if (expect_false (v >= shift))
1604 {
1605 ev_tstamp f;
1606
1607 if (v == v - 1.)
1608 return v; /* very large number */
1609
1610 f = shift * ev_floor (v * (1. / shift));
1611 return f + ev_floor (v - f);
1612 }
1613
1614 /* special treatment for negative args? */
1615 if (expect_false (v < 0.))
1616 {
1617 ev_tstamp f = -ev_floor (-v);
1618
1619 return f - (f == v ? 0 : 1);
1620 }
1621
1622 /* fits into an unsigned long */
1623 return (unsigned long)v;
1624 }
1625
1626 #endif
1627
1628 /*****************************************************************************/
1629
1630 #ifdef __linux
1631 # include <sys/utsname.h>
1632 #endif
1633
1634 noinline ecb_cold
1635 static unsigned int
1636 ev_linux_version (void)
1637 {
1638 #ifdef __linux
1639 unsigned int v = 0;
1640 struct utsname buf;
1641 int i;
1642 char *p = buf.release;
1643
1644 if (uname (&buf))
1645 return 0;
1646
1647 for (i = 3+1; --i; )
1648 {
1649 unsigned int c = 0;
1650
1651 for (;;)
1652 {
1653 if (*p >= '0' && *p <= '9')
1654 c = c * 10 + *p++ - '0';
1655 else
1656 {
1657 p += *p == '.';
1658 break;
1659 }
1660 }
1661
1662 v = (v << 8) | c;
1663 }
1664
1665 return v;
1666 #else
1667 return 0;
1668 #endif
1669 }
1670
1671 /*****************************************************************************/
1672
1673 #if EV_AVOID_STDIO
1674 noinline ecb_cold
1675 static void
1676 ev_printerr (const char *msg)
1677 {
1678 write (STDERR_FILENO, msg, strlen (msg));
1679 }
1680 #endif
1681
1682 static void (*syserr_cb)(const char *msg) EV_THROW;
1683
1684 ecb_cold
1685 void
1686 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1687 {
1688 syserr_cb = cb;
1689 }
1690
1691 noinline ecb_cold
1692 static void
1693 ev_syserr (const char *msg)
1694 {
1695 if (!msg)
1696 msg = "(libev) system error";
1697
1698 if (syserr_cb)
1699 syserr_cb (msg);
1700 else
1701 {
1702 #if EV_AVOID_STDIO
1703 ev_printerr (msg);
1704 ev_printerr (": ");
1705 ev_printerr (strerror (errno));
1706 ev_printerr ("\n");
1707 #else
1708 perror (msg);
1709 #endif
1710 abort ();
1711 }
1712 }
1713
1714 static void *
1715 ev_realloc_emul (void *ptr, long size) EV_THROW
1716 {
1717 /* some systems, notably openbsd and darwin, fail to properly
1718 * implement realloc (x, 0) (as required by both ansi c-89 and
1719 * the single unix specification, so work around them here.
1720 * recently, also (at least) fedora and debian started breaking it,
1721 * despite documenting it otherwise.
1722 */
1723
1724 if (size)
1725 return realloc (ptr, size);
1726
1727 free (ptr);
1728 return 0;
1729 }
1730
1731 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1732
1733 ecb_cold
1734 void
1735 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1736 {
1737 alloc = cb;
1738 }
1739
1740 inline_speed void *
1741 ev_realloc (void *ptr, long size)
1742 {
1743 ptr = alloc (ptr, size);
1744
1745 if (!ptr && size)
1746 {
1747 #if EV_AVOID_STDIO
1748 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1749 #else
1750 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1751 #endif
1752 abort ();
1753 }
1754
1755 return ptr;
1756 }
1757
1758 #define ev_malloc(size) ev_realloc (0, (size))
1759 #define ev_free(ptr) ev_realloc ((ptr), 0)
1760
1761 /*****************************************************************************/
1762
1763 /* set in reify when reification needed */
1764 #define EV_ANFD_REIFY 1
1765
1766 /* file descriptor info structure */
1767 typedef struct
1768 {
1769 WL head;
1770 unsigned char events; /* the events watched for */
1771 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1772 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1773 unsigned char unused;
1774 #if EV_USE_EPOLL
1775 unsigned int egen; /* generation counter to counter epoll bugs */
1776 #endif
1777 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1778 SOCKET handle;
1779 #endif
1780 #if EV_USE_IOCP
1781 OVERLAPPED or, ow;
1782 #endif
1783 } ANFD;
1784
1785 /* stores the pending event set for a given watcher */
1786 typedef struct
1787 {
1788 W w;
1789 int events; /* the pending event set for the given watcher */
1790 } ANPENDING;
1791
1792 #if EV_USE_INOTIFY
1793 /* hash table entry per inotify-id */
1794 typedef struct
1795 {
1796 WL head;
1797 } ANFS;
1798 #endif
1799
1800 /* Heap Entry */
1801 #if EV_HEAP_CACHE_AT
1802 /* a heap element */
1803 typedef struct {
1804 ev_tstamp at;
1805 WT w;
1806 } ANHE;
1807
1808 #define ANHE_w(he) (he).w /* access watcher, read-write */
1809 #define ANHE_at(he) (he).at /* access cached at, read-only */
1810 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1811 #else
1812 /* a heap element */
1813 typedef WT ANHE;
1814
1815 #define ANHE_w(he) (he)
1816 #define ANHE_at(he) (he)->at
1817 #define ANHE_at_cache(he)
1818 #endif
1819
1820 #if EV_MULTIPLICITY
1821
1822 struct ev_loop
1823 {
1824 ev_tstamp ev_rt_now;
1825 #define ev_rt_now ((loop)->ev_rt_now)
1826 #define VAR(name,decl) decl;
1827 #include "ev_vars.h"
1828 #undef VAR
1829 };
1830 #include "ev_wrap.h"
1831
1832 static struct ev_loop default_loop_struct;
1833 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1834
1835 #else
1836
1837 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1838 #define VAR(name,decl) static decl;
1839 #include "ev_vars.h"
1840 #undef VAR
1841
1842 static int ev_default_loop_ptr;
1843
1844 #endif
1845
1846 #if EV_FEATURE_API
1847 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1848 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1849 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1850 #else
1851 # define EV_RELEASE_CB (void)0
1852 # define EV_ACQUIRE_CB (void)0
1853 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1854 #endif
1855
1856 #define EVBREAK_RECURSE 0x80
1857
1858 /*****************************************************************************/
1859
1860 #ifndef EV_HAVE_EV_TIME
1861 ev_tstamp
1862 ev_time (void) EV_THROW
1863 {
1864 #if EV_USE_REALTIME
1865 if (expect_true (have_realtime))
1866 {
1867 struct timespec ts;
1868 clock_gettime (CLOCK_REALTIME, &ts);
1869 return ts.tv_sec + ts.tv_nsec * 1e-9;
1870 }
1871 #endif
1872
1873 struct timeval tv;
1874 gettimeofday (&tv, 0);
1875 return tv.tv_sec + tv.tv_usec * 1e-6;
1876 }
1877 #endif
1878
1879 inline_size ev_tstamp
1880 get_clock (void)
1881 {
1882 #if EV_USE_MONOTONIC
1883 if (expect_true (have_monotonic))
1884 {
1885 struct timespec ts;
1886 clock_gettime (CLOCK_MONOTONIC, &ts);
1887 return ts.tv_sec + ts.tv_nsec * 1e-9;
1888 }
1889 #endif
1890
1891 return ev_time ();
1892 }
1893
1894 #if EV_MULTIPLICITY
1895 ev_tstamp
1896 ev_now (EV_P) EV_THROW
1897 {
1898 return ev_rt_now;
1899 }
1900 #endif
1901
1902 void
1903 ev_sleep (ev_tstamp delay) EV_THROW
1904 {
1905 if (delay > 0.)
1906 {
1907 #if EV_USE_NANOSLEEP
1908 struct timespec ts;
1909
1910 EV_TS_SET (ts, delay);
1911 nanosleep (&ts, 0);
1912 #elif defined _WIN32
1913 /* maybe this should round up, as ms is very low resolution */
1914 /* compared to select (µs) or nanosleep (ns) */
1915 Sleep ((unsigned long)(delay * 1e3));
1916 #else
1917 struct timeval tv;
1918
1919 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1920 /* something not guaranteed by newer posix versions, but guaranteed */
1921 /* by older ones */
1922 EV_TV_SET (tv, delay);
1923 select (0, 0, 0, 0, &tv);
1924 #endif
1925 }
1926 }
1927
1928 /*****************************************************************************/
1929
1930 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1931
1932 /* find a suitable new size for the given array, */
1933 /* hopefully by rounding to a nice-to-malloc size */
1934 inline_size int
1935 array_nextsize (int elem, int cur, int cnt)
1936 {
1937 int ncur = cur + 1;
1938
1939 do
1940 ncur <<= 1;
1941 while (cnt > ncur);
1942
1943 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1944 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1945 {
1946 ncur *= elem;
1947 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1948 ncur = ncur - sizeof (void *) * 4;
1949 ncur /= elem;
1950 }
1951
1952 return ncur;
1953 }
1954
1955 noinline ecb_cold
1956 static void *
1957 array_realloc (int elem, void *base, int *cur, int cnt)
1958 {
1959 *cur = array_nextsize (elem, *cur, cnt);
1960 return ev_realloc (base, elem * *cur);
1961 }
1962
1963 #define array_init_zero(base,count) \
1964 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1965
1966 #define array_needsize(type,base,cur,cnt,init) \
1967 if (expect_false ((cnt) > (cur))) \
1968 { \
1969 ecb_unused int ocur_ = (cur); \
1970 (base) = (type *)array_realloc \
1971 (sizeof (type), (base), &(cur), (cnt)); \
1972 init ((base) + (ocur_), (cur) - ocur_); \
1973 }
1974
1975 #if 0
1976 #define array_slim(type,stem) \
1977 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1978 { \
1979 stem ## max = array_roundsize (stem ## cnt >> 1); \
1980 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1981 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1982 }
1983 #endif
1984
1985 #define array_free(stem, idx) \
1986 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1987
1988 /*****************************************************************************/
1989
1990 /* dummy callback for pending events */
1991 noinline
1992 static void
1993 pendingcb (EV_P_ ev_prepare *w, int revents)
1994 {
1995 }
1996
1997 noinline
1998 void
1999 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
2000 {
2001 W w_ = (W)w;
2002 int pri = ABSPRI (w_);
2003
2004 if (expect_false (w_->pending))
2005 pendings [pri][w_->pending - 1].events |= revents;
2006 else
2007 {
2008 w_->pending = ++pendingcnt [pri];
2009 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2010 pendings [pri][w_->pending - 1].w = w_;
2011 pendings [pri][w_->pending - 1].events = revents;
2012 }
2013
2014 pendingpri = NUMPRI - 1;
2015 }
2016
2017 inline_speed void
2018 feed_reverse (EV_P_ W w)
2019 {
2020 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2021 rfeeds [rfeedcnt++] = w;
2022 }
2023
2024 inline_size void
2025 feed_reverse_done (EV_P_ int revents)
2026 {
2027 do
2028 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2029 while (rfeedcnt);
2030 }
2031
2032 inline_speed void
2033 queue_events (EV_P_ W *events, int eventcnt, int type)
2034 {
2035 int i;
2036
2037 for (i = 0; i < eventcnt; ++i)
2038 ev_feed_event (EV_A_ events [i], type);
2039 }
2040
2041 /*****************************************************************************/
2042
2043 inline_speed void
2044 fd_event_nocheck (EV_P_ int fd, int revents)
2045 {
2046 ANFD *anfd = anfds + fd;
2047 ev_io *w;
2048
2049 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2050 {
2051 int ev = w->events & revents;
2052
2053 if (ev)
2054 ev_feed_event (EV_A_ (W)w, ev);
2055 }
2056 }
2057
2058 /* do not submit kernel events for fds that have reify set */
2059 /* because that means they changed while we were polling for new events */
2060 inline_speed void
2061 fd_event (EV_P_ int fd, int revents)
2062 {
2063 ANFD *anfd = anfds + fd;
2064
2065 if (expect_true (!anfd->reify))
2066 fd_event_nocheck (EV_A_ fd, revents);
2067 }
2068
2069 void
2070 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
2071 {
2072 if (fd >= 0 && fd < anfdmax)
2073 fd_event_nocheck (EV_A_ fd, revents);
2074 }
2075
2076 /* make sure the external fd watch events are in-sync */
2077 /* with the kernel/libev internal state */
2078 inline_size void
2079 fd_reify (EV_P)
2080 {
2081 int i;
2082
2083 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2084 for (i = 0; i < fdchangecnt; ++i)
2085 {
2086 int fd = fdchanges [i];
2087 ANFD *anfd = anfds + fd;
2088
2089 if (anfd->reify & EV__IOFDSET && anfd->head)
2090 {
2091 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2092
2093 if (handle != anfd->handle)
2094 {
2095 unsigned long arg;
2096
2097 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2098
2099 /* handle changed, but fd didn't - we need to do it in two steps */
2100 backend_modify (EV_A_ fd, anfd->events, 0);
2101 anfd->events = 0;
2102 anfd->handle = handle;
2103 }
2104 }
2105 }
2106 #endif
2107
2108 for (i = 0; i < fdchangecnt; ++i)
2109 {
2110 int fd = fdchanges [i];
2111 ANFD *anfd = anfds + fd;
2112 ev_io *w;
2113
2114 unsigned char o_events = anfd->events;
2115 unsigned char o_reify = anfd->reify;
2116
2117 anfd->reify = 0;
2118
2119 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2120 {
2121 anfd->events = 0;
2122
2123 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2124 anfd->events |= (unsigned char)w->events;
2125
2126 if (o_events != anfd->events)
2127 o_reify = EV__IOFDSET; /* actually |= */
2128 }
2129
2130 if (o_reify & EV__IOFDSET)
2131 backend_modify (EV_A_ fd, o_events, anfd->events);
2132 }
2133
2134 fdchangecnt = 0;
2135 }
2136
2137 /* something about the given fd changed */
2138 inline_size
2139 void
2140 fd_change (EV_P_ int fd, int flags)
2141 {
2142 unsigned char reify = anfds [fd].reify;
2143 anfds [fd].reify |= flags;
2144
2145 if (expect_true (!reify))
2146 {
2147 ++fdchangecnt;
2148 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2149 fdchanges [fdchangecnt - 1] = fd;
2150 }
2151 }
2152
2153 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2154 inline_speed ecb_cold void
2155 fd_kill (EV_P_ int fd)
2156 {
2157 ev_io *w;
2158
2159 while ((w = (ev_io *)anfds [fd].head))
2160 {
2161 ev_io_stop (EV_A_ w);
2162 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2163 }
2164 }
2165
2166 /* check whether the given fd is actually valid, for error recovery */
2167 inline_size ecb_cold int
2168 fd_valid (int fd)
2169 {
2170 #ifdef _WIN32
2171 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2172 #else
2173 return fcntl (fd, F_GETFD) != -1;
2174 #endif
2175 }
2176
2177 /* called on EBADF to verify fds */
2178 noinline ecb_cold
2179 static void
2180 fd_ebadf (EV_P)
2181 {
2182 int fd;
2183
2184 for (fd = 0; fd < anfdmax; ++fd)
2185 if (anfds [fd].events)
2186 if (!fd_valid (fd) && errno == EBADF)
2187 fd_kill (EV_A_ fd);
2188 }
2189
2190 /* called on ENOMEM in select/poll to kill some fds and retry */
2191 noinline ecb_cold
2192 static void
2193 fd_enomem (EV_P)
2194 {
2195 int fd;
2196
2197 for (fd = anfdmax; fd--; )
2198 if (anfds [fd].events)
2199 {
2200 fd_kill (EV_A_ fd);
2201 break;
2202 }
2203 }
2204
2205 /* usually called after fork if backend needs to re-arm all fds from scratch */
2206 noinline
2207 static void
2208 fd_rearm_all (EV_P)
2209 {
2210 int fd;
2211
2212 for (fd = 0; fd < anfdmax; ++fd)
2213 if (anfds [fd].events)
2214 {
2215 anfds [fd].events = 0;
2216 anfds [fd].emask = 0;
2217 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2218 }
2219 }
2220
2221 /* used to prepare libev internal fd's */
2222 /* this is not fork-safe */
2223 inline_speed void
2224 fd_intern (int fd)
2225 {
2226 #ifdef _WIN32
2227 unsigned long arg = 1;
2228 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2229 #else
2230 fcntl (fd, F_SETFD, FD_CLOEXEC);
2231 fcntl (fd, F_SETFL, O_NONBLOCK);
2232 #endif
2233 }
2234
2235 /*****************************************************************************/
2236
2237 /*
2238 * the heap functions want a real array index. array index 0 is guaranteed to not
2239 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2240 * the branching factor of the d-tree.
2241 */
2242
2243 /*
2244 * at the moment we allow libev the luxury of two heaps,
2245 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2246 * which is more cache-efficient.
2247 * the difference is about 5% with 50000+ watchers.
2248 */
2249 #if EV_USE_4HEAP
2250
2251 #define DHEAP 4
2252 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2253 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2254 #define UPHEAP_DONE(p,k) ((p) == (k))
2255
2256 /* away from the root */
2257 inline_speed void
2258 downheap (ANHE *heap, int N, int k)
2259 {
2260 ANHE he = heap [k];
2261 ANHE *E = heap + N + HEAP0;
2262
2263 for (;;)
2264 {
2265 ev_tstamp minat;
2266 ANHE *minpos;
2267 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2268
2269 /* find minimum child */
2270 if (expect_true (pos + DHEAP - 1 < E))
2271 {
2272 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2273 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2274 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2275 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2276 }
2277 else if (pos < E)
2278 {
2279 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2280 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2281 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2282 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2283 }
2284 else
2285 break;
2286
2287 if (ANHE_at (he) <= minat)
2288 break;
2289
2290 heap [k] = *minpos;
2291 ev_active (ANHE_w (*minpos)) = k;
2292
2293 k = minpos - heap;
2294 }
2295
2296 heap [k] = he;
2297 ev_active (ANHE_w (he)) = k;
2298 }
2299
2300 #else /* 4HEAP */
2301
2302 #define HEAP0 1
2303 #define HPARENT(k) ((k) >> 1)
2304 #define UPHEAP_DONE(p,k) (!(p))
2305
2306 /* away from the root */
2307 inline_speed void
2308 downheap (ANHE *heap, int N, int k)
2309 {
2310 ANHE he = heap [k];
2311
2312 for (;;)
2313 {
2314 int c = k << 1;
2315
2316 if (c >= N + HEAP0)
2317 break;
2318
2319 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2320 ? 1 : 0;
2321
2322 if (ANHE_at (he) <= ANHE_at (heap [c]))
2323 break;
2324
2325 heap [k] = heap [c];
2326 ev_active (ANHE_w (heap [k])) = k;
2327
2328 k = c;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333 }
2334 #endif
2335
2336 /* towards the root */
2337 inline_speed void
2338 upheap (ANHE *heap, int k)
2339 {
2340 ANHE he = heap [k];
2341
2342 for (;;)
2343 {
2344 int p = HPARENT (k);
2345
2346 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2347 break;
2348
2349 heap [k] = heap [p];
2350 ev_active (ANHE_w (heap [k])) = k;
2351 k = p;
2352 }
2353
2354 heap [k] = he;
2355 ev_active (ANHE_w (he)) = k;
2356 }
2357
2358 /* move an element suitably so it is in a correct place */
2359 inline_size void
2360 adjustheap (ANHE *heap, int N, int k)
2361 {
2362 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2363 upheap (heap, k);
2364 else
2365 downheap (heap, N, k);
2366 }
2367
2368 /* rebuild the heap: this function is used only once and executed rarely */
2369 inline_size void
2370 reheap (ANHE *heap, int N)
2371 {
2372 int i;
2373
2374 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2375 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2376 for (i = 0; i < N; ++i)
2377 upheap (heap, i + HEAP0);
2378 }
2379
2380 /*****************************************************************************/
2381
2382 /* associate signal watchers to a signal signal */
2383 typedef struct
2384 {
2385 EV_ATOMIC_T pending;
2386 #if EV_MULTIPLICITY
2387 EV_P;
2388 #endif
2389 WL head;
2390 } ANSIG;
2391
2392 static ANSIG signals [EV_NSIG - 1];
2393
2394 /*****************************************************************************/
2395
2396 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2397
2398 noinline ecb_cold
2399 static void
2400 evpipe_init (EV_P)
2401 {
2402 if (!ev_is_active (&pipe_w))
2403 {
2404 int fds [2];
2405
2406 # if EV_USE_EVENTFD
2407 fds [0] = -1;
2408 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2409 if (fds [1] < 0 && errno == EINVAL)
2410 fds [1] = eventfd (0, 0);
2411
2412 if (fds [1] < 0)
2413 # endif
2414 {
2415 while (pipe (fds))
2416 ev_syserr ("(libev) error creating signal/async pipe");
2417
2418 fd_intern (fds [0]);
2419 }
2420
2421 evpipe [0] = fds [0];
2422
2423 if (evpipe [1] < 0)
2424 evpipe [1] = fds [1]; /* first call, set write fd */
2425 else
2426 {
2427 /* on subsequent calls, do not change evpipe [1] */
2428 /* so that evpipe_write can always rely on its value. */
2429 /* this branch does not do anything sensible on windows, */
2430 /* so must not be executed on windows */
2431
2432 dup2 (fds [1], evpipe [1]);
2433 close (fds [1]);
2434 }
2435
2436 fd_intern (evpipe [1]);
2437
2438 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2439 ev_io_start (EV_A_ &pipe_w);
2440 ev_unref (EV_A); /* watcher should not keep loop alive */
2441 }
2442 }
2443
2444 inline_speed void
2445 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2446 {
2447 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2448
2449 if (expect_true (*flag))
2450 return;
2451
2452 *flag = 1;
2453 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2454
2455 pipe_write_skipped = 1;
2456
2457 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2458
2459 if (pipe_write_wanted)
2460 {
2461 int old_errno;
2462
2463 pipe_write_skipped = 0;
2464 ECB_MEMORY_FENCE_RELEASE;
2465
2466 old_errno = errno; /* save errno because write will clobber it */
2467
2468 #if EV_USE_EVENTFD
2469 if (evpipe [0] < 0)
2470 {
2471 uint64_t counter = 1;
2472 write (evpipe [1], &counter, sizeof (uint64_t));
2473 }
2474 else
2475 #endif
2476 {
2477 #ifdef _WIN32
2478 WSABUF buf;
2479 DWORD sent;
2480 buf.buf = (char *)&buf;
2481 buf.len = 1;
2482 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2483 #else
2484 write (evpipe [1], &(evpipe [1]), 1);
2485 #endif
2486 }
2487
2488 errno = old_errno;
2489 }
2490 }
2491
2492 /* called whenever the libev signal pipe */
2493 /* got some events (signal, async) */
2494 static void
2495 pipecb (EV_P_ ev_io *iow, int revents)
2496 {
2497 int i;
2498
2499 if (revents & EV_READ)
2500 {
2501 #if EV_USE_EVENTFD
2502 if (evpipe [0] < 0)
2503 {
2504 uint64_t counter;
2505 read (evpipe [1], &counter, sizeof (uint64_t));
2506 }
2507 else
2508 #endif
2509 {
2510 char dummy[4];
2511 #ifdef _WIN32
2512 WSABUF buf;
2513 DWORD recvd;
2514 DWORD flags = 0;
2515 buf.buf = dummy;
2516 buf.len = sizeof (dummy);
2517 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2518 #else
2519 read (evpipe [0], &dummy, sizeof (dummy));
2520 #endif
2521 }
2522 }
2523
2524 pipe_write_skipped = 0;
2525
2526 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2527
2528 #if EV_SIGNAL_ENABLE
2529 if (sig_pending)
2530 {
2531 sig_pending = 0;
2532
2533 ECB_MEMORY_FENCE;
2534
2535 for (i = EV_NSIG - 1; i--; )
2536 if (expect_false (signals [i].pending))
2537 ev_feed_signal_event (EV_A_ i + 1);
2538 }
2539 #endif
2540
2541 #if EV_ASYNC_ENABLE
2542 if (async_pending)
2543 {
2544 async_pending = 0;
2545
2546 ECB_MEMORY_FENCE;
2547
2548 for (i = asynccnt; i--; )
2549 if (asyncs [i]->sent)
2550 {
2551 asyncs [i]->sent = 0;
2552 ECB_MEMORY_FENCE_RELEASE;
2553 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2554 }
2555 }
2556 #endif
2557 }
2558
2559 /*****************************************************************************/
2560
2561 void
2562 ev_feed_signal (int signum) EV_THROW
2563 {
2564 #if EV_MULTIPLICITY
2565 EV_P;
2566 ECB_MEMORY_FENCE_ACQUIRE;
2567 EV_A = signals [signum - 1].loop;
2568
2569 if (!EV_A)
2570 return;
2571 #endif
2572
2573 signals [signum - 1].pending = 1;
2574 evpipe_write (EV_A_ &sig_pending);
2575 }
2576
2577 static void
2578 ev_sighandler (int signum)
2579 {
2580 #ifdef _WIN32
2581 signal (signum, ev_sighandler);
2582 #endif
2583
2584 ev_feed_signal (signum);
2585 }
2586
2587 noinline
2588 void
2589 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2590 {
2591 WL w;
2592
2593 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2594 return;
2595
2596 --signum;
2597
2598 #if EV_MULTIPLICITY
2599 /* it is permissible to try to feed a signal to the wrong loop */
2600 /* or, likely more useful, feeding a signal nobody is waiting for */
2601
2602 if (expect_false (signals [signum].loop != EV_A))
2603 return;
2604 #endif
2605
2606 signals [signum].pending = 0;
2607 ECB_MEMORY_FENCE_RELEASE;
2608
2609 for (w = signals [signum].head; w; w = w->next)
2610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2611 }
2612
2613 #if EV_USE_SIGNALFD
2614 static void
2615 sigfdcb (EV_P_ ev_io *iow, int revents)
2616 {
2617 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2618
2619 for (;;)
2620 {
2621 ssize_t res = read (sigfd, si, sizeof (si));
2622
2623 /* not ISO-C, as res might be -1, but works with SuS */
2624 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2625 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2626
2627 if (res < (ssize_t)sizeof (si))
2628 break;
2629 }
2630 }
2631 #endif
2632
2633 #endif
2634
2635 /*****************************************************************************/
2636
2637 #if EV_CHILD_ENABLE
2638 static WL childs [EV_PID_HASHSIZE];
2639
2640 static ev_signal childev;
2641
2642 #ifndef WIFCONTINUED
2643 # define WIFCONTINUED(status) 0
2644 #endif
2645
2646 /* handle a single child status event */
2647 inline_speed void
2648 child_reap (EV_P_ int chain, int pid, int status)
2649 {
2650 ev_child *w;
2651 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2652
2653 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2654 {
2655 if ((w->pid == pid || !w->pid)
2656 && (!traced || (w->flags & 1)))
2657 {
2658 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2659 w->rpid = pid;
2660 w->rstatus = status;
2661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2662 }
2663 }
2664 }
2665
2666 #ifndef WCONTINUED
2667 # define WCONTINUED 0
2668 #endif
2669
2670 /* called on sigchld etc., calls waitpid */
2671 static void
2672 childcb (EV_P_ ev_signal *sw, int revents)
2673 {
2674 int pid, status;
2675
2676 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2677 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2678 if (!WCONTINUED
2679 || errno != EINVAL
2680 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2681 return;
2682
2683 /* make sure we are called again until all children have been reaped */
2684 /* we need to do it this way so that the callback gets called before we continue */
2685 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2686
2687 child_reap (EV_A_ pid, pid, status);
2688 if ((EV_PID_HASHSIZE) > 1)
2689 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2690 }
2691
2692 #endif
2693
2694 /*****************************************************************************/
2695
2696 #if EV_USE_IOCP
2697 # include "ev_iocp.c"
2698 #endif
2699 #if EV_USE_PORT
2700 # include "ev_port.c"
2701 #endif
2702 #if EV_USE_KQUEUE
2703 # include "ev_kqueue.c"
2704 #endif
2705 #if EV_USE_EPOLL
2706 # include "ev_epoll.c"
2707 #endif
2708 #if EV_USE_POLL
2709 # include "ev_poll.c"
2710 #endif
2711 #if EV_USE_SELECT
2712 # include "ev_select.c"
2713 #endif
2714
2715 ecb_cold int
2716 ev_version_major (void) EV_THROW
2717 {
2718 return EV_VERSION_MAJOR;
2719 }
2720
2721 ecb_cold int
2722 ev_version_minor (void) EV_THROW
2723 {
2724 return EV_VERSION_MINOR;
2725 }
2726
2727 /* return true if we are running with elevated privileges and should ignore env variables */
2728 inline_size ecb_cold int
2729 enable_secure (void)
2730 {
2731 #ifdef _WIN32
2732 return 0;
2733 #else
2734 return getuid () != geteuid ()
2735 || getgid () != getegid ();
2736 #endif
2737 }
2738
2739 ecb_cold
2740 unsigned int
2741 ev_supported_backends (void) EV_THROW
2742 {
2743 unsigned int flags = 0;
2744
2745 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2746 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2747 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2748 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2749 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2750
2751 return flags;
2752 }
2753
2754 ecb_cold
2755 unsigned int
2756 ev_recommended_backends (void) EV_THROW
2757 {
2758 unsigned int flags = ev_supported_backends ();
2759
2760 #ifndef __NetBSD__
2761 /* kqueue is borked on everything but netbsd apparently */
2762 /* it usually doesn't work correctly on anything but sockets and pipes */
2763 flags &= ~EVBACKEND_KQUEUE;
2764 #endif
2765 #ifdef __APPLE__
2766 /* only select works correctly on that "unix-certified" platform */
2767 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2768 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2769 #endif
2770 #ifdef __FreeBSD__
2771 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2772 #endif
2773
2774 return flags;
2775 }
2776
2777 ecb_cold
2778 unsigned int
2779 ev_embeddable_backends (void) EV_THROW
2780 {
2781 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2782
2783 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2784 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2785 flags &= ~EVBACKEND_EPOLL;
2786
2787 return flags;
2788 }
2789
2790 unsigned int
2791 ev_backend (EV_P) EV_THROW
2792 {
2793 return backend;
2794 }
2795
2796 #if EV_FEATURE_API
2797 unsigned int
2798 ev_iteration (EV_P) EV_THROW
2799 {
2800 return loop_count;
2801 }
2802
2803 unsigned int
2804 ev_depth (EV_P) EV_THROW
2805 {
2806 return loop_depth;
2807 }
2808
2809 void
2810 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2811 {
2812 io_blocktime = interval;
2813 }
2814
2815 void
2816 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2817 {
2818 timeout_blocktime = interval;
2819 }
2820
2821 void
2822 ev_set_userdata (EV_P_ void *data) EV_THROW
2823 {
2824 userdata = data;
2825 }
2826
2827 void *
2828 ev_userdata (EV_P) EV_THROW
2829 {
2830 return userdata;
2831 }
2832
2833 void
2834 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2835 {
2836 invoke_cb = invoke_pending_cb;
2837 }
2838
2839 void
2840 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2841 {
2842 release_cb = release;
2843 acquire_cb = acquire;
2844 }
2845 #endif
2846
2847 /* initialise a loop structure, must be zero-initialised */
2848 noinline ecb_cold
2849 static void
2850 loop_init (EV_P_ unsigned int flags) EV_THROW
2851 {
2852 if (!backend)
2853 {
2854 origflags = flags;
2855
2856 #if EV_USE_REALTIME
2857 if (!have_realtime)
2858 {
2859 struct timespec ts;
2860
2861 if (!clock_gettime (CLOCK_REALTIME, &ts))
2862 have_realtime = 1;
2863 }
2864 #endif
2865
2866 #if EV_USE_MONOTONIC
2867 if (!have_monotonic)
2868 {
2869 struct timespec ts;
2870
2871 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2872 have_monotonic = 1;
2873 }
2874 #endif
2875
2876 /* pid check not overridable via env */
2877 #ifndef _WIN32
2878 if (flags & EVFLAG_FORKCHECK)
2879 curpid = getpid ();
2880 #endif
2881
2882 if (!(flags & EVFLAG_NOENV)
2883 && !enable_secure ()
2884 && getenv ("LIBEV_FLAGS"))
2885 flags = atoi (getenv ("LIBEV_FLAGS"));
2886
2887 ev_rt_now = ev_time ();
2888 mn_now = get_clock ();
2889 now_floor = mn_now;
2890 rtmn_diff = ev_rt_now - mn_now;
2891 #if EV_FEATURE_API
2892 invoke_cb = ev_invoke_pending;
2893 #endif
2894
2895 io_blocktime = 0.;
2896 timeout_blocktime = 0.;
2897 backend = 0;
2898 backend_fd = -1;
2899 sig_pending = 0;
2900 #if EV_ASYNC_ENABLE
2901 async_pending = 0;
2902 #endif
2903 pipe_write_skipped = 0;
2904 pipe_write_wanted = 0;
2905 evpipe [0] = -1;
2906 evpipe [1] = -1;
2907 #if EV_USE_INOTIFY
2908 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2909 #endif
2910 #if EV_USE_SIGNALFD
2911 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2912 #endif
2913
2914 if (!(flags & EVBACKEND_MASK))
2915 flags |= ev_recommended_backends ();
2916
2917 #if EV_USE_IOCP
2918 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2919 #endif
2920 #if EV_USE_PORT
2921 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2922 #endif
2923 #if EV_USE_KQUEUE
2924 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2925 #endif
2926 #if EV_USE_EPOLL
2927 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2928 #endif
2929 #if EV_USE_POLL
2930 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2931 #endif
2932 #if EV_USE_SELECT
2933 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2934 #endif
2935
2936 ev_prepare_init (&pending_w, pendingcb);
2937
2938 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2939 ev_init (&pipe_w, pipecb);
2940 ev_set_priority (&pipe_w, EV_MAXPRI);
2941 #endif
2942 }
2943 }
2944
2945 /* free up a loop structure */
2946 ecb_cold
2947 void
2948 ev_loop_destroy (EV_P)
2949 {
2950 int i;
2951
2952 #if EV_MULTIPLICITY
2953 /* mimic free (0) */
2954 if (!EV_A)
2955 return;
2956 #endif
2957
2958 #if EV_CLEANUP_ENABLE
2959 /* queue cleanup watchers (and execute them) */
2960 if (expect_false (cleanupcnt))
2961 {
2962 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2963 EV_INVOKE_PENDING;
2964 }
2965 #endif
2966
2967 #if EV_CHILD_ENABLE
2968 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2969 {
2970 ev_ref (EV_A); /* child watcher */
2971 ev_signal_stop (EV_A_ &childev);
2972 }
2973 #endif
2974
2975 if (ev_is_active (&pipe_w))
2976 {
2977 /*ev_ref (EV_A);*/
2978 /*ev_io_stop (EV_A_ &pipe_w);*/
2979
2980 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2981 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2982 }
2983
2984 #if EV_USE_SIGNALFD
2985 if (ev_is_active (&sigfd_w))
2986 close (sigfd);
2987 #endif
2988
2989 #if EV_USE_INOTIFY
2990 if (fs_fd >= 0)
2991 close (fs_fd);
2992 #endif
2993
2994 if (backend_fd >= 0)
2995 close (backend_fd);
2996
2997 #if EV_USE_IOCP
2998 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2999 #endif
3000 #if EV_USE_PORT
3001 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3002 #endif
3003 #if EV_USE_KQUEUE
3004 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3005 #endif
3006 #if EV_USE_EPOLL
3007 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3008 #endif
3009 #if EV_USE_POLL
3010 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3011 #endif
3012 #if EV_USE_SELECT
3013 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3014 #endif
3015
3016 for (i = NUMPRI; i--; )
3017 {
3018 array_free (pending, [i]);
3019 #if EV_IDLE_ENABLE
3020 array_free (idle, [i]);
3021 #endif
3022 }
3023
3024 ev_free (anfds); anfds = 0; anfdmax = 0;
3025
3026 /* have to use the microsoft-never-gets-it-right macro */
3027 array_free (rfeed, EMPTY);
3028 array_free (fdchange, EMPTY);
3029 array_free (timer, EMPTY);
3030 #if EV_PERIODIC_ENABLE
3031 array_free (periodic, EMPTY);
3032 #endif
3033 #if EV_FORK_ENABLE
3034 array_free (fork, EMPTY);
3035 #endif
3036 #if EV_CLEANUP_ENABLE
3037 array_free (cleanup, EMPTY);
3038 #endif
3039 array_free (prepare, EMPTY);
3040 array_free (check, EMPTY);
3041 #if EV_ASYNC_ENABLE
3042 array_free (async, EMPTY);
3043 #endif
3044
3045 backend = 0;
3046
3047 #if EV_MULTIPLICITY
3048 if (ev_is_default_loop (EV_A))
3049 #endif
3050 ev_default_loop_ptr = 0;
3051 #if EV_MULTIPLICITY
3052 else
3053 ev_free (EV_A);
3054 #endif
3055 }
3056
3057 #if EV_USE_INOTIFY
3058 inline_size void infy_fork (EV_P);
3059 #endif
3060
3061 inline_size void
3062 loop_fork (EV_P)
3063 {
3064 #if EV_USE_PORT
3065 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3066 #endif
3067 #if EV_USE_KQUEUE
3068 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3069 #endif
3070 #if EV_USE_EPOLL
3071 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3072 #endif
3073 #if EV_USE_INOTIFY
3074 infy_fork (EV_A);
3075 #endif
3076
3077 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3078 if (ev_is_active (&pipe_w) && postfork != 2)
3079 {
3080 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3081
3082 ev_ref (EV_A);
3083 ev_io_stop (EV_A_ &pipe_w);
3084
3085 if (evpipe [0] >= 0)
3086 EV_WIN32_CLOSE_FD (evpipe [0]);
3087
3088 evpipe_init (EV_A);
3089 /* iterate over everything, in case we missed something before */
3090 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3091 }
3092 #endif
3093
3094 postfork = 0;
3095 }
3096
3097 #if EV_MULTIPLICITY
3098
3099 ecb_cold
3100 struct ev_loop *
3101 ev_loop_new (unsigned int flags) EV_THROW
3102 {
3103 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3104
3105 memset (EV_A, 0, sizeof (struct ev_loop));
3106 loop_init (EV_A_ flags);
3107
3108 if (ev_backend (EV_A))
3109 return EV_A;
3110
3111 ev_free (EV_A);
3112 return 0;
3113 }
3114
3115 #endif /* multiplicity */
3116
3117 #if EV_VERIFY
3118 noinline ecb_cold
3119 static void
3120 verify_watcher (EV_P_ W w)
3121 {
3122 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3123
3124 if (w->pending)
3125 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3126 }
3127
3128 noinline ecb_cold
3129 static void
3130 verify_heap (EV_P_ ANHE *heap, int N)
3131 {
3132 int i;
3133
3134 for (i = HEAP0; i < N + HEAP0; ++i)
3135 {
3136 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3137 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3138 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3139
3140 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3141 }
3142 }
3143
3144 noinline ecb_cold
3145 static void
3146 array_verify (EV_P_ W *ws, int cnt)
3147 {
3148 while (cnt--)
3149 {
3150 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3151 verify_watcher (EV_A_ ws [cnt]);
3152 }
3153 }
3154 #endif
3155
3156 #if EV_FEATURE_API
3157 void ecb_cold
3158 ev_verify (EV_P) EV_THROW
3159 {
3160 #if EV_VERIFY
3161 int i;
3162 WL w, w2;
3163
3164 assert (activecnt >= -1);
3165
3166 assert (fdchangemax >= fdchangecnt);
3167 for (i = 0; i < fdchangecnt; ++i)
3168 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3169
3170 assert (anfdmax >= 0);
3171 for (i = 0; i < anfdmax; ++i)
3172 {
3173 int j = 0;
3174
3175 for (w = w2 = anfds [i].head; w; w = w->next)
3176 {
3177 verify_watcher (EV_A_ (W)w);
3178
3179 if (j++ & 1)
3180 {
3181 assert (("libev: io watcher list contains a loop", w != w2));
3182 w2 = w2->next;
3183 }
3184
3185 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3186 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3187 }
3188 }
3189
3190 assert (timermax >= timercnt);
3191 verify_heap (EV_A_ timers, timercnt);
3192
3193 #if EV_PERIODIC_ENABLE
3194 assert (periodicmax >= periodiccnt);
3195 verify_heap (EV_A_ periodics, periodiccnt);
3196 #endif
3197
3198 for (i = NUMPRI; i--; )
3199 {
3200 assert (pendingmax [i] >= pendingcnt [i]);
3201 #if EV_IDLE_ENABLE
3202 assert (idleall >= 0);
3203 assert (idlemax [i] >= idlecnt [i]);
3204 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3205 #endif
3206 }
3207
3208 #if EV_FORK_ENABLE
3209 assert (forkmax >= forkcnt);
3210 array_verify (EV_A_ (W *)forks, forkcnt);
3211 #endif
3212
3213 #if EV_CLEANUP_ENABLE
3214 assert (cleanupmax >= cleanupcnt);
3215 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3216 #endif
3217
3218 #if EV_ASYNC_ENABLE
3219 assert (asyncmax >= asynccnt);
3220 array_verify (EV_A_ (W *)asyncs, asynccnt);
3221 #endif
3222
3223 #if EV_PREPARE_ENABLE
3224 assert (preparemax >= preparecnt);
3225 array_verify (EV_A_ (W *)prepares, preparecnt);
3226 #endif
3227
3228 #if EV_CHECK_ENABLE
3229 assert (checkmax >= checkcnt);
3230 array_verify (EV_A_ (W *)checks, checkcnt);
3231 #endif
3232
3233 # if 0
3234 #if EV_CHILD_ENABLE
3235 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3236 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3237 #endif
3238 # endif
3239 #endif
3240 }
3241 #endif
3242
3243 #if EV_MULTIPLICITY
3244 ecb_cold
3245 struct ev_loop *
3246 #else
3247 int
3248 #endif
3249 ev_default_loop (unsigned int flags) EV_THROW
3250 {
3251 if (!ev_default_loop_ptr)
3252 {
3253 #if EV_MULTIPLICITY
3254 EV_P = ev_default_loop_ptr = &default_loop_struct;
3255 #else
3256 ev_default_loop_ptr = 1;
3257 #endif
3258
3259 loop_init (EV_A_ flags);
3260
3261 if (ev_backend (EV_A))
3262 {
3263 #if EV_CHILD_ENABLE
3264 ev_signal_init (&childev, childcb, SIGCHLD);
3265 ev_set_priority (&childev, EV_MAXPRI);
3266 ev_signal_start (EV_A_ &childev);
3267 ev_unref (EV_A); /* child watcher should not keep loop alive */
3268 #endif
3269 }
3270 else
3271 ev_default_loop_ptr = 0;
3272 }
3273
3274 return ev_default_loop_ptr;
3275 }
3276
3277 void
3278 ev_loop_fork (EV_P) EV_THROW
3279 {
3280 postfork = 1;
3281 }
3282
3283 /*****************************************************************************/
3284
3285 void
3286 ev_invoke (EV_P_ void *w, int revents)
3287 {
3288 EV_CB_INVOKE ((W)w, revents);
3289 }
3290
3291 unsigned int
3292 ev_pending_count (EV_P) EV_THROW
3293 {
3294 int pri;
3295 unsigned int count = 0;
3296
3297 for (pri = NUMPRI; pri--; )
3298 count += pendingcnt [pri];
3299
3300 return count;
3301 }
3302
3303 noinline
3304 void
3305 ev_invoke_pending (EV_P)
3306 {
3307 pendingpri = NUMPRI;
3308
3309 do
3310 {
3311 --pendingpri;
3312
3313 /* pendingpri possibly gets modified in the inner loop */
3314 while (pendingcnt [pendingpri])
3315 {
3316 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3317
3318 p->w->pending = 0;
3319 EV_CB_INVOKE (p->w, p->events);
3320 EV_FREQUENT_CHECK;
3321 }
3322 }
3323 while (pendingpri);
3324 }
3325
3326 #if EV_IDLE_ENABLE
3327 /* make idle watchers pending. this handles the "call-idle */
3328 /* only when higher priorities are idle" logic */
3329 inline_size void
3330 idle_reify (EV_P)
3331 {
3332 if (expect_false (idleall))
3333 {
3334 int pri;
3335
3336 for (pri = NUMPRI; pri--; )
3337 {
3338 if (pendingcnt [pri])
3339 break;
3340
3341 if (idlecnt [pri])
3342 {
3343 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3344 break;
3345 }
3346 }
3347 }
3348 }
3349 #endif
3350
3351 /* make timers pending */
3352 inline_size void
3353 timers_reify (EV_P)
3354 {
3355 EV_FREQUENT_CHECK;
3356
3357 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3358 {
3359 do
3360 {
3361 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3362
3363 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3364
3365 /* first reschedule or stop timer */
3366 if (w->repeat)
3367 {
3368 ev_at (w) += w->repeat;
3369 if (ev_at (w) < mn_now)
3370 ev_at (w) = mn_now;
3371
3372 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3373
3374 ANHE_at_cache (timers [HEAP0]);
3375 downheap (timers, timercnt, HEAP0);
3376 }
3377 else
3378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3379
3380 EV_FREQUENT_CHECK;
3381 feed_reverse (EV_A_ (W)w);
3382 }
3383 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3384
3385 feed_reverse_done (EV_A_ EV_TIMER);
3386 }
3387 }
3388
3389 #if EV_PERIODIC_ENABLE
3390
3391 noinline
3392 static void
3393 periodic_recalc (EV_P_ ev_periodic *w)
3394 {
3395 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3396 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3397
3398 /* the above almost always errs on the low side */
3399 while (at <= ev_rt_now)
3400 {
3401 ev_tstamp nat = at + w->interval;
3402
3403 /* when resolution fails us, we use ev_rt_now */
3404 if (expect_false (nat == at))
3405 {
3406 at = ev_rt_now;
3407 break;
3408 }
3409
3410 at = nat;
3411 }
3412
3413 ev_at (w) = at;
3414 }
3415
3416 /* make periodics pending */
3417 inline_size void
3418 periodics_reify (EV_P)
3419 {
3420 EV_FREQUENT_CHECK;
3421
3422 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3423 {
3424 do
3425 {
3426 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3427
3428 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3429
3430 /* first reschedule or stop timer */
3431 if (w->reschedule_cb)
3432 {
3433 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3434
3435 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3436
3437 ANHE_at_cache (periodics [HEAP0]);
3438 downheap (periodics, periodiccnt, HEAP0);
3439 }
3440 else if (w->interval)
3441 {
3442 periodic_recalc (EV_A_ w);
3443 ANHE_at_cache (periodics [HEAP0]);
3444 downheap (periodics, periodiccnt, HEAP0);
3445 }
3446 else
3447 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3448
3449 EV_FREQUENT_CHECK;
3450 feed_reverse (EV_A_ (W)w);
3451 }
3452 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3453
3454 feed_reverse_done (EV_A_ EV_PERIODIC);
3455 }
3456 }
3457
3458 /* simply recalculate all periodics */
3459 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3460 noinline ecb_cold
3461 static void
3462 periodics_reschedule (EV_P)
3463 {
3464 int i;
3465
3466 /* adjust periodics after time jump */
3467 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3468 {
3469 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3470
3471 if (w->reschedule_cb)
3472 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3473 else if (w->interval)
3474 periodic_recalc (EV_A_ w);
3475
3476 ANHE_at_cache (periodics [i]);
3477 }
3478
3479 reheap (periodics, periodiccnt);
3480 }
3481 #endif
3482
3483 /* adjust all timers by a given offset */
3484 noinline ecb_cold
3485 static void
3486 timers_reschedule (EV_P_ ev_tstamp adjust)
3487 {
3488 int i;
3489
3490 for (i = 0; i < timercnt; ++i)
3491 {
3492 ANHE *he = timers + i + HEAP0;
3493 ANHE_w (*he)->at += adjust;
3494 ANHE_at_cache (*he);
3495 }
3496 }
3497
3498 /* fetch new monotonic and realtime times from the kernel */
3499 /* also detect if there was a timejump, and act accordingly */
3500 inline_speed void
3501 time_update (EV_P_ ev_tstamp max_block)
3502 {
3503 #if EV_USE_MONOTONIC
3504 if (expect_true (have_monotonic))
3505 {
3506 int i;
3507 ev_tstamp odiff = rtmn_diff;
3508
3509 mn_now = get_clock ();
3510
3511 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3512 /* interpolate in the meantime */
3513 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3514 {
3515 ev_rt_now = rtmn_diff + mn_now;
3516 return;
3517 }
3518
3519 now_floor = mn_now;
3520 ev_rt_now = ev_time ();
3521
3522 /* loop a few times, before making important decisions.
3523 * on the choice of "4": one iteration isn't enough,
3524 * in case we get preempted during the calls to
3525 * ev_time and get_clock. a second call is almost guaranteed
3526 * to succeed in that case, though. and looping a few more times
3527 * doesn't hurt either as we only do this on time-jumps or
3528 * in the unlikely event of having been preempted here.
3529 */
3530 for (i = 4; --i; )
3531 {
3532 ev_tstamp diff;
3533 rtmn_diff = ev_rt_now - mn_now;
3534
3535 diff = odiff - rtmn_diff;
3536
3537 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3538 return; /* all is well */
3539
3540 ev_rt_now = ev_time ();
3541 mn_now = get_clock ();
3542 now_floor = mn_now;
3543 }
3544
3545 /* no timer adjustment, as the monotonic clock doesn't jump */
3546 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3547 # if EV_PERIODIC_ENABLE
3548 periodics_reschedule (EV_A);
3549 # endif
3550 }
3551 else
3552 #endif
3553 {
3554 ev_rt_now = ev_time ();
3555
3556 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3557 {
3558 /* adjust timers. this is easy, as the offset is the same for all of them */
3559 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3560 #if EV_PERIODIC_ENABLE
3561 periodics_reschedule (EV_A);
3562 #endif
3563 }
3564
3565 mn_now = ev_rt_now;
3566 }
3567 }
3568
3569 int
3570 ev_run (EV_P_ int flags)
3571 {
3572 #if EV_FEATURE_API
3573 ++loop_depth;
3574 #endif
3575
3576 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3577
3578 loop_done = EVBREAK_CANCEL;
3579
3580 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3581
3582 do
3583 {
3584 #if EV_VERIFY >= 2
3585 ev_verify (EV_A);
3586 #endif
3587
3588 #ifndef _WIN32
3589 if (expect_false (curpid)) /* penalise the forking check even more */
3590 if (expect_false (getpid () != curpid))
3591 {
3592 curpid = getpid ();
3593 postfork = 1;
3594 }
3595 #endif
3596
3597 #if EV_FORK_ENABLE
3598 /* we might have forked, so queue fork handlers */
3599 if (expect_false (postfork))
3600 if (forkcnt)
3601 {
3602 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3603 EV_INVOKE_PENDING;
3604 }
3605 #endif
3606
3607 #if EV_PREPARE_ENABLE
3608 /* queue prepare watchers (and execute them) */
3609 if (expect_false (preparecnt))
3610 {
3611 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3612 EV_INVOKE_PENDING;
3613 }
3614 #endif
3615
3616 if (expect_false (loop_done))
3617 break;
3618
3619 /* we might have forked, so reify kernel state if necessary */
3620 if (expect_false (postfork))
3621 loop_fork (EV_A);
3622
3623 /* update fd-related kernel structures */
3624 fd_reify (EV_A);
3625
3626 /* calculate blocking time */
3627 {
3628 ev_tstamp waittime = 0.;
3629 ev_tstamp sleeptime = 0.;
3630
3631 /* remember old timestamp for io_blocktime calculation */
3632 ev_tstamp prev_mn_now = mn_now;
3633
3634 /* update time to cancel out callback processing overhead */
3635 time_update (EV_A_ 1e100);
3636
3637 /* from now on, we want a pipe-wake-up */
3638 pipe_write_wanted = 1;
3639
3640 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3641
3642 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3643 {
3644 waittime = MAX_BLOCKTIME;
3645
3646 if (timercnt)
3647 {
3648 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3649 if (waittime > to) waittime = to;
3650 }
3651
3652 #if EV_PERIODIC_ENABLE
3653 if (periodiccnt)
3654 {
3655 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3656 if (waittime > to) waittime = to;
3657 }
3658 #endif
3659
3660 /* don't let timeouts decrease the waittime below timeout_blocktime */
3661 if (expect_false (waittime < timeout_blocktime))
3662 waittime = timeout_blocktime;
3663
3664 /* at this point, we NEED to wait, so we have to ensure */
3665 /* to pass a minimum nonzero value to the backend */
3666 if (expect_false (waittime < backend_mintime))
3667 waittime = backend_mintime;
3668
3669 /* extra check because io_blocktime is commonly 0 */
3670 if (expect_false (io_blocktime))
3671 {
3672 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3673
3674 if (sleeptime > waittime - backend_mintime)
3675 sleeptime = waittime - backend_mintime;
3676
3677 if (expect_true (sleeptime > 0.))
3678 {
3679 ev_sleep (sleeptime);
3680 waittime -= sleeptime;
3681 }
3682 }
3683 }
3684
3685 #if EV_FEATURE_API
3686 ++loop_count;
3687 #endif
3688 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3689 backend_poll (EV_A_ waittime);
3690 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3691
3692 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3693
3694 ECB_MEMORY_FENCE_ACQUIRE;
3695 if (pipe_write_skipped)
3696 {
3697 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3698 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3699 }
3700
3701
3702 /* update ev_rt_now, do magic */
3703 time_update (EV_A_ waittime + sleeptime);
3704 }
3705
3706 /* queue pending timers and reschedule them */
3707 timers_reify (EV_A); /* relative timers called last */
3708 #if EV_PERIODIC_ENABLE
3709 periodics_reify (EV_A); /* absolute timers called first */
3710 #endif
3711
3712 #if EV_IDLE_ENABLE
3713 /* queue idle watchers unless other events are pending */
3714 idle_reify (EV_A);
3715 #endif
3716
3717 #if EV_CHECK_ENABLE
3718 /* queue check watchers, to be executed first */
3719 if (expect_false (checkcnt))
3720 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3721 #endif
3722
3723 EV_INVOKE_PENDING;
3724 }
3725 while (expect_true (
3726 activecnt
3727 && !loop_done
3728 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3729 ));
3730
3731 if (loop_done == EVBREAK_ONE)
3732 loop_done = EVBREAK_CANCEL;
3733
3734 #if EV_FEATURE_API
3735 --loop_depth;
3736 #endif
3737
3738 return activecnt;
3739 }
3740
3741 void
3742 ev_break (EV_P_ int how) EV_THROW
3743 {
3744 loop_done = how;
3745 }
3746
3747 void
3748 ev_ref (EV_P) EV_THROW
3749 {
3750 ++activecnt;
3751 }
3752
3753 void
3754 ev_unref (EV_P) EV_THROW
3755 {
3756 --activecnt;
3757 }
3758
3759 void
3760 ev_now_update (EV_P) EV_THROW
3761 {
3762 time_update (EV_A_ 1e100);
3763 }
3764
3765 void
3766 ev_suspend (EV_P) EV_THROW
3767 {
3768 ev_now_update (EV_A);
3769 }
3770
3771 void
3772 ev_resume (EV_P) EV_THROW
3773 {
3774 ev_tstamp mn_prev = mn_now;
3775
3776 ev_now_update (EV_A);
3777 timers_reschedule (EV_A_ mn_now - mn_prev);
3778 #if EV_PERIODIC_ENABLE
3779 /* TODO: really do this? */
3780 periodics_reschedule (EV_A);
3781 #endif
3782 }
3783
3784 /*****************************************************************************/
3785 /* singly-linked list management, used when the expected list length is short */
3786
3787 inline_size void
3788 wlist_add (WL *head, WL elem)
3789 {
3790 elem->next = *head;
3791 *head = elem;
3792 }
3793
3794 inline_size void
3795 wlist_del (WL *head, WL elem)
3796 {
3797 while (*head)
3798 {
3799 if (expect_true (*head == elem))
3800 {
3801 *head = elem->next;
3802 break;
3803 }
3804
3805 head = &(*head)->next;
3806 }
3807 }
3808
3809 /* internal, faster, version of ev_clear_pending */
3810 inline_speed void
3811 clear_pending (EV_P_ W w)
3812 {
3813 if (w->pending)
3814 {
3815 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3816 w->pending = 0;
3817 }
3818 }
3819
3820 int
3821 ev_clear_pending (EV_P_ void *w) EV_THROW
3822 {
3823 W w_ = (W)w;
3824 int pending = w_->pending;
3825
3826 if (expect_true (pending))
3827 {
3828 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3829 p->w = (W)&pending_w;
3830 w_->pending = 0;
3831 return p->events;
3832 }
3833 else
3834 return 0;
3835 }
3836
3837 inline_size void
3838 pri_adjust (EV_P_ W w)
3839 {
3840 int pri = ev_priority (w);
3841 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3842 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3843 ev_set_priority (w, pri);
3844 }
3845
3846 inline_speed void
3847 ev_start (EV_P_ W w, int active)
3848 {
3849 pri_adjust (EV_A_ w);
3850 w->active = active;
3851 ev_ref (EV_A);
3852 }
3853
3854 inline_size void
3855 ev_stop (EV_P_ W w)
3856 {
3857 ev_unref (EV_A);
3858 w->active = 0;
3859 }
3860
3861 /*****************************************************************************/
3862
3863 noinline
3864 void
3865 ev_io_start (EV_P_ ev_io *w) EV_THROW
3866 {
3867 int fd = w->fd;
3868
3869 if (expect_false (ev_is_active (w)))
3870 return;
3871
3872 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3873 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3874
3875 EV_FREQUENT_CHECK;
3876
3877 ev_start (EV_A_ (W)w, 1);
3878 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3879 wlist_add (&anfds[fd].head, (WL)w);
3880
3881 /* common bug, apparently */
3882 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3883
3884 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3885 w->events &= ~EV__IOFDSET;
3886
3887 EV_FREQUENT_CHECK;
3888 }
3889
3890 noinline
3891 void
3892 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3893 {
3894 clear_pending (EV_A_ (W)w);
3895 if (expect_false (!ev_is_active (w)))
3896 return;
3897
3898 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3899
3900 EV_FREQUENT_CHECK;
3901
3902 wlist_del (&anfds[w->fd].head, (WL)w);
3903 ev_stop (EV_A_ (W)w);
3904
3905 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3906
3907 EV_FREQUENT_CHECK;
3908 }
3909
3910 noinline
3911 void
3912 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3913 {
3914 if (expect_false (ev_is_active (w)))
3915 return;
3916
3917 ev_at (w) += mn_now;
3918
3919 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3920
3921 EV_FREQUENT_CHECK;
3922
3923 ++timercnt;
3924 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3925 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3926 ANHE_w (timers [ev_active (w)]) = (WT)w;
3927 ANHE_at_cache (timers [ev_active (w)]);
3928 upheap (timers, ev_active (w));
3929
3930 EV_FREQUENT_CHECK;
3931
3932 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3933 }
3934
3935 noinline
3936 void
3937 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3938 {
3939 clear_pending (EV_A_ (W)w);
3940 if (expect_false (!ev_is_active (w)))
3941 return;
3942
3943 EV_FREQUENT_CHECK;
3944
3945 {
3946 int active = ev_active (w);
3947
3948 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3949
3950 --timercnt;
3951
3952 if (expect_true (active < timercnt + HEAP0))
3953 {
3954 timers [active] = timers [timercnt + HEAP0];
3955 adjustheap (timers, timercnt, active);
3956 }
3957 }
3958
3959 ev_at (w) -= mn_now;
3960
3961 ev_stop (EV_A_ (W)w);
3962
3963 EV_FREQUENT_CHECK;
3964 }
3965
3966 noinline
3967 void
3968 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3969 {
3970 EV_FREQUENT_CHECK;
3971
3972 clear_pending (EV_A_ (W)w);
3973
3974 if (ev_is_active (w))
3975 {
3976 if (w->repeat)
3977 {
3978 ev_at (w) = mn_now + w->repeat;
3979 ANHE_at_cache (timers [ev_active (w)]);
3980 adjustheap (timers, timercnt, ev_active (w));
3981 }
3982 else
3983 ev_timer_stop (EV_A_ w);
3984 }
3985 else if (w->repeat)
3986 {
3987 ev_at (w) = w->repeat;
3988 ev_timer_start (EV_A_ w);
3989 }
3990
3991 EV_FREQUENT_CHECK;
3992 }
3993
3994 ev_tstamp
3995 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3996 {
3997 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3998 }
3999
4000 #if EV_PERIODIC_ENABLE
4001 noinline
4002 void
4003 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
4004 {
4005 if (expect_false (ev_is_active (w)))
4006 return;
4007
4008 if (w->reschedule_cb)
4009 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4010 else if (w->interval)
4011 {
4012 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4013 periodic_recalc (EV_A_ w);
4014 }
4015 else
4016 ev_at (w) = w->offset;
4017
4018 EV_FREQUENT_CHECK;
4019
4020 ++periodiccnt;
4021 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4022 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4023 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4024 ANHE_at_cache (periodics [ev_active (w)]);
4025 upheap (periodics, ev_active (w));
4026
4027 EV_FREQUENT_CHECK;
4028
4029 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4030 }
4031
4032 noinline
4033 void
4034 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
4035 {
4036 clear_pending (EV_A_ (W)w);
4037 if (expect_false (!ev_is_active (w)))
4038 return;
4039
4040 EV_FREQUENT_CHECK;
4041
4042 {
4043 int active = ev_active (w);
4044
4045 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4046
4047 --periodiccnt;
4048
4049 if (expect_true (active < periodiccnt + HEAP0))
4050 {
4051 periodics [active] = periodics [periodiccnt + HEAP0];
4052 adjustheap (periodics, periodiccnt, active);
4053 }
4054 }
4055
4056 ev_stop (EV_A_ (W)w);
4057
4058 EV_FREQUENT_CHECK;
4059 }
4060
4061 noinline
4062 void
4063 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
4064 {
4065 /* TODO: use adjustheap and recalculation */
4066 ev_periodic_stop (EV_A_ w);
4067 ev_periodic_start (EV_A_ w);
4068 }
4069 #endif
4070
4071 #ifndef SA_RESTART
4072 # define SA_RESTART 0
4073 #endif
4074
4075 #if EV_SIGNAL_ENABLE
4076
4077 noinline
4078 void
4079 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
4080 {
4081 if (expect_false (ev_is_active (w)))
4082 return;
4083
4084 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4085
4086 #if EV_MULTIPLICITY
4087 assert (("libev: a signal must not be attached to two different loops",
4088 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4089
4090 signals [w->signum - 1].loop = EV_A;
4091 ECB_MEMORY_FENCE_RELEASE;
4092 #endif
4093
4094 EV_FREQUENT_CHECK;
4095
4096 #if EV_USE_SIGNALFD
4097 if (sigfd == -2)
4098 {
4099 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4100 if (sigfd < 0 && errno == EINVAL)
4101 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4102
4103 if (sigfd >= 0)
4104 {
4105 fd_intern (sigfd); /* doing it twice will not hurt */
4106
4107 sigemptyset (&sigfd_set);
4108
4109 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4110 ev_set_priority (&sigfd_w, EV_MAXPRI);
4111 ev_io_start (EV_A_ &sigfd_w);
4112 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4113 }
4114 }
4115
4116 if (sigfd >= 0)
4117 {
4118 /* TODO: check .head */
4119 sigaddset (&sigfd_set, w->signum);
4120 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4121
4122 signalfd (sigfd, &sigfd_set, 0);
4123 }
4124 #endif
4125
4126 ev_start (EV_A_ (W)w, 1);
4127 wlist_add (&signals [w->signum - 1].head, (WL)w);
4128
4129 if (!((WL)w)->next)
4130 # if EV_USE_SIGNALFD
4131 if (sigfd < 0) /*TODO*/
4132 # endif
4133 {
4134 # ifdef _WIN32
4135 evpipe_init (EV_A);
4136
4137 signal (w->signum, ev_sighandler);
4138 # else
4139 struct sigaction sa;
4140
4141 evpipe_init (EV_A);
4142
4143 sa.sa_handler = ev_sighandler;
4144 sigfillset (&sa.sa_mask);
4145 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4146 sigaction (w->signum, &sa, 0);
4147
4148 if (origflags & EVFLAG_NOSIGMASK)
4149 {
4150 sigemptyset (&sa.sa_mask);
4151 sigaddset (&sa.sa_mask, w->signum);
4152 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4153 }
4154 #endif
4155 }
4156
4157 EV_FREQUENT_CHECK;
4158 }
4159
4160 noinline
4161 void
4162 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
4163 {
4164 clear_pending (EV_A_ (W)w);
4165 if (expect_false (!ev_is_active (w)))
4166 return;
4167
4168 EV_FREQUENT_CHECK;
4169
4170 wlist_del (&signals [w->signum - 1].head, (WL)w);
4171 ev_stop (EV_A_ (W)w);
4172
4173 if (!signals [w->signum - 1].head)
4174 {
4175 #if EV_MULTIPLICITY
4176 signals [w->signum - 1].loop = 0; /* unattach from signal */
4177 #endif
4178 #if EV_USE_SIGNALFD
4179 if (sigfd >= 0)
4180 {
4181 sigset_t ss;
4182
4183 sigemptyset (&ss);
4184 sigaddset (&ss, w->signum);
4185 sigdelset (&sigfd_set, w->signum);
4186
4187 signalfd (sigfd, &sigfd_set, 0);
4188 sigprocmask (SIG_UNBLOCK, &ss, 0);
4189 }
4190 else
4191 #endif
4192 signal (w->signum, SIG_DFL);
4193 }
4194
4195 EV_FREQUENT_CHECK;
4196 }
4197
4198 #endif
4199
4200 #if EV_CHILD_ENABLE
4201
4202 void
4203 ev_child_start (EV_P_ ev_child *w) EV_THROW
4204 {
4205 #if EV_MULTIPLICITY
4206 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4207 #endif
4208 if (expect_false (ev_is_active (w)))
4209 return;
4210
4211 EV_FREQUENT_CHECK;
4212
4213 ev_start (EV_A_ (W)w, 1);
4214 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4215
4216 EV_FREQUENT_CHECK;
4217 }
4218
4219 void
4220 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4221 {
4222 clear_pending (EV_A_ (W)w);
4223 if (expect_false (!ev_is_active (w)))
4224 return;
4225
4226 EV_FREQUENT_CHECK;
4227
4228 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4229 ev_stop (EV_A_ (W)w);
4230
4231 EV_FREQUENT_CHECK;
4232 }
4233
4234 #endif
4235
4236 #if EV_STAT_ENABLE
4237
4238 # ifdef _WIN32
4239 # undef lstat
4240 # define lstat(a,b) _stati64 (a,b)
4241 # endif
4242
4243 #define DEF_STAT_INTERVAL 5.0074891
4244 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4245 #define MIN_STAT_INTERVAL 0.1074891
4246
4247 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4248
4249 #if EV_USE_INOTIFY
4250
4251 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4252 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4253
4254 noinline
4255 static void
4256 infy_add (EV_P_ ev_stat *w)
4257 {
4258 w->wd = inotify_add_watch (fs_fd, w->path,
4259 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4260 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4261 | IN_DONT_FOLLOW | IN_MASK_ADD);
4262
4263 if (w->wd >= 0)
4264 {
4265 struct statfs sfs;
4266
4267 /* now local changes will be tracked by inotify, but remote changes won't */
4268 /* unless the filesystem is known to be local, we therefore still poll */
4269 /* also do poll on <2.6.25, but with normal frequency */
4270
4271 if (!fs_2625)
4272 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4273 else if (!statfs (w->path, &sfs)
4274 && (sfs.f_type == 0x1373 /* devfs */
4275 || sfs.f_type == 0x4006 /* fat */
4276 || sfs.f_type == 0x4d44 /* msdos */
4277 || sfs.f_type == 0xEF53 /* ext2/3 */
4278 || sfs.f_type == 0x72b6 /* jffs2 */
4279 || sfs.f_type == 0x858458f6 /* ramfs */
4280 || sfs.f_type == 0x5346544e /* ntfs */
4281 || sfs.f_type == 0x3153464a /* jfs */
4282 || sfs.f_type == 0x9123683e /* btrfs */
4283 || sfs.f_type == 0x52654973 /* reiser3 */
4284 || sfs.f_type == 0x01021994 /* tmpfs */
4285 || sfs.f_type == 0x58465342 /* xfs */))
4286 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4287 else
4288 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4289 }
4290 else
4291 {
4292 /* can't use inotify, continue to stat */
4293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4294
4295 /* if path is not there, monitor some parent directory for speedup hints */
4296 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4297 /* but an efficiency issue only */
4298 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4299 {
4300 char path [4096];
4301 strcpy (path, w->path);
4302
4303 do
4304 {
4305 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4306 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4307
4308 char *pend = strrchr (path, '/');
4309
4310 if (!pend || pend == path)
4311 break;
4312
4313 *pend = 0;
4314 w->wd = inotify_add_watch (fs_fd, path, mask);
4315 }
4316 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4317 }
4318 }
4319
4320 if (w->wd >= 0)
4321 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4322
4323 /* now re-arm timer, if required */
4324 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4325 ev_timer_again (EV_A_ &w->timer);
4326 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4327 }
4328
4329 noinline
4330 static void
4331 infy_del (EV_P_ ev_stat *w)
4332 {
4333 int slot;
4334 int wd = w->wd;
4335
4336 if (wd < 0)
4337 return;
4338
4339 w->wd = -2;
4340 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4341 wlist_del (&fs_hash [slot].head, (WL)w);
4342
4343 /* remove this watcher, if others are watching it, they will rearm */
4344 inotify_rm_watch (fs_fd, wd);
4345 }
4346
4347 noinline
4348 static void
4349 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4350 {
4351 if (slot < 0)
4352 /* overflow, need to check for all hash slots */
4353 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4354 infy_wd (EV_A_ slot, wd, ev);
4355 else
4356 {
4357 WL w_;
4358
4359 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4360 {
4361 ev_stat *w = (ev_stat *)w_;
4362 w_ = w_->next; /* lets us remove this watcher and all before it */
4363
4364 if (w->wd == wd || wd == -1)
4365 {
4366 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4367 {
4368 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4369 w->wd = -1;
4370 infy_add (EV_A_ w); /* re-add, no matter what */
4371 }
4372
4373 stat_timer_cb (EV_A_ &w->timer, 0);
4374 }
4375 }
4376 }
4377 }
4378
4379 static void
4380 infy_cb (EV_P_ ev_io *w, int revents)
4381 {
4382 char buf [EV_INOTIFY_BUFSIZE];
4383 int ofs;
4384 int len = read (fs_fd, buf, sizeof (buf));
4385
4386 for (ofs = 0; ofs < len; )
4387 {
4388 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4389 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4390 ofs += sizeof (struct inotify_event) + ev->len;
4391 }
4392 }
4393
4394 inline_size ecb_cold
4395 void
4396 ev_check_2625 (EV_P)
4397 {
4398 /* kernels < 2.6.25 are borked
4399 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4400 */
4401 if (ev_linux_version () < 0x020619)
4402 return;
4403
4404 fs_2625 = 1;
4405 }
4406
4407 inline_size int
4408 infy_newfd (void)
4409 {
4410 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4411 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4412 if (fd >= 0)
4413 return fd;
4414 #endif
4415 return inotify_init ();
4416 }
4417
4418 inline_size void
4419 infy_init (EV_P)
4420 {
4421 if (fs_fd != -2)
4422 return;
4423
4424 fs_fd = -1;
4425
4426 ev_check_2625 (EV_A);
4427
4428 fs_fd = infy_newfd ();
4429
4430 if (fs_fd >= 0)
4431 {
4432 fd_intern (fs_fd);
4433 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4434 ev_set_priority (&fs_w, EV_MAXPRI);
4435 ev_io_start (EV_A_ &fs_w);
4436 ev_unref (EV_A);
4437 }
4438 }
4439
4440 inline_size void
4441 infy_fork (EV_P)
4442 {
4443 int slot;
4444
4445 if (fs_fd < 0)
4446 return;
4447
4448 ev_ref (EV_A);
4449 ev_io_stop (EV_A_ &fs_w);
4450 close (fs_fd);
4451 fs_fd = infy_newfd ();
4452
4453 if (fs_fd >= 0)
4454 {
4455 fd_intern (fs_fd);
4456 ev_io_set (&fs_w, fs_fd, EV_READ);
4457 ev_io_start (EV_A_ &fs_w);
4458 ev_unref (EV_A);
4459 }
4460
4461 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4462 {
4463 WL w_ = fs_hash [slot].head;
4464 fs_hash [slot].head = 0;
4465
4466 while (w_)
4467 {
4468 ev_stat *w = (ev_stat *)w_;
4469 w_ = w_->next; /* lets us add this watcher */
4470
4471 w->wd = -1;
4472
4473 if (fs_fd >= 0)
4474 infy_add (EV_A_ w); /* re-add, no matter what */
4475 else
4476 {
4477 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4478 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4479 ev_timer_again (EV_A_ &w->timer);
4480 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4481 }
4482 }
4483 }
4484 }
4485
4486 #endif
4487
4488 #ifdef _WIN32
4489 # define EV_LSTAT(p,b) _stati64 (p, b)
4490 #else
4491 # define EV_LSTAT(p,b) lstat (p, b)
4492 #endif
4493
4494 void
4495 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4496 {
4497 if (lstat (w->path, &w->attr) < 0)
4498 w->attr.st_nlink = 0;
4499 else if (!w->attr.st_nlink)
4500 w->attr.st_nlink = 1;
4501 }
4502
4503 noinline
4504 static void
4505 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4506 {
4507 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4508
4509 ev_statdata prev = w->attr;
4510 ev_stat_stat (EV_A_ w);
4511
4512 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4513 if (
4514 prev.st_dev != w->attr.st_dev
4515 || prev.st_ino != w->attr.st_ino
4516 || prev.st_mode != w->attr.st_mode
4517 || prev.st_nlink != w->attr.st_nlink
4518 || prev.st_uid != w->attr.st_uid
4519 || prev.st_gid != w->attr.st_gid
4520 || prev.st_rdev != w->attr.st_rdev
4521 || prev.st_size != w->attr.st_size
4522 || prev.st_atime != w->attr.st_atime
4523 || prev.st_mtime != w->attr.st_mtime
4524 || prev.st_ctime != w->attr.st_ctime
4525 ) {
4526 /* we only update w->prev on actual differences */
4527 /* in case we test more often than invoke the callback, */
4528 /* to ensure that prev is always different to attr */
4529 w->prev = prev;
4530
4531 #if EV_USE_INOTIFY
4532 if (fs_fd >= 0)
4533 {
4534 infy_del (EV_A_ w);
4535 infy_add (EV_A_ w);
4536 ev_stat_stat (EV_A_ w); /* avoid race... */
4537 }
4538 #endif
4539
4540 ev_feed_event (EV_A_ w, EV_STAT);
4541 }
4542 }
4543
4544 void
4545 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4546 {
4547 if (expect_false (ev_is_active (w)))
4548 return;
4549
4550 ev_stat_stat (EV_A_ w);
4551
4552 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4553 w->interval = MIN_STAT_INTERVAL;
4554
4555 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4556 ev_set_priority (&w->timer, ev_priority (w));
4557
4558 #if EV_USE_INOTIFY
4559 infy_init (EV_A);
4560
4561 if (fs_fd >= 0)
4562 infy_add (EV_A_ w);
4563 else
4564 #endif
4565 {
4566 ev_timer_again (EV_A_ &w->timer);
4567 ev_unref (EV_A);
4568 }
4569
4570 ev_start (EV_A_ (W)w, 1);
4571
4572 EV_FREQUENT_CHECK;
4573 }
4574
4575 void
4576 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4577 {
4578 clear_pending (EV_A_ (W)w);
4579 if (expect_false (!ev_is_active (w)))
4580 return;
4581
4582 EV_FREQUENT_CHECK;
4583
4584 #if EV_USE_INOTIFY
4585 infy_del (EV_A_ w);
4586 #endif
4587
4588 if (ev_is_active (&w->timer))
4589 {
4590 ev_ref (EV_A);
4591 ev_timer_stop (EV_A_ &w->timer);
4592 }
4593
4594 ev_stop (EV_A_ (W)w);
4595
4596 EV_FREQUENT_CHECK;
4597 }
4598 #endif
4599
4600 #if EV_IDLE_ENABLE
4601 void
4602 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4603 {
4604 if (expect_false (ev_is_active (w)))
4605 return;
4606
4607 pri_adjust (EV_A_ (W)w);
4608
4609 EV_FREQUENT_CHECK;
4610
4611 {
4612 int active = ++idlecnt [ABSPRI (w)];
4613
4614 ++idleall;
4615 ev_start (EV_A_ (W)w, active);
4616
4617 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4618 idles [ABSPRI (w)][active - 1] = w;
4619 }
4620
4621 EV_FREQUENT_CHECK;
4622 }
4623
4624 void
4625 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4626 {
4627 clear_pending (EV_A_ (W)w);
4628 if (expect_false (!ev_is_active (w)))
4629 return;
4630
4631 EV_FREQUENT_CHECK;
4632
4633 {
4634 int active = ev_active (w);
4635
4636 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4637 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4638
4639 ev_stop (EV_A_ (W)w);
4640 --idleall;
4641 }
4642
4643 EV_FREQUENT_CHECK;
4644 }
4645 #endif
4646
4647 #if EV_PREPARE_ENABLE
4648 void
4649 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4650 {
4651 if (expect_false (ev_is_active (w)))
4652 return;
4653
4654 EV_FREQUENT_CHECK;
4655
4656 ev_start (EV_A_ (W)w, ++preparecnt);
4657 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4658 prepares [preparecnt - 1] = w;
4659
4660 EV_FREQUENT_CHECK;
4661 }
4662
4663 void
4664 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4665 {
4666 clear_pending (EV_A_ (W)w);
4667 if (expect_false (!ev_is_active (w)))
4668 return;
4669
4670 EV_FREQUENT_CHECK;
4671
4672 {
4673 int active = ev_active (w);
4674
4675 prepares [active - 1] = prepares [--preparecnt];
4676 ev_active (prepares [active - 1]) = active;
4677 }
4678
4679 ev_stop (EV_A_ (W)w);
4680
4681 EV_FREQUENT_CHECK;
4682 }
4683 #endif
4684
4685 #if EV_CHECK_ENABLE
4686 void
4687 ev_check_start (EV_P_ ev_check *w) EV_THROW
4688 {
4689 if (expect_false (ev_is_active (w)))
4690 return;
4691
4692 EV_FREQUENT_CHECK;
4693
4694 ev_start (EV_A_ (W)w, ++checkcnt);
4695 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4696 checks [checkcnt - 1] = w;
4697
4698 EV_FREQUENT_CHECK;
4699 }
4700
4701 void
4702 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4703 {
4704 clear_pending (EV_A_ (W)w);
4705 if (expect_false (!ev_is_active (w)))
4706 return;
4707
4708 EV_FREQUENT_CHECK;
4709
4710 {
4711 int active = ev_active (w);
4712
4713 checks [active - 1] = checks [--checkcnt];
4714 ev_active (checks [active - 1]) = active;
4715 }
4716
4717 ev_stop (EV_A_ (W)w);
4718
4719 EV_FREQUENT_CHECK;
4720 }
4721 #endif
4722
4723 #if EV_EMBED_ENABLE
4724 noinline
4725 void
4726 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4727 {
4728 ev_run (w->other, EVRUN_NOWAIT);
4729 }
4730
4731 static void
4732 embed_io_cb (EV_P_ ev_io *io, int revents)
4733 {
4734 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4735
4736 if (ev_cb (w))
4737 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4738 else
4739 ev_run (w->other, EVRUN_NOWAIT);
4740 }
4741
4742 static void
4743 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4744 {
4745 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4746
4747 {
4748 EV_P = w->other;
4749
4750 while (fdchangecnt)
4751 {
4752 fd_reify (EV_A);
4753 ev_run (EV_A_ EVRUN_NOWAIT);
4754 }
4755 }
4756 }
4757
4758 static void
4759 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4760 {
4761 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4762
4763 ev_embed_stop (EV_A_ w);
4764
4765 {
4766 EV_P = w->other;
4767
4768 ev_loop_fork (EV_A);
4769 ev_run (EV_A_ EVRUN_NOWAIT);
4770 }
4771
4772 ev_embed_start (EV_A_ w);
4773 }
4774
4775 #if 0
4776 static void
4777 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4778 {
4779 ev_idle_stop (EV_A_ idle);
4780 }
4781 #endif
4782
4783 void
4784 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4785 {
4786 if (expect_false (ev_is_active (w)))
4787 return;
4788
4789 {
4790 EV_P = w->other;
4791 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4792 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4793 }
4794
4795 EV_FREQUENT_CHECK;
4796
4797 ev_set_priority (&w->io, ev_priority (w));
4798 ev_io_start (EV_A_ &w->io);
4799
4800 ev_prepare_init (&w->prepare, embed_prepare_cb);
4801 ev_set_priority (&w->prepare, EV_MINPRI);
4802 ev_prepare_start (EV_A_ &w->prepare);
4803
4804 ev_fork_init (&w->fork, embed_fork_cb);
4805 ev_fork_start (EV_A_ &w->fork);
4806
4807 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4808
4809 ev_start (EV_A_ (W)w, 1);
4810
4811 EV_FREQUENT_CHECK;
4812 }
4813
4814 void
4815 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4816 {
4817 clear_pending (EV_A_ (W)w);
4818 if (expect_false (!ev_is_active (w)))
4819 return;
4820
4821 EV_FREQUENT_CHECK;
4822
4823 ev_io_stop (EV_A_ &w->io);
4824 ev_prepare_stop (EV_A_ &w->prepare);
4825 ev_fork_stop (EV_A_ &w->fork);
4826
4827 ev_stop (EV_A_ (W)w);
4828
4829 EV_FREQUENT_CHECK;
4830 }
4831 #endif
4832
4833 #if EV_FORK_ENABLE
4834 void
4835 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4836 {
4837 if (expect_false (ev_is_active (w)))
4838 return;
4839
4840 EV_FREQUENT_CHECK;
4841
4842 ev_start (EV_A_ (W)w, ++forkcnt);
4843 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4844 forks [forkcnt - 1] = w;
4845
4846 EV_FREQUENT_CHECK;
4847 }
4848
4849 void
4850 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4851 {
4852 clear_pending (EV_A_ (W)w);
4853 if (expect_false (!ev_is_active (w)))
4854 return;
4855
4856 EV_FREQUENT_CHECK;
4857
4858 {
4859 int active = ev_active (w);
4860
4861 forks [active - 1] = forks [--forkcnt];
4862 ev_active (forks [active - 1]) = active;
4863 }
4864
4865 ev_stop (EV_A_ (W)w);
4866
4867 EV_FREQUENT_CHECK;
4868 }
4869 #endif
4870
4871 #if EV_CLEANUP_ENABLE
4872 void
4873 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4874 {
4875 if (expect_false (ev_is_active (w)))
4876 return;
4877
4878 EV_FREQUENT_CHECK;
4879
4880 ev_start (EV_A_ (W)w, ++cleanupcnt);
4881 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4882 cleanups [cleanupcnt - 1] = w;
4883
4884 /* cleanup watchers should never keep a refcount on the loop */
4885 ev_unref (EV_A);
4886 EV_FREQUENT_CHECK;
4887 }
4888
4889 void
4890 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4891 {
4892 clear_pending (EV_A_ (W)w);
4893 if (expect_false (!ev_is_active (w)))
4894 return;
4895
4896 EV_FREQUENT_CHECK;
4897 ev_ref (EV_A);
4898
4899 {
4900 int active = ev_active (w);
4901
4902 cleanups [active - 1] = cleanups [--cleanupcnt];
4903 ev_active (cleanups [active - 1]) = active;
4904 }
4905
4906 ev_stop (EV_A_ (W)w);
4907
4908 EV_FREQUENT_CHECK;
4909 }
4910 #endif
4911
4912 #if EV_ASYNC_ENABLE
4913 void
4914 ev_async_start (EV_P_ ev_async *w) EV_THROW
4915 {
4916 if (expect_false (ev_is_active (w)))
4917 return;
4918
4919 w->sent = 0;
4920
4921 evpipe_init (EV_A);
4922
4923 EV_FREQUENT_CHECK;
4924
4925 ev_start (EV_A_ (W)w, ++asynccnt);
4926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4927 asyncs [asynccnt - 1] = w;
4928
4929 EV_FREQUENT_CHECK;
4930 }
4931
4932 void
4933 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4934 {
4935 clear_pending (EV_A_ (W)w);
4936 if (expect_false (!ev_is_active (w)))
4937 return;
4938
4939 EV_FREQUENT_CHECK;
4940
4941 {
4942 int active = ev_active (w);
4943
4944 asyncs [active - 1] = asyncs [--asynccnt];
4945 ev_active (asyncs [active - 1]) = active;
4946 }
4947
4948 ev_stop (EV_A_ (W)w);
4949
4950 EV_FREQUENT_CHECK;
4951 }
4952
4953 void
4954 ev_async_send (EV_P_ ev_async *w) EV_THROW
4955 {
4956 w->sent = 1;
4957 evpipe_write (EV_A_ &async_pending);
4958 }
4959 #endif
4960
4961 /*****************************************************************************/
4962
4963 struct ev_once
4964 {
4965 ev_io io;
4966 ev_timer to;
4967 void (*cb)(int revents, void *arg);
4968 void *arg;
4969 };
4970
4971 static void
4972 once_cb (EV_P_ struct ev_once *once, int revents)
4973 {
4974 void (*cb)(int revents, void *arg) = once->cb;
4975 void *arg = once->arg;
4976
4977 ev_io_stop (EV_A_ &once->io);
4978 ev_timer_stop (EV_A_ &once->to);
4979 ev_free (once);
4980
4981 cb (revents, arg);
4982 }
4983
4984 static void
4985 once_cb_io (EV_P_ ev_io *w, int revents)
4986 {
4987 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4988
4989 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4990 }
4991
4992 static void
4993 once_cb_to (EV_P_ ev_timer *w, int revents)
4994 {
4995 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4996
4997 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4998 }
4999
5000 void
5001 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
5002 {
5003 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5004
5005 if (expect_false (!once))
5006 {
5007 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
5008 return;
5009 }
5010
5011 once->cb = cb;
5012 once->arg = arg;
5013
5014 ev_init (&once->io, once_cb_io);
5015 if (fd >= 0)
5016 {
5017 ev_io_set (&once->io, fd, events);
5018 ev_io_start (EV_A_ &once->io);
5019 }
5020
5021 ev_init (&once->to, once_cb_to);
5022 if (timeout >= 0.)
5023 {
5024 ev_timer_set (&once->to, timeout, 0.);
5025 ev_timer_start (EV_A_ &once->to);
5026 }
5027 }
5028
5029 /*****************************************************************************/
5030
5031 #if EV_WALK_ENABLE
5032 ecb_cold
5033 void
5034 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
5035 {
5036 int i, j;
5037 ev_watcher_list *wl, *wn;
5038
5039 if (types & (EV_IO | EV_EMBED))
5040 for (i = 0; i < anfdmax; ++i)
5041 for (wl = anfds [i].head; wl; )
5042 {
5043 wn = wl->next;
5044
5045 #if EV_EMBED_ENABLE
5046 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5047 {
5048 if (types & EV_EMBED)
5049 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5050 }
5051 else
5052 #endif
5053 #if EV_USE_INOTIFY
5054 if (ev_cb ((ev_io *)wl) == infy_cb)
5055 ;
5056 else
5057 #endif
5058 if ((ev_io *)wl != &pipe_w)
5059 if (types & EV_IO)
5060 cb (EV_A_ EV_IO, wl);
5061
5062 wl = wn;
5063 }
5064
5065 if (types & (EV_TIMER | EV_STAT))
5066 for (i = timercnt + HEAP0; i-- > HEAP0; )
5067 #if EV_STAT_ENABLE
5068 /*TODO: timer is not always active*/
5069 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5070 {
5071 if (types & EV_STAT)
5072 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5073 }
5074 else
5075 #endif
5076 if (types & EV_TIMER)
5077 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5078
5079 #if EV_PERIODIC_ENABLE
5080 if (types & EV_PERIODIC)
5081 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5082 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5083 #endif
5084
5085 #if EV_IDLE_ENABLE
5086 if (types & EV_IDLE)
5087 for (j = NUMPRI; j--; )
5088 for (i = idlecnt [j]; i--; )
5089 cb (EV_A_ EV_IDLE, idles [j][i]);
5090 #endif
5091
5092 #if EV_FORK_ENABLE
5093 if (types & EV_FORK)
5094 for (i = forkcnt; i--; )
5095 if (ev_cb (forks [i]) != embed_fork_cb)
5096 cb (EV_A_ EV_FORK, forks [i]);
5097 #endif
5098
5099 #if EV_ASYNC_ENABLE
5100 if (types & EV_ASYNC)
5101 for (i = asynccnt; i--; )
5102 cb (EV_A_ EV_ASYNC, asyncs [i]);
5103 #endif
5104
5105 #if EV_PREPARE_ENABLE
5106 if (types & EV_PREPARE)
5107 for (i = preparecnt; i--; )
5108 # if EV_EMBED_ENABLE
5109 if (ev_cb (prepares [i]) != embed_prepare_cb)
5110 # endif
5111 cb (EV_A_ EV_PREPARE, prepares [i]);
5112 #endif
5113
5114 #if EV_CHECK_ENABLE
5115 if (types & EV_CHECK)
5116 for (i = checkcnt; i--; )
5117 cb (EV_A_ EV_CHECK, checks [i]);
5118 #endif
5119
5120 #if EV_SIGNAL_ENABLE
5121 if (types & EV_SIGNAL)
5122 for (i = 0; i < EV_NSIG - 1; ++i)
5123 for (wl = signals [i].head; wl; )
5124 {
5125 wn = wl->next;
5126 cb (EV_A_ EV_SIGNAL, wl);
5127 wl = wn;
5128 }
5129 #endif
5130
5131 #if EV_CHILD_ENABLE
5132 if (types & EV_CHILD)
5133 for (i = (EV_PID_HASHSIZE); i--; )
5134 for (wl = childs [i]; wl; )
5135 {
5136 wn = wl->next;
5137 cb (EV_A_ EV_CHILD, wl);
5138 wl = wn;
5139 }
5140 #endif
5141 /* EV_STAT 0x00001000 /* stat data changed */
5142 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5143 }
5144 #endif
5145
5146 #if EV_MULTIPLICITY
5147 #include "ev_wrap.h"
5148 #endif
5149