ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.488
Committed: Fri Dec 21 06:57:09 2018 UTC (5 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-4_25
Changes since 1.487: +5 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 # ifndef EV_USE_KQUEUE
122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_KQUEUE
126 # define EV_USE_KQUEUE 0
127 # endif
128
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 # ifndef EV_USE_PORT
131 # define EV_USE_PORT EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_PORT
135 # define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 # ifndef EV_USE_INOTIFY
140 # define EV_USE_INOTIFY EV_FEATURE_OS
141 # endif
142 # else
143 # undef EV_USE_INOTIFY
144 # define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 # ifndef EV_USE_SIGNALFD
149 # define EV_USE_SIGNALFD EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_SIGNALFD
153 # define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 # ifndef EV_USE_EVENTFD
158 # define EV_USE_EVENTFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_EVENTFD
162 # define EV_USE_EVENTFD 0
163 # endif
164
165 #endif
166
167 /* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175 #define _DARWIN_UNLIMITED_SELECT 1
176
177 #include <stdlib.h>
178 #include <string.h>
179 #include <fcntl.h>
180 #include <stddef.h>
181
182 #include <stdio.h>
183
184 #include <assert.h>
185 #include <errno.h>
186 #include <sys/types.h>
187 #include <time.h>
188 #include <limits.h>
189
190 #include <signal.h>
191
192 #ifdef EV_H
193 # include EV_H
194 #else
195 # include "ev.h"
196 #endif
197
198 #if EV_NO_THREADS
199 # undef EV_NO_SMP
200 # define EV_NO_SMP 1
201 # undef ECB_NO_THREADS
202 # define ECB_NO_THREADS 1
203 #endif
204 #if EV_NO_SMP
205 # undef EV_NO_SMP
206 # define ECB_NO_SMP 1
207 #endif
208
209 #ifndef _WIN32
210 # include <sys/time.h>
211 # include <sys/wait.h>
212 # include <unistd.h>
213 #else
214 # include <io.h>
215 # define WIN32_LEAN_AND_MEAN
216 # include <winsock2.h>
217 # include <windows.h>
218 # ifndef EV_SELECT_IS_WINSOCKET
219 # define EV_SELECT_IS_WINSOCKET 1
220 # endif
221 # undef EV_AVOID_STDIO
222 #endif
223
224 /* this block tries to deduce configuration from header-defined symbols and defaults */
225
226 /* try to deduce the maximum number of signals on this platform */
227 #if defined EV_NSIG
228 /* use what's provided */
229 #elif defined NSIG
230 # define EV_NSIG (NSIG)
231 #elif defined _NSIG
232 # define EV_NSIG (_NSIG)
233 #elif defined SIGMAX
234 # define EV_NSIG (SIGMAX+1)
235 #elif defined SIG_MAX
236 # define EV_NSIG (SIG_MAX+1)
237 #elif defined _SIG_MAX
238 # define EV_NSIG (_SIG_MAX+1)
239 #elif defined MAXSIG
240 # define EV_NSIG (MAXSIG+1)
241 #elif defined MAX_SIG
242 # define EV_NSIG (MAX_SIG+1)
243 #elif defined SIGARRAYSIZE
244 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245 #elif defined _sys_nsig
246 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247 #else
248 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
249 #endif
250
251 #ifndef EV_USE_FLOOR
252 # define EV_USE_FLOOR 0
253 #endif
254
255 #ifndef EV_USE_CLOCK_SYSCALL
256 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258 # else
259 # define EV_USE_CLOCK_SYSCALL 0
260 # endif
261 #endif
262
263 #if !(_POSIX_TIMERS > 0)
264 # ifndef EV_USE_MONOTONIC
265 # define EV_USE_MONOTONIC 0
266 # endif
267 # ifndef EV_USE_REALTIME
268 # define EV_USE_REALTIME 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_MONOTONIC
273 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274 # define EV_USE_MONOTONIC EV_FEATURE_OS
275 # else
276 # define EV_USE_MONOTONIC 0
277 # endif
278 #endif
279
280 #ifndef EV_USE_REALTIME
281 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282 #endif
283
284 #ifndef EV_USE_NANOSLEEP
285 # if _POSIX_C_SOURCE >= 199309L
286 # define EV_USE_NANOSLEEP EV_FEATURE_OS
287 # else
288 # define EV_USE_NANOSLEEP 0
289 # endif
290 #endif
291
292 #ifndef EV_USE_SELECT
293 # define EV_USE_SELECT EV_FEATURE_BACKENDS
294 #endif
295
296 #ifndef EV_USE_POLL
297 # ifdef _WIN32
298 # define EV_USE_POLL 0
299 # else
300 # define EV_USE_POLL EV_FEATURE_BACKENDS
301 # endif
302 #endif
303
304 #ifndef EV_USE_EPOLL
305 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
307 # else
308 # define EV_USE_EPOLL 0
309 # endif
310 #endif
311
312 #ifndef EV_USE_KQUEUE
313 # define EV_USE_KQUEUE 0
314 #endif
315
316 #ifndef EV_USE_PORT
317 # define EV_USE_PORT 0
318 #endif
319
320 #ifndef EV_USE_INOTIFY
321 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322 # define EV_USE_INOTIFY EV_FEATURE_OS
323 # else
324 # define EV_USE_INOTIFY 0
325 # endif
326 #endif
327
328 #ifndef EV_PID_HASHSIZE
329 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330 #endif
331
332 #ifndef EV_INOTIFY_HASHSIZE
333 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334 #endif
335
336 #ifndef EV_USE_EVENTFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 # define EV_USE_EVENTFD EV_FEATURE_OS
339 # else
340 # define EV_USE_EVENTFD 0
341 # endif
342 #endif
343
344 #ifndef EV_USE_SIGNALFD
345 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346 # define EV_USE_SIGNALFD EV_FEATURE_OS
347 # else
348 # define EV_USE_SIGNALFD 0
349 # endif
350 #endif
351
352 #if 0 /* debugging */
353 # define EV_VERIFY 3
354 # define EV_USE_4HEAP 1
355 # define EV_HEAP_CACHE_AT 1
356 #endif
357
358 #ifndef EV_VERIFY
359 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360 #endif
361
362 #ifndef EV_USE_4HEAP
363 # define EV_USE_4HEAP EV_FEATURE_DATA
364 #endif
365
366 #ifndef EV_HEAP_CACHE_AT
367 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368 #endif
369
370 #ifdef __ANDROID__
371 /* supposedly, android doesn't typedef fd_mask */
372 # undef EV_USE_SELECT
373 # define EV_USE_SELECT 0
374 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375 # undef EV_USE_CLOCK_SYSCALL
376 # define EV_USE_CLOCK_SYSCALL 0
377 #endif
378
379 /* aix's poll.h seems to cause lots of trouble */
380 #ifdef _AIX
381 /* AIX has a completely broken poll.h header */
382 # undef EV_USE_POLL
383 # define EV_USE_POLL 0
384 #endif
385
386 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387 /* which makes programs even slower. might work on other unices, too. */
388 #if EV_USE_CLOCK_SYSCALL
389 # include <sys/syscall.h>
390 # ifdef SYS_clock_gettime
391 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 1
394 # else
395 # undef EV_USE_CLOCK_SYSCALL
396 # define EV_USE_CLOCK_SYSCALL 0
397 # endif
398 #endif
399
400 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
401
402 #ifndef CLOCK_MONOTONIC
403 # undef EV_USE_MONOTONIC
404 # define EV_USE_MONOTONIC 0
405 #endif
406
407 #ifndef CLOCK_REALTIME
408 # undef EV_USE_REALTIME
409 # define EV_USE_REALTIME 0
410 #endif
411
412 #if !EV_STAT_ENABLE
413 # undef EV_USE_INOTIFY
414 # define EV_USE_INOTIFY 0
415 #endif
416
417 #if !EV_USE_NANOSLEEP
418 /* hp-ux has it in sys/time.h, which we unconditionally include above */
419 # if !defined _WIN32 && !defined __hpux
420 # include <sys/select.h>
421 # endif
422 #endif
423
424 #if EV_USE_INOTIFY
425 # include <sys/statfs.h>
426 # include <sys/inotify.h>
427 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428 # ifndef IN_DONT_FOLLOW
429 # undef EV_USE_INOTIFY
430 # define EV_USE_INOTIFY 0
431 # endif
432 #endif
433
434 #if EV_USE_EVENTFD
435 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436 # include <stdint.h>
437 # ifndef EFD_NONBLOCK
438 # define EFD_NONBLOCK O_NONBLOCK
439 # endif
440 # ifndef EFD_CLOEXEC
441 # ifdef O_CLOEXEC
442 # define EFD_CLOEXEC O_CLOEXEC
443 # else
444 # define EFD_CLOEXEC 02000000
445 # endif
446 # endif
447 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448 #endif
449
450 #if EV_USE_SIGNALFD
451 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452 # include <stdint.h>
453 # ifndef SFD_NONBLOCK
454 # define SFD_NONBLOCK O_NONBLOCK
455 # endif
456 # ifndef SFD_CLOEXEC
457 # ifdef O_CLOEXEC
458 # define SFD_CLOEXEC O_CLOEXEC
459 # else
460 # define SFD_CLOEXEC 02000000
461 # endif
462 # endif
463 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465 struct signalfd_siginfo
466 {
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469 };
470 #endif
471
472 /**/
473
474 #if EV_VERIFY >= 3
475 # define EV_FREQUENT_CHECK ev_verify (EV_A)
476 #else
477 # define EV_FREQUENT_CHECK do { } while (0)
478 #endif
479
480 /*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
486
487 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
488 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
489
490 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494 /* ECB.H BEGIN */
495 /*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535 #ifndef ECB_H
536 #define ECB_H
537
538 /* 16 bits major, 16 bits minor */
539 #define ECB_VERSION 0x00010005
540
541 #ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564 #else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571 #endif
572
573 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576 /* work around x32 idiocy by defining proper macros */
577 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583 #endif
584
585 /* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594 #else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596 #endif
597
598 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600 #if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602 #else
603 #define ECB_CLANG_BUILTIN(x) 0
604 #endif
605
606 #if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608 #else
609 #define ECB_CLANG_EXTENSION(x) 0
610 #endif
611
612 #define ECB_CPP (__cplusplus+0)
613 #define ECB_CPP11 (__cplusplus >= 201103L)
614 #define ECB_CPP14 (__cplusplus >= 201402L)
615 #define ECB_CPP17 (__cplusplus >= 201703L)
616
617 #if ECB_CPP
618 #define ECB_C 0
619 #define ECB_STDC_VERSION 0
620 #else
621 #define ECB_C 1
622 #define ECB_STDC_VERSION __STDC_VERSION__
623 #endif
624
625 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628
629 #if ECB_CPP
630 #define ECB_EXTERN_C extern "C"
631 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632 #define ECB_EXTERN_C_END }
633 #else
634 #define ECB_EXTERN_C extern
635 #define ECB_EXTERN_C_BEG
636 #define ECB_EXTERN_C_END
637 #endif
638
639 /*****************************************************************************/
640
641 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643
644 #if ECB_NO_THREADS
645 #define ECB_NO_SMP 1
646 #endif
647
648 #if ECB_NO_SMP
649 #define ECB_MEMORY_FENCE do { } while (0)
650 #endif
651
652 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653 #if __xlC__ && ECB_CPP
654 #include <builtins.h>
655 #endif
656
657 #if 1400 <= _MSC_VER
658 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659 #endif
660
661 #ifndef ECB_MEMORY_FENCE
662 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 #if __i386 || __i386__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 #elif ECB_GCC_AMD64
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 #elif defined __ARM_ARCH_2__ \
674 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678 || defined __ARM_ARCH_5TEJ__
679 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682 || defined __ARM_ARCH_6T2__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 #elif __aarch64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 #elif defined __s390__ || defined __s390x__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 #elif defined __mips__
696 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 #elif defined __alpha__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701 #elif defined __hppa__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704 #elif defined __ia64__
705 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 #elif defined __m68k__
707 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708 #elif defined __m88k__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710 #elif defined __sh__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 #endif
713 #endif
714 #endif
715
716 #ifndef ECB_MEMORY_FENCE
717 #if ECB_GCC_VERSION(4,7)
718 /* see comment below (stdatomic.h) about the C11 memory model. */
719 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722
723 #elif ECB_CLANG_EXTENSION(c_atomic)
724 /* see comment below (stdatomic.h) about the C11 memory model. */
725 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728
729 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 #elif defined _WIN32
743 #include <WinNT.h>
744 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #include <mbarrier.h>
747 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 #elif __xlC__
751 #define ECB_MEMORY_FENCE __sync ()
752 #endif
753 #endif
754
755 #ifndef ECB_MEMORY_FENCE
756 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757 /* we assume that these memory fences work on all variables/all memory accesses, */
758 /* not just C11 atomics and atomic accesses */
759 #include <stdatomic.h>
760 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761 /* any fence other than seq_cst, which isn't very efficient for us. */
762 /* Why that is, we don't know - either the C11 memory model is quite useless */
763 /* for most usages, or gcc and clang have a bug */
764 /* I *currently* lean towards the latter, and inefficiently implement */
765 /* all three of ecb's fences as a seq_cst fence */
766 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767 /* for all __atomic_thread_fence's except seq_cst */
768 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769 #endif
770 #endif
771
772 #ifndef ECB_MEMORY_FENCE
773 #if !ECB_AVOID_PTHREADS
774 /*
775 * if you get undefined symbol references to pthread_mutex_lock,
776 * or failure to find pthread.h, then you should implement
777 * the ECB_MEMORY_FENCE operations for your cpu/compiler
778 * OR provide pthread.h and link against the posix thread library
779 * of your system.
780 */
781 #include <pthread.h>
782 #define ECB_NEEDS_PTHREADS 1
783 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784
785 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787 #endif
788 #endif
789
790 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792 #endif
793
794 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796 #endif
797
798 /*****************************************************************************/
799
800 #if ECB_CPP
801 #define ecb_inline static inline
802 #elif ECB_GCC_VERSION(2,5)
803 #define ecb_inline static __inline__
804 #elif ECB_C99
805 #define ecb_inline static inline
806 #else
807 #define ecb_inline static
808 #endif
809
810 #if ECB_GCC_VERSION(3,3)
811 #define ecb_restrict __restrict__
812 #elif ECB_C99
813 #define ecb_restrict restrict
814 #else
815 #define ecb_restrict
816 #endif
817
818 typedef int ecb_bool;
819
820 #define ECB_CONCAT_(a, b) a ## b
821 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822 #define ECB_STRINGIFY_(a) # a
823 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825
826 #define ecb_function_ ecb_inline
827
828 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829 #define ecb_attribute(attrlist) __attribute__ (attrlist)
830 #else
831 #define ecb_attribute(attrlist)
832 #endif
833
834 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835 #define ecb_is_constant(expr) __builtin_constant_p (expr)
836 #else
837 /* possible C11 impl for integral types
838 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840
841 #define ecb_is_constant(expr) 0
842 #endif
843
844 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
845 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
846 #else
847 #define ecb_expect(expr,value) (expr)
848 #endif
849
850 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852 #else
853 #define ecb_prefetch(addr,rw,locality)
854 #endif
855
856 /* no emulation for ecb_decltype */
857 #if ECB_CPP11
858 // older implementations might have problems with decltype(x)::type, work around it
859 template<class T> struct ecb_decltype_t { typedef T type; };
860 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862 #define ecb_decltype(x) __typeof__ (x)
863 #endif
864
865 #if _MSC_VER >= 1300
866 #define ecb_deprecated __declspec (deprecated)
867 #else
868 #define ecb_deprecated ecb_attribute ((__deprecated__))
869 #endif
870
871 #if _MSC_VER >= 1500
872 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873 #elif ECB_GCC_VERSION(4,5)
874 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875 #else
876 #define ecb_deprecated_message(msg) ecb_deprecated
877 #endif
878
879 #if _MSC_VER >= 1400
880 #define ecb_noinline __declspec (noinline)
881 #else
882 #define ecb_noinline ecb_attribute ((__noinline__))
883 #endif
884
885 #define ecb_unused ecb_attribute ((__unused__))
886 #define ecb_const ecb_attribute ((__const__))
887 #define ecb_pure ecb_attribute ((__pure__))
888
889 #if ECB_C11 || __IBMC_NORETURN
890 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 #define ecb_noreturn _Noreturn
892 #elif ECB_CPP11
893 #define ecb_noreturn [[noreturn]]
894 #elif _MSC_VER >= 1200
895 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896 #define ecb_noreturn __declspec (noreturn)
897 #else
898 #define ecb_noreturn ecb_attribute ((__noreturn__))
899 #endif
900
901 #if ECB_GCC_VERSION(4,3)
902 #define ecb_artificial ecb_attribute ((__artificial__))
903 #define ecb_hot ecb_attribute ((__hot__))
904 #define ecb_cold ecb_attribute ((__cold__))
905 #else
906 #define ecb_artificial
907 #define ecb_hot
908 #define ecb_cold
909 #endif
910
911 /* put around conditional expressions if you are very sure that the */
912 /* expression is mostly true or mostly false. note that these return */
913 /* booleans, not the expression. */
914 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
915 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916 /* for compatibility to the rest of the world */
917 #define ecb_likely(expr) ecb_expect_true (expr)
918 #define ecb_unlikely(expr) ecb_expect_false (expr)
919
920 /* count trailing zero bits and count # of one bits */
921 #if ECB_GCC_VERSION(3,4) \
922 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924 && ECB_CLANG_BUILTIN(__builtin_popcount))
925 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928 #define ecb_ctz32(x) __builtin_ctz (x)
929 #define ecb_ctz64(x) __builtin_ctzll (x)
930 #define ecb_popcount32(x) __builtin_popcount (x)
931 /* no popcountll */
932 #else
933 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934 ecb_function_ ecb_const int
935 ecb_ctz32 (uint32_t x)
936 {
937 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938 unsigned long r;
939 _BitScanForward (&r, x);
940 return (int)r;
941 #else
942 int r = 0;
943
944 x &= ~x + 1; /* this isolates the lowest bit */
945
946 #if ECB_branchless_on_i386
947 r += !!(x & 0xaaaaaaaa) << 0;
948 r += !!(x & 0xcccccccc) << 1;
949 r += !!(x & 0xf0f0f0f0) << 2;
950 r += !!(x & 0xff00ff00) << 3;
951 r += !!(x & 0xffff0000) << 4;
952 #else
953 if (x & 0xaaaaaaaa) r += 1;
954 if (x & 0xcccccccc) r += 2;
955 if (x & 0xf0f0f0f0) r += 4;
956 if (x & 0xff00ff00) r += 8;
957 if (x & 0xffff0000) r += 16;
958 #endif
959
960 return r;
961 #endif
962 }
963
964 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965 ecb_function_ ecb_const int
966 ecb_ctz64 (uint64_t x)
967 {
968 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969 unsigned long r;
970 _BitScanForward64 (&r, x);
971 return (int)r;
972 #else
973 int shift = x & 0xffffffff ? 0 : 32;
974 return ecb_ctz32 (x >> shift) + shift;
975 #endif
976 }
977
978 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979 ecb_function_ ecb_const int
980 ecb_popcount32 (uint32_t x)
981 {
982 x -= (x >> 1) & 0x55555555;
983 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984 x = ((x >> 4) + x) & 0x0f0f0f0f;
985 x *= 0x01010101;
986
987 return x >> 24;
988 }
989
990 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 {
993 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanReverse (&r, x);
996 return (int)r;
997 #else
998 int r = 0;
999
1000 if (x >> 16) { x >>= 16; r += 16; }
1001 if (x >> 8) { x >>= 8; r += 8; }
1002 if (x >> 4) { x >>= 4; r += 4; }
1003 if (x >> 2) { x >>= 2; r += 2; }
1004 if (x >> 1) { r += 1; }
1005
1006 return r;
1007 #endif
1008 }
1009
1010 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 {
1013 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014 unsigned long r;
1015 _BitScanReverse64 (&r, x);
1016 return (int)r;
1017 #else
1018 int r = 0;
1019
1020 if (x >> 32) { x >>= 32; r += 32; }
1021
1022 return r + ecb_ld32 (x);
1023 #endif
1024 }
1025 #endif
1026
1027 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031
1032 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034 {
1035 return ( (x * 0x0802U & 0x22110U)
1036 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037 }
1038
1039 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041 {
1042 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045 x = ( x >> 8 ) | ( x << 8);
1046
1047 return x;
1048 }
1049
1050 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052 {
1053 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057 x = ( x >> 16 ) | ( x << 16);
1058
1059 return x;
1060 }
1061
1062 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1063 /* so for this version we are lazy */
1064 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065 ecb_function_ ecb_const int
1066 ecb_popcount64 (uint64_t x)
1067 {
1068 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069 }
1070
1071 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079
1080 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088
1089 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091 #define ecb_bswap16(x) __builtin_bswap16 (x)
1092 #else
1093 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 #endif
1095 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096 #define ecb_bswap64(x) __builtin_bswap64 (x)
1097 #elif _MSC_VER
1098 #include <stdlib.h>
1099 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102 #else
1103 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104 ecb_function_ ecb_const uint16_t
1105 ecb_bswap16 (uint16_t x)
1106 {
1107 return ecb_rotl16 (x, 8);
1108 }
1109
1110 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111 ecb_function_ ecb_const uint32_t
1112 ecb_bswap32 (uint32_t x)
1113 {
1114 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115 }
1116
1117 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118 ecb_function_ ecb_const uint64_t
1119 ecb_bswap64 (uint64_t x)
1120 {
1121 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122 }
1123 #endif
1124
1125 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 #define ecb_unreachable() __builtin_unreachable ()
1127 #else
1128 /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131 #endif
1132
1133 /* try to tell the compiler that some condition is definitely true */
1134 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135
1136 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137 ecb_inline ecb_const uint32_t
1138 ecb_byteorder_helper (void)
1139 {
1140 /* the union code still generates code under pressure in gcc, */
1141 /* but less than using pointers, and always seems to */
1142 /* successfully return a constant. */
1143 /* the reason why we have this horrible preprocessor mess */
1144 /* is to avoid it in all cases, at least on common architectures */
1145 /* or when using a recent enough gcc version (>= 4.6) */
1146 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148 #define ECB_LITTLE_ENDIAN 1
1149 return 0x44332211;
1150 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152 #define ECB_BIG_ENDIAN 1
1153 return 0x11223344;
1154 #else
1155 union
1156 {
1157 uint8_t c[4];
1158 uint32_t u;
1159 } u = { 0x11, 0x22, 0x33, 0x44 };
1160 return u.u;
1161 #endif
1162 }
1163
1164 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168
1169 #if ECB_GCC_VERSION(3,0) || ECB_C99
1170 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171 #else
1172 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173 #endif
1174
1175 #if ECB_CPP
1176 template<typename T>
1177 static inline T ecb_div_rd (T val, T div)
1178 {
1179 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180 }
1181 template<typename T>
1182 static inline T ecb_div_ru (T val, T div)
1183 {
1184 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185 }
1186 #else
1187 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189 #endif
1190
1191 #if ecb_cplusplus_does_not_suck
1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 template<typename T, int N>
1194 static inline int ecb_array_length (const T (&arr)[N])
1195 {
1196 return N;
1197 }
1198 #else
1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200 #endif
1201
1202 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203 ecb_function_ ecb_const uint32_t
1204 ecb_binary16_to_binary32 (uint32_t x)
1205 {
1206 unsigned int s = (x & 0x8000) << (31 - 15);
1207 int e = (x >> 10) & 0x001f;
1208 unsigned int m = x & 0x03ff;
1209
1210 if (ecb_expect_false (e == 31))
1211 /* infinity or NaN */
1212 e = 255 - (127 - 15);
1213 else if (ecb_expect_false (!e))
1214 {
1215 if (ecb_expect_true (!m))
1216 /* zero, handled by code below by forcing e to 0 */
1217 e = 0 - (127 - 15);
1218 else
1219 {
1220 /* subnormal, renormalise */
1221 unsigned int s = 10 - ecb_ld32 (m);
1222
1223 m = (m << s) & 0x3ff; /* mask implicit bit */
1224 e -= s - 1;
1225 }
1226 }
1227
1228 /* e and m now are normalised, or zero, (or inf or nan) */
1229 e += 127 - 15;
1230
1231 return s | (e << 23) | (m << (23 - 10));
1232 }
1233
1234 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235 ecb_function_ ecb_const uint16_t
1236 ecb_binary32_to_binary16 (uint32_t x)
1237 {
1238 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240 unsigned int m = x & 0x007fffff;
1241
1242 x &= 0x7fffffff;
1243
1244 /* if it's within range of binary16 normals, use fast path */
1245 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246 {
1247 /* mantissa round-to-even */
1248 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249
1250 /* handle overflow */
1251 if (ecb_expect_false (m >= 0x00800000))
1252 {
1253 m >>= 1;
1254 e += 1;
1255 }
1256
1257 return s | (e << 10) | (m >> (23 - 10));
1258 }
1259
1260 /* handle large numbers and infinity */
1261 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262 return s | 0x7c00;
1263
1264 /* handle zero, subnormals and small numbers */
1265 if (ecb_expect_true (x < 0x38800000))
1266 {
1267 /* zero */
1268 if (ecb_expect_true (!x))
1269 return s;
1270
1271 /* handle subnormals */
1272
1273 /* too small, will be zero */
1274 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275 return s;
1276
1277 m |= 0x00800000; /* make implicit bit explicit */
1278
1279 /* very tricky - we need to round to the nearest e (+10) bit value */
1280 {
1281 unsigned int bits = 14 - e;
1282 unsigned int half = (1 << (bits - 1)) - 1;
1283 unsigned int even = (m >> bits) & 1;
1284
1285 /* if this overflows, we will end up with a normalised number */
1286 m = (m + half + even) >> bits;
1287 }
1288
1289 return s | m;
1290 }
1291
1292 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293 m >>= 13;
1294
1295 return s | 0x7c00 | m | !m;
1296 }
1297
1298 /*******************************************************************************/
1299 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300
1301 /* basically, everything uses "ieee pure-endian" floating point numbers */
1302 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303 #if 0 \
1304 || __i386 || __i386__ \
1305 || ECB_GCC_AMD64 \
1306 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307 || defined __s390__ || defined __s390x__ \
1308 || defined __mips__ \
1309 || defined __alpha__ \
1310 || defined __hppa__ \
1311 || defined __ia64__ \
1312 || defined __m68k__ \
1313 || defined __m88k__ \
1314 || defined __sh__ \
1315 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 || defined __aarch64__
1318 #define ECB_STDFP 1
1319 #include <string.h> /* for memcpy */
1320 #else
1321 #define ECB_STDFP 0
1322 #endif
1323
1324 #ifndef ECB_NO_LIBM
1325
1326 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327
1328 /* only the oldest of old doesn't have this one. solaris. */
1329 #ifdef INFINITY
1330 #define ECB_INFINITY INFINITY
1331 #else
1332 #define ECB_INFINITY HUGE_VAL
1333 #endif
1334
1335 #ifdef NAN
1336 #define ECB_NAN NAN
1337 #else
1338 #define ECB_NAN ECB_INFINITY
1339 #endif
1340
1341 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 #else
1345 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 #endif
1348
1349 /* convert a float to ieee single/binary32 */
1350 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351 ecb_function_ ecb_const uint32_t
1352 ecb_float_to_binary32 (float x)
1353 {
1354 uint32_t r;
1355
1356 #if ECB_STDFP
1357 memcpy (&r, &x, 4);
1358 #else
1359 /* slow emulation, works for anything but -0 */
1360 uint32_t m;
1361 int e;
1362
1363 if (x == 0e0f ) return 0x00000000U;
1364 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366 if (x != x ) return 0x7fbfffffU;
1367
1368 m = ecb_frexpf (x, &e) * 0x1000000U;
1369
1370 r = m & 0x80000000U;
1371
1372 if (r)
1373 m = -m;
1374
1375 if (e <= -126)
1376 {
1377 m &= 0xffffffU;
1378 m >>= (-125 - e);
1379 e = -126;
1380 }
1381
1382 r |= (e + 126) << 23;
1383 r |= m & 0x7fffffU;
1384 #endif
1385
1386 return r;
1387 }
1388
1389 /* converts an ieee single/binary32 to a float */
1390 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391 ecb_function_ ecb_const float
1392 ecb_binary32_to_float (uint32_t x)
1393 {
1394 float r;
1395
1396 #if ECB_STDFP
1397 memcpy (&r, &x, 4);
1398 #else
1399 /* emulation, only works for normals and subnormals and +0 */
1400 int neg = x >> 31;
1401 int e = (x >> 23) & 0xffU;
1402
1403 x &= 0x7fffffU;
1404
1405 if (e)
1406 x |= 0x800000U;
1407 else
1408 e = 1;
1409
1410 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412
1413 r = neg ? -r : r;
1414 #endif
1415
1416 return r;
1417 }
1418
1419 /* convert a double to ieee double/binary64 */
1420 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421 ecb_function_ ecb_const uint64_t
1422 ecb_double_to_binary64 (double x)
1423 {
1424 uint64_t r;
1425
1426 #if ECB_STDFP
1427 memcpy (&r, &x, 8);
1428 #else
1429 /* slow emulation, works for anything but -0 */
1430 uint64_t m;
1431 int e;
1432
1433 if (x == 0e0 ) return 0x0000000000000000U;
1434 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436 if (x != x ) return 0X7ff7ffffffffffffU;
1437
1438 m = frexp (x, &e) * 0x20000000000000U;
1439
1440 r = m & 0x8000000000000000;;
1441
1442 if (r)
1443 m = -m;
1444
1445 if (e <= -1022)
1446 {
1447 m &= 0x1fffffffffffffU;
1448 m >>= (-1021 - e);
1449 e = -1022;
1450 }
1451
1452 r |= ((uint64_t)(e + 1022)) << 52;
1453 r |= m & 0xfffffffffffffU;
1454 #endif
1455
1456 return r;
1457 }
1458
1459 /* converts an ieee double/binary64 to a double */
1460 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461 ecb_function_ ecb_const double
1462 ecb_binary64_to_double (uint64_t x)
1463 {
1464 double r;
1465
1466 #if ECB_STDFP
1467 memcpy (&r, &x, 8);
1468 #else
1469 /* emulation, only works for normals and subnormals and +0 */
1470 int neg = x >> 63;
1471 int e = (x >> 52) & 0x7ffU;
1472
1473 x &= 0xfffffffffffffU;
1474
1475 if (e)
1476 x |= 0x10000000000000U;
1477 else
1478 e = 1;
1479
1480 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482
1483 r = neg ? -r : r;
1484 #endif
1485
1486 return r;
1487 }
1488
1489 /* convert a float to ieee half/binary16 */
1490 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491 ecb_function_ ecb_const uint16_t
1492 ecb_float_to_binary16 (float x)
1493 {
1494 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495 }
1496
1497 /* convert an ieee half/binary16 to float */
1498 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499 ecb_function_ ecb_const float
1500 ecb_binary16_to_float (uint16_t x)
1501 {
1502 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503 }
1504
1505 #endif
1506
1507 #endif
1508
1509 /* ECB.H END */
1510
1511 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512 /* if your architecture doesn't need memory fences, e.g. because it is
1513 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 * libev, in which cases the memory fences become nops.
1516 * alternatively, you can remove this #error and link against libpthread,
1517 * which will then provide the memory fences.
1518 */
1519 # error "memory fences not defined for your architecture, please report"
1520 #endif
1521
1522 #ifndef ECB_MEMORY_FENCE
1523 # define ECB_MEMORY_FENCE do { } while (0)
1524 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526 #endif
1527
1528 #define expect_false(cond) ecb_expect_false (cond)
1529 #define expect_true(cond) ecb_expect_true (cond)
1530 #define noinline ecb_noinline
1531
1532 #define inline_size ecb_inline
1533
1534 #if EV_FEATURE_CODE
1535 # define inline_speed ecb_inline
1536 #else
1537 # define inline_speed noinline static
1538 #endif
1539
1540 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541
1542 #if EV_MINPRI == EV_MAXPRI
1543 # define ABSPRI(w) (((W)w), 0)
1544 #else
1545 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546 #endif
1547
1548 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1549 #define EMPTY2(a,b) /* used to suppress some warnings */
1550
1551 typedef ev_watcher *W;
1552 typedef ev_watcher_list *WL;
1553 typedef ev_watcher_time *WT;
1554
1555 #define ev_active(w) ((W)(w))->active
1556 #define ev_at(w) ((WT)(w))->at
1557
1558 #if EV_USE_REALTIME
1559 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560 /* giving it a reasonably high chance of working on typical architectures */
1561 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562 #endif
1563
1564 #if EV_USE_MONOTONIC
1565 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566 #endif
1567
1568 #ifndef EV_FD_TO_WIN32_HANDLE
1569 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570 #endif
1571 #ifndef EV_WIN32_HANDLE_TO_FD
1572 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573 #endif
1574 #ifndef EV_WIN32_CLOSE_FD
1575 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1576 #endif
1577
1578 #ifdef _WIN32
1579 # include "ev_win32.c"
1580 #endif
1581
1582 /*****************************************************************************/
1583
1584 /* define a suitable floor function (only used by periodics atm) */
1585
1586 #if EV_USE_FLOOR
1587 # include <math.h>
1588 # define ev_floor(v) floor (v)
1589 #else
1590
1591 #include <float.h>
1592
1593 /* a floor() replacement function, should be independent of ev_tstamp type */
1594 noinline
1595 static ev_tstamp
1596 ev_floor (ev_tstamp v)
1597 {
1598 /* the choice of shift factor is not terribly important */
1599 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601 #else
1602 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603 #endif
1604
1605 /* argument too large for an unsigned long? */
1606 if (expect_false (v >= shift))
1607 {
1608 ev_tstamp f;
1609
1610 if (v == v - 1.)
1611 return v; /* very large number */
1612
1613 f = shift * ev_floor (v * (1. / shift));
1614 return f + ev_floor (v - f);
1615 }
1616
1617 /* special treatment for negative args? */
1618 if (expect_false (v < 0.))
1619 {
1620 ev_tstamp f = -ev_floor (-v);
1621
1622 return f - (f == v ? 0 : 1);
1623 }
1624
1625 /* fits into an unsigned long */
1626 return (unsigned long)v;
1627 }
1628
1629 #endif
1630
1631 /*****************************************************************************/
1632
1633 #ifdef __linux
1634 # include <sys/utsname.h>
1635 #endif
1636
1637 noinline ecb_cold
1638 static unsigned int
1639 ev_linux_version (void)
1640 {
1641 #ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669 #else
1670 return 0;
1671 #endif
1672 }
1673
1674 /*****************************************************************************/
1675
1676 #if EV_AVOID_STDIO
1677 noinline ecb_cold
1678 static void
1679 ev_printerr (const char *msg)
1680 {
1681 write (STDERR_FILENO, msg, strlen (msg));
1682 }
1683 #endif
1684
1685 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1686
1687 ecb_cold
1688 void
1689 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1690 {
1691 syserr_cb = cb;
1692 }
1693
1694 noinline ecb_cold
1695 static void
1696 ev_syserr (const char *msg)
1697 {
1698 if (!msg)
1699 msg = "(libev) system error";
1700
1701 if (syserr_cb)
1702 syserr_cb (msg);
1703 else
1704 {
1705 #if EV_AVOID_STDIO
1706 ev_printerr (msg);
1707 ev_printerr (": ");
1708 ev_printerr (strerror (errno));
1709 ev_printerr ("\n");
1710 #else
1711 perror (msg);
1712 #endif
1713 abort ();
1714 }
1715 }
1716
1717 static void *
1718 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1719 {
1720 /* some systems, notably openbsd and darwin, fail to properly
1721 * implement realloc (x, 0) (as required by both ansi c-89 and
1722 * the single unix specification, so work around them here.
1723 * recently, also (at least) fedora and debian started breaking it,
1724 * despite documenting it otherwise.
1725 */
1726
1727 if (size)
1728 return realloc (ptr, size);
1729
1730 free (ptr);
1731 return 0;
1732 }
1733
1734 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1735
1736 ecb_cold
1737 void
1738 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1739 {
1740 alloc = cb;
1741 }
1742
1743 inline_speed void *
1744 ev_realloc (void *ptr, long size)
1745 {
1746 ptr = alloc (ptr, size);
1747
1748 if (!ptr && size)
1749 {
1750 #if EV_AVOID_STDIO
1751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752 #else
1753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754 #endif
1755 abort ();
1756 }
1757
1758 return ptr;
1759 }
1760
1761 #define ev_malloc(size) ev_realloc (0, (size))
1762 #define ev_free(ptr) ev_realloc ((ptr), 0)
1763
1764 /*****************************************************************************/
1765
1766 /* set in reify when reification needed */
1767 #define EV_ANFD_REIFY 1
1768
1769 /* file descriptor info structure */
1770 typedef struct
1771 {
1772 WL head;
1773 unsigned char events; /* the events watched for */
1774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1776 unsigned char unused;
1777 #if EV_USE_EPOLL
1778 unsigned int egen; /* generation counter to counter epoll bugs */
1779 #endif
1780 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1781 SOCKET handle;
1782 #endif
1783 #if EV_USE_IOCP
1784 OVERLAPPED or, ow;
1785 #endif
1786 } ANFD;
1787
1788 /* stores the pending event set for a given watcher */
1789 typedef struct
1790 {
1791 W w;
1792 int events; /* the pending event set for the given watcher */
1793 } ANPENDING;
1794
1795 #if EV_USE_INOTIFY
1796 /* hash table entry per inotify-id */
1797 typedef struct
1798 {
1799 WL head;
1800 } ANFS;
1801 #endif
1802
1803 /* Heap Entry */
1804 #if EV_HEAP_CACHE_AT
1805 /* a heap element */
1806 typedef struct {
1807 ev_tstamp at;
1808 WT w;
1809 } ANHE;
1810
1811 #define ANHE_w(he) (he).w /* access watcher, read-write */
1812 #define ANHE_at(he) (he).at /* access cached at, read-only */
1813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1814 #else
1815 /* a heap element */
1816 typedef WT ANHE;
1817
1818 #define ANHE_w(he) (he)
1819 #define ANHE_at(he) (he)->at
1820 #define ANHE_at_cache(he)
1821 #endif
1822
1823 #if EV_MULTIPLICITY
1824
1825 struct ev_loop
1826 {
1827 ev_tstamp ev_rt_now;
1828 #define ev_rt_now ((loop)->ev_rt_now)
1829 #define VAR(name,decl) decl;
1830 #include "ev_vars.h"
1831 #undef VAR
1832 };
1833 #include "ev_wrap.h"
1834
1835 static struct ev_loop default_loop_struct;
1836 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1837
1838 #else
1839
1840 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1841 #define VAR(name,decl) static decl;
1842 #include "ev_vars.h"
1843 #undef VAR
1844
1845 static int ev_default_loop_ptr;
1846
1847 #endif
1848
1849 #if EV_FEATURE_API
1850 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1853 #else
1854 # define EV_RELEASE_CB (void)0
1855 # define EV_ACQUIRE_CB (void)0
1856 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857 #endif
1858
1859 #define EVBREAK_RECURSE 0x80
1860
1861 /*****************************************************************************/
1862
1863 #ifndef EV_HAVE_EV_TIME
1864 ev_tstamp
1865 ev_time (void) EV_NOEXCEPT
1866 {
1867 #if EV_USE_REALTIME
1868 if (expect_true (have_realtime))
1869 {
1870 struct timespec ts;
1871 clock_gettime (CLOCK_REALTIME, &ts);
1872 return ts.tv_sec + ts.tv_nsec * 1e-9;
1873 }
1874 #endif
1875
1876 struct timeval tv;
1877 gettimeofday (&tv, 0);
1878 return tv.tv_sec + tv.tv_usec * 1e-6;
1879 }
1880 #endif
1881
1882 inline_size ev_tstamp
1883 get_clock (void)
1884 {
1885 #if EV_USE_MONOTONIC
1886 if (expect_true (have_monotonic))
1887 {
1888 struct timespec ts;
1889 clock_gettime (CLOCK_MONOTONIC, &ts);
1890 return ts.tv_sec + ts.tv_nsec * 1e-9;
1891 }
1892 #endif
1893
1894 return ev_time ();
1895 }
1896
1897 #if EV_MULTIPLICITY
1898 ev_tstamp
1899 ev_now (EV_P) EV_NOEXCEPT
1900 {
1901 return ev_rt_now;
1902 }
1903 #endif
1904
1905 void
1906 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1907 {
1908 if (delay > 0.)
1909 {
1910 #if EV_USE_NANOSLEEP
1911 struct timespec ts;
1912
1913 EV_TS_SET (ts, delay);
1914 nanosleep (&ts, 0);
1915 #elif defined _WIN32
1916 /* maybe this should round up, as ms is very low resolution */
1917 /* compared to select (µs) or nanosleep (ns) */
1918 Sleep ((unsigned long)(delay * 1e3));
1919 #else
1920 struct timeval tv;
1921
1922 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1923 /* something not guaranteed by newer posix versions, but guaranteed */
1924 /* by older ones */
1925 EV_TV_SET (tv, delay);
1926 select (0, 0, 0, 0, &tv);
1927 #endif
1928 }
1929 }
1930
1931 /*****************************************************************************/
1932
1933 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1934
1935 /* find a suitable new size for the given array, */
1936 /* hopefully by rounding to a nice-to-malloc size */
1937 inline_size int
1938 array_nextsize (int elem, int cur, int cnt)
1939 {
1940 int ncur = cur + 1;
1941
1942 do
1943 ncur <<= 1;
1944 while (cnt > ncur);
1945
1946 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1947 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1948 {
1949 ncur *= elem;
1950 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1951 ncur = ncur - sizeof (void *) * 4;
1952 ncur /= elem;
1953 }
1954
1955 return ncur;
1956 }
1957
1958 noinline ecb_cold
1959 static void *
1960 array_realloc (int elem, void *base, int *cur, int cnt)
1961 {
1962 *cur = array_nextsize (elem, *cur, cnt);
1963 return ev_realloc (base, elem * *cur);
1964 }
1965
1966 #define array_init_zero(base,count) \
1967 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1968
1969 #define array_needsize(type,base,cur,cnt,init) \
1970 if (expect_false ((cnt) > (cur))) \
1971 { \
1972 ecb_unused int ocur_ = (cur); \
1973 (base) = (type *)array_realloc \
1974 (sizeof (type), (base), &(cur), (cnt)); \
1975 init ((base) + (ocur_), (cur) - ocur_); \
1976 }
1977
1978 #if 0
1979 #define array_slim(type,stem) \
1980 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1981 { \
1982 stem ## max = array_roundsize (stem ## cnt >> 1); \
1983 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1984 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1985 }
1986 #endif
1987
1988 #define array_free(stem, idx) \
1989 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1990
1991 /*****************************************************************************/
1992
1993 /* dummy callback for pending events */
1994 noinline
1995 static void
1996 pendingcb (EV_P_ ev_prepare *w, int revents)
1997 {
1998 }
1999
2000 noinline
2001 void
2002 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2003 {
2004 W w_ = (W)w;
2005 int pri = ABSPRI (w_);
2006
2007 if (expect_false (w_->pending))
2008 pendings [pri][w_->pending - 1].events |= revents;
2009 else
2010 {
2011 w_->pending = ++pendingcnt [pri];
2012 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
2013 pendings [pri][w_->pending - 1].w = w_;
2014 pendings [pri][w_->pending - 1].events = revents;
2015 }
2016
2017 pendingpri = NUMPRI - 1;
2018 }
2019
2020 inline_speed void
2021 feed_reverse (EV_P_ W w)
2022 {
2023 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024 rfeeds [rfeedcnt++] = w;
2025 }
2026
2027 inline_size void
2028 feed_reverse_done (EV_P_ int revents)
2029 {
2030 do
2031 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032 while (rfeedcnt);
2033 }
2034
2035 inline_speed void
2036 queue_events (EV_P_ W *events, int eventcnt, int type)
2037 {
2038 int i;
2039
2040 for (i = 0; i < eventcnt; ++i)
2041 ev_feed_event (EV_A_ events [i], type);
2042 }
2043
2044 /*****************************************************************************/
2045
2046 inline_speed void
2047 fd_event_nocheck (EV_P_ int fd, int revents)
2048 {
2049 ANFD *anfd = anfds + fd;
2050 ev_io *w;
2051
2052 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2053 {
2054 int ev = w->events & revents;
2055
2056 if (ev)
2057 ev_feed_event (EV_A_ (W)w, ev);
2058 }
2059 }
2060
2061 /* do not submit kernel events for fds that have reify set */
2062 /* because that means they changed while we were polling for new events */
2063 inline_speed void
2064 fd_event (EV_P_ int fd, int revents)
2065 {
2066 ANFD *anfd = anfds + fd;
2067
2068 if (expect_true (!anfd->reify))
2069 fd_event_nocheck (EV_A_ fd, revents);
2070 }
2071
2072 void
2073 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2074 {
2075 if (fd >= 0 && fd < anfdmax)
2076 fd_event_nocheck (EV_A_ fd, revents);
2077 }
2078
2079 /* make sure the external fd watch events are in-sync */
2080 /* with the kernel/libev internal state */
2081 inline_size void
2082 fd_reify (EV_P)
2083 {
2084 int i;
2085
2086 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2087 for (i = 0; i < fdchangecnt; ++i)
2088 {
2089 int fd = fdchanges [i];
2090 ANFD *anfd = anfds + fd;
2091
2092 if (anfd->reify & EV__IOFDSET && anfd->head)
2093 {
2094 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095
2096 if (handle != anfd->handle)
2097 {
2098 unsigned long arg;
2099
2100 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101
2102 /* handle changed, but fd didn't - we need to do it in two steps */
2103 backend_modify (EV_A_ fd, anfd->events, 0);
2104 anfd->events = 0;
2105 anfd->handle = handle;
2106 }
2107 }
2108 }
2109 #endif
2110
2111 for (i = 0; i < fdchangecnt; ++i)
2112 {
2113 int fd = fdchanges [i];
2114 ANFD *anfd = anfds + fd;
2115 ev_io *w;
2116
2117 unsigned char o_events = anfd->events;
2118 unsigned char o_reify = anfd->reify;
2119
2120 anfd->reify = 0;
2121
2122 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2123 {
2124 anfd->events = 0;
2125
2126 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2127 anfd->events |= (unsigned char)w->events;
2128
2129 if (o_events != anfd->events)
2130 o_reify = EV__IOFDSET; /* actually |= */
2131 }
2132
2133 if (o_reify & EV__IOFDSET)
2134 backend_modify (EV_A_ fd, o_events, anfd->events);
2135 }
2136
2137 fdchangecnt = 0;
2138 }
2139
2140 /* something about the given fd changed */
2141 inline_size
2142 void
2143 fd_change (EV_P_ int fd, int flags)
2144 {
2145 unsigned char reify = anfds [fd].reify;
2146 anfds [fd].reify |= flags;
2147
2148 if (expect_true (!reify))
2149 {
2150 ++fdchangecnt;
2151 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2152 fdchanges [fdchangecnt - 1] = fd;
2153 }
2154 }
2155
2156 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157 inline_speed ecb_cold void
2158 fd_kill (EV_P_ int fd)
2159 {
2160 ev_io *w;
2161
2162 while ((w = (ev_io *)anfds [fd].head))
2163 {
2164 ev_io_stop (EV_A_ w);
2165 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2166 }
2167 }
2168
2169 /* check whether the given fd is actually valid, for error recovery */
2170 inline_size ecb_cold int
2171 fd_valid (int fd)
2172 {
2173 #ifdef _WIN32
2174 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2175 #else
2176 return fcntl (fd, F_GETFD) != -1;
2177 #endif
2178 }
2179
2180 /* called on EBADF to verify fds */
2181 noinline ecb_cold
2182 static void
2183 fd_ebadf (EV_P)
2184 {
2185 int fd;
2186
2187 for (fd = 0; fd < anfdmax; ++fd)
2188 if (anfds [fd].events)
2189 if (!fd_valid (fd) && errno == EBADF)
2190 fd_kill (EV_A_ fd);
2191 }
2192
2193 /* called on ENOMEM in select/poll to kill some fds and retry */
2194 noinline ecb_cold
2195 static void
2196 fd_enomem (EV_P)
2197 {
2198 int fd;
2199
2200 for (fd = anfdmax; fd--; )
2201 if (anfds [fd].events)
2202 {
2203 fd_kill (EV_A_ fd);
2204 break;
2205 }
2206 }
2207
2208 /* usually called after fork if backend needs to re-arm all fds from scratch */
2209 noinline
2210 static void
2211 fd_rearm_all (EV_P)
2212 {
2213 int fd;
2214
2215 for (fd = 0; fd < anfdmax; ++fd)
2216 if (anfds [fd].events)
2217 {
2218 anfds [fd].events = 0;
2219 anfds [fd].emask = 0;
2220 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2221 }
2222 }
2223
2224 /* used to prepare libev internal fd's */
2225 /* this is not fork-safe */
2226 inline_speed void
2227 fd_intern (int fd)
2228 {
2229 #ifdef _WIN32
2230 unsigned long arg = 1;
2231 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232 #else
2233 fcntl (fd, F_SETFD, FD_CLOEXEC);
2234 fcntl (fd, F_SETFL, O_NONBLOCK);
2235 #endif
2236 }
2237
2238 /*****************************************************************************/
2239
2240 /*
2241 * the heap functions want a real array index. array index 0 is guaranteed to not
2242 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2243 * the branching factor of the d-tree.
2244 */
2245
2246 /*
2247 * at the moment we allow libev the luxury of two heaps,
2248 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2249 * which is more cache-efficient.
2250 * the difference is about 5% with 50000+ watchers.
2251 */
2252 #if EV_USE_4HEAP
2253
2254 #define DHEAP 4
2255 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2256 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2257 #define UPHEAP_DONE(p,k) ((p) == (k))
2258
2259 /* away from the root */
2260 inline_speed void
2261 downheap (ANHE *heap, int N, int k)
2262 {
2263 ANHE he = heap [k];
2264 ANHE *E = heap + N + HEAP0;
2265
2266 for (;;)
2267 {
2268 ev_tstamp minat;
2269 ANHE *minpos;
2270 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2271
2272 /* find minimum child */
2273 if (expect_true (pos + DHEAP - 1 < E))
2274 {
2275 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else if (pos < E)
2281 {
2282 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2283 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2284 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2285 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2286 }
2287 else
2288 break;
2289
2290 if (ANHE_at (he) <= minat)
2291 break;
2292
2293 heap [k] = *minpos;
2294 ev_active (ANHE_w (*minpos)) = k;
2295
2296 k = minpos - heap;
2297 }
2298
2299 heap [k] = he;
2300 ev_active (ANHE_w (he)) = k;
2301 }
2302
2303 #else /* 4HEAP */
2304
2305 #define HEAP0 1
2306 #define HPARENT(k) ((k) >> 1)
2307 #define UPHEAP_DONE(p,k) (!(p))
2308
2309 /* away from the root */
2310 inline_speed void
2311 downheap (ANHE *heap, int N, int k)
2312 {
2313 ANHE he = heap [k];
2314
2315 for (;;)
2316 {
2317 int c = k << 1;
2318
2319 if (c >= N + HEAP0)
2320 break;
2321
2322 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2323 ? 1 : 0;
2324
2325 if (ANHE_at (he) <= ANHE_at (heap [c]))
2326 break;
2327
2328 heap [k] = heap [c];
2329 ev_active (ANHE_w (heap [k])) = k;
2330
2331 k = c;
2332 }
2333
2334 heap [k] = he;
2335 ev_active (ANHE_w (he)) = k;
2336 }
2337 #endif
2338
2339 /* towards the root */
2340 inline_speed void
2341 upheap (ANHE *heap, int k)
2342 {
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int p = HPARENT (k);
2348
2349 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2350 break;
2351
2352 heap [k] = heap [p];
2353 ev_active (ANHE_w (heap [k])) = k;
2354 k = p;
2355 }
2356
2357 heap [k] = he;
2358 ev_active (ANHE_w (he)) = k;
2359 }
2360
2361 /* move an element suitably so it is in a correct place */
2362 inline_size void
2363 adjustheap (ANHE *heap, int N, int k)
2364 {
2365 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2366 upheap (heap, k);
2367 else
2368 downheap (heap, N, k);
2369 }
2370
2371 /* rebuild the heap: this function is used only once and executed rarely */
2372 inline_size void
2373 reheap (ANHE *heap, int N)
2374 {
2375 int i;
2376
2377 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2378 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2379 for (i = 0; i < N; ++i)
2380 upheap (heap, i + HEAP0);
2381 }
2382
2383 /*****************************************************************************/
2384
2385 /* associate signal watchers to a signal signal */
2386 typedef struct
2387 {
2388 EV_ATOMIC_T pending;
2389 #if EV_MULTIPLICITY
2390 EV_P;
2391 #endif
2392 WL head;
2393 } ANSIG;
2394
2395 static ANSIG signals [EV_NSIG - 1];
2396
2397 /*****************************************************************************/
2398
2399 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2400
2401 noinline ecb_cold
2402 static void
2403 evpipe_init (EV_P)
2404 {
2405 if (!ev_is_active (&pipe_w))
2406 {
2407 int fds [2];
2408
2409 # if EV_USE_EVENTFD
2410 fds [0] = -1;
2411 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412 if (fds [1] < 0 && errno == EINVAL)
2413 fds [1] = eventfd (0, 0);
2414
2415 if (fds [1] < 0)
2416 # endif
2417 {
2418 while (pipe (fds))
2419 ev_syserr ("(libev) error creating signal/async pipe");
2420
2421 fd_intern (fds [0]);
2422 }
2423
2424 evpipe [0] = fds [0];
2425
2426 if (evpipe [1] < 0)
2427 evpipe [1] = fds [1]; /* first call, set write fd */
2428 else
2429 {
2430 /* on subsequent calls, do not change evpipe [1] */
2431 /* so that evpipe_write can always rely on its value. */
2432 /* this branch does not do anything sensible on windows, */
2433 /* so must not be executed on windows */
2434
2435 dup2 (fds [1], evpipe [1]);
2436 close (fds [1]);
2437 }
2438
2439 fd_intern (evpipe [1]);
2440
2441 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 ev_io_start (EV_A_ &pipe_w);
2443 ev_unref (EV_A); /* watcher should not keep loop alive */
2444 }
2445 }
2446
2447 inline_speed void
2448 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449 {
2450 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451
2452 if (expect_true (*flag))
2453 return;
2454
2455 *flag = 1;
2456 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457
2458 pipe_write_skipped = 1;
2459
2460 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461
2462 if (pipe_write_wanted)
2463 {
2464 int old_errno;
2465
2466 pipe_write_skipped = 0;
2467 ECB_MEMORY_FENCE_RELEASE;
2468
2469 old_errno = errno; /* save errno because write will clobber it */
2470
2471 #if EV_USE_EVENTFD
2472 if (evpipe [0] < 0)
2473 {
2474 uint64_t counter = 1;
2475 write (evpipe [1], &counter, sizeof (uint64_t));
2476 }
2477 else
2478 #endif
2479 {
2480 #ifdef _WIN32
2481 WSABUF buf;
2482 DWORD sent;
2483 buf.buf = (char *)&buf;
2484 buf.len = 1;
2485 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486 #else
2487 write (evpipe [1], &(evpipe [1]), 1);
2488 #endif
2489 }
2490
2491 errno = old_errno;
2492 }
2493 }
2494
2495 /* called whenever the libev signal pipe */
2496 /* got some events (signal, async) */
2497 static void
2498 pipecb (EV_P_ ev_io *iow, int revents)
2499 {
2500 int i;
2501
2502 if (revents & EV_READ)
2503 {
2504 #if EV_USE_EVENTFD
2505 if (evpipe [0] < 0)
2506 {
2507 uint64_t counter;
2508 read (evpipe [1], &counter, sizeof (uint64_t));
2509 }
2510 else
2511 #endif
2512 {
2513 char dummy[4];
2514 #ifdef _WIN32
2515 WSABUF buf;
2516 DWORD recvd;
2517 DWORD flags = 0;
2518 buf.buf = dummy;
2519 buf.len = sizeof (dummy);
2520 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521 #else
2522 read (evpipe [0], &dummy, sizeof (dummy));
2523 #endif
2524 }
2525 }
2526
2527 pipe_write_skipped = 0;
2528
2529 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530
2531 #if EV_SIGNAL_ENABLE
2532 if (sig_pending)
2533 {
2534 sig_pending = 0;
2535
2536 ECB_MEMORY_FENCE;
2537
2538 for (i = EV_NSIG - 1; i--; )
2539 if (expect_false (signals [i].pending))
2540 ev_feed_signal_event (EV_A_ i + 1);
2541 }
2542 #endif
2543
2544 #if EV_ASYNC_ENABLE
2545 if (async_pending)
2546 {
2547 async_pending = 0;
2548
2549 ECB_MEMORY_FENCE;
2550
2551 for (i = asynccnt; i--; )
2552 if (asyncs [i]->sent)
2553 {
2554 asyncs [i]->sent = 0;
2555 ECB_MEMORY_FENCE_RELEASE;
2556 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2557 }
2558 }
2559 #endif
2560 }
2561
2562 /*****************************************************************************/
2563
2564 void
2565 ev_feed_signal (int signum) EV_NOEXCEPT
2566 {
2567 #if EV_MULTIPLICITY
2568 EV_P;
2569 ECB_MEMORY_FENCE_ACQUIRE;
2570 EV_A = signals [signum - 1].loop;
2571
2572 if (!EV_A)
2573 return;
2574 #endif
2575
2576 signals [signum - 1].pending = 1;
2577 evpipe_write (EV_A_ &sig_pending);
2578 }
2579
2580 static void
2581 ev_sighandler (int signum)
2582 {
2583 #ifdef _WIN32
2584 signal (signum, ev_sighandler);
2585 #endif
2586
2587 ev_feed_signal (signum);
2588 }
2589
2590 noinline
2591 void
2592 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2593 {
2594 WL w;
2595
2596 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 return;
2598
2599 --signum;
2600
2601 #if EV_MULTIPLICITY
2602 /* it is permissible to try to feed a signal to the wrong loop */
2603 /* or, likely more useful, feeding a signal nobody is waiting for */
2604
2605 if (expect_false (signals [signum].loop != EV_A))
2606 return;
2607 #endif
2608
2609 signals [signum].pending = 0;
2610 ECB_MEMORY_FENCE_RELEASE;
2611
2612 for (w = signals [signum].head; w; w = w->next)
2613 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2614 }
2615
2616 #if EV_USE_SIGNALFD
2617 static void
2618 sigfdcb (EV_P_ ev_io *iow, int revents)
2619 {
2620 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2621
2622 for (;;)
2623 {
2624 ssize_t res = read (sigfd, si, sizeof (si));
2625
2626 /* not ISO-C, as res might be -1, but works with SuS */
2627 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2628 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2629
2630 if (res < (ssize_t)sizeof (si))
2631 break;
2632 }
2633 }
2634 #endif
2635
2636 #endif
2637
2638 /*****************************************************************************/
2639
2640 #if EV_CHILD_ENABLE
2641 static WL childs [EV_PID_HASHSIZE];
2642
2643 static ev_signal childev;
2644
2645 #ifndef WIFCONTINUED
2646 # define WIFCONTINUED(status) 0
2647 #endif
2648
2649 /* handle a single child status event */
2650 inline_speed void
2651 child_reap (EV_P_ int chain, int pid, int status)
2652 {
2653 ev_child *w;
2654 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2655
2656 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2657 {
2658 if ((w->pid == pid || !w->pid)
2659 && (!traced || (w->flags & 1)))
2660 {
2661 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2662 w->rpid = pid;
2663 w->rstatus = status;
2664 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2665 }
2666 }
2667 }
2668
2669 #ifndef WCONTINUED
2670 # define WCONTINUED 0
2671 #endif
2672
2673 /* called on sigchld etc., calls waitpid */
2674 static void
2675 childcb (EV_P_ ev_signal *sw, int revents)
2676 {
2677 int pid, status;
2678
2679 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2680 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2681 if (!WCONTINUED
2682 || errno != EINVAL
2683 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2684 return;
2685
2686 /* make sure we are called again until all children have been reaped */
2687 /* we need to do it this way so that the callback gets called before we continue */
2688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2689
2690 child_reap (EV_A_ pid, pid, status);
2691 if ((EV_PID_HASHSIZE) > 1)
2692 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2693 }
2694
2695 #endif
2696
2697 /*****************************************************************************/
2698
2699 #if EV_USE_IOCP
2700 # include "ev_iocp.c"
2701 #endif
2702 #if EV_USE_PORT
2703 # include "ev_port.c"
2704 #endif
2705 #if EV_USE_KQUEUE
2706 # include "ev_kqueue.c"
2707 #endif
2708 #if EV_USE_EPOLL
2709 # include "ev_epoll.c"
2710 #endif
2711 #if EV_USE_POLL
2712 # include "ev_poll.c"
2713 #endif
2714 #if EV_USE_SELECT
2715 # include "ev_select.c"
2716 #endif
2717
2718 ecb_cold int
2719 ev_version_major (void) EV_NOEXCEPT
2720 {
2721 return EV_VERSION_MAJOR;
2722 }
2723
2724 ecb_cold int
2725 ev_version_minor (void) EV_NOEXCEPT
2726 {
2727 return EV_VERSION_MINOR;
2728 }
2729
2730 /* return true if we are running with elevated privileges and should ignore env variables */
2731 inline_size ecb_cold int
2732 enable_secure (void)
2733 {
2734 #ifdef _WIN32
2735 return 0;
2736 #else
2737 return getuid () != geteuid ()
2738 || getgid () != getegid ();
2739 #endif
2740 }
2741
2742 ecb_cold
2743 unsigned int
2744 ev_supported_backends (void) EV_NOEXCEPT
2745 {
2746 unsigned int flags = 0;
2747
2748 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2749 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2750 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2751 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2752 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2753
2754 return flags;
2755 }
2756
2757 ecb_cold
2758 unsigned int
2759 ev_recommended_backends (void) EV_NOEXCEPT
2760 {
2761 unsigned int flags = ev_supported_backends ();
2762
2763 #ifndef __NetBSD__
2764 /* kqueue is borked on everything but netbsd apparently */
2765 /* it usually doesn't work correctly on anything but sockets and pipes */
2766 flags &= ~EVBACKEND_KQUEUE;
2767 #endif
2768 #ifdef __APPLE__
2769 /* only select works correctly on that "unix-certified" platform */
2770 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772 #endif
2773 #ifdef __FreeBSD__
2774 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2775 #endif
2776
2777 return flags;
2778 }
2779
2780 ecb_cold
2781 unsigned int
2782 ev_embeddable_backends (void) EV_NOEXCEPT
2783 {
2784 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2785
2786 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2787 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2788 flags &= ~EVBACKEND_EPOLL;
2789
2790 return flags;
2791 }
2792
2793 unsigned int
2794 ev_backend (EV_P) EV_NOEXCEPT
2795 {
2796 return backend;
2797 }
2798
2799 #if EV_FEATURE_API
2800 unsigned int
2801 ev_iteration (EV_P) EV_NOEXCEPT
2802 {
2803 return loop_count;
2804 }
2805
2806 unsigned int
2807 ev_depth (EV_P) EV_NOEXCEPT
2808 {
2809 return loop_depth;
2810 }
2811
2812 void
2813 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2814 {
2815 io_blocktime = interval;
2816 }
2817
2818 void
2819 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2820 {
2821 timeout_blocktime = interval;
2822 }
2823
2824 void
2825 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826 {
2827 userdata = data;
2828 }
2829
2830 void *
2831 ev_userdata (EV_P) EV_NOEXCEPT
2832 {
2833 return userdata;
2834 }
2835
2836 void
2837 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838 {
2839 invoke_cb = invoke_pending_cb;
2840 }
2841
2842 void
2843 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844 {
2845 release_cb = release;
2846 acquire_cb = acquire;
2847 }
2848 #endif
2849
2850 /* initialise a loop structure, must be zero-initialised */
2851 noinline ecb_cold
2852 static void
2853 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2854 {
2855 if (!backend)
2856 {
2857 origflags = flags;
2858
2859 #if EV_USE_REALTIME
2860 if (!have_realtime)
2861 {
2862 struct timespec ts;
2863
2864 if (!clock_gettime (CLOCK_REALTIME, &ts))
2865 have_realtime = 1;
2866 }
2867 #endif
2868
2869 #if EV_USE_MONOTONIC
2870 if (!have_monotonic)
2871 {
2872 struct timespec ts;
2873
2874 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2875 have_monotonic = 1;
2876 }
2877 #endif
2878
2879 /* pid check not overridable via env */
2880 #ifndef _WIN32
2881 if (flags & EVFLAG_FORKCHECK)
2882 curpid = getpid ();
2883 #endif
2884
2885 if (!(flags & EVFLAG_NOENV)
2886 && !enable_secure ()
2887 && getenv ("LIBEV_FLAGS"))
2888 flags = atoi (getenv ("LIBEV_FLAGS"));
2889
2890 ev_rt_now = ev_time ();
2891 mn_now = get_clock ();
2892 now_floor = mn_now;
2893 rtmn_diff = ev_rt_now - mn_now;
2894 #if EV_FEATURE_API
2895 invoke_cb = ev_invoke_pending;
2896 #endif
2897
2898 io_blocktime = 0.;
2899 timeout_blocktime = 0.;
2900 backend = 0;
2901 backend_fd = -1;
2902 sig_pending = 0;
2903 #if EV_ASYNC_ENABLE
2904 async_pending = 0;
2905 #endif
2906 pipe_write_skipped = 0;
2907 pipe_write_wanted = 0;
2908 evpipe [0] = -1;
2909 evpipe [1] = -1;
2910 #if EV_USE_INOTIFY
2911 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912 #endif
2913 #if EV_USE_SIGNALFD
2914 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915 #endif
2916
2917 if (!(flags & EVBACKEND_MASK))
2918 flags |= ev_recommended_backends ();
2919
2920 #if EV_USE_IOCP
2921 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2922 #endif
2923 #if EV_USE_PORT
2924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2925 #endif
2926 #if EV_USE_KQUEUE
2927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2928 #endif
2929 #if EV_USE_EPOLL
2930 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2931 #endif
2932 #if EV_USE_POLL
2933 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2934 #endif
2935 #if EV_USE_SELECT
2936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2937 #endif
2938
2939 ev_prepare_init (&pending_w, pendingcb);
2940
2941 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2942 ev_init (&pipe_w, pipecb);
2943 ev_set_priority (&pipe_w, EV_MAXPRI);
2944 #endif
2945 }
2946 }
2947
2948 /* free up a loop structure */
2949 ecb_cold
2950 void
2951 ev_loop_destroy (EV_P)
2952 {
2953 int i;
2954
2955 #if EV_MULTIPLICITY
2956 /* mimic free (0) */
2957 if (!EV_A)
2958 return;
2959 #endif
2960
2961 #if EV_CLEANUP_ENABLE
2962 /* queue cleanup watchers (and execute them) */
2963 if (expect_false (cleanupcnt))
2964 {
2965 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966 EV_INVOKE_PENDING;
2967 }
2968 #endif
2969
2970 #if EV_CHILD_ENABLE
2971 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 {
2973 ev_ref (EV_A); /* child watcher */
2974 ev_signal_stop (EV_A_ &childev);
2975 }
2976 #endif
2977
2978 if (ev_is_active (&pipe_w))
2979 {
2980 /*ev_ref (EV_A);*/
2981 /*ev_io_stop (EV_A_ &pipe_w);*/
2982
2983 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 }
2986
2987 #if EV_USE_SIGNALFD
2988 if (ev_is_active (&sigfd_w))
2989 close (sigfd);
2990 #endif
2991
2992 #if EV_USE_INOTIFY
2993 if (fs_fd >= 0)
2994 close (fs_fd);
2995 #endif
2996
2997 if (backend_fd >= 0)
2998 close (backend_fd);
2999
3000 #if EV_USE_IOCP
3001 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002 #endif
3003 #if EV_USE_PORT
3004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3005 #endif
3006 #if EV_USE_KQUEUE
3007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3008 #endif
3009 #if EV_USE_EPOLL
3010 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3011 #endif
3012 #if EV_USE_POLL
3013 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3014 #endif
3015 #if EV_USE_SELECT
3016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3017 #endif
3018
3019 for (i = NUMPRI; i--; )
3020 {
3021 array_free (pending, [i]);
3022 #if EV_IDLE_ENABLE
3023 array_free (idle, [i]);
3024 #endif
3025 }
3026
3027 ev_free (anfds); anfds = 0; anfdmax = 0;
3028
3029 /* have to use the microsoft-never-gets-it-right macro */
3030 array_free (rfeed, EMPTY);
3031 array_free (fdchange, EMPTY);
3032 array_free (timer, EMPTY);
3033 #if EV_PERIODIC_ENABLE
3034 array_free (periodic, EMPTY);
3035 #endif
3036 #if EV_FORK_ENABLE
3037 array_free (fork, EMPTY);
3038 #endif
3039 #if EV_CLEANUP_ENABLE
3040 array_free (cleanup, EMPTY);
3041 #endif
3042 array_free (prepare, EMPTY);
3043 array_free (check, EMPTY);
3044 #if EV_ASYNC_ENABLE
3045 array_free (async, EMPTY);
3046 #endif
3047
3048 backend = 0;
3049
3050 #if EV_MULTIPLICITY
3051 if (ev_is_default_loop (EV_A))
3052 #endif
3053 ev_default_loop_ptr = 0;
3054 #if EV_MULTIPLICITY
3055 else
3056 ev_free (EV_A);
3057 #endif
3058 }
3059
3060 #if EV_USE_INOTIFY
3061 inline_size void infy_fork (EV_P);
3062 #endif
3063
3064 inline_size void
3065 loop_fork (EV_P)
3066 {
3067 #if EV_USE_PORT
3068 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3069 #endif
3070 #if EV_USE_KQUEUE
3071 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3072 #endif
3073 #if EV_USE_EPOLL
3074 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3075 #endif
3076 #if EV_USE_INOTIFY
3077 infy_fork (EV_A);
3078 #endif
3079
3080 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 if (ev_is_active (&pipe_w) && postfork != 2)
3082 {
3083 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3084
3085 ev_ref (EV_A);
3086 ev_io_stop (EV_A_ &pipe_w);
3087
3088 if (evpipe [0] >= 0)
3089 EV_WIN32_CLOSE_FD (evpipe [0]);
3090
3091 evpipe_init (EV_A);
3092 /* iterate over everything, in case we missed something before */
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3094 }
3095 #endif
3096
3097 postfork = 0;
3098 }
3099
3100 #if EV_MULTIPLICITY
3101
3102 ecb_cold
3103 struct ev_loop *
3104 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3105 {
3106 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3107
3108 memset (EV_A, 0, sizeof (struct ev_loop));
3109 loop_init (EV_A_ flags);
3110
3111 if (ev_backend (EV_A))
3112 return EV_A;
3113
3114 ev_free (EV_A);
3115 return 0;
3116 }
3117
3118 #endif /* multiplicity */
3119
3120 #if EV_VERIFY
3121 noinline ecb_cold
3122 static void
3123 verify_watcher (EV_P_ W w)
3124 {
3125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3126
3127 if (w->pending)
3128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129 }
3130
3131 noinline ecb_cold
3132 static void
3133 verify_heap (EV_P_ ANHE *heap, int N)
3134 {
3135 int i;
3136
3137 for (i = HEAP0; i < N + HEAP0; ++i)
3138 {
3139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142
3143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144 }
3145 }
3146
3147 noinline ecb_cold
3148 static void
3149 array_verify (EV_P_ W *ws, int cnt)
3150 {
3151 while (cnt--)
3152 {
3153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 verify_watcher (EV_A_ ws [cnt]);
3155 }
3156 }
3157 #endif
3158
3159 #if EV_FEATURE_API
3160 void ecb_cold
3161 ev_verify (EV_P) EV_NOEXCEPT
3162 {
3163 #if EV_VERIFY
3164 int i;
3165 WL w, w2;
3166
3167 assert (activecnt >= -1);
3168
3169 assert (fdchangemax >= fdchangecnt);
3170 for (i = 0; i < fdchangecnt; ++i)
3171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172
3173 assert (anfdmax >= 0);
3174 for (i = 0; i < anfdmax; ++i)
3175 {
3176 int j = 0;
3177
3178 for (w = w2 = anfds [i].head; w; w = w->next)
3179 {
3180 verify_watcher (EV_A_ (W)w);
3181
3182 if (j++ & 1)
3183 {
3184 assert (("libev: io watcher list contains a loop", w != w2));
3185 w2 = w2->next;
3186 }
3187
3188 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190 }
3191 }
3192
3193 assert (timermax >= timercnt);
3194 verify_heap (EV_A_ timers, timercnt);
3195
3196 #if EV_PERIODIC_ENABLE
3197 assert (periodicmax >= periodiccnt);
3198 verify_heap (EV_A_ periodics, periodiccnt);
3199 #endif
3200
3201 for (i = NUMPRI; i--; )
3202 {
3203 assert (pendingmax [i] >= pendingcnt [i]);
3204 #if EV_IDLE_ENABLE
3205 assert (idleall >= 0);
3206 assert (idlemax [i] >= idlecnt [i]);
3207 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3208 #endif
3209 }
3210
3211 #if EV_FORK_ENABLE
3212 assert (forkmax >= forkcnt);
3213 array_verify (EV_A_ (W *)forks, forkcnt);
3214 #endif
3215
3216 #if EV_CLEANUP_ENABLE
3217 assert (cleanupmax >= cleanupcnt);
3218 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219 #endif
3220
3221 #if EV_ASYNC_ENABLE
3222 assert (asyncmax >= asynccnt);
3223 array_verify (EV_A_ (W *)asyncs, asynccnt);
3224 #endif
3225
3226 #if EV_PREPARE_ENABLE
3227 assert (preparemax >= preparecnt);
3228 array_verify (EV_A_ (W *)prepares, preparecnt);
3229 #endif
3230
3231 #if EV_CHECK_ENABLE
3232 assert (checkmax >= checkcnt);
3233 array_verify (EV_A_ (W *)checks, checkcnt);
3234 #endif
3235
3236 # if 0
3237 #if EV_CHILD_ENABLE
3238 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240 #endif
3241 # endif
3242 #endif
3243 }
3244 #endif
3245
3246 #if EV_MULTIPLICITY
3247 ecb_cold
3248 struct ev_loop *
3249 #else
3250 int
3251 #endif
3252 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3253 {
3254 if (!ev_default_loop_ptr)
3255 {
3256 #if EV_MULTIPLICITY
3257 EV_P = ev_default_loop_ptr = &default_loop_struct;
3258 #else
3259 ev_default_loop_ptr = 1;
3260 #endif
3261
3262 loop_init (EV_A_ flags);
3263
3264 if (ev_backend (EV_A))
3265 {
3266 #if EV_CHILD_ENABLE
3267 ev_signal_init (&childev, childcb, SIGCHLD);
3268 ev_set_priority (&childev, EV_MAXPRI);
3269 ev_signal_start (EV_A_ &childev);
3270 ev_unref (EV_A); /* child watcher should not keep loop alive */
3271 #endif
3272 }
3273 else
3274 ev_default_loop_ptr = 0;
3275 }
3276
3277 return ev_default_loop_ptr;
3278 }
3279
3280 void
3281 ev_loop_fork (EV_P) EV_NOEXCEPT
3282 {
3283 postfork = 1;
3284 }
3285
3286 /*****************************************************************************/
3287
3288 void
3289 ev_invoke (EV_P_ void *w, int revents)
3290 {
3291 EV_CB_INVOKE ((W)w, revents);
3292 }
3293
3294 unsigned int
3295 ev_pending_count (EV_P) EV_NOEXCEPT
3296 {
3297 int pri;
3298 unsigned int count = 0;
3299
3300 for (pri = NUMPRI; pri--; )
3301 count += pendingcnt [pri];
3302
3303 return count;
3304 }
3305
3306 noinline
3307 void
3308 ev_invoke_pending (EV_P)
3309 {
3310 pendingpri = NUMPRI;
3311
3312 do
3313 {
3314 --pendingpri;
3315
3316 /* pendingpri possibly gets modified in the inner loop */
3317 while (pendingcnt [pendingpri])
3318 {
3319 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3320
3321 p->w->pending = 0;
3322 EV_CB_INVOKE (p->w, p->events);
3323 EV_FREQUENT_CHECK;
3324 }
3325 }
3326 while (pendingpri);
3327 }
3328
3329 #if EV_IDLE_ENABLE
3330 /* make idle watchers pending. this handles the "call-idle */
3331 /* only when higher priorities are idle" logic */
3332 inline_size void
3333 idle_reify (EV_P)
3334 {
3335 if (expect_false (idleall))
3336 {
3337 int pri;
3338
3339 for (pri = NUMPRI; pri--; )
3340 {
3341 if (pendingcnt [pri])
3342 break;
3343
3344 if (idlecnt [pri])
3345 {
3346 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3347 break;
3348 }
3349 }
3350 }
3351 }
3352 #endif
3353
3354 /* make timers pending */
3355 inline_size void
3356 timers_reify (EV_P)
3357 {
3358 EV_FREQUENT_CHECK;
3359
3360 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3361 {
3362 do
3363 {
3364 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365
3366 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367
3368 /* first reschedule or stop timer */
3369 if (w->repeat)
3370 {
3371 ev_at (w) += w->repeat;
3372 if (ev_at (w) < mn_now)
3373 ev_at (w) = mn_now;
3374
3375 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3376
3377 ANHE_at_cache (timers [HEAP0]);
3378 downheap (timers, timercnt, HEAP0);
3379 }
3380 else
3381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382
3383 EV_FREQUENT_CHECK;
3384 feed_reverse (EV_A_ (W)w);
3385 }
3386 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3387
3388 feed_reverse_done (EV_A_ EV_TIMER);
3389 }
3390 }
3391
3392 #if EV_PERIODIC_ENABLE
3393
3394 noinline
3395 static void
3396 periodic_recalc (EV_P_ ev_periodic *w)
3397 {
3398 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3400
3401 /* the above almost always errs on the low side */
3402 while (at <= ev_rt_now)
3403 {
3404 ev_tstamp nat = at + w->interval;
3405
3406 /* when resolution fails us, we use ev_rt_now */
3407 if (expect_false (nat == at))
3408 {
3409 at = ev_rt_now;
3410 break;
3411 }
3412
3413 at = nat;
3414 }
3415
3416 ev_at (w) = at;
3417 }
3418
3419 /* make periodics pending */
3420 inline_size void
3421 periodics_reify (EV_P)
3422 {
3423 EV_FREQUENT_CHECK;
3424
3425 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3426 {
3427 do
3428 {
3429 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3430
3431 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3432
3433 /* first reschedule or stop timer */
3434 if (w->reschedule_cb)
3435 {
3436 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3437
3438 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3439
3440 ANHE_at_cache (periodics [HEAP0]);
3441 downheap (periodics, periodiccnt, HEAP0);
3442 }
3443 else if (w->interval)
3444 {
3445 periodic_recalc (EV_A_ w);
3446 ANHE_at_cache (periodics [HEAP0]);
3447 downheap (periodics, periodiccnt, HEAP0);
3448 }
3449 else
3450 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451
3452 EV_FREQUENT_CHECK;
3453 feed_reverse (EV_A_ (W)w);
3454 }
3455 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3456
3457 feed_reverse_done (EV_A_ EV_PERIODIC);
3458 }
3459 }
3460
3461 /* simply recalculate all periodics */
3462 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3463 noinline ecb_cold
3464 static void
3465 periodics_reschedule (EV_P)
3466 {
3467 int i;
3468
3469 /* adjust periodics after time jump */
3470 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3471 {
3472 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3473
3474 if (w->reschedule_cb)
3475 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3476 else if (w->interval)
3477 periodic_recalc (EV_A_ w);
3478
3479 ANHE_at_cache (periodics [i]);
3480 }
3481
3482 reheap (periodics, periodiccnt);
3483 }
3484 #endif
3485
3486 /* adjust all timers by a given offset */
3487 noinline ecb_cold
3488 static void
3489 timers_reschedule (EV_P_ ev_tstamp adjust)
3490 {
3491 int i;
3492
3493 for (i = 0; i < timercnt; ++i)
3494 {
3495 ANHE *he = timers + i + HEAP0;
3496 ANHE_w (*he)->at += adjust;
3497 ANHE_at_cache (*he);
3498 }
3499 }
3500
3501 /* fetch new monotonic and realtime times from the kernel */
3502 /* also detect if there was a timejump, and act accordingly */
3503 inline_speed void
3504 time_update (EV_P_ ev_tstamp max_block)
3505 {
3506 #if EV_USE_MONOTONIC
3507 if (expect_true (have_monotonic))
3508 {
3509 int i;
3510 ev_tstamp odiff = rtmn_diff;
3511
3512 mn_now = get_clock ();
3513
3514 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3515 /* interpolate in the meantime */
3516 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3517 {
3518 ev_rt_now = rtmn_diff + mn_now;
3519 return;
3520 }
3521
3522 now_floor = mn_now;
3523 ev_rt_now = ev_time ();
3524
3525 /* loop a few times, before making important decisions.
3526 * on the choice of "4": one iteration isn't enough,
3527 * in case we get preempted during the calls to
3528 * ev_time and get_clock. a second call is almost guaranteed
3529 * to succeed in that case, though. and looping a few more times
3530 * doesn't hurt either as we only do this on time-jumps or
3531 * in the unlikely event of having been preempted here.
3532 */
3533 for (i = 4; --i; )
3534 {
3535 ev_tstamp diff;
3536 rtmn_diff = ev_rt_now - mn_now;
3537
3538 diff = odiff - rtmn_diff;
3539
3540 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3541 return; /* all is well */
3542
3543 ev_rt_now = ev_time ();
3544 mn_now = get_clock ();
3545 now_floor = mn_now;
3546 }
3547
3548 /* no timer adjustment, as the monotonic clock doesn't jump */
3549 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3550 # if EV_PERIODIC_ENABLE
3551 periodics_reschedule (EV_A);
3552 # endif
3553 }
3554 else
3555 #endif
3556 {
3557 ev_rt_now = ev_time ();
3558
3559 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3560 {
3561 /* adjust timers. this is easy, as the offset is the same for all of them */
3562 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3563 #if EV_PERIODIC_ENABLE
3564 periodics_reschedule (EV_A);
3565 #endif
3566 }
3567
3568 mn_now = ev_rt_now;
3569 }
3570 }
3571
3572 int
3573 ev_run (EV_P_ int flags)
3574 {
3575 #if EV_FEATURE_API
3576 ++loop_depth;
3577 #endif
3578
3579 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580
3581 loop_done = EVBREAK_CANCEL;
3582
3583 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3584
3585 do
3586 {
3587 #if EV_VERIFY >= 2
3588 ev_verify (EV_A);
3589 #endif
3590
3591 #ifndef _WIN32
3592 if (expect_false (curpid)) /* penalise the forking check even more */
3593 if (expect_false (getpid () != curpid))
3594 {
3595 curpid = getpid ();
3596 postfork = 1;
3597 }
3598 #endif
3599
3600 #if EV_FORK_ENABLE
3601 /* we might have forked, so queue fork handlers */
3602 if (expect_false (postfork))
3603 if (forkcnt)
3604 {
3605 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3606 EV_INVOKE_PENDING;
3607 }
3608 #endif
3609
3610 #if EV_PREPARE_ENABLE
3611 /* queue prepare watchers (and execute them) */
3612 if (expect_false (preparecnt))
3613 {
3614 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3615 EV_INVOKE_PENDING;
3616 }
3617 #endif
3618
3619 if (expect_false (loop_done))
3620 break;
3621
3622 /* we might have forked, so reify kernel state if necessary */
3623 if (expect_false (postfork))
3624 loop_fork (EV_A);
3625
3626 /* update fd-related kernel structures */
3627 fd_reify (EV_A);
3628
3629 /* calculate blocking time */
3630 {
3631 ev_tstamp waittime = 0.;
3632 ev_tstamp sleeptime = 0.;
3633
3634 /* remember old timestamp for io_blocktime calculation */
3635 ev_tstamp prev_mn_now = mn_now;
3636
3637 /* update time to cancel out callback processing overhead */
3638 time_update (EV_A_ 1e100);
3639
3640 /* from now on, we want a pipe-wake-up */
3641 pipe_write_wanted = 1;
3642
3643 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644
3645 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3646 {
3647 waittime = MAX_BLOCKTIME;
3648
3649 if (timercnt)
3650 {
3651 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3652 if (waittime > to) waittime = to;
3653 }
3654
3655 #if EV_PERIODIC_ENABLE
3656 if (periodiccnt)
3657 {
3658 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3659 if (waittime > to) waittime = to;
3660 }
3661 #endif
3662
3663 /* don't let timeouts decrease the waittime below timeout_blocktime */
3664 if (expect_false (waittime < timeout_blocktime))
3665 waittime = timeout_blocktime;
3666
3667 /* at this point, we NEED to wait, so we have to ensure */
3668 /* to pass a minimum nonzero value to the backend */
3669 if (expect_false (waittime < backend_mintime))
3670 waittime = backend_mintime;
3671
3672 /* extra check because io_blocktime is commonly 0 */
3673 if (expect_false (io_blocktime))
3674 {
3675 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676
3677 if (sleeptime > waittime - backend_mintime)
3678 sleeptime = waittime - backend_mintime;
3679
3680 if (expect_true (sleeptime > 0.))
3681 {
3682 ev_sleep (sleeptime);
3683 waittime -= sleeptime;
3684 }
3685 }
3686 }
3687
3688 #if EV_FEATURE_API
3689 ++loop_count;
3690 #endif
3691 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3692 backend_poll (EV_A_ waittime);
3693 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3694
3695 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696
3697 ECB_MEMORY_FENCE_ACQUIRE;
3698 if (pipe_write_skipped)
3699 {
3700 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702 }
3703
3704
3705 /* update ev_rt_now, do magic */
3706 time_update (EV_A_ waittime + sleeptime);
3707 }
3708
3709 /* queue pending timers and reschedule them */
3710 timers_reify (EV_A); /* relative timers called last */
3711 #if EV_PERIODIC_ENABLE
3712 periodics_reify (EV_A); /* absolute timers called first */
3713 #endif
3714
3715 #if EV_IDLE_ENABLE
3716 /* queue idle watchers unless other events are pending */
3717 idle_reify (EV_A);
3718 #endif
3719
3720 #if EV_CHECK_ENABLE
3721 /* queue check watchers, to be executed first */
3722 if (expect_false (checkcnt))
3723 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724 #endif
3725
3726 EV_INVOKE_PENDING;
3727 }
3728 while (expect_true (
3729 activecnt
3730 && !loop_done
3731 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3732 ));
3733
3734 if (loop_done == EVBREAK_ONE)
3735 loop_done = EVBREAK_CANCEL;
3736
3737 #if EV_FEATURE_API
3738 --loop_depth;
3739 #endif
3740
3741 return activecnt;
3742 }
3743
3744 void
3745 ev_break (EV_P_ int how) EV_NOEXCEPT
3746 {
3747 loop_done = how;
3748 }
3749
3750 void
3751 ev_ref (EV_P) EV_NOEXCEPT
3752 {
3753 ++activecnt;
3754 }
3755
3756 void
3757 ev_unref (EV_P) EV_NOEXCEPT
3758 {
3759 --activecnt;
3760 }
3761
3762 void
3763 ev_now_update (EV_P) EV_NOEXCEPT
3764 {
3765 time_update (EV_A_ 1e100);
3766 }
3767
3768 void
3769 ev_suspend (EV_P) EV_NOEXCEPT
3770 {
3771 ev_now_update (EV_A);
3772 }
3773
3774 void
3775 ev_resume (EV_P) EV_NOEXCEPT
3776 {
3777 ev_tstamp mn_prev = mn_now;
3778
3779 ev_now_update (EV_A);
3780 timers_reschedule (EV_A_ mn_now - mn_prev);
3781 #if EV_PERIODIC_ENABLE
3782 /* TODO: really do this? */
3783 periodics_reschedule (EV_A);
3784 #endif
3785 }
3786
3787 /*****************************************************************************/
3788 /* singly-linked list management, used when the expected list length is short */
3789
3790 inline_size void
3791 wlist_add (WL *head, WL elem)
3792 {
3793 elem->next = *head;
3794 *head = elem;
3795 }
3796
3797 inline_size void
3798 wlist_del (WL *head, WL elem)
3799 {
3800 while (*head)
3801 {
3802 if (expect_true (*head == elem))
3803 {
3804 *head = elem->next;
3805 break;
3806 }
3807
3808 head = &(*head)->next;
3809 }
3810 }
3811
3812 /* internal, faster, version of ev_clear_pending */
3813 inline_speed void
3814 clear_pending (EV_P_ W w)
3815 {
3816 if (w->pending)
3817 {
3818 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3819 w->pending = 0;
3820 }
3821 }
3822
3823 int
3824 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3825 {
3826 W w_ = (W)w;
3827 int pending = w_->pending;
3828
3829 if (expect_true (pending))
3830 {
3831 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 p->w = (W)&pending_w;
3833 w_->pending = 0;
3834 return p->events;
3835 }
3836 else
3837 return 0;
3838 }
3839
3840 inline_size void
3841 pri_adjust (EV_P_ W w)
3842 {
3843 int pri = ev_priority (w);
3844 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3845 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3846 ev_set_priority (w, pri);
3847 }
3848
3849 inline_speed void
3850 ev_start (EV_P_ W w, int active)
3851 {
3852 pri_adjust (EV_A_ w);
3853 w->active = active;
3854 ev_ref (EV_A);
3855 }
3856
3857 inline_size void
3858 ev_stop (EV_P_ W w)
3859 {
3860 ev_unref (EV_A);
3861 w->active = 0;
3862 }
3863
3864 /*****************************************************************************/
3865
3866 noinline
3867 void
3868 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3869 {
3870 int fd = w->fd;
3871
3872 if (expect_false (ev_is_active (w)))
3873 return;
3874
3875 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3877
3878 EV_FREQUENT_CHECK;
3879
3880 ev_start (EV_A_ (W)w, 1);
3881 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3882 wlist_add (&anfds[fd].head, (WL)w);
3883
3884 /* common bug, apparently */
3885 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3886
3887 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3888 w->events &= ~EV__IOFDSET;
3889
3890 EV_FREQUENT_CHECK;
3891 }
3892
3893 noinline
3894 void
3895 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3896 {
3897 clear_pending (EV_A_ (W)w);
3898 if (expect_false (!ev_is_active (w)))
3899 return;
3900
3901 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3902
3903 EV_FREQUENT_CHECK;
3904
3905 wlist_del (&anfds[w->fd].head, (WL)w);
3906 ev_stop (EV_A_ (W)w);
3907
3908 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3909
3910 EV_FREQUENT_CHECK;
3911 }
3912
3913 noinline
3914 void
3915 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3916 {
3917 if (expect_false (ev_is_active (w)))
3918 return;
3919
3920 ev_at (w) += mn_now;
3921
3922 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3923
3924 EV_FREQUENT_CHECK;
3925
3926 ++timercnt;
3927 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3928 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3929 ANHE_w (timers [ev_active (w)]) = (WT)w;
3930 ANHE_at_cache (timers [ev_active (w)]);
3931 upheap (timers, ev_active (w));
3932
3933 EV_FREQUENT_CHECK;
3934
3935 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3936 }
3937
3938 noinline
3939 void
3940 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3941 {
3942 clear_pending (EV_A_ (W)w);
3943 if (expect_false (!ev_is_active (w)))
3944 return;
3945
3946 EV_FREQUENT_CHECK;
3947
3948 {
3949 int active = ev_active (w);
3950
3951 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3952
3953 --timercnt;
3954
3955 if (expect_true (active < timercnt + HEAP0))
3956 {
3957 timers [active] = timers [timercnt + HEAP0];
3958 adjustheap (timers, timercnt, active);
3959 }
3960 }
3961
3962 ev_at (w) -= mn_now;
3963
3964 ev_stop (EV_A_ (W)w);
3965
3966 EV_FREQUENT_CHECK;
3967 }
3968
3969 noinline
3970 void
3971 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
3972 {
3973 EV_FREQUENT_CHECK;
3974
3975 clear_pending (EV_A_ (W)w);
3976
3977 if (ev_is_active (w))
3978 {
3979 if (w->repeat)
3980 {
3981 ev_at (w) = mn_now + w->repeat;
3982 ANHE_at_cache (timers [ev_active (w)]);
3983 adjustheap (timers, timercnt, ev_active (w));
3984 }
3985 else
3986 ev_timer_stop (EV_A_ w);
3987 }
3988 else if (w->repeat)
3989 {
3990 ev_at (w) = w->repeat;
3991 ev_timer_start (EV_A_ w);
3992 }
3993
3994 EV_FREQUENT_CHECK;
3995 }
3996
3997 ev_tstamp
3998 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999 {
4000 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4001 }
4002
4003 #if EV_PERIODIC_ENABLE
4004 noinline
4005 void
4006 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4007 {
4008 if (expect_false (ev_is_active (w)))
4009 return;
4010
4011 if (w->reschedule_cb)
4012 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4013 else if (w->interval)
4014 {
4015 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4016 periodic_recalc (EV_A_ w);
4017 }
4018 else
4019 ev_at (w) = w->offset;
4020
4021 EV_FREQUENT_CHECK;
4022
4023 ++periodiccnt;
4024 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4025 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
4026 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4027 ANHE_at_cache (periodics [ev_active (w)]);
4028 upheap (periodics, ev_active (w));
4029
4030 EV_FREQUENT_CHECK;
4031
4032 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4033 }
4034
4035 noinline
4036 void
4037 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4038 {
4039 clear_pending (EV_A_ (W)w);
4040 if (expect_false (!ev_is_active (w)))
4041 return;
4042
4043 EV_FREQUENT_CHECK;
4044
4045 {
4046 int active = ev_active (w);
4047
4048 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4049
4050 --periodiccnt;
4051
4052 if (expect_true (active < periodiccnt + HEAP0))
4053 {
4054 periodics [active] = periodics [periodiccnt + HEAP0];
4055 adjustheap (periodics, periodiccnt, active);
4056 }
4057 }
4058
4059 ev_stop (EV_A_ (W)w);
4060
4061 EV_FREQUENT_CHECK;
4062 }
4063
4064 noinline
4065 void
4066 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4067 {
4068 /* TODO: use adjustheap and recalculation */
4069 ev_periodic_stop (EV_A_ w);
4070 ev_periodic_start (EV_A_ w);
4071 }
4072 #endif
4073
4074 #ifndef SA_RESTART
4075 # define SA_RESTART 0
4076 #endif
4077
4078 #if EV_SIGNAL_ENABLE
4079
4080 noinline
4081 void
4082 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4083 {
4084 if (expect_false (ev_is_active (w)))
4085 return;
4086
4087 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4088
4089 #if EV_MULTIPLICITY
4090 assert (("libev: a signal must not be attached to two different loops",
4091 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4092
4093 signals [w->signum - 1].loop = EV_A;
4094 ECB_MEMORY_FENCE_RELEASE;
4095 #endif
4096
4097 EV_FREQUENT_CHECK;
4098
4099 #if EV_USE_SIGNALFD
4100 if (sigfd == -2)
4101 {
4102 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4103 if (sigfd < 0 && errno == EINVAL)
4104 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4105
4106 if (sigfd >= 0)
4107 {
4108 fd_intern (sigfd); /* doing it twice will not hurt */
4109
4110 sigemptyset (&sigfd_set);
4111
4112 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113 ev_set_priority (&sigfd_w, EV_MAXPRI);
4114 ev_io_start (EV_A_ &sigfd_w);
4115 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116 }
4117 }
4118
4119 if (sigfd >= 0)
4120 {
4121 /* TODO: check .head */
4122 sigaddset (&sigfd_set, w->signum);
4123 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124
4125 signalfd (sigfd, &sigfd_set, 0);
4126 }
4127 #endif
4128
4129 ev_start (EV_A_ (W)w, 1);
4130 wlist_add (&signals [w->signum - 1].head, (WL)w);
4131
4132 if (!((WL)w)->next)
4133 # if EV_USE_SIGNALFD
4134 if (sigfd < 0) /*TODO*/
4135 # endif
4136 {
4137 # ifdef _WIN32
4138 evpipe_init (EV_A);
4139
4140 signal (w->signum, ev_sighandler);
4141 # else
4142 struct sigaction sa;
4143
4144 evpipe_init (EV_A);
4145
4146 sa.sa_handler = ev_sighandler;
4147 sigfillset (&sa.sa_mask);
4148 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4149 sigaction (w->signum, &sa, 0);
4150
4151 if (origflags & EVFLAG_NOSIGMASK)
4152 {
4153 sigemptyset (&sa.sa_mask);
4154 sigaddset (&sa.sa_mask, w->signum);
4155 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156 }
4157 #endif
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161 }
4162
4163 noinline
4164 void
4165 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4166 {
4167 clear_pending (EV_A_ (W)w);
4168 if (expect_false (!ev_is_active (w)))
4169 return;
4170
4171 EV_FREQUENT_CHECK;
4172
4173 wlist_del (&signals [w->signum - 1].head, (WL)w);
4174 ev_stop (EV_A_ (W)w);
4175
4176 if (!signals [w->signum - 1].head)
4177 {
4178 #if EV_MULTIPLICITY
4179 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180 #endif
4181 #if EV_USE_SIGNALFD
4182 if (sigfd >= 0)
4183 {
4184 sigset_t ss;
4185
4186 sigemptyset (&ss);
4187 sigaddset (&ss, w->signum);
4188 sigdelset (&sigfd_set, w->signum);
4189
4190 signalfd (sigfd, &sigfd_set, 0);
4191 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 }
4193 else
4194 #endif
4195 signal (w->signum, SIG_DFL);
4196 }
4197
4198 EV_FREQUENT_CHECK;
4199 }
4200
4201 #endif
4202
4203 #if EV_CHILD_ENABLE
4204
4205 void
4206 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207 {
4208 #if EV_MULTIPLICITY
4209 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4210 #endif
4211 if (expect_false (ev_is_active (w)))
4212 return;
4213
4214 EV_FREQUENT_CHECK;
4215
4216 ev_start (EV_A_ (W)w, 1);
4217 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4218
4219 EV_FREQUENT_CHECK;
4220 }
4221
4222 void
4223 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4224 {
4225 clear_pending (EV_A_ (W)w);
4226 if (expect_false (!ev_is_active (w)))
4227 return;
4228
4229 EV_FREQUENT_CHECK;
4230
4231 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4232 ev_stop (EV_A_ (W)w);
4233
4234 EV_FREQUENT_CHECK;
4235 }
4236
4237 #endif
4238
4239 #if EV_STAT_ENABLE
4240
4241 # ifdef _WIN32
4242 # undef lstat
4243 # define lstat(a,b) _stati64 (a,b)
4244 # endif
4245
4246 #define DEF_STAT_INTERVAL 5.0074891
4247 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4248 #define MIN_STAT_INTERVAL 0.1074891
4249
4250 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4251
4252 #if EV_USE_INOTIFY
4253
4254 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256
4257 noinline
4258 static void
4259 infy_add (EV_P_ ev_stat *w)
4260 {
4261 w->wd = inotify_add_watch (fs_fd, w->path,
4262 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264 | IN_DONT_FOLLOW | IN_MASK_ADD);
4265
4266 if (w->wd >= 0)
4267 {
4268 struct statfs sfs;
4269
4270 /* now local changes will be tracked by inotify, but remote changes won't */
4271 /* unless the filesystem is known to be local, we therefore still poll */
4272 /* also do poll on <2.6.25, but with normal frequency */
4273
4274 if (!fs_2625)
4275 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276 else if (!statfs (w->path, &sfs)
4277 && (sfs.f_type == 0x1373 /* devfs */
4278 || sfs.f_type == 0x4006 /* fat */
4279 || sfs.f_type == 0x4d44 /* msdos */
4280 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 || sfs.f_type == 0x72b6 /* jffs2 */
4282 || sfs.f_type == 0x858458f6 /* ramfs */
4283 || sfs.f_type == 0x5346544e /* ntfs */
4284 || sfs.f_type == 0x3153464a /* jfs */
4285 || sfs.f_type == 0x9123683e /* btrfs */
4286 || sfs.f_type == 0x52654973 /* reiser3 */
4287 || sfs.f_type == 0x01021994 /* tmpfs */
4288 || sfs.f_type == 0x58465342 /* xfs */))
4289 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290 else
4291 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4292 }
4293 else
4294 {
4295 /* can't use inotify, continue to stat */
4296 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4297
4298 /* if path is not there, monitor some parent directory for speedup hints */
4299 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4300 /* but an efficiency issue only */
4301 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4302 {
4303 char path [4096];
4304 strcpy (path, w->path);
4305
4306 do
4307 {
4308 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4309 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4310
4311 char *pend = strrchr (path, '/');
4312
4313 if (!pend || pend == path)
4314 break;
4315
4316 *pend = 0;
4317 w->wd = inotify_add_watch (fs_fd, path, mask);
4318 }
4319 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4320 }
4321 }
4322
4323 if (w->wd >= 0)
4324 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4325
4326 /* now re-arm timer, if required */
4327 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328 ev_timer_again (EV_A_ &w->timer);
4329 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330 }
4331
4332 noinline
4333 static void
4334 infy_del (EV_P_ ev_stat *w)
4335 {
4336 int slot;
4337 int wd = w->wd;
4338
4339 if (wd < 0)
4340 return;
4341
4342 w->wd = -2;
4343 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4344 wlist_del (&fs_hash [slot].head, (WL)w);
4345
4346 /* remove this watcher, if others are watching it, they will rearm */
4347 inotify_rm_watch (fs_fd, wd);
4348 }
4349
4350 noinline
4351 static void
4352 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4353 {
4354 if (slot < 0)
4355 /* overflow, need to check for all hash slots */
4356 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4357 infy_wd (EV_A_ slot, wd, ev);
4358 else
4359 {
4360 WL w_;
4361
4362 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4363 {
4364 ev_stat *w = (ev_stat *)w_;
4365 w_ = w_->next; /* lets us remove this watcher and all before it */
4366
4367 if (w->wd == wd || wd == -1)
4368 {
4369 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4370 {
4371 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4372 w->wd = -1;
4373 infy_add (EV_A_ w); /* re-add, no matter what */
4374 }
4375
4376 stat_timer_cb (EV_A_ &w->timer, 0);
4377 }
4378 }
4379 }
4380 }
4381
4382 static void
4383 infy_cb (EV_P_ ev_io *w, int revents)
4384 {
4385 char buf [EV_INOTIFY_BUFSIZE];
4386 int ofs;
4387 int len = read (fs_fd, buf, sizeof (buf));
4388
4389 for (ofs = 0; ofs < len; )
4390 {
4391 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4392 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393 ofs += sizeof (struct inotify_event) + ev->len;
4394 }
4395 }
4396
4397 inline_size ecb_cold
4398 void
4399 ev_check_2625 (EV_P)
4400 {
4401 /* kernels < 2.6.25 are borked
4402 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403 */
4404 if (ev_linux_version () < 0x020619)
4405 return;
4406
4407 fs_2625 = 1;
4408 }
4409
4410 inline_size int
4411 infy_newfd (void)
4412 {
4413 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415 if (fd >= 0)
4416 return fd;
4417 #endif
4418 return inotify_init ();
4419 }
4420
4421 inline_size void
4422 infy_init (EV_P)
4423 {
4424 if (fs_fd != -2)
4425 return;
4426
4427 fs_fd = -1;
4428
4429 ev_check_2625 (EV_A);
4430
4431 fs_fd = infy_newfd ();
4432
4433 if (fs_fd >= 0)
4434 {
4435 fd_intern (fs_fd);
4436 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4437 ev_set_priority (&fs_w, EV_MAXPRI);
4438 ev_io_start (EV_A_ &fs_w);
4439 ev_unref (EV_A);
4440 }
4441 }
4442
4443 inline_size void
4444 infy_fork (EV_P)
4445 {
4446 int slot;
4447
4448 if (fs_fd < 0)
4449 return;
4450
4451 ev_ref (EV_A);
4452 ev_io_stop (EV_A_ &fs_w);
4453 close (fs_fd);
4454 fs_fd = infy_newfd ();
4455
4456 if (fs_fd >= 0)
4457 {
4458 fd_intern (fs_fd);
4459 ev_io_set (&fs_w, fs_fd, EV_READ);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463
4464 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4465 {
4466 WL w_ = fs_hash [slot].head;
4467 fs_hash [slot].head = 0;
4468
4469 while (w_)
4470 {
4471 ev_stat *w = (ev_stat *)w_;
4472 w_ = w_->next; /* lets us add this watcher */
4473
4474 w->wd = -1;
4475
4476 if (fs_fd >= 0)
4477 infy_add (EV_A_ w); /* re-add, no matter what */
4478 else
4479 {
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4482 ev_timer_again (EV_A_ &w->timer);
4483 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484 }
4485 }
4486 }
4487 }
4488
4489 #endif
4490
4491 #ifdef _WIN32
4492 # define EV_LSTAT(p,b) _stati64 (p, b)
4493 #else
4494 # define EV_LSTAT(p,b) lstat (p, b)
4495 #endif
4496
4497 void
4498 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4499 {
4500 if (lstat (w->path, &w->attr) < 0)
4501 w->attr.st_nlink = 0;
4502 else if (!w->attr.st_nlink)
4503 w->attr.st_nlink = 1;
4504 }
4505
4506 noinline
4507 static void
4508 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4509 {
4510 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4511
4512 ev_statdata prev = w->attr;
4513 ev_stat_stat (EV_A_ w);
4514
4515 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4516 if (
4517 prev.st_dev != w->attr.st_dev
4518 || prev.st_ino != w->attr.st_ino
4519 || prev.st_mode != w->attr.st_mode
4520 || prev.st_nlink != w->attr.st_nlink
4521 || prev.st_uid != w->attr.st_uid
4522 || prev.st_gid != w->attr.st_gid
4523 || prev.st_rdev != w->attr.st_rdev
4524 || prev.st_size != w->attr.st_size
4525 || prev.st_atime != w->attr.st_atime
4526 || prev.st_mtime != w->attr.st_mtime
4527 || prev.st_ctime != w->attr.st_ctime
4528 ) {
4529 /* we only update w->prev on actual differences */
4530 /* in case we test more often than invoke the callback, */
4531 /* to ensure that prev is always different to attr */
4532 w->prev = prev;
4533
4534 #if EV_USE_INOTIFY
4535 if (fs_fd >= 0)
4536 {
4537 infy_del (EV_A_ w);
4538 infy_add (EV_A_ w);
4539 ev_stat_stat (EV_A_ w); /* avoid race... */
4540 }
4541 #endif
4542
4543 ev_feed_event (EV_A_ w, EV_STAT);
4544 }
4545 }
4546
4547 void
4548 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4549 {
4550 if (expect_false (ev_is_active (w)))
4551 return;
4552
4553 ev_stat_stat (EV_A_ w);
4554
4555 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4556 w->interval = MIN_STAT_INTERVAL;
4557
4558 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4559 ev_set_priority (&w->timer, ev_priority (w));
4560
4561 #if EV_USE_INOTIFY
4562 infy_init (EV_A);
4563
4564 if (fs_fd >= 0)
4565 infy_add (EV_A_ w);
4566 else
4567 #endif
4568 {
4569 ev_timer_again (EV_A_ &w->timer);
4570 ev_unref (EV_A);
4571 }
4572
4573 ev_start (EV_A_ (W)w, 1);
4574
4575 EV_FREQUENT_CHECK;
4576 }
4577
4578 void
4579 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4580 {
4581 clear_pending (EV_A_ (W)w);
4582 if (expect_false (!ev_is_active (w)))
4583 return;
4584
4585 EV_FREQUENT_CHECK;
4586
4587 #if EV_USE_INOTIFY
4588 infy_del (EV_A_ w);
4589 #endif
4590
4591 if (ev_is_active (&w->timer))
4592 {
4593 ev_ref (EV_A);
4594 ev_timer_stop (EV_A_ &w->timer);
4595 }
4596
4597 ev_stop (EV_A_ (W)w);
4598
4599 EV_FREQUENT_CHECK;
4600 }
4601 #endif
4602
4603 #if EV_IDLE_ENABLE
4604 void
4605 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4606 {
4607 if (expect_false (ev_is_active (w)))
4608 return;
4609
4610 pri_adjust (EV_A_ (W)w);
4611
4612 EV_FREQUENT_CHECK;
4613
4614 {
4615 int active = ++idlecnt [ABSPRI (w)];
4616
4617 ++idleall;
4618 ev_start (EV_A_ (W)w, active);
4619
4620 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4621 idles [ABSPRI (w)][active - 1] = w;
4622 }
4623
4624 EV_FREQUENT_CHECK;
4625 }
4626
4627 void
4628 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4629 {
4630 clear_pending (EV_A_ (W)w);
4631 if (expect_false (!ev_is_active (w)))
4632 return;
4633
4634 EV_FREQUENT_CHECK;
4635
4636 {
4637 int active = ev_active (w);
4638
4639 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4640 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4641
4642 ev_stop (EV_A_ (W)w);
4643 --idleall;
4644 }
4645
4646 EV_FREQUENT_CHECK;
4647 }
4648 #endif
4649
4650 #if EV_PREPARE_ENABLE
4651 void
4652 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4653 {
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++preparecnt);
4660 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4661 prepares [preparecnt - 1] = w;
4662
4663 EV_FREQUENT_CHECK;
4664 }
4665
4666 void
4667 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4668 {
4669 clear_pending (EV_A_ (W)w);
4670 if (expect_false (!ev_is_active (w)))
4671 return;
4672
4673 EV_FREQUENT_CHECK;
4674
4675 {
4676 int active = ev_active (w);
4677
4678 prepares [active - 1] = prepares [--preparecnt];
4679 ev_active (prepares [active - 1]) = active;
4680 }
4681
4682 ev_stop (EV_A_ (W)w);
4683
4684 EV_FREQUENT_CHECK;
4685 }
4686 #endif
4687
4688 #if EV_CHECK_ENABLE
4689 void
4690 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4691 {
4692 if (expect_false (ev_is_active (w)))
4693 return;
4694
4695 EV_FREQUENT_CHECK;
4696
4697 ev_start (EV_A_ (W)w, ++checkcnt);
4698 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4699 checks [checkcnt - 1] = w;
4700
4701 EV_FREQUENT_CHECK;
4702 }
4703
4704 void
4705 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4706 {
4707 clear_pending (EV_A_ (W)w);
4708 if (expect_false (!ev_is_active (w)))
4709 return;
4710
4711 EV_FREQUENT_CHECK;
4712
4713 {
4714 int active = ev_active (w);
4715
4716 checks [active - 1] = checks [--checkcnt];
4717 ev_active (checks [active - 1]) = active;
4718 }
4719
4720 ev_stop (EV_A_ (W)w);
4721
4722 EV_FREQUENT_CHECK;
4723 }
4724 #endif
4725
4726 #if EV_EMBED_ENABLE
4727 noinline
4728 void
4729 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4730 {
4731 ev_run (w->other, EVRUN_NOWAIT);
4732 }
4733
4734 static void
4735 embed_io_cb (EV_P_ ev_io *io, int revents)
4736 {
4737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4738
4739 if (ev_cb (w))
4740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4741 else
4742 ev_run (w->other, EVRUN_NOWAIT);
4743 }
4744
4745 static void
4746 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4747 {
4748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4749
4750 {
4751 EV_P = w->other;
4752
4753 while (fdchangecnt)
4754 {
4755 fd_reify (EV_A);
4756 ev_run (EV_A_ EVRUN_NOWAIT);
4757 }
4758 }
4759 }
4760
4761 static void
4762 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763 {
4764 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765
4766 ev_embed_stop (EV_A_ w);
4767
4768 {
4769 EV_P = w->other;
4770
4771 ev_loop_fork (EV_A);
4772 ev_run (EV_A_ EVRUN_NOWAIT);
4773 }
4774
4775 ev_embed_start (EV_A_ w);
4776 }
4777
4778 #if 0
4779 static void
4780 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4781 {
4782 ev_idle_stop (EV_A_ idle);
4783 }
4784 #endif
4785
4786 void
4787 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4788 {
4789 if (expect_false (ev_is_active (w)))
4790 return;
4791
4792 {
4793 EV_P = w->other;
4794 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4795 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4796 }
4797
4798 EV_FREQUENT_CHECK;
4799
4800 ev_set_priority (&w->io, ev_priority (w));
4801 ev_io_start (EV_A_ &w->io);
4802
4803 ev_prepare_init (&w->prepare, embed_prepare_cb);
4804 ev_set_priority (&w->prepare, EV_MINPRI);
4805 ev_prepare_start (EV_A_ &w->prepare);
4806
4807 ev_fork_init (&w->fork, embed_fork_cb);
4808 ev_fork_start (EV_A_ &w->fork);
4809
4810 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4811
4812 ev_start (EV_A_ (W)w, 1);
4813
4814 EV_FREQUENT_CHECK;
4815 }
4816
4817 void
4818 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4819 {
4820 clear_pending (EV_A_ (W)w);
4821 if (expect_false (!ev_is_active (w)))
4822 return;
4823
4824 EV_FREQUENT_CHECK;
4825
4826 ev_io_stop (EV_A_ &w->io);
4827 ev_prepare_stop (EV_A_ &w->prepare);
4828 ev_fork_stop (EV_A_ &w->fork);
4829
4830 ev_stop (EV_A_ (W)w);
4831
4832 EV_FREQUENT_CHECK;
4833 }
4834 #endif
4835
4836 #if EV_FORK_ENABLE
4837 void
4838 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4839 {
4840 if (expect_false (ev_is_active (w)))
4841 return;
4842
4843 EV_FREQUENT_CHECK;
4844
4845 ev_start (EV_A_ (W)w, ++forkcnt);
4846 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4847 forks [forkcnt - 1] = w;
4848
4849 EV_FREQUENT_CHECK;
4850 }
4851
4852 void
4853 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4854 {
4855 clear_pending (EV_A_ (W)w);
4856 if (expect_false (!ev_is_active (w)))
4857 return;
4858
4859 EV_FREQUENT_CHECK;
4860
4861 {
4862 int active = ev_active (w);
4863
4864 forks [active - 1] = forks [--forkcnt];
4865 ev_active (forks [active - 1]) = active;
4866 }
4867
4868 ev_stop (EV_A_ (W)w);
4869
4870 EV_FREQUENT_CHECK;
4871 }
4872 #endif
4873
4874 #if EV_CLEANUP_ENABLE
4875 void
4876 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4877 {
4878 if (expect_false (ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 ev_start (EV_A_ (W)w, ++cleanupcnt);
4884 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885 cleanups [cleanupcnt - 1] = w;
4886
4887 /* cleanup watchers should never keep a refcount on the loop */
4888 ev_unref (EV_A);
4889 EV_FREQUENT_CHECK;
4890 }
4891
4892 void
4893 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894 {
4895 clear_pending (EV_A_ (W)w);
4896 if (expect_false (!ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900 ev_ref (EV_A);
4901
4902 {
4903 int active = ev_active (w);
4904
4905 cleanups [active - 1] = cleanups [--cleanupcnt];
4906 ev_active (cleanups [active - 1]) = active;
4907 }
4908
4909 ev_stop (EV_A_ (W)w);
4910
4911 EV_FREQUENT_CHECK;
4912 }
4913 #endif
4914
4915 #if EV_ASYNC_ENABLE
4916 void
4917 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918 {
4919 if (expect_false (ev_is_active (w)))
4920 return;
4921
4922 w->sent = 0;
4923
4924 evpipe_init (EV_A);
4925
4926 EV_FREQUENT_CHECK;
4927
4928 ev_start (EV_A_ (W)w, ++asynccnt);
4929 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4930 asyncs [asynccnt - 1] = w;
4931
4932 EV_FREQUENT_CHECK;
4933 }
4934
4935 void
4936 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4937 {
4938 clear_pending (EV_A_ (W)w);
4939 if (expect_false (!ev_is_active (w)))
4940 return;
4941
4942 EV_FREQUENT_CHECK;
4943
4944 {
4945 int active = ev_active (w);
4946
4947 asyncs [active - 1] = asyncs [--asynccnt];
4948 ev_active (asyncs [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954 }
4955
4956 void
4957 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4958 {
4959 w->sent = 1;
4960 evpipe_write (EV_A_ &async_pending);
4961 }
4962 #endif
4963
4964 /*****************************************************************************/
4965
4966 struct ev_once
4967 {
4968 ev_io io;
4969 ev_timer to;
4970 void (*cb)(int revents, void *arg);
4971 void *arg;
4972 };
4973
4974 static void
4975 once_cb (EV_P_ struct ev_once *once, int revents)
4976 {
4977 void (*cb)(int revents, void *arg) = once->cb;
4978 void *arg = once->arg;
4979
4980 ev_io_stop (EV_A_ &once->io);
4981 ev_timer_stop (EV_A_ &once->to);
4982 ev_free (once);
4983
4984 cb (revents, arg);
4985 }
4986
4987 static void
4988 once_cb_io (EV_P_ ev_io *w, int revents)
4989 {
4990 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991
4992 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4993 }
4994
4995 static void
4996 once_cb_to (EV_P_ ev_timer *w, int revents)
4997 {
4998 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4999
5000 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001 }
5002
5003 void
5004 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5005 {
5006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5007
5008 if (expect_false (!once))
5009 {
5010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
5011 return;
5012 }
5013
5014 once->cb = cb;
5015 once->arg = arg;
5016
5017 ev_init (&once->io, once_cb_io);
5018 if (fd >= 0)
5019 {
5020 ev_io_set (&once->io, fd, events);
5021 ev_io_start (EV_A_ &once->io);
5022 }
5023
5024 ev_init (&once->to, once_cb_to);
5025 if (timeout >= 0.)
5026 {
5027 ev_timer_set (&once->to, timeout, 0.);
5028 ev_timer_start (EV_A_ &once->to);
5029 }
5030 }
5031
5032 /*****************************************************************************/
5033
5034 #if EV_WALK_ENABLE
5035 ecb_cold
5036 void
5037 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5038 {
5039 int i, j;
5040 ev_watcher_list *wl, *wn;
5041
5042 if (types & (EV_IO | EV_EMBED))
5043 for (i = 0; i < anfdmax; ++i)
5044 for (wl = anfds [i].head; wl; )
5045 {
5046 wn = wl->next;
5047
5048 #if EV_EMBED_ENABLE
5049 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5050 {
5051 if (types & EV_EMBED)
5052 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5053 }
5054 else
5055 #endif
5056 #if EV_USE_INOTIFY
5057 if (ev_cb ((ev_io *)wl) == infy_cb)
5058 ;
5059 else
5060 #endif
5061 if ((ev_io *)wl != &pipe_w)
5062 if (types & EV_IO)
5063 cb (EV_A_ EV_IO, wl);
5064
5065 wl = wn;
5066 }
5067
5068 if (types & (EV_TIMER | EV_STAT))
5069 for (i = timercnt + HEAP0; i-- > HEAP0; )
5070 #if EV_STAT_ENABLE
5071 /*TODO: timer is not always active*/
5072 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5073 {
5074 if (types & EV_STAT)
5075 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5076 }
5077 else
5078 #endif
5079 if (types & EV_TIMER)
5080 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5081
5082 #if EV_PERIODIC_ENABLE
5083 if (types & EV_PERIODIC)
5084 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5085 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5086 #endif
5087
5088 #if EV_IDLE_ENABLE
5089 if (types & EV_IDLE)
5090 for (j = NUMPRI; j--; )
5091 for (i = idlecnt [j]; i--; )
5092 cb (EV_A_ EV_IDLE, idles [j][i]);
5093 #endif
5094
5095 #if EV_FORK_ENABLE
5096 if (types & EV_FORK)
5097 for (i = forkcnt; i--; )
5098 if (ev_cb (forks [i]) != embed_fork_cb)
5099 cb (EV_A_ EV_FORK, forks [i]);
5100 #endif
5101
5102 #if EV_ASYNC_ENABLE
5103 if (types & EV_ASYNC)
5104 for (i = asynccnt; i--; )
5105 cb (EV_A_ EV_ASYNC, asyncs [i]);
5106 #endif
5107
5108 #if EV_PREPARE_ENABLE
5109 if (types & EV_PREPARE)
5110 for (i = preparecnt; i--; )
5111 # if EV_EMBED_ENABLE
5112 if (ev_cb (prepares [i]) != embed_prepare_cb)
5113 # endif
5114 cb (EV_A_ EV_PREPARE, prepares [i]);
5115 #endif
5116
5117 #if EV_CHECK_ENABLE
5118 if (types & EV_CHECK)
5119 for (i = checkcnt; i--; )
5120 cb (EV_A_ EV_CHECK, checks [i]);
5121 #endif
5122
5123 #if EV_SIGNAL_ENABLE
5124 if (types & EV_SIGNAL)
5125 for (i = 0; i < EV_NSIG - 1; ++i)
5126 for (wl = signals [i].head; wl; )
5127 {
5128 wn = wl->next;
5129 cb (EV_A_ EV_SIGNAL, wl);
5130 wl = wn;
5131 }
5132 #endif
5133
5134 #if EV_CHILD_ENABLE
5135 if (types & EV_CHILD)
5136 for (i = (EV_PID_HASHSIZE); i--; )
5137 for (wl = childs [i]; wl; )
5138 {
5139 wn = wl->next;
5140 cb (EV_A_ EV_CHILD, wl);
5141 wl = wn;
5142 }
5143 #endif
5144 /* EV_STAT 0x00001000 /* stat data changed */
5145 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5146 }
5147 #endif
5148
5149 #if EV_MULTIPLICITY
5150 #include "ev_wrap.h"
5151 #endif
5152