ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.499
Committed: Wed Jun 26 07:50:27 2019 UTC (5 years ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: EV-rel-4_27, rel-4_27
Changes since 1.498: +0 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130 # ifndef EV_USE_KQUEUE
131 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_KQUEUE
135 # define EV_USE_KQUEUE 0
136 # endif
137
138 # if HAVE_PORT_H && HAVE_PORT_CREATE
139 # ifndef EV_USE_PORT
140 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_PORT
144 # define EV_USE_PORT 0
145 # endif
146
147 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148 # ifndef EV_USE_INOTIFY
149 # define EV_USE_INOTIFY EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_INOTIFY
153 # define EV_USE_INOTIFY 0
154 # endif
155
156 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157 # ifndef EV_USE_SIGNALFD
158 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_SIGNALFD
162 # define EV_USE_SIGNALFD 0
163 # endif
164
165 # if HAVE_EVENTFD
166 # ifndef EV_USE_EVENTFD
167 # define EV_USE_EVENTFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_EVENTFD
171 # define EV_USE_EVENTFD 0
172 # endif
173
174 #endif
175
176 /* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184 #define _DARWIN_UNLIMITED_SELECT 1
185
186 #include <stdlib.h>
187 #include <string.h>
188 #include <fcntl.h>
189 #include <stddef.h>
190
191 #include <stdio.h>
192
193 #include <assert.h>
194 #include <errno.h>
195 #include <sys/types.h>
196 #include <time.h>
197 #include <limits.h>
198
199 #include <signal.h>
200
201 #ifdef EV_H
202 # include EV_H
203 #else
204 # include "ev.h"
205 #endif
206
207 #if EV_NO_THREADS
208 # undef EV_NO_SMP
209 # define EV_NO_SMP 1
210 # undef ECB_NO_THREADS
211 # define ECB_NO_THREADS 1
212 #endif
213 #if EV_NO_SMP
214 # undef EV_NO_SMP
215 # define ECB_NO_SMP 1
216 #endif
217
218 #ifndef _WIN32
219 # include <sys/time.h>
220 # include <sys/wait.h>
221 # include <unistd.h>
222 #else
223 # include <io.h>
224 # define WIN32_LEAN_AND_MEAN
225 # include <winsock2.h>
226 # include <windows.h>
227 # ifndef EV_SELECT_IS_WINSOCKET
228 # define EV_SELECT_IS_WINSOCKET 1
229 # endif
230 # undef EV_AVOID_STDIO
231 #endif
232
233 /* this block tries to deduce configuration from header-defined symbols and defaults */
234
235 /* try to deduce the maximum number of signals on this platform */
236 #if defined EV_NSIG
237 /* use what's provided */
238 #elif defined NSIG
239 # define EV_NSIG (NSIG)
240 #elif defined _NSIG
241 # define EV_NSIG (_NSIG)
242 #elif defined SIGMAX
243 # define EV_NSIG (SIGMAX+1)
244 #elif defined SIG_MAX
245 # define EV_NSIG (SIG_MAX+1)
246 #elif defined _SIG_MAX
247 # define EV_NSIG (_SIG_MAX+1)
248 #elif defined MAXSIG
249 # define EV_NSIG (MAXSIG+1)
250 #elif defined MAX_SIG
251 # define EV_NSIG (MAX_SIG+1)
252 #elif defined SIGARRAYSIZE
253 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 #elif defined _sys_nsig
255 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256 #else
257 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 #endif
259
260 #ifndef EV_USE_FLOOR
261 # define EV_USE_FLOOR 0
262 #endif
263
264 #ifndef EV_USE_CLOCK_SYSCALL
265 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 # else
268 # define EV_USE_CLOCK_SYSCALL 0
269 # endif
270 #endif
271
272 #if !(_POSIX_TIMERS > 0)
273 # ifndef EV_USE_MONOTONIC
274 # define EV_USE_MONOTONIC 0
275 # endif
276 # ifndef EV_USE_REALTIME
277 # define EV_USE_REALTIME 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_MONOTONIC
282 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 # else
285 # define EV_USE_MONOTONIC 0
286 # endif
287 #endif
288
289 #ifndef EV_USE_REALTIME
290 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 #endif
292
293 #ifndef EV_USE_NANOSLEEP
294 # if _POSIX_C_SOURCE >= 199309L
295 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 # else
297 # define EV_USE_NANOSLEEP 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_SELECT
302 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 #endif
304
305 #ifndef EV_USE_POLL
306 # ifdef _WIN32
307 # define EV_USE_POLL 0
308 # else
309 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 # endif
311 #endif
312
313 #ifndef EV_USE_EPOLL
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 # else
317 # define EV_USE_EPOLL 0
318 # endif
319 #endif
320
321 #ifndef EV_USE_KQUEUE
322 # define EV_USE_KQUEUE 0
323 #endif
324
325 #ifndef EV_USE_PORT
326 # define EV_USE_PORT 0
327 #endif
328
329 #ifndef EV_USE_LINUXAIO
330 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331 # define EV_USE_LINUXAIO 1
332 # else
333 # define EV_USE_LINUXAIO 0
334 # endif
335 #endif
336
337 #ifndef EV_USE_INOTIFY
338 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
339 # define EV_USE_INOTIFY EV_FEATURE_OS
340 # else
341 # define EV_USE_INOTIFY 0
342 # endif
343 #endif
344
345 #ifndef EV_PID_HASHSIZE
346 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
347 #endif
348
349 #ifndef EV_INOTIFY_HASHSIZE
350 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
351 #endif
352
353 #ifndef EV_USE_EVENTFD
354 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
355 # define EV_USE_EVENTFD EV_FEATURE_OS
356 # else
357 # define EV_USE_EVENTFD 0
358 # endif
359 #endif
360
361 #ifndef EV_USE_SIGNALFD
362 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 # define EV_USE_SIGNALFD EV_FEATURE_OS
364 # else
365 # define EV_USE_SIGNALFD 0
366 # endif
367 #endif
368
369 #if 0 /* debugging */
370 # define EV_VERIFY 3
371 # define EV_USE_4HEAP 1
372 # define EV_HEAP_CACHE_AT 1
373 #endif
374
375 #ifndef EV_VERIFY
376 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
377 #endif
378
379 #ifndef EV_USE_4HEAP
380 # define EV_USE_4HEAP EV_FEATURE_DATA
381 #endif
382
383 #ifndef EV_HEAP_CACHE_AT
384 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
385 #endif
386
387 #ifdef __ANDROID__
388 /* supposedly, android doesn't typedef fd_mask */
389 # undef EV_USE_SELECT
390 # define EV_USE_SELECT 0
391 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
392 # undef EV_USE_CLOCK_SYSCALL
393 # define EV_USE_CLOCK_SYSCALL 0
394 #endif
395
396 /* aix's poll.h seems to cause lots of trouble */
397 #ifdef _AIX
398 /* AIX has a completely broken poll.h header */
399 # undef EV_USE_POLL
400 # define EV_USE_POLL 0
401 #endif
402
403 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
404 /* which makes programs even slower. might work on other unices, too. */
405 #if EV_USE_CLOCK_SYSCALL
406 # include <sys/syscall.h>
407 # ifdef SYS_clock_gettime
408 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
409 # undef EV_USE_MONOTONIC
410 # define EV_USE_MONOTONIC 1
411 # else
412 # undef EV_USE_CLOCK_SYSCALL
413 # define EV_USE_CLOCK_SYSCALL 0
414 # endif
415 #endif
416
417 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
418
419 #ifndef CLOCK_MONOTONIC
420 # undef EV_USE_MONOTONIC
421 # define EV_USE_MONOTONIC 0
422 #endif
423
424 #ifndef CLOCK_REALTIME
425 # undef EV_USE_REALTIME
426 # define EV_USE_REALTIME 0
427 #endif
428
429 #if !EV_STAT_ENABLE
430 # undef EV_USE_INOTIFY
431 # define EV_USE_INOTIFY 0
432 #endif
433
434 #if !EV_USE_NANOSLEEP
435 /* hp-ux has it in sys/time.h, which we unconditionally include above */
436 # if !defined _WIN32 && !defined __hpux
437 # include <sys/select.h>
438 # endif
439 #endif
440
441 #if EV_USE_LINUXAIO
442 # include <sys/syscall.h>
443 # if !SYS_io_getevents || !EV_USE_EPOLL /* ev_linxaio uses ev_poll.c:ev_epoll_create */
444 # undef EV_USE_LINUXAIO
445 # define EV_USE_LINUXAIO 0
446 # endif
447 #endif
448
449 #if EV_USE_INOTIFY
450 # include <sys/statfs.h>
451 # include <sys/inotify.h>
452 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
453 # ifndef IN_DONT_FOLLOW
454 # undef EV_USE_INOTIFY
455 # define EV_USE_INOTIFY 0
456 # endif
457 #endif
458
459 #if EV_USE_EVENTFD
460 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
461 # include <stdint.h>
462 # ifndef EFD_NONBLOCK
463 # define EFD_NONBLOCK O_NONBLOCK
464 # endif
465 # ifndef EFD_CLOEXEC
466 # ifdef O_CLOEXEC
467 # define EFD_CLOEXEC O_CLOEXEC
468 # else
469 # define EFD_CLOEXEC 02000000
470 # endif
471 # endif
472 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
473 #endif
474
475 #if EV_USE_SIGNALFD
476 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
477 # include <stdint.h>
478 # ifndef SFD_NONBLOCK
479 # define SFD_NONBLOCK O_NONBLOCK
480 # endif
481 # ifndef SFD_CLOEXEC
482 # ifdef O_CLOEXEC
483 # define SFD_CLOEXEC O_CLOEXEC
484 # else
485 # define SFD_CLOEXEC 02000000
486 # endif
487 # endif
488 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
489
490 struct signalfd_siginfo
491 {
492 uint32_t ssi_signo;
493 char pad[128 - sizeof (uint32_t)];
494 };
495 #endif
496
497 /**/
498
499 #if EV_VERIFY >= 3
500 # define EV_FREQUENT_CHECK ev_verify (EV_A)
501 #else
502 # define EV_FREQUENT_CHECK do { } while (0)
503 #endif
504
505 /*
506 * This is used to work around floating point rounding problems.
507 * This value is good at least till the year 4000.
508 */
509 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
510 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
511
512 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
513 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
514
515 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
516 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
517
518 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
519 /* ECB.H BEGIN */
520 /*
521 * libecb - http://software.schmorp.de/pkg/libecb
522 *
523 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
524 * Copyright (©) 2011 Emanuele Giaquinta
525 * All rights reserved.
526 *
527 * Redistribution and use in source and binary forms, with or without modifica-
528 * tion, are permitted provided that the following conditions are met:
529 *
530 * 1. Redistributions of source code must retain the above copyright notice,
531 * this list of conditions and the following disclaimer.
532 *
533 * 2. Redistributions in binary form must reproduce the above copyright
534 * notice, this list of conditions and the following disclaimer in the
535 * documentation and/or other materials provided with the distribution.
536 *
537 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
538 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
539 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
540 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
541 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
542 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
543 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
544 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
545 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
546 * OF THE POSSIBILITY OF SUCH DAMAGE.
547 *
548 * Alternatively, the contents of this file may be used under the terms of
549 * the GNU General Public License ("GPL") version 2 or any later version,
550 * in which case the provisions of the GPL are applicable instead of
551 * the above. If you wish to allow the use of your version of this file
552 * only under the terms of the GPL and not to allow others to use your
553 * version of this file under the BSD license, indicate your decision
554 * by deleting the provisions above and replace them with the notice
555 * and other provisions required by the GPL. If you do not delete the
556 * provisions above, a recipient may use your version of this file under
557 * either the BSD or the GPL.
558 */
559
560 #ifndef ECB_H
561 #define ECB_H
562
563 /* 16 bits major, 16 bits minor */
564 #define ECB_VERSION 0x00010006
565
566 #ifdef _WIN32
567 typedef signed char int8_t;
568 typedef unsigned char uint8_t;
569 typedef signed short int16_t;
570 typedef unsigned short uint16_t;
571 typedef signed int int32_t;
572 typedef unsigned int uint32_t;
573 #if __GNUC__
574 typedef signed long long int64_t;
575 typedef unsigned long long uint64_t;
576 #else /* _MSC_VER || __BORLANDC__ */
577 typedef signed __int64 int64_t;
578 typedef unsigned __int64 uint64_t;
579 #endif
580 #ifdef _WIN64
581 #define ECB_PTRSIZE 8
582 typedef uint64_t uintptr_t;
583 typedef int64_t intptr_t;
584 #else
585 #define ECB_PTRSIZE 4
586 typedef uint32_t uintptr_t;
587 typedef int32_t intptr_t;
588 #endif
589 #else
590 #include <inttypes.h>
591 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
592 #define ECB_PTRSIZE 8
593 #else
594 #define ECB_PTRSIZE 4
595 #endif
596 #endif
597
598 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
599 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
600
601 /* work around x32 idiocy by defining proper macros */
602 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
603 #if _ILP32
604 #define ECB_AMD64_X32 1
605 #else
606 #define ECB_AMD64 1
607 #endif
608 #endif
609
610 /* many compilers define _GNUC_ to some versions but then only implement
611 * what their idiot authors think are the "more important" extensions,
612 * causing enormous grief in return for some better fake benchmark numbers.
613 * or so.
614 * we try to detect these and simply assume they are not gcc - if they have
615 * an issue with that they should have done it right in the first place.
616 */
617 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
618 #define ECB_GCC_VERSION(major,minor) 0
619 #else
620 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
621 #endif
622
623 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
624
625 #if __clang__ && defined __has_builtin
626 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
627 #else
628 #define ECB_CLANG_BUILTIN(x) 0
629 #endif
630
631 #if __clang__ && defined __has_extension
632 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
633 #else
634 #define ECB_CLANG_EXTENSION(x) 0
635 #endif
636
637 #define ECB_CPP (__cplusplus+0)
638 #define ECB_CPP11 (__cplusplus >= 201103L)
639 #define ECB_CPP14 (__cplusplus >= 201402L)
640 #define ECB_CPP17 (__cplusplus >= 201703L)
641
642 #if ECB_CPP
643 #define ECB_C 0
644 #define ECB_STDC_VERSION 0
645 #else
646 #define ECB_C 1
647 #define ECB_STDC_VERSION __STDC_VERSION__
648 #endif
649
650 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
651 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
652 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
653
654 #if ECB_CPP
655 #define ECB_EXTERN_C extern "C"
656 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
657 #define ECB_EXTERN_C_END }
658 #else
659 #define ECB_EXTERN_C extern
660 #define ECB_EXTERN_C_BEG
661 #define ECB_EXTERN_C_END
662 #endif
663
664 /*****************************************************************************/
665
666 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
667 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
668
669 #if ECB_NO_THREADS
670 #define ECB_NO_SMP 1
671 #endif
672
673 #if ECB_NO_SMP
674 #define ECB_MEMORY_FENCE do { } while (0)
675 #endif
676
677 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
678 #if __xlC__ && ECB_CPP
679 #include <builtins.h>
680 #endif
681
682 #if 1400 <= _MSC_VER
683 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
684 #endif
685
686 #ifndef ECB_MEMORY_FENCE
687 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
688 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
689 #if __i386 || __i386__
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
693 #elif ECB_GCC_AMD64
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
695 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
696 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
697 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
699 #elif defined __ARM_ARCH_2__ \
700 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
701 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
702 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
703 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
704 || defined __ARM_ARCH_5TEJ__
705 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
706 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
707 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
708 || defined __ARM_ARCH_6T2__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
710 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
711 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
712 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
713 #elif __aarch64__
714 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
715 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
716 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
717 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
718 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
719 #elif defined __s390__ || defined __s390x__
720 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
721 #elif defined __mips__
722 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
723 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
724 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
725 #elif defined __alpha__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
727 #elif defined __hppa__
728 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
729 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
730 #elif defined __ia64__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
732 #elif defined __m68k__
733 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
734 #elif defined __m88k__
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
736 #elif defined __sh__
737 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
738 #endif
739 #endif
740 #endif
741
742 #ifndef ECB_MEMORY_FENCE
743 #if ECB_GCC_VERSION(4,7)
744 /* see comment below (stdatomic.h) about the C11 memory model. */
745 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
746 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
747 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
748 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
749
750 #elif ECB_CLANG_EXTENSION(c_atomic)
751 /* see comment below (stdatomic.h) about the C11 memory model. */
752 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
753 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
754 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
755 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
756
757 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
758 #define ECB_MEMORY_FENCE __sync_synchronize ()
759 #elif _MSC_VER >= 1500 /* VC++ 2008 */
760 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
761 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
762 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
763 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
764 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
765 #elif _MSC_VER >= 1400 /* VC++ 2005 */
766 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
767 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
768 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
769 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
770 #elif defined _WIN32
771 #include <WinNT.h>
772 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
773 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
774 #include <mbarrier.h>
775 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
776 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
777 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
778 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
779 #elif __xlC__
780 #define ECB_MEMORY_FENCE __sync ()
781 #endif
782 #endif
783
784 #ifndef ECB_MEMORY_FENCE
785 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
786 /* we assume that these memory fences work on all variables/all memory accesses, */
787 /* not just C11 atomics and atomic accesses */
788 #include <stdatomic.h>
789 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
790 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
791 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
792 #endif
793 #endif
794
795 #ifndef ECB_MEMORY_FENCE
796 #if !ECB_AVOID_PTHREADS
797 /*
798 * if you get undefined symbol references to pthread_mutex_lock,
799 * or failure to find pthread.h, then you should implement
800 * the ECB_MEMORY_FENCE operations for your cpu/compiler
801 * OR provide pthread.h and link against the posix thread library
802 * of your system.
803 */
804 #include <pthread.h>
805 #define ECB_NEEDS_PTHREADS 1
806 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
807
808 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
809 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
810 #endif
811 #endif
812
813 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
814 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
815 #endif
816
817 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
818 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
819 #endif
820
821 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
822 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
823 #endif
824
825 /*****************************************************************************/
826
827 #if ECB_CPP
828 #define ecb_inline static inline
829 #elif ECB_GCC_VERSION(2,5)
830 #define ecb_inline static __inline__
831 #elif ECB_C99
832 #define ecb_inline static inline
833 #else
834 #define ecb_inline static
835 #endif
836
837 #if ECB_GCC_VERSION(3,3)
838 #define ecb_restrict __restrict__
839 #elif ECB_C99
840 #define ecb_restrict restrict
841 #else
842 #define ecb_restrict
843 #endif
844
845 typedef int ecb_bool;
846
847 #define ECB_CONCAT_(a, b) a ## b
848 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
849 #define ECB_STRINGIFY_(a) # a
850 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
851 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
852
853 #define ecb_function_ ecb_inline
854
855 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
856 #define ecb_attribute(attrlist) __attribute__ (attrlist)
857 #else
858 #define ecb_attribute(attrlist)
859 #endif
860
861 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
862 #define ecb_is_constant(expr) __builtin_constant_p (expr)
863 #else
864 /* possible C11 impl for integral types
865 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
866 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
867
868 #define ecb_is_constant(expr) 0
869 #endif
870
871 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
872 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
873 #else
874 #define ecb_expect(expr,value) (expr)
875 #endif
876
877 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
878 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
879 #else
880 #define ecb_prefetch(addr,rw,locality)
881 #endif
882
883 /* no emulation for ecb_decltype */
884 #if ECB_CPP11
885 // older implementations might have problems with decltype(x)::type, work around it
886 template<class T> struct ecb_decltype_t { typedef T type; };
887 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
888 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
889 #define ecb_decltype(x) __typeof__ (x)
890 #endif
891
892 #if _MSC_VER >= 1300
893 #define ecb_deprecated __declspec (deprecated)
894 #else
895 #define ecb_deprecated ecb_attribute ((__deprecated__))
896 #endif
897
898 #if _MSC_VER >= 1500
899 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
900 #elif ECB_GCC_VERSION(4,5)
901 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
902 #else
903 #define ecb_deprecated_message(msg) ecb_deprecated
904 #endif
905
906 #if _MSC_VER >= 1400
907 #define ecb_noinline __declspec (noinline)
908 #else
909 #define ecb_noinline ecb_attribute ((__noinline__))
910 #endif
911
912 #define ecb_unused ecb_attribute ((__unused__))
913 #define ecb_const ecb_attribute ((__const__))
914 #define ecb_pure ecb_attribute ((__pure__))
915
916 #if ECB_C11 || __IBMC_NORETURN
917 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
918 #define ecb_noreturn _Noreturn
919 #elif ECB_CPP11
920 #define ecb_noreturn [[noreturn]]
921 #elif _MSC_VER >= 1200
922 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
923 #define ecb_noreturn __declspec (noreturn)
924 #else
925 #define ecb_noreturn ecb_attribute ((__noreturn__))
926 #endif
927
928 #if ECB_GCC_VERSION(4,3)
929 #define ecb_artificial ecb_attribute ((__artificial__))
930 #define ecb_hot ecb_attribute ((__hot__))
931 #define ecb_cold ecb_attribute ((__cold__))
932 #else
933 #define ecb_artificial
934 #define ecb_hot
935 #define ecb_cold
936 #endif
937
938 /* put around conditional expressions if you are very sure that the */
939 /* expression is mostly true or mostly false. note that these return */
940 /* booleans, not the expression. */
941 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
942 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
943 /* for compatibility to the rest of the world */
944 #define ecb_likely(expr) ecb_expect_true (expr)
945 #define ecb_unlikely(expr) ecb_expect_false (expr)
946
947 /* count trailing zero bits and count # of one bits */
948 #if ECB_GCC_VERSION(3,4) \
949 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
950 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
951 && ECB_CLANG_BUILTIN(__builtin_popcount))
952 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
953 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
954 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
955 #define ecb_ctz32(x) __builtin_ctz (x)
956 #define ecb_ctz64(x) __builtin_ctzll (x)
957 #define ecb_popcount32(x) __builtin_popcount (x)
958 /* no popcountll */
959 #else
960 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
961 ecb_function_ ecb_const int
962 ecb_ctz32 (uint32_t x)
963 {
964 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
965 unsigned long r;
966 _BitScanForward (&r, x);
967 return (int)r;
968 #else
969 int r = 0;
970
971 x &= ~x + 1; /* this isolates the lowest bit */
972
973 #if ECB_branchless_on_i386
974 r += !!(x & 0xaaaaaaaa) << 0;
975 r += !!(x & 0xcccccccc) << 1;
976 r += !!(x & 0xf0f0f0f0) << 2;
977 r += !!(x & 0xff00ff00) << 3;
978 r += !!(x & 0xffff0000) << 4;
979 #else
980 if (x & 0xaaaaaaaa) r += 1;
981 if (x & 0xcccccccc) r += 2;
982 if (x & 0xf0f0f0f0) r += 4;
983 if (x & 0xff00ff00) r += 8;
984 if (x & 0xffff0000) r += 16;
985 #endif
986
987 return r;
988 #endif
989 }
990
991 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
992 ecb_function_ ecb_const int
993 ecb_ctz64 (uint64_t x)
994 {
995 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
996 unsigned long r;
997 _BitScanForward64 (&r, x);
998 return (int)r;
999 #else
1000 int shift = x & 0xffffffff ? 0 : 32;
1001 return ecb_ctz32 (x >> shift) + shift;
1002 #endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1006 ecb_function_ ecb_const int
1007 ecb_popcount32 (uint32_t x)
1008 {
1009 x -= (x >> 1) & 0x55555555;
1010 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1011 x = ((x >> 4) + x) & 0x0f0f0f0f;
1012 x *= 0x01010101;
1013
1014 return x >> 24;
1015 }
1016
1017 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1018 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1019 {
1020 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1021 unsigned long r;
1022 _BitScanReverse (&r, x);
1023 return (int)r;
1024 #else
1025 int r = 0;
1026
1027 if (x >> 16) { x >>= 16; r += 16; }
1028 if (x >> 8) { x >>= 8; r += 8; }
1029 if (x >> 4) { x >>= 4; r += 4; }
1030 if (x >> 2) { x >>= 2; r += 2; }
1031 if (x >> 1) { r += 1; }
1032
1033 return r;
1034 #endif
1035 }
1036
1037 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1038 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1039 {
1040 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1041 unsigned long r;
1042 _BitScanReverse64 (&r, x);
1043 return (int)r;
1044 #else
1045 int r = 0;
1046
1047 if (x >> 32) { x >>= 32; r += 32; }
1048
1049 return r + ecb_ld32 (x);
1050 #endif
1051 }
1052 #endif
1053
1054 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1055 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1056 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1057 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1058
1059 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1060 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1061 {
1062 return ( (x * 0x0802U & 0x22110U)
1063 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1064 }
1065
1066 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1067 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1068 {
1069 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1070 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1071 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1072 x = ( x >> 8 ) | ( x << 8);
1073
1074 return x;
1075 }
1076
1077 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1078 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1079 {
1080 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1081 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1082 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1083 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1084 x = ( x >> 16 ) | ( x << 16);
1085
1086 return x;
1087 }
1088
1089 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1090 /* so for this version we are lazy */
1091 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1092 ecb_function_ ecb_const int
1093 ecb_popcount64 (uint64_t x)
1094 {
1095 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1096 }
1097
1098 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1099 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1100 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1101 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1102 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1103 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1104 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1105 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1106
1107 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1108 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1109 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1110 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1111 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1112 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1113 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1114 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1115
1116 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1117 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1118 #define ecb_bswap16(x) __builtin_bswap16 (x)
1119 #else
1120 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1121 #endif
1122 #define ecb_bswap32(x) __builtin_bswap32 (x)
1123 #define ecb_bswap64(x) __builtin_bswap64 (x)
1124 #elif _MSC_VER
1125 #include <stdlib.h>
1126 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1127 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1128 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1129 #else
1130 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1131 ecb_function_ ecb_const uint16_t
1132 ecb_bswap16 (uint16_t x)
1133 {
1134 return ecb_rotl16 (x, 8);
1135 }
1136
1137 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1138 ecb_function_ ecb_const uint32_t
1139 ecb_bswap32 (uint32_t x)
1140 {
1141 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1142 }
1143
1144 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1145 ecb_function_ ecb_const uint64_t
1146 ecb_bswap64 (uint64_t x)
1147 {
1148 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1149 }
1150 #endif
1151
1152 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1153 #define ecb_unreachable() __builtin_unreachable ()
1154 #else
1155 /* this seems to work fine, but gcc always emits a warning for it :/ */
1156 ecb_inline ecb_noreturn void ecb_unreachable (void);
1157 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1158 #endif
1159
1160 /* try to tell the compiler that some condition is definitely true */
1161 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1162
1163 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1164 ecb_inline ecb_const uint32_t
1165 ecb_byteorder_helper (void)
1166 {
1167 /* the union code still generates code under pressure in gcc, */
1168 /* but less than using pointers, and always seems to */
1169 /* successfully return a constant. */
1170 /* the reason why we have this horrible preprocessor mess */
1171 /* is to avoid it in all cases, at least on common architectures */
1172 /* or when using a recent enough gcc version (>= 4.6) */
1173 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1174 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1175 #define ECB_LITTLE_ENDIAN 1
1176 return 0x44332211;
1177 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1178 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1179 #define ECB_BIG_ENDIAN 1
1180 return 0x11223344;
1181 #else
1182 union
1183 {
1184 uint8_t c[4];
1185 uint32_t u;
1186 } u = { 0x11, 0x22, 0x33, 0x44 };
1187 return u.u;
1188 #endif
1189 }
1190
1191 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1192 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1193 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1194 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1195
1196 #if ECB_GCC_VERSION(3,0) || ECB_C99
1197 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1198 #else
1199 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1200 #endif
1201
1202 #if ECB_CPP
1203 template<typename T>
1204 static inline T ecb_div_rd (T val, T div)
1205 {
1206 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1207 }
1208 template<typename T>
1209 static inline T ecb_div_ru (T val, T div)
1210 {
1211 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1212 }
1213 #else
1214 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1215 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1216 #endif
1217
1218 #if ecb_cplusplus_does_not_suck
1219 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1220 template<typename T, int N>
1221 static inline int ecb_array_length (const T (&arr)[N])
1222 {
1223 return N;
1224 }
1225 #else
1226 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1227 #endif
1228
1229 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1230 ecb_function_ ecb_const uint32_t
1231 ecb_binary16_to_binary32 (uint32_t x)
1232 {
1233 unsigned int s = (x & 0x8000) << (31 - 15);
1234 int e = (x >> 10) & 0x001f;
1235 unsigned int m = x & 0x03ff;
1236
1237 if (ecb_expect_false (e == 31))
1238 /* infinity or NaN */
1239 e = 255 - (127 - 15);
1240 else if (ecb_expect_false (!e))
1241 {
1242 if (ecb_expect_true (!m))
1243 /* zero, handled by code below by forcing e to 0 */
1244 e = 0 - (127 - 15);
1245 else
1246 {
1247 /* subnormal, renormalise */
1248 unsigned int s = 10 - ecb_ld32 (m);
1249
1250 m = (m << s) & 0x3ff; /* mask implicit bit */
1251 e -= s - 1;
1252 }
1253 }
1254
1255 /* e and m now are normalised, or zero, (or inf or nan) */
1256 e += 127 - 15;
1257
1258 return s | (e << 23) | (m << (23 - 10));
1259 }
1260
1261 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1262 ecb_function_ ecb_const uint16_t
1263 ecb_binary32_to_binary16 (uint32_t x)
1264 {
1265 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1266 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1267 unsigned int m = x & 0x007fffff;
1268
1269 x &= 0x7fffffff;
1270
1271 /* if it's within range of binary16 normals, use fast path */
1272 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1273 {
1274 /* mantissa round-to-even */
1275 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1276
1277 /* handle overflow */
1278 if (ecb_expect_false (m >= 0x00800000))
1279 {
1280 m >>= 1;
1281 e += 1;
1282 }
1283
1284 return s | (e << 10) | (m >> (23 - 10));
1285 }
1286
1287 /* handle large numbers and infinity */
1288 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1289 return s | 0x7c00;
1290
1291 /* handle zero, subnormals and small numbers */
1292 if (ecb_expect_true (x < 0x38800000))
1293 {
1294 /* zero */
1295 if (ecb_expect_true (!x))
1296 return s;
1297
1298 /* handle subnormals */
1299
1300 /* too small, will be zero */
1301 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1302 return s;
1303
1304 m |= 0x00800000; /* make implicit bit explicit */
1305
1306 /* very tricky - we need to round to the nearest e (+10) bit value */
1307 {
1308 unsigned int bits = 14 - e;
1309 unsigned int half = (1 << (bits - 1)) - 1;
1310 unsigned int even = (m >> bits) & 1;
1311
1312 /* if this overflows, we will end up with a normalised number */
1313 m = (m + half + even) >> bits;
1314 }
1315
1316 return s | m;
1317 }
1318
1319 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1320 m >>= 13;
1321
1322 return s | 0x7c00 | m | !m;
1323 }
1324
1325 /*******************************************************************************/
1326 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1327
1328 /* basically, everything uses "ieee pure-endian" floating point numbers */
1329 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1330 #if 0 \
1331 || __i386 || __i386__ \
1332 || ECB_GCC_AMD64 \
1333 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1334 || defined __s390__ || defined __s390x__ \
1335 || defined __mips__ \
1336 || defined __alpha__ \
1337 || defined __hppa__ \
1338 || defined __ia64__ \
1339 || defined __m68k__ \
1340 || defined __m88k__ \
1341 || defined __sh__ \
1342 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1343 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1344 || defined __aarch64__
1345 #define ECB_STDFP 1
1346 #include <string.h> /* for memcpy */
1347 #else
1348 #define ECB_STDFP 0
1349 #endif
1350
1351 #ifndef ECB_NO_LIBM
1352
1353 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1354
1355 /* only the oldest of old doesn't have this one. solaris. */
1356 #ifdef INFINITY
1357 #define ECB_INFINITY INFINITY
1358 #else
1359 #define ECB_INFINITY HUGE_VAL
1360 #endif
1361
1362 #ifdef NAN
1363 #define ECB_NAN NAN
1364 #else
1365 #define ECB_NAN ECB_INFINITY
1366 #endif
1367
1368 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1369 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1370 #define ecb_frexpf(x,e) frexpf ((x), (e))
1371 #else
1372 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1373 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1374 #endif
1375
1376 /* convert a float to ieee single/binary32 */
1377 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1378 ecb_function_ ecb_const uint32_t
1379 ecb_float_to_binary32 (float x)
1380 {
1381 uint32_t r;
1382
1383 #if ECB_STDFP
1384 memcpy (&r, &x, 4);
1385 #else
1386 /* slow emulation, works for anything but -0 */
1387 uint32_t m;
1388 int e;
1389
1390 if (x == 0e0f ) return 0x00000000U;
1391 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1392 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1393 if (x != x ) return 0x7fbfffffU;
1394
1395 m = ecb_frexpf (x, &e) * 0x1000000U;
1396
1397 r = m & 0x80000000U;
1398
1399 if (r)
1400 m = -m;
1401
1402 if (e <= -126)
1403 {
1404 m &= 0xffffffU;
1405 m >>= (-125 - e);
1406 e = -126;
1407 }
1408
1409 r |= (e + 126) << 23;
1410 r |= m & 0x7fffffU;
1411 #endif
1412
1413 return r;
1414 }
1415
1416 /* converts an ieee single/binary32 to a float */
1417 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1418 ecb_function_ ecb_const float
1419 ecb_binary32_to_float (uint32_t x)
1420 {
1421 float r;
1422
1423 #if ECB_STDFP
1424 memcpy (&r, &x, 4);
1425 #else
1426 /* emulation, only works for normals and subnormals and +0 */
1427 int neg = x >> 31;
1428 int e = (x >> 23) & 0xffU;
1429
1430 x &= 0x7fffffU;
1431
1432 if (e)
1433 x |= 0x800000U;
1434 else
1435 e = 1;
1436
1437 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1438 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1439
1440 r = neg ? -r : r;
1441 #endif
1442
1443 return r;
1444 }
1445
1446 /* convert a double to ieee double/binary64 */
1447 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1448 ecb_function_ ecb_const uint64_t
1449 ecb_double_to_binary64 (double x)
1450 {
1451 uint64_t r;
1452
1453 #if ECB_STDFP
1454 memcpy (&r, &x, 8);
1455 #else
1456 /* slow emulation, works for anything but -0 */
1457 uint64_t m;
1458 int e;
1459
1460 if (x == 0e0 ) return 0x0000000000000000U;
1461 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1462 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1463 if (x != x ) return 0X7ff7ffffffffffffU;
1464
1465 m = frexp (x, &e) * 0x20000000000000U;
1466
1467 r = m & 0x8000000000000000;;
1468
1469 if (r)
1470 m = -m;
1471
1472 if (e <= -1022)
1473 {
1474 m &= 0x1fffffffffffffU;
1475 m >>= (-1021 - e);
1476 e = -1022;
1477 }
1478
1479 r |= ((uint64_t)(e + 1022)) << 52;
1480 r |= m & 0xfffffffffffffU;
1481 #endif
1482
1483 return r;
1484 }
1485
1486 /* converts an ieee double/binary64 to a double */
1487 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1488 ecb_function_ ecb_const double
1489 ecb_binary64_to_double (uint64_t x)
1490 {
1491 double r;
1492
1493 #if ECB_STDFP
1494 memcpy (&r, &x, 8);
1495 #else
1496 /* emulation, only works for normals and subnormals and +0 */
1497 int neg = x >> 63;
1498 int e = (x >> 52) & 0x7ffU;
1499
1500 x &= 0xfffffffffffffU;
1501
1502 if (e)
1503 x |= 0x10000000000000U;
1504 else
1505 e = 1;
1506
1507 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1508 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1509
1510 r = neg ? -r : r;
1511 #endif
1512
1513 return r;
1514 }
1515
1516 /* convert a float to ieee half/binary16 */
1517 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1518 ecb_function_ ecb_const uint16_t
1519 ecb_float_to_binary16 (float x)
1520 {
1521 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1522 }
1523
1524 /* convert an ieee half/binary16 to float */
1525 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1526 ecb_function_ ecb_const float
1527 ecb_binary16_to_float (uint16_t x)
1528 {
1529 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1530 }
1531
1532 #endif
1533
1534 #endif
1535
1536 /* ECB.H END */
1537
1538 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1539 /* if your architecture doesn't need memory fences, e.g. because it is
1540 * single-cpu/core, or if you use libev in a project that doesn't use libev
1541 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1542 * libev, in which cases the memory fences become nops.
1543 * alternatively, you can remove this #error and link against libpthread,
1544 * which will then provide the memory fences.
1545 */
1546 # error "memory fences not defined for your architecture, please report"
1547 #endif
1548
1549 #ifndef ECB_MEMORY_FENCE
1550 # define ECB_MEMORY_FENCE do { } while (0)
1551 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1552 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1553 #endif
1554
1555 #define expect_false(cond) ecb_expect_false (cond)
1556 #define expect_true(cond) ecb_expect_true (cond)
1557 #define noinline ecb_noinline
1558
1559 #define inline_size ecb_inline
1560
1561 #if EV_FEATURE_CODE
1562 # define inline_speed ecb_inline
1563 #else
1564 # define inline_speed noinline static
1565 #endif
1566
1567 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1568
1569 #if EV_MINPRI == EV_MAXPRI
1570 # define ABSPRI(w) (((W)w), 0)
1571 #else
1572 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1573 #endif
1574
1575 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1576
1577 typedef ev_watcher *W;
1578 typedef ev_watcher_list *WL;
1579 typedef ev_watcher_time *WT;
1580
1581 #define ev_active(w) ((W)(w))->active
1582 #define ev_at(w) ((WT)(w))->at
1583
1584 #if EV_USE_REALTIME
1585 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1586 /* giving it a reasonably high chance of working on typical architectures */
1587 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1588 #endif
1589
1590 #if EV_USE_MONOTONIC
1591 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1592 #endif
1593
1594 #ifndef EV_FD_TO_WIN32_HANDLE
1595 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1596 #endif
1597 #ifndef EV_WIN32_HANDLE_TO_FD
1598 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1599 #endif
1600 #ifndef EV_WIN32_CLOSE_FD
1601 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1602 #endif
1603
1604 #ifdef _WIN32
1605 # include "ev_win32.c"
1606 #endif
1607
1608 /*****************************************************************************/
1609
1610 #if EV_USE_LINUXAIO
1611 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1612 #endif
1613
1614 /* define a suitable floor function (only used by periodics atm) */
1615
1616 #if EV_USE_FLOOR
1617 # include <math.h>
1618 # define ev_floor(v) floor (v)
1619 #else
1620
1621 #include <float.h>
1622
1623 /* a floor() replacement function, should be independent of ev_tstamp type */
1624 noinline
1625 static ev_tstamp
1626 ev_floor (ev_tstamp v)
1627 {
1628 /* the choice of shift factor is not terribly important */
1629 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1630 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1631 #else
1632 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1633 #endif
1634
1635 /* argument too large for an unsigned long? */
1636 if (expect_false (v >= shift))
1637 {
1638 ev_tstamp f;
1639
1640 if (v == v - 1.)
1641 return v; /* very large number */
1642
1643 f = shift * ev_floor (v * (1. / shift));
1644 return f + ev_floor (v - f);
1645 }
1646
1647 /* special treatment for negative args? */
1648 if (expect_false (v < 0.))
1649 {
1650 ev_tstamp f = -ev_floor (-v);
1651
1652 return f - (f == v ? 0 : 1);
1653 }
1654
1655 /* fits into an unsigned long */
1656 return (unsigned long)v;
1657 }
1658
1659 #endif
1660
1661 /*****************************************************************************/
1662
1663 #ifdef __linux
1664 # include <sys/utsname.h>
1665 #endif
1666
1667 noinline ecb_cold
1668 static unsigned int
1669 ev_linux_version (void)
1670 {
1671 #ifdef __linux
1672 unsigned int v = 0;
1673 struct utsname buf;
1674 int i;
1675 char *p = buf.release;
1676
1677 if (uname (&buf))
1678 return 0;
1679
1680 for (i = 3+1; --i; )
1681 {
1682 unsigned int c = 0;
1683
1684 for (;;)
1685 {
1686 if (*p >= '0' && *p <= '9')
1687 c = c * 10 + *p++ - '0';
1688 else
1689 {
1690 p += *p == '.';
1691 break;
1692 }
1693 }
1694
1695 v = (v << 8) | c;
1696 }
1697
1698 return v;
1699 #else
1700 return 0;
1701 #endif
1702 }
1703
1704 /*****************************************************************************/
1705
1706 #if EV_AVOID_STDIO
1707 noinline ecb_cold
1708 static void
1709 ev_printerr (const char *msg)
1710 {
1711 write (STDERR_FILENO, msg, strlen (msg));
1712 }
1713 #endif
1714
1715 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1716
1717 ecb_cold
1718 void
1719 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1720 {
1721 syserr_cb = cb;
1722 }
1723
1724 noinline ecb_cold
1725 static void
1726 ev_syserr (const char *msg)
1727 {
1728 if (!msg)
1729 msg = "(libev) system error";
1730
1731 if (syserr_cb)
1732 syserr_cb (msg);
1733 else
1734 {
1735 #if EV_AVOID_STDIO
1736 ev_printerr (msg);
1737 ev_printerr (": ");
1738 ev_printerr (strerror (errno));
1739 ev_printerr ("\n");
1740 #else
1741 perror (msg);
1742 #endif
1743 abort ();
1744 }
1745 }
1746
1747 static void *
1748 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1749 {
1750 /* some systems, notably openbsd and darwin, fail to properly
1751 * implement realloc (x, 0) (as required by both ansi c-89 and
1752 * the single unix specification, so work around them here.
1753 * recently, also (at least) fedora and debian started breaking it,
1754 * despite documenting it otherwise.
1755 */
1756
1757 if (size)
1758 return realloc (ptr, size);
1759
1760 free (ptr);
1761 return 0;
1762 }
1763
1764 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1765
1766 ecb_cold
1767 void
1768 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1769 {
1770 alloc = cb;
1771 }
1772
1773 inline_speed void *
1774 ev_realloc (void *ptr, long size)
1775 {
1776 ptr = alloc (ptr, size);
1777
1778 if (!ptr && size)
1779 {
1780 #if EV_AVOID_STDIO
1781 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1782 #else
1783 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1784 #endif
1785 abort ();
1786 }
1787
1788 return ptr;
1789 }
1790
1791 #define ev_malloc(size) ev_realloc (0, (size))
1792 #define ev_free(ptr) ev_realloc ((ptr), 0)
1793
1794 /*****************************************************************************/
1795
1796 /* set in reify when reification needed */
1797 #define EV_ANFD_REIFY 1
1798
1799 /* file descriptor info structure */
1800 typedef struct
1801 {
1802 WL head;
1803 unsigned char events; /* the events watched for */
1804 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1805 unsigned char emask; /* some backends store the actual kernel mask in here */
1806 unsigned char unused;
1807 #if EV_USE_EPOLL
1808 unsigned int egen; /* generation counter to counter epoll bugs */
1809 #endif
1810 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1811 SOCKET handle;
1812 #endif
1813 #if EV_USE_IOCP
1814 OVERLAPPED or, ow;
1815 #endif
1816 } ANFD;
1817
1818 /* stores the pending event set for a given watcher */
1819 typedef struct
1820 {
1821 W w;
1822 int events; /* the pending event set for the given watcher */
1823 } ANPENDING;
1824
1825 #if EV_USE_INOTIFY
1826 /* hash table entry per inotify-id */
1827 typedef struct
1828 {
1829 WL head;
1830 } ANFS;
1831 #endif
1832
1833 /* Heap Entry */
1834 #if EV_HEAP_CACHE_AT
1835 /* a heap element */
1836 typedef struct {
1837 ev_tstamp at;
1838 WT w;
1839 } ANHE;
1840
1841 #define ANHE_w(he) (he).w /* access watcher, read-write */
1842 #define ANHE_at(he) (he).at /* access cached at, read-only */
1843 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1844 #else
1845 /* a heap element */
1846 typedef WT ANHE;
1847
1848 #define ANHE_w(he) (he)
1849 #define ANHE_at(he) (he)->at
1850 #define ANHE_at_cache(he)
1851 #endif
1852
1853 #if EV_MULTIPLICITY
1854
1855 struct ev_loop
1856 {
1857 ev_tstamp ev_rt_now;
1858 #define ev_rt_now ((loop)->ev_rt_now)
1859 #define VAR(name,decl) decl;
1860 #include "ev_vars.h"
1861 #undef VAR
1862 };
1863 #include "ev_wrap.h"
1864
1865 static struct ev_loop default_loop_struct;
1866 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1867
1868 #else
1869
1870 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1871 #define VAR(name,decl) static decl;
1872 #include "ev_vars.h"
1873 #undef VAR
1874
1875 static int ev_default_loop_ptr;
1876
1877 #endif
1878
1879 #if EV_FEATURE_API
1880 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1881 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1882 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1883 #else
1884 # define EV_RELEASE_CB (void)0
1885 # define EV_ACQUIRE_CB (void)0
1886 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1887 #endif
1888
1889 #define EVBREAK_RECURSE 0x80
1890
1891 /*****************************************************************************/
1892
1893 #ifndef EV_HAVE_EV_TIME
1894 ev_tstamp
1895 ev_time (void) EV_NOEXCEPT
1896 {
1897 #if EV_USE_REALTIME
1898 if (expect_true (have_realtime))
1899 {
1900 struct timespec ts;
1901 clock_gettime (CLOCK_REALTIME, &ts);
1902 return ts.tv_sec + ts.tv_nsec * 1e-9;
1903 }
1904 #endif
1905
1906 struct timeval tv;
1907 gettimeofday (&tv, 0);
1908 return tv.tv_sec + tv.tv_usec * 1e-6;
1909 }
1910 #endif
1911
1912 inline_size ev_tstamp
1913 get_clock (void)
1914 {
1915 #if EV_USE_MONOTONIC
1916 if (expect_true (have_monotonic))
1917 {
1918 struct timespec ts;
1919 clock_gettime (CLOCK_MONOTONIC, &ts);
1920 return ts.tv_sec + ts.tv_nsec * 1e-9;
1921 }
1922 #endif
1923
1924 return ev_time ();
1925 }
1926
1927 #if EV_MULTIPLICITY
1928 ev_tstamp
1929 ev_now (EV_P) EV_NOEXCEPT
1930 {
1931 return ev_rt_now;
1932 }
1933 #endif
1934
1935 void
1936 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1937 {
1938 if (delay > 0.)
1939 {
1940 #if EV_USE_NANOSLEEP
1941 struct timespec ts;
1942
1943 EV_TS_SET (ts, delay);
1944 nanosleep (&ts, 0);
1945 #elif defined _WIN32
1946 /* maybe this should round up, as ms is very low resolution */
1947 /* compared to select (µs) or nanosleep (ns) */
1948 Sleep ((unsigned long)(delay * 1e3));
1949 #else
1950 struct timeval tv;
1951
1952 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1953 /* something not guaranteed by newer posix versions, but guaranteed */
1954 /* by older ones */
1955 EV_TV_SET (tv, delay);
1956 select (0, 0, 0, 0, &tv);
1957 #endif
1958 }
1959 }
1960
1961 /*****************************************************************************/
1962
1963 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1964
1965 /* find a suitable new size for the given array, */
1966 /* hopefully by rounding to a nice-to-malloc size */
1967 inline_size int
1968 array_nextsize (int elem, int cur, int cnt)
1969 {
1970 int ncur = cur + 1;
1971
1972 do
1973 ncur <<= 1;
1974 while (cnt > ncur);
1975
1976 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1977 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1978 {
1979 ncur *= elem;
1980 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1981 ncur = ncur - sizeof (void *) * 4;
1982 ncur /= elem;
1983 }
1984
1985 return ncur;
1986 }
1987
1988 noinline ecb_cold
1989 static void *
1990 array_realloc (int elem, void *base, int *cur, int cnt)
1991 {
1992 *cur = array_nextsize (elem, *cur, cnt);
1993 return ev_realloc (base, elem * *cur);
1994 }
1995
1996 #define array_needsize_noinit(base,offset,count)
1997
1998 #define array_needsize_zerofill(base,offset,count) \
1999 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2000
2001 #define array_needsize(type,base,cur,cnt,init) \
2002 if (expect_false ((cnt) > (cur))) \
2003 { \
2004 ecb_unused int ocur_ = (cur); \
2005 (base) = (type *)array_realloc \
2006 (sizeof (type), (base), &(cur), (cnt)); \
2007 init ((base), ocur_, ((cur) - ocur_)); \
2008 }
2009
2010 #if 0
2011 #define array_slim(type,stem) \
2012 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2013 { \
2014 stem ## max = array_roundsize (stem ## cnt >> 1); \
2015 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2016 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2017 }
2018 #endif
2019
2020 #define array_free(stem, idx) \
2021 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2022
2023 /*****************************************************************************/
2024
2025 /* dummy callback for pending events */
2026 noinline
2027 static void
2028 pendingcb (EV_P_ ev_prepare *w, int revents)
2029 {
2030 }
2031
2032 noinline
2033 void
2034 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2035 {
2036 W w_ = (W)w;
2037 int pri = ABSPRI (w_);
2038
2039 if (expect_false (w_->pending))
2040 pendings [pri][w_->pending - 1].events |= revents;
2041 else
2042 {
2043 w_->pending = ++pendingcnt [pri];
2044 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2045 pendings [pri][w_->pending - 1].w = w_;
2046 pendings [pri][w_->pending - 1].events = revents;
2047 }
2048
2049 pendingpri = NUMPRI - 1;
2050 }
2051
2052 inline_speed void
2053 feed_reverse (EV_P_ W w)
2054 {
2055 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2056 rfeeds [rfeedcnt++] = w;
2057 }
2058
2059 inline_size void
2060 feed_reverse_done (EV_P_ int revents)
2061 {
2062 do
2063 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2064 while (rfeedcnt);
2065 }
2066
2067 inline_speed void
2068 queue_events (EV_P_ W *events, int eventcnt, int type)
2069 {
2070 int i;
2071
2072 for (i = 0; i < eventcnt; ++i)
2073 ev_feed_event (EV_A_ events [i], type);
2074 }
2075
2076 /*****************************************************************************/
2077
2078 inline_speed void
2079 fd_event_nocheck (EV_P_ int fd, int revents)
2080 {
2081 ANFD *anfd = anfds + fd;
2082 ev_io *w;
2083
2084 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2085 {
2086 int ev = w->events & revents;
2087
2088 if (ev)
2089 ev_feed_event (EV_A_ (W)w, ev);
2090 }
2091 }
2092
2093 /* do not submit kernel events for fds that have reify set */
2094 /* because that means they changed while we were polling for new events */
2095 inline_speed void
2096 fd_event (EV_P_ int fd, int revents)
2097 {
2098 ANFD *anfd = anfds + fd;
2099
2100 if (expect_true (!anfd->reify))
2101 fd_event_nocheck (EV_A_ fd, revents);
2102 }
2103
2104 void
2105 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2106 {
2107 if (fd >= 0 && fd < anfdmax)
2108 fd_event_nocheck (EV_A_ fd, revents);
2109 }
2110
2111 /* make sure the external fd watch events are in-sync */
2112 /* with the kernel/libev internal state */
2113 inline_size void
2114 fd_reify (EV_P)
2115 {
2116 int i;
2117
2118 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2119 for (i = 0; i < fdchangecnt; ++i)
2120 {
2121 int fd = fdchanges [i];
2122 ANFD *anfd = anfds + fd;
2123
2124 if (anfd->reify & EV__IOFDSET && anfd->head)
2125 {
2126 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2127
2128 if (handle != anfd->handle)
2129 {
2130 unsigned long arg;
2131
2132 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2133
2134 /* handle changed, but fd didn't - we need to do it in two steps */
2135 backend_modify (EV_A_ fd, anfd->events, 0);
2136 anfd->events = 0;
2137 anfd->handle = handle;
2138 }
2139 }
2140 }
2141 #endif
2142
2143 for (i = 0; i < fdchangecnt; ++i)
2144 {
2145 int fd = fdchanges [i];
2146 ANFD *anfd = anfds + fd;
2147 ev_io *w;
2148
2149 unsigned char o_events = anfd->events;
2150 unsigned char o_reify = anfd->reify;
2151
2152 anfd->reify = 0;
2153
2154 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2155 {
2156 anfd->events = 0;
2157
2158 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2159 anfd->events |= (unsigned char)w->events;
2160
2161 if (o_events != anfd->events)
2162 o_reify = EV__IOFDSET; /* actually |= */
2163 }
2164
2165 if (o_reify & EV__IOFDSET)
2166 backend_modify (EV_A_ fd, o_events, anfd->events);
2167 }
2168
2169 fdchangecnt = 0;
2170 }
2171
2172 /* something about the given fd changed */
2173 inline_size
2174 void
2175 fd_change (EV_P_ int fd, int flags)
2176 {
2177 unsigned char reify = anfds [fd].reify;
2178 anfds [fd].reify |= flags;
2179
2180 if (expect_true (!reify))
2181 {
2182 ++fdchangecnt;
2183 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2184 fdchanges [fdchangecnt - 1] = fd;
2185 }
2186 }
2187
2188 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2189 inline_speed ecb_cold void
2190 fd_kill (EV_P_ int fd)
2191 {
2192 ev_io *w;
2193
2194 while ((w = (ev_io *)anfds [fd].head))
2195 {
2196 ev_io_stop (EV_A_ w);
2197 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2198 }
2199 }
2200
2201 /* check whether the given fd is actually valid, for error recovery */
2202 inline_size ecb_cold int
2203 fd_valid (int fd)
2204 {
2205 #ifdef _WIN32
2206 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2207 #else
2208 return fcntl (fd, F_GETFD) != -1;
2209 #endif
2210 }
2211
2212 /* called on EBADF to verify fds */
2213 noinline ecb_cold
2214 static void
2215 fd_ebadf (EV_P)
2216 {
2217 int fd;
2218
2219 for (fd = 0; fd < anfdmax; ++fd)
2220 if (anfds [fd].events)
2221 if (!fd_valid (fd) && errno == EBADF)
2222 fd_kill (EV_A_ fd);
2223 }
2224
2225 /* called on ENOMEM in select/poll to kill some fds and retry */
2226 noinline ecb_cold
2227 static void
2228 fd_enomem (EV_P)
2229 {
2230 int fd;
2231
2232 for (fd = anfdmax; fd--; )
2233 if (anfds [fd].events)
2234 {
2235 fd_kill (EV_A_ fd);
2236 break;
2237 }
2238 }
2239
2240 /* usually called after fork if backend needs to re-arm all fds from scratch */
2241 noinline
2242 static void
2243 fd_rearm_all (EV_P)
2244 {
2245 int fd;
2246
2247 for (fd = 0; fd < anfdmax; ++fd)
2248 if (anfds [fd].events)
2249 {
2250 anfds [fd].events = 0;
2251 anfds [fd].emask = 0;
2252 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2253 }
2254 }
2255
2256 /* used to prepare libev internal fd's */
2257 /* this is not fork-safe */
2258 inline_speed void
2259 fd_intern (int fd)
2260 {
2261 #ifdef _WIN32
2262 unsigned long arg = 1;
2263 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2264 #else
2265 fcntl (fd, F_SETFD, FD_CLOEXEC);
2266 fcntl (fd, F_SETFL, O_NONBLOCK);
2267 #endif
2268 }
2269
2270 /*****************************************************************************/
2271
2272 /*
2273 * the heap functions want a real array index. array index 0 is guaranteed to not
2274 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2275 * the branching factor of the d-tree.
2276 */
2277
2278 /*
2279 * at the moment we allow libev the luxury of two heaps,
2280 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2281 * which is more cache-efficient.
2282 * the difference is about 5% with 50000+ watchers.
2283 */
2284 #if EV_USE_4HEAP
2285
2286 #define DHEAP 4
2287 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2288 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2289 #define UPHEAP_DONE(p,k) ((p) == (k))
2290
2291 /* away from the root */
2292 inline_speed void
2293 downheap (ANHE *heap, int N, int k)
2294 {
2295 ANHE he = heap [k];
2296 ANHE *E = heap + N + HEAP0;
2297
2298 for (;;)
2299 {
2300 ev_tstamp minat;
2301 ANHE *minpos;
2302 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2303
2304 /* find minimum child */
2305 if (expect_true (pos + DHEAP - 1 < E))
2306 {
2307 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2308 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2309 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2310 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2311 }
2312 else if (pos < E)
2313 {
2314 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2315 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2316 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2317 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2318 }
2319 else
2320 break;
2321
2322 if (ANHE_at (he) <= minat)
2323 break;
2324
2325 heap [k] = *minpos;
2326 ev_active (ANHE_w (*minpos)) = k;
2327
2328 k = minpos - heap;
2329 }
2330
2331 heap [k] = he;
2332 ev_active (ANHE_w (he)) = k;
2333 }
2334
2335 #else /* 4HEAP */
2336
2337 #define HEAP0 1
2338 #define HPARENT(k) ((k) >> 1)
2339 #define UPHEAP_DONE(p,k) (!(p))
2340
2341 /* away from the root */
2342 inline_speed void
2343 downheap (ANHE *heap, int N, int k)
2344 {
2345 ANHE he = heap [k];
2346
2347 for (;;)
2348 {
2349 int c = k << 1;
2350
2351 if (c >= N + HEAP0)
2352 break;
2353
2354 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2355 ? 1 : 0;
2356
2357 if (ANHE_at (he) <= ANHE_at (heap [c]))
2358 break;
2359
2360 heap [k] = heap [c];
2361 ev_active (ANHE_w (heap [k])) = k;
2362
2363 k = c;
2364 }
2365
2366 heap [k] = he;
2367 ev_active (ANHE_w (he)) = k;
2368 }
2369 #endif
2370
2371 /* towards the root */
2372 inline_speed void
2373 upheap (ANHE *heap, int k)
2374 {
2375 ANHE he = heap [k];
2376
2377 for (;;)
2378 {
2379 int p = HPARENT (k);
2380
2381 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2382 break;
2383
2384 heap [k] = heap [p];
2385 ev_active (ANHE_w (heap [k])) = k;
2386 k = p;
2387 }
2388
2389 heap [k] = he;
2390 ev_active (ANHE_w (he)) = k;
2391 }
2392
2393 /* move an element suitably so it is in a correct place */
2394 inline_size void
2395 adjustheap (ANHE *heap, int N, int k)
2396 {
2397 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2398 upheap (heap, k);
2399 else
2400 downheap (heap, N, k);
2401 }
2402
2403 /* rebuild the heap: this function is used only once and executed rarely */
2404 inline_size void
2405 reheap (ANHE *heap, int N)
2406 {
2407 int i;
2408
2409 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2410 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2411 for (i = 0; i < N; ++i)
2412 upheap (heap, i + HEAP0);
2413 }
2414
2415 /*****************************************************************************/
2416
2417 /* associate signal watchers to a signal signal */
2418 typedef struct
2419 {
2420 EV_ATOMIC_T pending;
2421 #if EV_MULTIPLICITY
2422 EV_P;
2423 #endif
2424 WL head;
2425 } ANSIG;
2426
2427 static ANSIG signals [EV_NSIG - 1];
2428
2429 /*****************************************************************************/
2430
2431 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2432
2433 noinline ecb_cold
2434 static void
2435 evpipe_init (EV_P)
2436 {
2437 if (!ev_is_active (&pipe_w))
2438 {
2439 int fds [2];
2440
2441 # if EV_USE_EVENTFD
2442 fds [0] = -1;
2443 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2444 if (fds [1] < 0 && errno == EINVAL)
2445 fds [1] = eventfd (0, 0);
2446
2447 if (fds [1] < 0)
2448 # endif
2449 {
2450 while (pipe (fds))
2451 ev_syserr ("(libev) error creating signal/async pipe");
2452
2453 fd_intern (fds [0]);
2454 }
2455
2456 evpipe [0] = fds [0];
2457
2458 if (evpipe [1] < 0)
2459 evpipe [1] = fds [1]; /* first call, set write fd */
2460 else
2461 {
2462 /* on subsequent calls, do not change evpipe [1] */
2463 /* so that evpipe_write can always rely on its value. */
2464 /* this branch does not do anything sensible on windows, */
2465 /* so must not be executed on windows */
2466
2467 dup2 (fds [1], evpipe [1]);
2468 close (fds [1]);
2469 }
2470
2471 fd_intern (evpipe [1]);
2472
2473 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2474 ev_io_start (EV_A_ &pipe_w);
2475 ev_unref (EV_A); /* watcher should not keep loop alive */
2476 }
2477 }
2478
2479 inline_speed void
2480 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2481 {
2482 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2483
2484 if (expect_true (*flag))
2485 return;
2486
2487 *flag = 1;
2488 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2489
2490 pipe_write_skipped = 1;
2491
2492 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2493
2494 if (pipe_write_wanted)
2495 {
2496 int old_errno;
2497
2498 pipe_write_skipped = 0;
2499 ECB_MEMORY_FENCE_RELEASE;
2500
2501 old_errno = errno; /* save errno because write will clobber it */
2502
2503 #if EV_USE_EVENTFD
2504 if (evpipe [0] < 0)
2505 {
2506 uint64_t counter = 1;
2507 write (evpipe [1], &counter, sizeof (uint64_t));
2508 }
2509 else
2510 #endif
2511 {
2512 #ifdef _WIN32
2513 WSABUF buf;
2514 DWORD sent;
2515 buf.buf = (char *)&buf;
2516 buf.len = 1;
2517 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2518 #else
2519 write (evpipe [1], &(evpipe [1]), 1);
2520 #endif
2521 }
2522
2523 errno = old_errno;
2524 }
2525 }
2526
2527 /* called whenever the libev signal pipe */
2528 /* got some events (signal, async) */
2529 static void
2530 pipecb (EV_P_ ev_io *iow, int revents)
2531 {
2532 int i;
2533
2534 if (revents & EV_READ)
2535 {
2536 #if EV_USE_EVENTFD
2537 if (evpipe [0] < 0)
2538 {
2539 uint64_t counter;
2540 read (evpipe [1], &counter, sizeof (uint64_t));
2541 }
2542 else
2543 #endif
2544 {
2545 char dummy[4];
2546 #ifdef _WIN32
2547 WSABUF buf;
2548 DWORD recvd;
2549 DWORD flags = 0;
2550 buf.buf = dummy;
2551 buf.len = sizeof (dummy);
2552 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2553 #else
2554 read (evpipe [0], &dummy, sizeof (dummy));
2555 #endif
2556 }
2557 }
2558
2559 pipe_write_skipped = 0;
2560
2561 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2562
2563 #if EV_SIGNAL_ENABLE
2564 if (sig_pending)
2565 {
2566 sig_pending = 0;
2567
2568 ECB_MEMORY_FENCE;
2569
2570 for (i = EV_NSIG - 1; i--; )
2571 if (expect_false (signals [i].pending))
2572 ev_feed_signal_event (EV_A_ i + 1);
2573 }
2574 #endif
2575
2576 #if EV_ASYNC_ENABLE
2577 if (async_pending)
2578 {
2579 async_pending = 0;
2580
2581 ECB_MEMORY_FENCE;
2582
2583 for (i = asynccnt; i--; )
2584 if (asyncs [i]->sent)
2585 {
2586 asyncs [i]->sent = 0;
2587 ECB_MEMORY_FENCE_RELEASE;
2588 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2589 }
2590 }
2591 #endif
2592 }
2593
2594 /*****************************************************************************/
2595
2596 void
2597 ev_feed_signal (int signum) EV_NOEXCEPT
2598 {
2599 #if EV_MULTIPLICITY
2600 EV_P;
2601 ECB_MEMORY_FENCE_ACQUIRE;
2602 EV_A = signals [signum - 1].loop;
2603
2604 if (!EV_A)
2605 return;
2606 #endif
2607
2608 signals [signum - 1].pending = 1;
2609 evpipe_write (EV_A_ &sig_pending);
2610 }
2611
2612 static void
2613 ev_sighandler (int signum)
2614 {
2615 #ifdef _WIN32
2616 signal (signum, ev_sighandler);
2617 #endif
2618
2619 ev_feed_signal (signum);
2620 }
2621
2622 noinline
2623 void
2624 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2625 {
2626 WL w;
2627
2628 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2629 return;
2630
2631 --signum;
2632
2633 #if EV_MULTIPLICITY
2634 /* it is permissible to try to feed a signal to the wrong loop */
2635 /* or, likely more useful, feeding a signal nobody is waiting for */
2636
2637 if (expect_false (signals [signum].loop != EV_A))
2638 return;
2639 #endif
2640
2641 signals [signum].pending = 0;
2642 ECB_MEMORY_FENCE_RELEASE;
2643
2644 for (w = signals [signum].head; w; w = w->next)
2645 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2646 }
2647
2648 #if EV_USE_SIGNALFD
2649 static void
2650 sigfdcb (EV_P_ ev_io *iow, int revents)
2651 {
2652 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2653
2654 for (;;)
2655 {
2656 ssize_t res = read (sigfd, si, sizeof (si));
2657
2658 /* not ISO-C, as res might be -1, but works with SuS */
2659 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2660 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2661
2662 if (res < (ssize_t)sizeof (si))
2663 break;
2664 }
2665 }
2666 #endif
2667
2668 #endif
2669
2670 /*****************************************************************************/
2671
2672 #if EV_CHILD_ENABLE
2673 static WL childs [EV_PID_HASHSIZE];
2674
2675 static ev_signal childev;
2676
2677 #ifndef WIFCONTINUED
2678 # define WIFCONTINUED(status) 0
2679 #endif
2680
2681 /* handle a single child status event */
2682 inline_speed void
2683 child_reap (EV_P_ int chain, int pid, int status)
2684 {
2685 ev_child *w;
2686 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2687
2688 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2689 {
2690 if ((w->pid == pid || !w->pid)
2691 && (!traced || (w->flags & 1)))
2692 {
2693 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2694 w->rpid = pid;
2695 w->rstatus = status;
2696 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2697 }
2698 }
2699 }
2700
2701 #ifndef WCONTINUED
2702 # define WCONTINUED 0
2703 #endif
2704
2705 /* called on sigchld etc., calls waitpid */
2706 static void
2707 childcb (EV_P_ ev_signal *sw, int revents)
2708 {
2709 int pid, status;
2710
2711 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2712 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2713 if (!WCONTINUED
2714 || errno != EINVAL
2715 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2716 return;
2717
2718 /* make sure we are called again until all children have been reaped */
2719 /* we need to do it this way so that the callback gets called before we continue */
2720 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2721
2722 child_reap (EV_A_ pid, pid, status);
2723 if ((EV_PID_HASHSIZE) > 1)
2724 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2725 }
2726
2727 #endif
2728
2729 /*****************************************************************************/
2730
2731 #if EV_USE_IOCP
2732 # include "ev_iocp.c"
2733 #endif
2734 #if EV_USE_PORT
2735 # include "ev_port.c"
2736 #endif
2737 #if EV_USE_KQUEUE
2738 # include "ev_kqueue.c"
2739 #endif
2740 #if EV_USE_EPOLL
2741 # include "ev_epoll.c"
2742 #endif
2743 #if EV_USE_LINUXAIO
2744 # include "ev_linuxaio.c"
2745 #endif
2746 #if EV_USE_POLL
2747 # include "ev_poll.c"
2748 #endif
2749 #if EV_USE_SELECT
2750 # include "ev_select.c"
2751 #endif
2752
2753 ecb_cold int
2754 ev_version_major (void) EV_NOEXCEPT
2755 {
2756 return EV_VERSION_MAJOR;
2757 }
2758
2759 ecb_cold int
2760 ev_version_minor (void) EV_NOEXCEPT
2761 {
2762 return EV_VERSION_MINOR;
2763 }
2764
2765 /* return true if we are running with elevated privileges and should ignore env variables */
2766 inline_size ecb_cold int
2767 enable_secure (void)
2768 {
2769 #ifdef _WIN32
2770 return 0;
2771 #else
2772 return getuid () != geteuid ()
2773 || getgid () != getegid ();
2774 #endif
2775 }
2776
2777 ecb_cold
2778 unsigned int
2779 ev_supported_backends (void) EV_NOEXCEPT
2780 {
2781 unsigned int flags = 0;
2782
2783 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2784 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2785 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2786 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2787 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2788 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2789
2790 return flags;
2791 }
2792
2793 ecb_cold
2794 unsigned int
2795 ev_recommended_backends (void) EV_NOEXCEPT
2796 {
2797 unsigned int flags = ev_supported_backends ();
2798
2799 #ifndef __NetBSD__
2800 /* kqueue is borked on everything but netbsd apparently */
2801 /* it usually doesn't work correctly on anything but sockets and pipes */
2802 flags &= ~EVBACKEND_KQUEUE;
2803 #endif
2804 #ifdef __APPLE__
2805 /* only select works correctly on that "unix-certified" platform */
2806 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2807 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2808 #endif
2809 #ifdef __FreeBSD__
2810 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2811 #endif
2812
2813 /* TODO: linuxaio is very experimental */
2814 #if !EV_RECOMMEND_LINUXAIO
2815 flags &= ~EVBACKEND_LINUXAIO;
2816 #endif
2817
2818 return flags;
2819 }
2820
2821 ecb_cold
2822 unsigned int
2823 ev_embeddable_backends (void) EV_NOEXCEPT
2824 {
2825 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2826
2827 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2828 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2829 flags &= ~EVBACKEND_EPOLL;
2830
2831 return flags;
2832 }
2833
2834 unsigned int
2835 ev_backend (EV_P) EV_NOEXCEPT
2836 {
2837 return backend;
2838 }
2839
2840 #if EV_FEATURE_API
2841 unsigned int
2842 ev_iteration (EV_P) EV_NOEXCEPT
2843 {
2844 return loop_count;
2845 }
2846
2847 unsigned int
2848 ev_depth (EV_P) EV_NOEXCEPT
2849 {
2850 return loop_depth;
2851 }
2852
2853 void
2854 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2855 {
2856 io_blocktime = interval;
2857 }
2858
2859 void
2860 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2861 {
2862 timeout_blocktime = interval;
2863 }
2864
2865 void
2866 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2867 {
2868 userdata = data;
2869 }
2870
2871 void *
2872 ev_userdata (EV_P) EV_NOEXCEPT
2873 {
2874 return userdata;
2875 }
2876
2877 void
2878 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2879 {
2880 invoke_cb = invoke_pending_cb;
2881 }
2882
2883 void
2884 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2885 {
2886 release_cb = release;
2887 acquire_cb = acquire;
2888 }
2889 #endif
2890
2891 /* initialise a loop structure, must be zero-initialised */
2892 noinline ecb_cold
2893 static void
2894 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2895 {
2896 if (!backend)
2897 {
2898 origflags = flags;
2899
2900 #if EV_USE_REALTIME
2901 if (!have_realtime)
2902 {
2903 struct timespec ts;
2904
2905 if (!clock_gettime (CLOCK_REALTIME, &ts))
2906 have_realtime = 1;
2907 }
2908 #endif
2909
2910 #if EV_USE_MONOTONIC
2911 if (!have_monotonic)
2912 {
2913 struct timespec ts;
2914
2915 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2916 have_monotonic = 1;
2917 }
2918 #endif
2919
2920 /* pid check not overridable via env */
2921 #ifndef _WIN32
2922 if (flags & EVFLAG_FORKCHECK)
2923 curpid = getpid ();
2924 #endif
2925
2926 if (!(flags & EVFLAG_NOENV)
2927 && !enable_secure ()
2928 && getenv ("LIBEV_FLAGS"))
2929 flags = atoi (getenv ("LIBEV_FLAGS"));
2930
2931 ev_rt_now = ev_time ();
2932 mn_now = get_clock ();
2933 now_floor = mn_now;
2934 rtmn_diff = ev_rt_now - mn_now;
2935 #if EV_FEATURE_API
2936 invoke_cb = ev_invoke_pending;
2937 #endif
2938
2939 io_blocktime = 0.;
2940 timeout_blocktime = 0.;
2941 backend = 0;
2942 backend_fd = -1;
2943 sig_pending = 0;
2944 #if EV_ASYNC_ENABLE
2945 async_pending = 0;
2946 #endif
2947 pipe_write_skipped = 0;
2948 pipe_write_wanted = 0;
2949 evpipe [0] = -1;
2950 evpipe [1] = -1;
2951 #if EV_USE_INOTIFY
2952 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2953 #endif
2954 #if EV_USE_SIGNALFD
2955 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2956 #endif
2957
2958 if (!(flags & EVBACKEND_MASK))
2959 flags |= ev_recommended_backends ();
2960
2961 #if EV_USE_IOCP
2962 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2963 #endif
2964 #if EV_USE_PORT
2965 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2966 #endif
2967 #if EV_USE_KQUEUE
2968 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
2969 #endif
2970 #if EV_USE_LINUXAIO
2971 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
2972 #endif
2973 #if EV_USE_EPOLL
2974 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2975 #endif
2976 #if EV_USE_POLL
2977 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2978 #endif
2979 #if EV_USE_SELECT
2980 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
2981 #endif
2982
2983 ev_prepare_init (&pending_w, pendingcb);
2984
2985 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2986 ev_init (&pipe_w, pipecb);
2987 ev_set_priority (&pipe_w, EV_MAXPRI);
2988 #endif
2989 }
2990 }
2991
2992 /* free up a loop structure */
2993 ecb_cold
2994 void
2995 ev_loop_destroy (EV_P)
2996 {
2997 int i;
2998
2999 #if EV_MULTIPLICITY
3000 /* mimic free (0) */
3001 if (!EV_A)
3002 return;
3003 #endif
3004
3005 #if EV_CLEANUP_ENABLE
3006 /* queue cleanup watchers (and execute them) */
3007 if (expect_false (cleanupcnt))
3008 {
3009 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3010 EV_INVOKE_PENDING;
3011 }
3012 #endif
3013
3014 #if EV_CHILD_ENABLE
3015 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3016 {
3017 ev_ref (EV_A); /* child watcher */
3018 ev_signal_stop (EV_A_ &childev);
3019 }
3020 #endif
3021
3022 if (ev_is_active (&pipe_w))
3023 {
3024 /*ev_ref (EV_A);*/
3025 /*ev_io_stop (EV_A_ &pipe_w);*/
3026
3027 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3028 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3029 }
3030
3031 #if EV_USE_SIGNALFD
3032 if (ev_is_active (&sigfd_w))
3033 close (sigfd);
3034 #endif
3035
3036 #if EV_USE_INOTIFY
3037 if (fs_fd >= 0)
3038 close (fs_fd);
3039 #endif
3040
3041 if (backend_fd >= 0)
3042 close (backend_fd);
3043
3044 #if EV_USE_IOCP
3045 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3046 #endif
3047 #if EV_USE_PORT
3048 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3049 #endif
3050 #if EV_USE_KQUEUE
3051 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3052 #endif
3053 #if EV_USE_LINUXAIO
3054 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3055 #endif
3056 #if EV_USE_EPOLL
3057 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3058 #endif
3059 #if EV_USE_POLL
3060 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3061 #endif
3062 #if EV_USE_SELECT
3063 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3064 #endif
3065
3066 for (i = NUMPRI; i--; )
3067 {
3068 array_free (pending, [i]);
3069 #if EV_IDLE_ENABLE
3070 array_free (idle, [i]);
3071 #endif
3072 }
3073
3074 ev_free (anfds); anfds = 0; anfdmax = 0;
3075
3076 /* have to use the microsoft-never-gets-it-right macro */
3077 array_free (rfeed, EMPTY);
3078 array_free (fdchange, EMPTY);
3079 array_free (timer, EMPTY);
3080 #if EV_PERIODIC_ENABLE
3081 array_free (periodic, EMPTY);
3082 #endif
3083 #if EV_FORK_ENABLE
3084 array_free (fork, EMPTY);
3085 #endif
3086 #if EV_CLEANUP_ENABLE
3087 array_free (cleanup, EMPTY);
3088 #endif
3089 array_free (prepare, EMPTY);
3090 array_free (check, EMPTY);
3091 #if EV_ASYNC_ENABLE
3092 array_free (async, EMPTY);
3093 #endif
3094
3095 backend = 0;
3096
3097 #if EV_MULTIPLICITY
3098 if (ev_is_default_loop (EV_A))
3099 #endif
3100 ev_default_loop_ptr = 0;
3101 #if EV_MULTIPLICITY
3102 else
3103 ev_free (EV_A);
3104 #endif
3105 }
3106
3107 #if EV_USE_INOTIFY
3108 inline_size void infy_fork (EV_P);
3109 #endif
3110
3111 inline_size void
3112 loop_fork (EV_P)
3113 {
3114 #if EV_USE_PORT
3115 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3116 #endif
3117 #if EV_USE_KQUEUE
3118 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3119 #endif
3120 #if EV_USE_LINUXAIO
3121 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3122 #endif
3123 #if EV_USE_EPOLL
3124 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3125 #endif
3126 #if EV_USE_INOTIFY
3127 infy_fork (EV_A);
3128 #endif
3129
3130 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3131 if (ev_is_active (&pipe_w) && postfork != 2)
3132 {
3133 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &pipe_w);
3137
3138 if (evpipe [0] >= 0)
3139 EV_WIN32_CLOSE_FD (evpipe [0]);
3140
3141 evpipe_init (EV_A);
3142 /* iterate over everything, in case we missed something before */
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145 #endif
3146
3147 postfork = 0;
3148 }
3149
3150 #if EV_MULTIPLICITY
3151
3152 ecb_cold
3153 struct ev_loop *
3154 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3155 {
3156 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3157
3158 memset (EV_A, 0, sizeof (struct ev_loop));
3159 loop_init (EV_A_ flags);
3160
3161 if (ev_backend (EV_A))
3162 return EV_A;
3163
3164 ev_free (EV_A);
3165 return 0;
3166 }
3167
3168 #endif /* multiplicity */
3169
3170 #if EV_VERIFY
3171 noinline ecb_cold
3172 static void
3173 verify_watcher (EV_P_ W w)
3174 {
3175 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3176
3177 if (w->pending)
3178 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3179 }
3180
3181 noinline ecb_cold
3182 static void
3183 verify_heap (EV_P_ ANHE *heap, int N)
3184 {
3185 int i;
3186
3187 for (i = HEAP0; i < N + HEAP0; ++i)
3188 {
3189 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3190 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3191 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3192
3193 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3194 }
3195 }
3196
3197 noinline ecb_cold
3198 static void
3199 array_verify (EV_P_ W *ws, int cnt)
3200 {
3201 while (cnt--)
3202 {
3203 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3204 verify_watcher (EV_A_ ws [cnt]);
3205 }
3206 }
3207 #endif
3208
3209 #if EV_FEATURE_API
3210 void ecb_cold
3211 ev_verify (EV_P) EV_NOEXCEPT
3212 {
3213 #if EV_VERIFY
3214 int i;
3215 WL w, w2;
3216
3217 assert (activecnt >= -1);
3218
3219 assert (fdchangemax >= fdchangecnt);
3220 for (i = 0; i < fdchangecnt; ++i)
3221 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3222
3223 assert (anfdmax >= 0);
3224 for (i = 0; i < anfdmax; ++i)
3225 {
3226 int j = 0;
3227
3228 for (w = w2 = anfds [i].head; w; w = w->next)
3229 {
3230 verify_watcher (EV_A_ (W)w);
3231
3232 if (j++ & 1)
3233 {
3234 assert (("libev: io watcher list contains a loop", w != w2));
3235 w2 = w2->next;
3236 }
3237
3238 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3239 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3240 }
3241 }
3242
3243 assert (timermax >= timercnt);
3244 verify_heap (EV_A_ timers, timercnt);
3245
3246 #if EV_PERIODIC_ENABLE
3247 assert (periodicmax >= periodiccnt);
3248 verify_heap (EV_A_ periodics, periodiccnt);
3249 #endif
3250
3251 for (i = NUMPRI; i--; )
3252 {
3253 assert (pendingmax [i] >= pendingcnt [i]);
3254 #if EV_IDLE_ENABLE
3255 assert (idleall >= 0);
3256 assert (idlemax [i] >= idlecnt [i]);
3257 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3258 #endif
3259 }
3260
3261 #if EV_FORK_ENABLE
3262 assert (forkmax >= forkcnt);
3263 array_verify (EV_A_ (W *)forks, forkcnt);
3264 #endif
3265
3266 #if EV_CLEANUP_ENABLE
3267 assert (cleanupmax >= cleanupcnt);
3268 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3269 #endif
3270
3271 #if EV_ASYNC_ENABLE
3272 assert (asyncmax >= asynccnt);
3273 array_verify (EV_A_ (W *)asyncs, asynccnt);
3274 #endif
3275
3276 #if EV_PREPARE_ENABLE
3277 assert (preparemax >= preparecnt);
3278 array_verify (EV_A_ (W *)prepares, preparecnt);
3279 #endif
3280
3281 #if EV_CHECK_ENABLE
3282 assert (checkmax >= checkcnt);
3283 array_verify (EV_A_ (W *)checks, checkcnt);
3284 #endif
3285
3286 # if 0
3287 #if EV_CHILD_ENABLE
3288 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3289 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3290 #endif
3291 # endif
3292 #endif
3293 }
3294 #endif
3295
3296 #if EV_MULTIPLICITY
3297 ecb_cold
3298 struct ev_loop *
3299 #else
3300 int
3301 #endif
3302 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3303 {
3304 if (!ev_default_loop_ptr)
3305 {
3306 #if EV_MULTIPLICITY
3307 EV_P = ev_default_loop_ptr = &default_loop_struct;
3308 #else
3309 ev_default_loop_ptr = 1;
3310 #endif
3311
3312 loop_init (EV_A_ flags);
3313
3314 if (ev_backend (EV_A))
3315 {
3316 #if EV_CHILD_ENABLE
3317 ev_signal_init (&childev, childcb, SIGCHLD);
3318 ev_set_priority (&childev, EV_MAXPRI);
3319 ev_signal_start (EV_A_ &childev);
3320 ev_unref (EV_A); /* child watcher should not keep loop alive */
3321 #endif
3322 }
3323 else
3324 ev_default_loop_ptr = 0;
3325 }
3326
3327 return ev_default_loop_ptr;
3328 }
3329
3330 void
3331 ev_loop_fork (EV_P) EV_NOEXCEPT
3332 {
3333 postfork = 1;
3334 }
3335
3336 /*****************************************************************************/
3337
3338 void
3339 ev_invoke (EV_P_ void *w, int revents)
3340 {
3341 EV_CB_INVOKE ((W)w, revents);
3342 }
3343
3344 unsigned int
3345 ev_pending_count (EV_P) EV_NOEXCEPT
3346 {
3347 int pri;
3348 unsigned int count = 0;
3349
3350 for (pri = NUMPRI; pri--; )
3351 count += pendingcnt [pri];
3352
3353 return count;
3354 }
3355
3356 noinline
3357 void
3358 ev_invoke_pending (EV_P)
3359 {
3360 pendingpri = NUMPRI;
3361
3362 do
3363 {
3364 --pendingpri;
3365
3366 /* pendingpri possibly gets modified in the inner loop */
3367 while (pendingcnt [pendingpri])
3368 {
3369 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3370
3371 p->w->pending = 0;
3372 EV_CB_INVOKE (p->w, p->events);
3373 EV_FREQUENT_CHECK;
3374 }
3375 }
3376 while (pendingpri);
3377 }
3378
3379 #if EV_IDLE_ENABLE
3380 /* make idle watchers pending. this handles the "call-idle */
3381 /* only when higher priorities are idle" logic */
3382 inline_size void
3383 idle_reify (EV_P)
3384 {
3385 if (expect_false (idleall))
3386 {
3387 int pri;
3388
3389 for (pri = NUMPRI; pri--; )
3390 {
3391 if (pendingcnt [pri])
3392 break;
3393
3394 if (idlecnt [pri])
3395 {
3396 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3397 break;
3398 }
3399 }
3400 }
3401 }
3402 #endif
3403
3404 /* make timers pending */
3405 inline_size void
3406 timers_reify (EV_P)
3407 {
3408 EV_FREQUENT_CHECK;
3409
3410 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3411 {
3412 do
3413 {
3414 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3415
3416 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3417
3418 /* first reschedule or stop timer */
3419 if (w->repeat)
3420 {
3421 ev_at (w) += w->repeat;
3422 if (ev_at (w) < mn_now)
3423 ev_at (w) = mn_now;
3424
3425 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3426
3427 ANHE_at_cache (timers [HEAP0]);
3428 downheap (timers, timercnt, HEAP0);
3429 }
3430 else
3431 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3432
3433 EV_FREQUENT_CHECK;
3434 feed_reverse (EV_A_ (W)w);
3435 }
3436 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3437
3438 feed_reverse_done (EV_A_ EV_TIMER);
3439 }
3440 }
3441
3442 #if EV_PERIODIC_ENABLE
3443
3444 noinline
3445 static void
3446 periodic_recalc (EV_P_ ev_periodic *w)
3447 {
3448 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3449 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3450
3451 /* the above almost always errs on the low side */
3452 while (at <= ev_rt_now)
3453 {
3454 ev_tstamp nat = at + w->interval;
3455
3456 /* when resolution fails us, we use ev_rt_now */
3457 if (expect_false (nat == at))
3458 {
3459 at = ev_rt_now;
3460 break;
3461 }
3462
3463 at = nat;
3464 }
3465
3466 ev_at (w) = at;
3467 }
3468
3469 /* make periodics pending */
3470 inline_size void
3471 periodics_reify (EV_P)
3472 {
3473 EV_FREQUENT_CHECK;
3474
3475 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3476 {
3477 do
3478 {
3479 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3480
3481 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3482
3483 /* first reschedule or stop timer */
3484 if (w->reschedule_cb)
3485 {
3486 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3487
3488 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3489
3490 ANHE_at_cache (periodics [HEAP0]);
3491 downheap (periodics, periodiccnt, HEAP0);
3492 }
3493 else if (w->interval)
3494 {
3495 periodic_recalc (EV_A_ w);
3496 ANHE_at_cache (periodics [HEAP0]);
3497 downheap (periodics, periodiccnt, HEAP0);
3498 }
3499 else
3500 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3501
3502 EV_FREQUENT_CHECK;
3503 feed_reverse (EV_A_ (W)w);
3504 }
3505 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3506
3507 feed_reverse_done (EV_A_ EV_PERIODIC);
3508 }
3509 }
3510
3511 /* simply recalculate all periodics */
3512 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3513 noinline ecb_cold
3514 static void
3515 periodics_reschedule (EV_P)
3516 {
3517 int i;
3518
3519 /* adjust periodics after time jump */
3520 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3521 {
3522 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3523
3524 if (w->reschedule_cb)
3525 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3526 else if (w->interval)
3527 periodic_recalc (EV_A_ w);
3528
3529 ANHE_at_cache (periodics [i]);
3530 }
3531
3532 reheap (periodics, periodiccnt);
3533 }
3534 #endif
3535
3536 /* adjust all timers by a given offset */
3537 noinline ecb_cold
3538 static void
3539 timers_reschedule (EV_P_ ev_tstamp adjust)
3540 {
3541 int i;
3542
3543 for (i = 0; i < timercnt; ++i)
3544 {
3545 ANHE *he = timers + i + HEAP0;
3546 ANHE_w (*he)->at += adjust;
3547 ANHE_at_cache (*he);
3548 }
3549 }
3550
3551 /* fetch new monotonic and realtime times from the kernel */
3552 /* also detect if there was a timejump, and act accordingly */
3553 inline_speed void
3554 time_update (EV_P_ ev_tstamp max_block)
3555 {
3556 #if EV_USE_MONOTONIC
3557 if (expect_true (have_monotonic))
3558 {
3559 int i;
3560 ev_tstamp odiff = rtmn_diff;
3561
3562 mn_now = get_clock ();
3563
3564 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3565 /* interpolate in the meantime */
3566 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3567 {
3568 ev_rt_now = rtmn_diff + mn_now;
3569 return;
3570 }
3571
3572 now_floor = mn_now;
3573 ev_rt_now = ev_time ();
3574
3575 /* loop a few times, before making important decisions.
3576 * on the choice of "4": one iteration isn't enough,
3577 * in case we get preempted during the calls to
3578 * ev_time and get_clock. a second call is almost guaranteed
3579 * to succeed in that case, though. and looping a few more times
3580 * doesn't hurt either as we only do this on time-jumps or
3581 * in the unlikely event of having been preempted here.
3582 */
3583 for (i = 4; --i; )
3584 {
3585 ev_tstamp diff;
3586 rtmn_diff = ev_rt_now - mn_now;
3587
3588 diff = odiff - rtmn_diff;
3589
3590 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3591 return; /* all is well */
3592
3593 ev_rt_now = ev_time ();
3594 mn_now = get_clock ();
3595 now_floor = mn_now;
3596 }
3597
3598 /* no timer adjustment, as the monotonic clock doesn't jump */
3599 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3600 # if EV_PERIODIC_ENABLE
3601 periodics_reschedule (EV_A);
3602 # endif
3603 }
3604 else
3605 #endif
3606 {
3607 ev_rt_now = ev_time ();
3608
3609 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3610 {
3611 /* adjust timers. this is easy, as the offset is the same for all of them */
3612 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3613 #if EV_PERIODIC_ENABLE
3614 periodics_reschedule (EV_A);
3615 #endif
3616 }
3617
3618 mn_now = ev_rt_now;
3619 }
3620 }
3621
3622 int
3623 ev_run (EV_P_ int flags)
3624 {
3625 #if EV_FEATURE_API
3626 ++loop_depth;
3627 #endif
3628
3629 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3630
3631 loop_done = EVBREAK_CANCEL;
3632
3633 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3634
3635 do
3636 {
3637 #if EV_VERIFY >= 2
3638 ev_verify (EV_A);
3639 #endif
3640
3641 #ifndef _WIN32
3642 if (expect_false (curpid)) /* penalise the forking check even more */
3643 if (expect_false (getpid () != curpid))
3644 {
3645 curpid = getpid ();
3646 postfork = 1;
3647 }
3648 #endif
3649
3650 #if EV_FORK_ENABLE
3651 /* we might have forked, so queue fork handlers */
3652 if (expect_false (postfork))
3653 if (forkcnt)
3654 {
3655 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3656 EV_INVOKE_PENDING;
3657 }
3658 #endif
3659
3660 #if EV_PREPARE_ENABLE
3661 /* queue prepare watchers (and execute them) */
3662 if (expect_false (preparecnt))
3663 {
3664 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3665 EV_INVOKE_PENDING;
3666 }
3667 #endif
3668
3669 if (expect_false (loop_done))
3670 break;
3671
3672 /* we might have forked, so reify kernel state if necessary */
3673 if (expect_false (postfork))
3674 loop_fork (EV_A);
3675
3676 /* update fd-related kernel structures */
3677 fd_reify (EV_A);
3678
3679 /* calculate blocking time */
3680 {
3681 ev_tstamp waittime = 0.;
3682 ev_tstamp sleeptime = 0.;
3683
3684 /* remember old timestamp for io_blocktime calculation */
3685 ev_tstamp prev_mn_now = mn_now;
3686
3687 /* update time to cancel out callback processing overhead */
3688 time_update (EV_A_ 1e100);
3689
3690 /* from now on, we want a pipe-wake-up */
3691 pipe_write_wanted = 1;
3692
3693 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3694
3695 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3696 {
3697 waittime = MAX_BLOCKTIME;
3698
3699 if (timercnt)
3700 {
3701 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3702 if (waittime > to) waittime = to;
3703 }
3704
3705 #if EV_PERIODIC_ENABLE
3706 if (periodiccnt)
3707 {
3708 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3709 if (waittime > to) waittime = to;
3710 }
3711 #endif
3712
3713 /* don't let timeouts decrease the waittime below timeout_blocktime */
3714 if (expect_false (waittime < timeout_blocktime))
3715 waittime = timeout_blocktime;
3716
3717 /* at this point, we NEED to wait, so we have to ensure */
3718 /* to pass a minimum nonzero value to the backend */
3719 if (expect_false (waittime < backend_mintime))
3720 waittime = backend_mintime;
3721
3722 /* extra check because io_blocktime is commonly 0 */
3723 if (expect_false (io_blocktime))
3724 {
3725 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3726
3727 if (sleeptime > waittime - backend_mintime)
3728 sleeptime = waittime - backend_mintime;
3729
3730 if (expect_true (sleeptime > 0.))
3731 {
3732 ev_sleep (sleeptime);
3733 waittime -= sleeptime;
3734 }
3735 }
3736 }
3737
3738 #if EV_FEATURE_API
3739 ++loop_count;
3740 #endif
3741 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3742 backend_poll (EV_A_ waittime);
3743 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3744
3745 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3746
3747 ECB_MEMORY_FENCE_ACQUIRE;
3748 if (pipe_write_skipped)
3749 {
3750 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3751 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3752 }
3753
3754 /* update ev_rt_now, do magic */
3755 time_update (EV_A_ waittime + sleeptime);
3756 }
3757
3758 /* queue pending timers and reschedule them */
3759 timers_reify (EV_A); /* relative timers called last */
3760 #if EV_PERIODIC_ENABLE
3761 periodics_reify (EV_A); /* absolute timers called first */
3762 #endif
3763
3764 #if EV_IDLE_ENABLE
3765 /* queue idle watchers unless other events are pending */
3766 idle_reify (EV_A);
3767 #endif
3768
3769 #if EV_CHECK_ENABLE
3770 /* queue check watchers, to be executed first */
3771 if (expect_false (checkcnt))
3772 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3773 #endif
3774
3775 EV_INVOKE_PENDING;
3776 }
3777 while (expect_true (
3778 activecnt
3779 && !loop_done
3780 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3781 ));
3782
3783 if (loop_done == EVBREAK_ONE)
3784 loop_done = EVBREAK_CANCEL;
3785
3786 #if EV_FEATURE_API
3787 --loop_depth;
3788 #endif
3789
3790 return activecnt;
3791 }
3792
3793 void
3794 ev_break (EV_P_ int how) EV_NOEXCEPT
3795 {
3796 loop_done = how;
3797 }
3798
3799 void
3800 ev_ref (EV_P) EV_NOEXCEPT
3801 {
3802 ++activecnt;
3803 }
3804
3805 void
3806 ev_unref (EV_P) EV_NOEXCEPT
3807 {
3808 --activecnt;
3809 }
3810
3811 void
3812 ev_now_update (EV_P) EV_NOEXCEPT
3813 {
3814 time_update (EV_A_ 1e100);
3815 }
3816
3817 void
3818 ev_suspend (EV_P) EV_NOEXCEPT
3819 {
3820 ev_now_update (EV_A);
3821 }
3822
3823 void
3824 ev_resume (EV_P) EV_NOEXCEPT
3825 {
3826 ev_tstamp mn_prev = mn_now;
3827
3828 ev_now_update (EV_A);
3829 timers_reschedule (EV_A_ mn_now - mn_prev);
3830 #if EV_PERIODIC_ENABLE
3831 /* TODO: really do this? */
3832 periodics_reschedule (EV_A);
3833 #endif
3834 }
3835
3836 /*****************************************************************************/
3837 /* singly-linked list management, used when the expected list length is short */
3838
3839 inline_size void
3840 wlist_add (WL *head, WL elem)
3841 {
3842 elem->next = *head;
3843 *head = elem;
3844 }
3845
3846 inline_size void
3847 wlist_del (WL *head, WL elem)
3848 {
3849 while (*head)
3850 {
3851 if (expect_true (*head == elem))
3852 {
3853 *head = elem->next;
3854 break;
3855 }
3856
3857 head = &(*head)->next;
3858 }
3859 }
3860
3861 /* internal, faster, version of ev_clear_pending */
3862 inline_speed void
3863 clear_pending (EV_P_ W w)
3864 {
3865 if (w->pending)
3866 {
3867 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3868 w->pending = 0;
3869 }
3870 }
3871
3872 int
3873 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3874 {
3875 W w_ = (W)w;
3876 int pending = w_->pending;
3877
3878 if (expect_true (pending))
3879 {
3880 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3881 p->w = (W)&pending_w;
3882 w_->pending = 0;
3883 return p->events;
3884 }
3885 else
3886 return 0;
3887 }
3888
3889 inline_size void
3890 pri_adjust (EV_P_ W w)
3891 {
3892 int pri = ev_priority (w);
3893 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3894 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3895 ev_set_priority (w, pri);
3896 }
3897
3898 inline_speed void
3899 ev_start (EV_P_ W w, int active)
3900 {
3901 pri_adjust (EV_A_ w);
3902 w->active = active;
3903 ev_ref (EV_A);
3904 }
3905
3906 inline_size void
3907 ev_stop (EV_P_ W w)
3908 {
3909 ev_unref (EV_A);
3910 w->active = 0;
3911 }
3912
3913 /*****************************************************************************/
3914
3915 noinline
3916 void
3917 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
3918 {
3919 int fd = w->fd;
3920
3921 if (expect_false (ev_is_active (w)))
3922 return;
3923
3924 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3925 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3926
3927 #if EV_VERIFY >= 2
3928 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
3929 #endif
3930 EV_FREQUENT_CHECK;
3931
3932 ev_start (EV_A_ (W)w, 1);
3933 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
3934 wlist_add (&anfds[fd].head, (WL)w);
3935
3936 /* common bug, apparently */
3937 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3938
3939 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3940 w->events &= ~EV__IOFDSET;
3941
3942 EV_FREQUENT_CHECK;
3943 }
3944
3945 noinline
3946 void
3947 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
3948 {
3949 clear_pending (EV_A_ (W)w);
3950 if (expect_false (!ev_is_active (w)))
3951 return;
3952
3953 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3954
3955 #if EV_VERIFY >= 2
3956 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
3957 #endif
3958 EV_FREQUENT_CHECK;
3959
3960 wlist_del (&anfds[w->fd].head, (WL)w);
3961 ev_stop (EV_A_ (W)w);
3962
3963 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3964
3965 EV_FREQUENT_CHECK;
3966 }
3967
3968 noinline
3969 void
3970 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
3971 {
3972 if (expect_false (ev_is_active (w)))
3973 return;
3974
3975 ev_at (w) += mn_now;
3976
3977 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3978
3979 EV_FREQUENT_CHECK;
3980
3981 ++timercnt;
3982 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3983 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
3984 ANHE_w (timers [ev_active (w)]) = (WT)w;
3985 ANHE_at_cache (timers [ev_active (w)]);
3986 upheap (timers, ev_active (w));
3987
3988 EV_FREQUENT_CHECK;
3989
3990 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3991 }
3992
3993 noinline
3994 void
3995 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
3996 {
3997 clear_pending (EV_A_ (W)w);
3998 if (expect_false (!ev_is_active (w)))
3999 return;
4000
4001 EV_FREQUENT_CHECK;
4002
4003 {
4004 int active = ev_active (w);
4005
4006 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4007
4008 --timercnt;
4009
4010 if (expect_true (active < timercnt + HEAP0))
4011 {
4012 timers [active] = timers [timercnt + HEAP0];
4013 adjustheap (timers, timercnt, active);
4014 }
4015 }
4016
4017 ev_at (w) -= mn_now;
4018
4019 ev_stop (EV_A_ (W)w);
4020
4021 EV_FREQUENT_CHECK;
4022 }
4023
4024 noinline
4025 void
4026 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4027 {
4028 EV_FREQUENT_CHECK;
4029
4030 clear_pending (EV_A_ (W)w);
4031
4032 if (ev_is_active (w))
4033 {
4034 if (w->repeat)
4035 {
4036 ev_at (w) = mn_now + w->repeat;
4037 ANHE_at_cache (timers [ev_active (w)]);
4038 adjustheap (timers, timercnt, ev_active (w));
4039 }
4040 else
4041 ev_timer_stop (EV_A_ w);
4042 }
4043 else if (w->repeat)
4044 {
4045 ev_at (w) = w->repeat;
4046 ev_timer_start (EV_A_ w);
4047 }
4048
4049 EV_FREQUENT_CHECK;
4050 }
4051
4052 ev_tstamp
4053 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4054 {
4055 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4056 }
4057
4058 #if EV_PERIODIC_ENABLE
4059 noinline
4060 void
4061 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4062 {
4063 if (expect_false (ev_is_active (w)))
4064 return;
4065
4066 if (w->reschedule_cb)
4067 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4068 else if (w->interval)
4069 {
4070 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4071 periodic_recalc (EV_A_ w);
4072 }
4073 else
4074 ev_at (w) = w->offset;
4075
4076 EV_FREQUENT_CHECK;
4077
4078 ++periodiccnt;
4079 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4080 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4081 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4082 ANHE_at_cache (periodics [ev_active (w)]);
4083 upheap (periodics, ev_active (w));
4084
4085 EV_FREQUENT_CHECK;
4086
4087 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4088 }
4089
4090 noinline
4091 void
4092 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4093 {
4094 clear_pending (EV_A_ (W)w);
4095 if (expect_false (!ev_is_active (w)))
4096 return;
4097
4098 EV_FREQUENT_CHECK;
4099
4100 {
4101 int active = ev_active (w);
4102
4103 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4104
4105 --periodiccnt;
4106
4107 if (expect_true (active < periodiccnt + HEAP0))
4108 {
4109 periodics [active] = periodics [periodiccnt + HEAP0];
4110 adjustheap (periodics, periodiccnt, active);
4111 }
4112 }
4113
4114 ev_stop (EV_A_ (W)w);
4115
4116 EV_FREQUENT_CHECK;
4117 }
4118
4119 noinline
4120 void
4121 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4122 {
4123 /* TODO: use adjustheap and recalculation */
4124 ev_periodic_stop (EV_A_ w);
4125 ev_periodic_start (EV_A_ w);
4126 }
4127 #endif
4128
4129 #ifndef SA_RESTART
4130 # define SA_RESTART 0
4131 #endif
4132
4133 #if EV_SIGNAL_ENABLE
4134
4135 noinline
4136 void
4137 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4138 {
4139 if (expect_false (ev_is_active (w)))
4140 return;
4141
4142 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4143
4144 #if EV_MULTIPLICITY
4145 assert (("libev: a signal must not be attached to two different loops",
4146 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4147
4148 signals [w->signum - 1].loop = EV_A;
4149 ECB_MEMORY_FENCE_RELEASE;
4150 #endif
4151
4152 EV_FREQUENT_CHECK;
4153
4154 #if EV_USE_SIGNALFD
4155 if (sigfd == -2)
4156 {
4157 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4158 if (sigfd < 0 && errno == EINVAL)
4159 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4160
4161 if (sigfd >= 0)
4162 {
4163 fd_intern (sigfd); /* doing it twice will not hurt */
4164
4165 sigemptyset (&sigfd_set);
4166
4167 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4168 ev_set_priority (&sigfd_w, EV_MAXPRI);
4169 ev_io_start (EV_A_ &sigfd_w);
4170 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4171 }
4172 }
4173
4174 if (sigfd >= 0)
4175 {
4176 /* TODO: check .head */
4177 sigaddset (&sigfd_set, w->signum);
4178 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4179
4180 signalfd (sigfd, &sigfd_set, 0);
4181 }
4182 #endif
4183
4184 ev_start (EV_A_ (W)w, 1);
4185 wlist_add (&signals [w->signum - 1].head, (WL)w);
4186
4187 if (!((WL)w)->next)
4188 # if EV_USE_SIGNALFD
4189 if (sigfd < 0) /*TODO*/
4190 # endif
4191 {
4192 # ifdef _WIN32
4193 evpipe_init (EV_A);
4194
4195 signal (w->signum, ev_sighandler);
4196 # else
4197 struct sigaction sa;
4198
4199 evpipe_init (EV_A);
4200
4201 sa.sa_handler = ev_sighandler;
4202 sigfillset (&sa.sa_mask);
4203 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4204 sigaction (w->signum, &sa, 0);
4205
4206 if (origflags & EVFLAG_NOSIGMASK)
4207 {
4208 sigemptyset (&sa.sa_mask);
4209 sigaddset (&sa.sa_mask, w->signum);
4210 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4211 }
4212 #endif
4213 }
4214
4215 EV_FREQUENT_CHECK;
4216 }
4217
4218 noinline
4219 void
4220 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4221 {
4222 clear_pending (EV_A_ (W)w);
4223 if (expect_false (!ev_is_active (w)))
4224 return;
4225
4226 EV_FREQUENT_CHECK;
4227
4228 wlist_del (&signals [w->signum - 1].head, (WL)w);
4229 ev_stop (EV_A_ (W)w);
4230
4231 if (!signals [w->signum - 1].head)
4232 {
4233 #if EV_MULTIPLICITY
4234 signals [w->signum - 1].loop = 0; /* unattach from signal */
4235 #endif
4236 #if EV_USE_SIGNALFD
4237 if (sigfd >= 0)
4238 {
4239 sigset_t ss;
4240
4241 sigemptyset (&ss);
4242 sigaddset (&ss, w->signum);
4243 sigdelset (&sigfd_set, w->signum);
4244
4245 signalfd (sigfd, &sigfd_set, 0);
4246 sigprocmask (SIG_UNBLOCK, &ss, 0);
4247 }
4248 else
4249 #endif
4250 signal (w->signum, SIG_DFL);
4251 }
4252
4253 EV_FREQUENT_CHECK;
4254 }
4255
4256 #endif
4257
4258 #if EV_CHILD_ENABLE
4259
4260 void
4261 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4262 {
4263 #if EV_MULTIPLICITY
4264 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4265 #endif
4266 if (expect_false (ev_is_active (w)))
4267 return;
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, 1);
4272 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4273
4274 EV_FREQUENT_CHECK;
4275 }
4276
4277 void
4278 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4279 {
4280 clear_pending (EV_A_ (W)w);
4281 if (expect_false (!ev_is_active (w)))
4282 return;
4283
4284 EV_FREQUENT_CHECK;
4285
4286 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4287 ev_stop (EV_A_ (W)w);
4288
4289 EV_FREQUENT_CHECK;
4290 }
4291
4292 #endif
4293
4294 #if EV_STAT_ENABLE
4295
4296 # ifdef _WIN32
4297 # undef lstat
4298 # define lstat(a,b) _stati64 (a,b)
4299 # endif
4300
4301 #define DEF_STAT_INTERVAL 5.0074891
4302 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4303 #define MIN_STAT_INTERVAL 0.1074891
4304
4305 noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4306
4307 #if EV_USE_INOTIFY
4308
4309 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4310 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4311
4312 noinline
4313 static void
4314 infy_add (EV_P_ ev_stat *w)
4315 {
4316 w->wd = inotify_add_watch (fs_fd, w->path,
4317 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4318 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4319 | IN_DONT_FOLLOW | IN_MASK_ADD);
4320
4321 if (w->wd >= 0)
4322 {
4323 struct statfs sfs;
4324
4325 /* now local changes will be tracked by inotify, but remote changes won't */
4326 /* unless the filesystem is known to be local, we therefore still poll */
4327 /* also do poll on <2.6.25, but with normal frequency */
4328
4329 if (!fs_2625)
4330 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4331 else if (!statfs (w->path, &sfs)
4332 && (sfs.f_type == 0x1373 /* devfs */
4333 || sfs.f_type == 0x4006 /* fat */
4334 || sfs.f_type == 0x4d44 /* msdos */
4335 || sfs.f_type == 0xEF53 /* ext2/3 */
4336 || sfs.f_type == 0x72b6 /* jffs2 */
4337 || sfs.f_type == 0x858458f6 /* ramfs */
4338 || sfs.f_type == 0x5346544e /* ntfs */
4339 || sfs.f_type == 0x3153464a /* jfs */
4340 || sfs.f_type == 0x9123683e /* btrfs */
4341 || sfs.f_type == 0x52654973 /* reiser3 */
4342 || sfs.f_type == 0x01021994 /* tmpfs */
4343 || sfs.f_type == 0x58465342 /* xfs */))
4344 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4345 else
4346 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4347 }
4348 else
4349 {
4350 /* can't use inotify, continue to stat */
4351 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4352
4353 /* if path is not there, monitor some parent directory for speedup hints */
4354 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4355 /* but an efficiency issue only */
4356 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4357 {
4358 char path [4096];
4359 strcpy (path, w->path);
4360
4361 do
4362 {
4363 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4364 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4365
4366 char *pend = strrchr (path, '/');
4367
4368 if (!pend || pend == path)
4369 break;
4370
4371 *pend = 0;
4372 w->wd = inotify_add_watch (fs_fd, path, mask);
4373 }
4374 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4375 }
4376 }
4377
4378 if (w->wd >= 0)
4379 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4380
4381 /* now re-arm timer, if required */
4382 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4383 ev_timer_again (EV_A_ &w->timer);
4384 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4385 }
4386
4387 noinline
4388 static void
4389 infy_del (EV_P_ ev_stat *w)
4390 {
4391 int slot;
4392 int wd = w->wd;
4393
4394 if (wd < 0)
4395 return;
4396
4397 w->wd = -2;
4398 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4399 wlist_del (&fs_hash [slot].head, (WL)w);
4400
4401 /* remove this watcher, if others are watching it, they will rearm */
4402 inotify_rm_watch (fs_fd, wd);
4403 }
4404
4405 noinline
4406 static void
4407 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4408 {
4409 if (slot < 0)
4410 /* overflow, need to check for all hash slots */
4411 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4412 infy_wd (EV_A_ slot, wd, ev);
4413 else
4414 {
4415 WL w_;
4416
4417 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4418 {
4419 ev_stat *w = (ev_stat *)w_;
4420 w_ = w_->next; /* lets us remove this watcher and all before it */
4421
4422 if (w->wd == wd || wd == -1)
4423 {
4424 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4425 {
4426 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4427 w->wd = -1;
4428 infy_add (EV_A_ w); /* re-add, no matter what */
4429 }
4430
4431 stat_timer_cb (EV_A_ &w->timer, 0);
4432 }
4433 }
4434 }
4435 }
4436
4437 static void
4438 infy_cb (EV_P_ ev_io *w, int revents)
4439 {
4440 char buf [EV_INOTIFY_BUFSIZE];
4441 int ofs;
4442 int len = read (fs_fd, buf, sizeof (buf));
4443
4444 for (ofs = 0; ofs < len; )
4445 {
4446 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4447 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4448 ofs += sizeof (struct inotify_event) + ev->len;
4449 }
4450 }
4451
4452 inline_size ecb_cold
4453 void
4454 ev_check_2625 (EV_P)
4455 {
4456 /* kernels < 2.6.25 are borked
4457 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4458 */
4459 if (ev_linux_version () < 0x020619)
4460 return;
4461
4462 fs_2625 = 1;
4463 }
4464
4465 inline_size int
4466 infy_newfd (void)
4467 {
4468 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4469 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4470 if (fd >= 0)
4471 return fd;
4472 #endif
4473 return inotify_init ();
4474 }
4475
4476 inline_size void
4477 infy_init (EV_P)
4478 {
4479 if (fs_fd != -2)
4480 return;
4481
4482 fs_fd = -1;
4483
4484 ev_check_2625 (EV_A);
4485
4486 fs_fd = infy_newfd ();
4487
4488 if (fs_fd >= 0)
4489 {
4490 fd_intern (fs_fd);
4491 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4492 ev_set_priority (&fs_w, EV_MAXPRI);
4493 ev_io_start (EV_A_ &fs_w);
4494 ev_unref (EV_A);
4495 }
4496 }
4497
4498 inline_size void
4499 infy_fork (EV_P)
4500 {
4501 int slot;
4502
4503 if (fs_fd < 0)
4504 return;
4505
4506 ev_ref (EV_A);
4507 ev_io_stop (EV_A_ &fs_w);
4508 close (fs_fd);
4509 fs_fd = infy_newfd ();
4510
4511 if (fs_fd >= 0)
4512 {
4513 fd_intern (fs_fd);
4514 ev_io_set (&fs_w, fs_fd, EV_READ);
4515 ev_io_start (EV_A_ &fs_w);
4516 ev_unref (EV_A);
4517 }
4518
4519 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4520 {
4521 WL w_ = fs_hash [slot].head;
4522 fs_hash [slot].head = 0;
4523
4524 while (w_)
4525 {
4526 ev_stat *w = (ev_stat *)w_;
4527 w_ = w_->next; /* lets us add this watcher */
4528
4529 w->wd = -1;
4530
4531 if (fs_fd >= 0)
4532 infy_add (EV_A_ w); /* re-add, no matter what */
4533 else
4534 {
4535 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4536 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4537 ev_timer_again (EV_A_ &w->timer);
4538 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4539 }
4540 }
4541 }
4542 }
4543
4544 #endif
4545
4546 #ifdef _WIN32
4547 # define EV_LSTAT(p,b) _stati64 (p, b)
4548 #else
4549 # define EV_LSTAT(p,b) lstat (p, b)
4550 #endif
4551
4552 void
4553 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4554 {
4555 if (lstat (w->path, &w->attr) < 0)
4556 w->attr.st_nlink = 0;
4557 else if (!w->attr.st_nlink)
4558 w->attr.st_nlink = 1;
4559 }
4560
4561 noinline
4562 static void
4563 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4564 {
4565 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4566
4567 ev_statdata prev = w->attr;
4568 ev_stat_stat (EV_A_ w);
4569
4570 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4571 if (
4572 prev.st_dev != w->attr.st_dev
4573 || prev.st_ino != w->attr.st_ino
4574 || prev.st_mode != w->attr.st_mode
4575 || prev.st_nlink != w->attr.st_nlink
4576 || prev.st_uid != w->attr.st_uid
4577 || prev.st_gid != w->attr.st_gid
4578 || prev.st_rdev != w->attr.st_rdev
4579 || prev.st_size != w->attr.st_size
4580 || prev.st_atime != w->attr.st_atime
4581 || prev.st_mtime != w->attr.st_mtime
4582 || prev.st_ctime != w->attr.st_ctime
4583 ) {
4584 /* we only update w->prev on actual differences */
4585 /* in case we test more often than invoke the callback, */
4586 /* to ensure that prev is always different to attr */
4587 w->prev = prev;
4588
4589 #if EV_USE_INOTIFY
4590 if (fs_fd >= 0)
4591 {
4592 infy_del (EV_A_ w);
4593 infy_add (EV_A_ w);
4594 ev_stat_stat (EV_A_ w); /* avoid race... */
4595 }
4596 #endif
4597
4598 ev_feed_event (EV_A_ w, EV_STAT);
4599 }
4600 }
4601
4602 void
4603 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4604 {
4605 if (expect_false (ev_is_active (w)))
4606 return;
4607
4608 ev_stat_stat (EV_A_ w);
4609
4610 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4611 w->interval = MIN_STAT_INTERVAL;
4612
4613 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4614 ev_set_priority (&w->timer, ev_priority (w));
4615
4616 #if EV_USE_INOTIFY
4617 infy_init (EV_A);
4618
4619 if (fs_fd >= 0)
4620 infy_add (EV_A_ w);
4621 else
4622 #endif
4623 {
4624 ev_timer_again (EV_A_ &w->timer);
4625 ev_unref (EV_A);
4626 }
4627
4628 ev_start (EV_A_ (W)w, 1);
4629
4630 EV_FREQUENT_CHECK;
4631 }
4632
4633 void
4634 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4635 {
4636 clear_pending (EV_A_ (W)w);
4637 if (expect_false (!ev_is_active (w)))
4638 return;
4639
4640 EV_FREQUENT_CHECK;
4641
4642 #if EV_USE_INOTIFY
4643 infy_del (EV_A_ w);
4644 #endif
4645
4646 if (ev_is_active (&w->timer))
4647 {
4648 ev_ref (EV_A);
4649 ev_timer_stop (EV_A_ &w->timer);
4650 }
4651
4652 ev_stop (EV_A_ (W)w);
4653
4654 EV_FREQUENT_CHECK;
4655 }
4656 #endif
4657
4658 #if EV_IDLE_ENABLE
4659 void
4660 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4661 {
4662 if (expect_false (ev_is_active (w)))
4663 return;
4664
4665 pri_adjust (EV_A_ (W)w);
4666
4667 EV_FREQUENT_CHECK;
4668
4669 {
4670 int active = ++idlecnt [ABSPRI (w)];
4671
4672 ++idleall;
4673 ev_start (EV_A_ (W)w, active);
4674
4675 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4676 idles [ABSPRI (w)][active - 1] = w;
4677 }
4678
4679 EV_FREQUENT_CHECK;
4680 }
4681
4682 void
4683 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4684 {
4685 clear_pending (EV_A_ (W)w);
4686 if (expect_false (!ev_is_active (w)))
4687 return;
4688
4689 EV_FREQUENT_CHECK;
4690
4691 {
4692 int active = ev_active (w);
4693
4694 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4695 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4696
4697 ev_stop (EV_A_ (W)w);
4698 --idleall;
4699 }
4700
4701 EV_FREQUENT_CHECK;
4702 }
4703 #endif
4704
4705 #if EV_PREPARE_ENABLE
4706 void
4707 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4708 {
4709 if (expect_false (ev_is_active (w)))
4710 return;
4711
4712 EV_FREQUENT_CHECK;
4713
4714 ev_start (EV_A_ (W)w, ++preparecnt);
4715 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4716 prepares [preparecnt - 1] = w;
4717
4718 EV_FREQUENT_CHECK;
4719 }
4720
4721 void
4722 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4723 {
4724 clear_pending (EV_A_ (W)w);
4725 if (expect_false (!ev_is_active (w)))
4726 return;
4727
4728 EV_FREQUENT_CHECK;
4729
4730 {
4731 int active = ev_active (w);
4732
4733 prepares [active - 1] = prepares [--preparecnt];
4734 ev_active (prepares [active - 1]) = active;
4735 }
4736
4737 ev_stop (EV_A_ (W)w);
4738
4739 EV_FREQUENT_CHECK;
4740 }
4741 #endif
4742
4743 #if EV_CHECK_ENABLE
4744 void
4745 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4746 {
4747 if (expect_false (ev_is_active (w)))
4748 return;
4749
4750 EV_FREQUENT_CHECK;
4751
4752 ev_start (EV_A_ (W)w, ++checkcnt);
4753 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4754 checks [checkcnt - 1] = w;
4755
4756 EV_FREQUENT_CHECK;
4757 }
4758
4759 void
4760 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4761 {
4762 clear_pending (EV_A_ (W)w);
4763 if (expect_false (!ev_is_active (w)))
4764 return;
4765
4766 EV_FREQUENT_CHECK;
4767
4768 {
4769 int active = ev_active (w);
4770
4771 checks [active - 1] = checks [--checkcnt];
4772 ev_active (checks [active - 1]) = active;
4773 }
4774
4775 ev_stop (EV_A_ (W)w);
4776
4777 EV_FREQUENT_CHECK;
4778 }
4779 #endif
4780
4781 #if EV_EMBED_ENABLE
4782 noinline
4783 void
4784 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4785 {
4786 ev_run (w->other, EVRUN_NOWAIT);
4787 }
4788
4789 static void
4790 embed_io_cb (EV_P_ ev_io *io, int revents)
4791 {
4792 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4793
4794 if (ev_cb (w))
4795 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4796 else
4797 ev_run (w->other, EVRUN_NOWAIT);
4798 }
4799
4800 static void
4801 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4802 {
4803 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4804
4805 {
4806 EV_P = w->other;
4807
4808 while (fdchangecnt)
4809 {
4810 fd_reify (EV_A);
4811 ev_run (EV_A_ EVRUN_NOWAIT);
4812 }
4813 }
4814 }
4815
4816 static void
4817 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4818 {
4819 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4820
4821 ev_embed_stop (EV_A_ w);
4822
4823 {
4824 EV_P = w->other;
4825
4826 ev_loop_fork (EV_A);
4827 ev_run (EV_A_ EVRUN_NOWAIT);
4828 }
4829
4830 ev_embed_start (EV_A_ w);
4831 }
4832
4833 #if 0
4834 static void
4835 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4836 {
4837 ev_idle_stop (EV_A_ idle);
4838 }
4839 #endif
4840
4841 void
4842 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4843 {
4844 if (expect_false (ev_is_active (w)))
4845 return;
4846
4847 {
4848 EV_P = w->other;
4849 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4850 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4851 }
4852
4853 EV_FREQUENT_CHECK;
4854
4855 ev_set_priority (&w->io, ev_priority (w));
4856 ev_io_start (EV_A_ &w->io);
4857
4858 ev_prepare_init (&w->prepare, embed_prepare_cb);
4859 ev_set_priority (&w->prepare, EV_MINPRI);
4860 ev_prepare_start (EV_A_ &w->prepare);
4861
4862 ev_fork_init (&w->fork, embed_fork_cb);
4863 ev_fork_start (EV_A_ &w->fork);
4864
4865 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4866
4867 ev_start (EV_A_ (W)w, 1);
4868
4869 EV_FREQUENT_CHECK;
4870 }
4871
4872 void
4873 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4874 {
4875 clear_pending (EV_A_ (W)w);
4876 if (expect_false (!ev_is_active (w)))
4877 return;
4878
4879 EV_FREQUENT_CHECK;
4880
4881 ev_io_stop (EV_A_ &w->io);
4882 ev_prepare_stop (EV_A_ &w->prepare);
4883 ev_fork_stop (EV_A_ &w->fork);
4884
4885 ev_stop (EV_A_ (W)w);
4886
4887 EV_FREQUENT_CHECK;
4888 }
4889 #endif
4890
4891 #if EV_FORK_ENABLE
4892 void
4893 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4894 {
4895 if (expect_false (ev_is_active (w)))
4896 return;
4897
4898 EV_FREQUENT_CHECK;
4899
4900 ev_start (EV_A_ (W)w, ++forkcnt);
4901 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
4902 forks [forkcnt - 1] = w;
4903
4904 EV_FREQUENT_CHECK;
4905 }
4906
4907 void
4908 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4909 {
4910 clear_pending (EV_A_ (W)w);
4911 if (expect_false (!ev_is_active (w)))
4912 return;
4913
4914 EV_FREQUENT_CHECK;
4915
4916 {
4917 int active = ev_active (w);
4918
4919 forks [active - 1] = forks [--forkcnt];
4920 ev_active (forks [active - 1]) = active;
4921 }
4922
4923 ev_stop (EV_A_ (W)w);
4924
4925 EV_FREQUENT_CHECK;
4926 }
4927 #endif
4928
4929 #if EV_CLEANUP_ENABLE
4930 void
4931 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4932 {
4933 if (expect_false (ev_is_active (w)))
4934 return;
4935
4936 EV_FREQUENT_CHECK;
4937
4938 ev_start (EV_A_ (W)w, ++cleanupcnt);
4939 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
4940 cleanups [cleanupcnt - 1] = w;
4941
4942 /* cleanup watchers should never keep a refcount on the loop */
4943 ev_unref (EV_A);
4944 EV_FREQUENT_CHECK;
4945 }
4946
4947 void
4948 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4949 {
4950 clear_pending (EV_A_ (W)w);
4951 if (expect_false (!ev_is_active (w)))
4952 return;
4953
4954 EV_FREQUENT_CHECK;
4955 ev_ref (EV_A);
4956
4957 {
4958 int active = ev_active (w);
4959
4960 cleanups [active - 1] = cleanups [--cleanupcnt];
4961 ev_active (cleanups [active - 1]) = active;
4962 }
4963
4964 ev_stop (EV_A_ (W)w);
4965
4966 EV_FREQUENT_CHECK;
4967 }
4968 #endif
4969
4970 #if EV_ASYNC_ENABLE
4971 void
4972 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4973 {
4974 if (expect_false (ev_is_active (w)))
4975 return;
4976
4977 w->sent = 0;
4978
4979 evpipe_init (EV_A);
4980
4981 EV_FREQUENT_CHECK;
4982
4983 ev_start (EV_A_ (W)w, ++asynccnt);
4984 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
4985 asyncs [asynccnt - 1] = w;
4986
4987 EV_FREQUENT_CHECK;
4988 }
4989
4990 void
4991 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4992 {
4993 clear_pending (EV_A_ (W)w);
4994 if (expect_false (!ev_is_active (w)))
4995 return;
4996
4997 EV_FREQUENT_CHECK;
4998
4999 {
5000 int active = ev_active (w);
5001
5002 asyncs [active - 1] = asyncs [--asynccnt];
5003 ev_active (asyncs [active - 1]) = active;
5004 }
5005
5006 ev_stop (EV_A_ (W)w);
5007
5008 EV_FREQUENT_CHECK;
5009 }
5010
5011 void
5012 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5013 {
5014 w->sent = 1;
5015 evpipe_write (EV_A_ &async_pending);
5016 }
5017 #endif
5018
5019 /*****************************************************************************/
5020
5021 struct ev_once
5022 {
5023 ev_io io;
5024 ev_timer to;
5025 void (*cb)(int revents, void *arg);
5026 void *arg;
5027 };
5028
5029 static void
5030 once_cb (EV_P_ struct ev_once *once, int revents)
5031 {
5032 void (*cb)(int revents, void *arg) = once->cb;
5033 void *arg = once->arg;
5034
5035 ev_io_stop (EV_A_ &once->io);
5036 ev_timer_stop (EV_A_ &once->to);
5037 ev_free (once);
5038
5039 cb (revents, arg);
5040 }
5041
5042 static void
5043 once_cb_io (EV_P_ ev_io *w, int revents)
5044 {
5045 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5046
5047 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5048 }
5049
5050 static void
5051 once_cb_to (EV_P_ ev_timer *w, int revents)
5052 {
5053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5054
5055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5056 }
5057
5058 void
5059 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5060 {
5061 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5062
5063 once->cb = cb;
5064 once->arg = arg;
5065
5066 ev_init (&once->io, once_cb_io);
5067 if (fd >= 0)
5068 {
5069 ev_io_set (&once->io, fd, events);
5070 ev_io_start (EV_A_ &once->io);
5071 }
5072
5073 ev_init (&once->to, once_cb_to);
5074 if (timeout >= 0.)
5075 {
5076 ev_timer_set (&once->to, timeout, 0.);
5077 ev_timer_start (EV_A_ &once->to);
5078 }
5079 }
5080
5081 /*****************************************************************************/
5082
5083 #if EV_WALK_ENABLE
5084 ecb_cold
5085 void
5086 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5087 {
5088 int i, j;
5089 ev_watcher_list *wl, *wn;
5090
5091 if (types & (EV_IO | EV_EMBED))
5092 for (i = 0; i < anfdmax; ++i)
5093 for (wl = anfds [i].head; wl; )
5094 {
5095 wn = wl->next;
5096
5097 #if EV_EMBED_ENABLE
5098 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5099 {
5100 if (types & EV_EMBED)
5101 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5102 }
5103 else
5104 #endif
5105 #if EV_USE_INOTIFY
5106 if (ev_cb ((ev_io *)wl) == infy_cb)
5107 ;
5108 else
5109 #endif
5110 if ((ev_io *)wl != &pipe_w)
5111 if (types & EV_IO)
5112 cb (EV_A_ EV_IO, wl);
5113
5114 wl = wn;
5115 }
5116
5117 if (types & (EV_TIMER | EV_STAT))
5118 for (i = timercnt + HEAP0; i-- > HEAP0; )
5119 #if EV_STAT_ENABLE
5120 /*TODO: timer is not always active*/
5121 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5122 {
5123 if (types & EV_STAT)
5124 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5125 }
5126 else
5127 #endif
5128 if (types & EV_TIMER)
5129 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5130
5131 #if EV_PERIODIC_ENABLE
5132 if (types & EV_PERIODIC)
5133 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5134 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5135 #endif
5136
5137 #if EV_IDLE_ENABLE
5138 if (types & EV_IDLE)
5139 for (j = NUMPRI; j--; )
5140 for (i = idlecnt [j]; i--; )
5141 cb (EV_A_ EV_IDLE, idles [j][i]);
5142 #endif
5143
5144 #if EV_FORK_ENABLE
5145 if (types & EV_FORK)
5146 for (i = forkcnt; i--; )
5147 if (ev_cb (forks [i]) != embed_fork_cb)
5148 cb (EV_A_ EV_FORK, forks [i]);
5149 #endif
5150
5151 #if EV_ASYNC_ENABLE
5152 if (types & EV_ASYNC)
5153 for (i = asynccnt; i--; )
5154 cb (EV_A_ EV_ASYNC, asyncs [i]);
5155 #endif
5156
5157 #if EV_PREPARE_ENABLE
5158 if (types & EV_PREPARE)
5159 for (i = preparecnt; i--; )
5160 # if EV_EMBED_ENABLE
5161 if (ev_cb (prepares [i]) != embed_prepare_cb)
5162 # endif
5163 cb (EV_A_ EV_PREPARE, prepares [i]);
5164 #endif
5165
5166 #if EV_CHECK_ENABLE
5167 if (types & EV_CHECK)
5168 for (i = checkcnt; i--; )
5169 cb (EV_A_ EV_CHECK, checks [i]);
5170 #endif
5171
5172 #if EV_SIGNAL_ENABLE
5173 if (types & EV_SIGNAL)
5174 for (i = 0; i < EV_NSIG - 1; ++i)
5175 for (wl = signals [i].head; wl; )
5176 {
5177 wn = wl->next;
5178 cb (EV_A_ EV_SIGNAL, wl);
5179 wl = wn;
5180 }
5181 #endif
5182
5183 #if EV_CHILD_ENABLE
5184 if (types & EV_CHILD)
5185 for (i = (EV_PID_HASHSIZE); i--; )
5186 for (wl = childs [i]; wl; )
5187 {
5188 wn = wl->next;
5189 cb (EV_A_ EV_CHILD, wl);
5190 wl = wn;
5191 }
5192 #endif
5193 /* EV_STAT 0x00001000 /* stat data changed */
5194 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5195 }
5196 #endif
5197
5198 #if EV_MULTIPLICITY
5199 #include "ev_wrap.h"
5200 #endif
5201