ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.505
Committed: Wed Jul 10 14:25:35 2019 UTC (5 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.504: +7 -5 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130 # ifndef EV_USE_KQUEUE
131 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_KQUEUE
135 # define EV_USE_KQUEUE 0
136 # endif
137
138 # if HAVE_PORT_H && HAVE_PORT_CREATE
139 # ifndef EV_USE_PORT
140 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_PORT
144 # define EV_USE_PORT 0
145 # endif
146
147 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148 # ifndef EV_USE_INOTIFY
149 # define EV_USE_INOTIFY EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_INOTIFY
153 # define EV_USE_INOTIFY 0
154 # endif
155
156 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157 # ifndef EV_USE_SIGNALFD
158 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_SIGNALFD
162 # define EV_USE_SIGNALFD 0
163 # endif
164
165 # if HAVE_EVENTFD
166 # ifndef EV_USE_EVENTFD
167 # define EV_USE_EVENTFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_EVENTFD
171 # define EV_USE_EVENTFD 0
172 # endif
173
174 #endif
175
176 /* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184 #define _DARWIN_UNLIMITED_SELECT 1
185
186 #include <stdlib.h>
187 #include <string.h>
188 #include <fcntl.h>
189 #include <stddef.h>
190
191 #include <stdio.h>
192
193 #include <assert.h>
194 #include <errno.h>
195 #include <sys/types.h>
196 #include <time.h>
197 #include <limits.h>
198
199 #include <signal.h>
200
201 #ifdef EV_H
202 # include EV_H
203 #else
204 # include "ev.h"
205 #endif
206
207 #if EV_NO_THREADS
208 # undef EV_NO_SMP
209 # define EV_NO_SMP 1
210 # undef ECB_NO_THREADS
211 # define ECB_NO_THREADS 1
212 #endif
213 #if EV_NO_SMP
214 # undef EV_NO_SMP
215 # define ECB_NO_SMP 1
216 #endif
217
218 #ifndef _WIN32
219 # include <sys/time.h>
220 # include <sys/wait.h>
221 # include <unistd.h>
222 #else
223 # include <io.h>
224 # define WIN32_LEAN_AND_MEAN
225 # include <winsock2.h>
226 # include <windows.h>
227 # ifndef EV_SELECT_IS_WINSOCKET
228 # define EV_SELECT_IS_WINSOCKET 1
229 # endif
230 # undef EV_AVOID_STDIO
231 #endif
232
233 /* this block tries to deduce configuration from header-defined symbols and defaults */
234
235 /* try to deduce the maximum number of signals on this platform */
236 #if defined EV_NSIG
237 /* use what's provided */
238 #elif defined NSIG
239 # define EV_NSIG (NSIG)
240 #elif defined _NSIG
241 # define EV_NSIG (_NSIG)
242 #elif defined SIGMAX
243 # define EV_NSIG (SIGMAX+1)
244 #elif defined SIG_MAX
245 # define EV_NSIG (SIG_MAX+1)
246 #elif defined _SIG_MAX
247 # define EV_NSIG (_SIG_MAX+1)
248 #elif defined MAXSIG
249 # define EV_NSIG (MAXSIG+1)
250 #elif defined MAX_SIG
251 # define EV_NSIG (MAX_SIG+1)
252 #elif defined SIGARRAYSIZE
253 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 #elif defined _sys_nsig
255 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256 #else
257 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 #endif
259
260 #ifndef EV_USE_FLOOR
261 # define EV_USE_FLOOR 0
262 #endif
263
264 #ifndef EV_USE_CLOCK_SYSCALL
265 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 # else
268 # define EV_USE_CLOCK_SYSCALL 0
269 # endif
270 #endif
271
272 #if !(_POSIX_TIMERS > 0)
273 # ifndef EV_USE_MONOTONIC
274 # define EV_USE_MONOTONIC 0
275 # endif
276 # ifndef EV_USE_REALTIME
277 # define EV_USE_REALTIME 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_MONOTONIC
282 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 # else
285 # define EV_USE_MONOTONIC 0
286 # endif
287 #endif
288
289 #ifndef EV_USE_REALTIME
290 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 #endif
292
293 #ifndef EV_USE_NANOSLEEP
294 # if _POSIX_C_SOURCE >= 199309L
295 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 # else
297 # define EV_USE_NANOSLEEP 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_SELECT
302 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 #endif
304
305 #ifndef EV_USE_POLL
306 # ifdef _WIN32
307 # define EV_USE_POLL 0
308 # else
309 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 # endif
311 #endif
312
313 #ifndef EV_USE_EPOLL
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 # else
317 # define EV_USE_EPOLL 0
318 # endif
319 #endif
320
321 #ifndef EV_USE_KQUEUE
322 # define EV_USE_KQUEUE 0
323 #endif
324
325 #ifndef EV_USE_PORT
326 # define EV_USE_PORT 0
327 #endif
328
329 #ifndef EV_USE_LINUXAIO
330 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331 # define EV_USE_LINUXAIO 1
332 # else
333 # define EV_USE_LINUXAIO 0
334 # endif
335 #endif
336
337 #ifndef EV_USE_IOURING
338 # if __linux
339 # define EV_USE_IOURING 0
340 # else
341 # define EV_USE_IOURING 0
342 # endif
343 #endif
344
345 #ifndef EV_USE_INOTIFY
346 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347 # define EV_USE_INOTIFY EV_FEATURE_OS
348 # else
349 # define EV_USE_INOTIFY 0
350 # endif
351 #endif
352
353 #ifndef EV_PID_HASHSIZE
354 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355 #endif
356
357 #ifndef EV_INOTIFY_HASHSIZE
358 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359 #endif
360
361 #ifndef EV_USE_EVENTFD
362 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 # define EV_USE_EVENTFD EV_FEATURE_OS
364 # else
365 # define EV_USE_EVENTFD 0
366 # endif
367 #endif
368
369 #ifndef EV_USE_SIGNALFD
370 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371 # define EV_USE_SIGNALFD EV_FEATURE_OS
372 # else
373 # define EV_USE_SIGNALFD 0
374 # endif
375 #endif
376
377 #if 0 /* debugging */
378 # define EV_VERIFY 3
379 # define EV_USE_4HEAP 1
380 # define EV_HEAP_CACHE_AT 1
381 #endif
382
383 #ifndef EV_VERIFY
384 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385 #endif
386
387 #ifndef EV_USE_4HEAP
388 # define EV_USE_4HEAP EV_FEATURE_DATA
389 #endif
390
391 #ifndef EV_HEAP_CACHE_AT
392 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393 #endif
394
395 #ifdef __ANDROID__
396 /* supposedly, android doesn't typedef fd_mask */
397 # undef EV_USE_SELECT
398 # define EV_USE_SELECT 0
399 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400 # undef EV_USE_CLOCK_SYSCALL
401 # define EV_USE_CLOCK_SYSCALL 0
402 #endif
403
404 /* aix's poll.h seems to cause lots of trouble */
405 #ifdef _AIX
406 /* AIX has a completely broken poll.h header */
407 # undef EV_USE_POLL
408 # define EV_USE_POLL 0
409 #endif
410
411 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412 /* which makes programs even slower. might work on other unices, too. */
413 #if EV_USE_CLOCK_SYSCALL
414 # include <sys/syscall.h>
415 # ifdef SYS_clock_gettime
416 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417 # undef EV_USE_MONOTONIC
418 # define EV_USE_MONOTONIC 1
419 # define EV_NEED_SYSCALL 1
420 # else
421 # undef EV_USE_CLOCK_SYSCALL
422 # define EV_USE_CLOCK_SYSCALL 0
423 # endif
424 #endif
425
426 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
427
428 #ifndef CLOCK_MONOTONIC
429 # undef EV_USE_MONOTONIC
430 # define EV_USE_MONOTONIC 0
431 #endif
432
433 #ifndef CLOCK_REALTIME
434 # undef EV_USE_REALTIME
435 # define EV_USE_REALTIME 0
436 #endif
437
438 #if !EV_STAT_ENABLE
439 # undef EV_USE_INOTIFY
440 # define EV_USE_INOTIFY 0
441 #endif
442
443 #if !EV_USE_NANOSLEEP
444 /* hp-ux has it in sys/time.h, which we unconditionally include above */
445 # if !defined _WIN32 && !defined __hpux
446 # include <sys/select.h>
447 # endif
448 #endif
449
450 #if EV_USE_LINUXAIO
451 # include <sys/syscall.h>
452 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453 # define EV_NEED_SYSCALL 1
454 # else
455 # undef EV_USE_LINUXAIO
456 # define EV_USE_LINUXAIO 0
457 # endif
458 #endif
459
460 #if EV_USE_IOURING
461 # include <sys/syscall.h>
462 # if !SYS_io_uring_setup && __linux && !__alpha
463 # define SYS_io_uring_setup 425
464 # define SYS_io_uring_enter 426
465 # define SYS_io_uring_wregister 427
466 # endif
467 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468 # define EV_NEED_SYSCALL 1
469 # else
470 # undef EV_USE_IOURING
471 # define EV_USE_IOURING 0
472 # endif
473 #endif
474
475 #if EV_USE_INOTIFY
476 # include <sys/statfs.h>
477 # include <sys/inotify.h>
478 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479 # ifndef IN_DONT_FOLLOW
480 # undef EV_USE_INOTIFY
481 # define EV_USE_INOTIFY 0
482 # endif
483 #endif
484
485 #if EV_USE_EVENTFD
486 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487 # include <stdint.h>
488 # ifndef EFD_NONBLOCK
489 # define EFD_NONBLOCK O_NONBLOCK
490 # endif
491 # ifndef EFD_CLOEXEC
492 # ifdef O_CLOEXEC
493 # define EFD_CLOEXEC O_CLOEXEC
494 # else
495 # define EFD_CLOEXEC 02000000
496 # endif
497 # endif
498 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499 #endif
500
501 #if EV_USE_SIGNALFD
502 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503 # include <stdint.h>
504 # ifndef SFD_NONBLOCK
505 # define SFD_NONBLOCK O_NONBLOCK
506 # endif
507 # ifndef SFD_CLOEXEC
508 # ifdef O_CLOEXEC
509 # define SFD_CLOEXEC O_CLOEXEC
510 # else
511 # define SFD_CLOEXEC 02000000
512 # endif
513 # endif
514 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516 struct signalfd_siginfo
517 {
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520 };
521 #endif
522
523 /*****************************************************************************/
524
525 #if EV_VERIFY >= 3
526 # define EV_FREQUENT_CHECK ev_verify (EV_A)
527 #else
528 # define EV_FREQUENT_CHECK do { } while (0)
529 #endif
530
531 /*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541 /* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544 #define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
550 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
551 #define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e6)
552 #define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e9)
553
554 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
555 /* ECB.H BEGIN */
556 /*
557 * libecb - http://software.schmorp.de/pkg/libecb
558 *
559 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
560 * Copyright (©) 2011 Emanuele Giaquinta
561 * All rights reserved.
562 *
563 * Redistribution and use in source and binary forms, with or without modifica-
564 * tion, are permitted provided that the following conditions are met:
565 *
566 * 1. Redistributions of source code must retain the above copyright notice,
567 * this list of conditions and the following disclaimer.
568 *
569 * 2. Redistributions in binary form must reproduce the above copyright
570 * notice, this list of conditions and the following disclaimer in the
571 * documentation and/or other materials provided with the distribution.
572 *
573 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
574 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
575 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
576 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
577 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
578 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
579 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
580 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
581 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
582 * OF THE POSSIBILITY OF SUCH DAMAGE.
583 *
584 * Alternatively, the contents of this file may be used under the terms of
585 * the GNU General Public License ("GPL") version 2 or any later version,
586 * in which case the provisions of the GPL are applicable instead of
587 * the above. If you wish to allow the use of your version of this file
588 * only under the terms of the GPL and not to allow others to use your
589 * version of this file under the BSD license, indicate your decision
590 * by deleting the provisions above and replace them with the notice
591 * and other provisions required by the GPL. If you do not delete the
592 * provisions above, a recipient may use your version of this file under
593 * either the BSD or the GPL.
594 */
595
596 #ifndef ECB_H
597 #define ECB_H
598
599 /* 16 bits major, 16 bits minor */
600 #define ECB_VERSION 0x00010006
601
602 #ifdef _WIN32
603 typedef signed char int8_t;
604 typedef unsigned char uint8_t;
605 typedef signed short int16_t;
606 typedef unsigned short uint16_t;
607 typedef signed int int32_t;
608 typedef unsigned int uint32_t;
609 #if __GNUC__
610 typedef signed long long int64_t;
611 typedef unsigned long long uint64_t;
612 #else /* _MSC_VER || __BORLANDC__ */
613 typedef signed __int64 int64_t;
614 typedef unsigned __int64 uint64_t;
615 #endif
616 #ifdef _WIN64
617 #define ECB_PTRSIZE 8
618 typedef uint64_t uintptr_t;
619 typedef int64_t intptr_t;
620 #else
621 #define ECB_PTRSIZE 4
622 typedef uint32_t uintptr_t;
623 typedef int32_t intptr_t;
624 #endif
625 #else
626 #include <inttypes.h>
627 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
628 #define ECB_PTRSIZE 8
629 #else
630 #define ECB_PTRSIZE 4
631 #endif
632 #endif
633
634 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
635 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
636
637 /* work around x32 idiocy by defining proper macros */
638 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
639 #if _ILP32
640 #define ECB_AMD64_X32 1
641 #else
642 #define ECB_AMD64 1
643 #endif
644 #endif
645
646 /* many compilers define _GNUC_ to some versions but then only implement
647 * what their idiot authors think are the "more important" extensions,
648 * causing enormous grief in return for some better fake benchmark numbers.
649 * or so.
650 * we try to detect these and simply assume they are not gcc - if they have
651 * an issue with that they should have done it right in the first place.
652 */
653 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
654 #define ECB_GCC_VERSION(major,minor) 0
655 #else
656 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
657 #endif
658
659 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
660
661 #if __clang__ && defined __has_builtin
662 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
663 #else
664 #define ECB_CLANG_BUILTIN(x) 0
665 #endif
666
667 #if __clang__ && defined __has_extension
668 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
669 #else
670 #define ECB_CLANG_EXTENSION(x) 0
671 #endif
672
673 #define ECB_CPP (__cplusplus+0)
674 #define ECB_CPP11 (__cplusplus >= 201103L)
675 #define ECB_CPP14 (__cplusplus >= 201402L)
676 #define ECB_CPP17 (__cplusplus >= 201703L)
677
678 #if ECB_CPP
679 #define ECB_C 0
680 #define ECB_STDC_VERSION 0
681 #else
682 #define ECB_C 1
683 #define ECB_STDC_VERSION __STDC_VERSION__
684 #endif
685
686 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
687 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
688 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
689
690 #if ECB_CPP
691 #define ECB_EXTERN_C extern "C"
692 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
693 #define ECB_EXTERN_C_END }
694 #else
695 #define ECB_EXTERN_C extern
696 #define ECB_EXTERN_C_BEG
697 #define ECB_EXTERN_C_END
698 #endif
699
700 /*****************************************************************************/
701
702 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
703 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
704
705 #if ECB_NO_THREADS
706 #define ECB_NO_SMP 1
707 #endif
708
709 #if ECB_NO_SMP
710 #define ECB_MEMORY_FENCE do { } while (0)
711 #endif
712
713 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
714 #if __xlC__ && ECB_CPP
715 #include <builtins.h>
716 #endif
717
718 #if 1400 <= _MSC_VER
719 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
720 #endif
721
722 #ifndef ECB_MEMORY_FENCE
723 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
724 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
725 #if __i386 || __i386__
726 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
727 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
728 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
729 #elif ECB_GCC_AMD64
730 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
731 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
732 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
733 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
734 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
735 #elif defined __ARM_ARCH_2__ \
736 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
737 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
738 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
739 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
740 || defined __ARM_ARCH_5TEJ__
741 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
742 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
743 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
744 || defined __ARM_ARCH_6T2__
745 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
746 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
747 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
749 #elif __aarch64__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
751 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
755 #elif defined __s390__ || defined __s390x__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
757 #elif defined __mips__
758 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
759 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
760 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
761 #elif defined __alpha__
762 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
763 #elif defined __hppa__
764 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
765 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
766 #elif defined __ia64__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
768 #elif defined __m68k__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #elif defined __m88k__
771 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
772 #elif defined __sh__
773 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
774 #endif
775 #endif
776 #endif
777
778 #ifndef ECB_MEMORY_FENCE
779 #if ECB_GCC_VERSION(4,7)
780 /* see comment below (stdatomic.h) about the C11 memory model. */
781 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
782 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
783 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
784 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
785
786 #elif ECB_CLANG_EXTENSION(c_atomic)
787 /* see comment below (stdatomic.h) about the C11 memory model. */
788 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
789 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
790 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
791 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
792
793 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
794 #define ECB_MEMORY_FENCE __sync_synchronize ()
795 #elif _MSC_VER >= 1500 /* VC++ 2008 */
796 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
797 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
798 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
799 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
800 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
801 #elif _MSC_VER >= 1400 /* VC++ 2005 */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
806 #elif defined _WIN32
807 #include <WinNT.h>
808 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
809 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
810 #include <mbarrier.h>
811 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
812 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
813 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
814 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
815 #elif __xlC__
816 #define ECB_MEMORY_FENCE __sync ()
817 #endif
818 #endif
819
820 #ifndef ECB_MEMORY_FENCE
821 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
822 /* we assume that these memory fences work on all variables/all memory accesses, */
823 /* not just C11 atomics and atomic accesses */
824 #include <stdatomic.h>
825 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
826 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
827 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
828 #endif
829 #endif
830
831 #ifndef ECB_MEMORY_FENCE
832 #if !ECB_AVOID_PTHREADS
833 /*
834 * if you get undefined symbol references to pthread_mutex_lock,
835 * or failure to find pthread.h, then you should implement
836 * the ECB_MEMORY_FENCE operations for your cpu/compiler
837 * OR provide pthread.h and link against the posix thread library
838 * of your system.
839 */
840 #include <pthread.h>
841 #define ECB_NEEDS_PTHREADS 1
842 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
843
844 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
845 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
846 #endif
847 #endif
848
849 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
850 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
851 #endif
852
853 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
854 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
855 #endif
856
857 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
858 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
859 #endif
860
861 /*****************************************************************************/
862
863 #if ECB_CPP
864 #define ecb_inline static inline
865 #elif ECB_GCC_VERSION(2,5)
866 #define ecb_inline static __inline__
867 #elif ECB_C99
868 #define ecb_inline static inline
869 #else
870 #define ecb_inline static
871 #endif
872
873 #if ECB_GCC_VERSION(3,3)
874 #define ecb_restrict __restrict__
875 #elif ECB_C99
876 #define ecb_restrict restrict
877 #else
878 #define ecb_restrict
879 #endif
880
881 typedef int ecb_bool;
882
883 #define ECB_CONCAT_(a, b) a ## b
884 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
885 #define ECB_STRINGIFY_(a) # a
886 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
887 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
888
889 #define ecb_function_ ecb_inline
890
891 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
892 #define ecb_attribute(attrlist) __attribute__ (attrlist)
893 #else
894 #define ecb_attribute(attrlist)
895 #endif
896
897 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
898 #define ecb_is_constant(expr) __builtin_constant_p (expr)
899 #else
900 /* possible C11 impl for integral types
901 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
902 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
903
904 #define ecb_is_constant(expr) 0
905 #endif
906
907 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
908 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
909 #else
910 #define ecb_expect(expr,value) (expr)
911 #endif
912
913 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
914 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
915 #else
916 #define ecb_prefetch(addr,rw,locality)
917 #endif
918
919 /* no emulation for ecb_decltype */
920 #if ECB_CPP11
921 // older implementations might have problems with decltype(x)::type, work around it
922 template<class T> struct ecb_decltype_t { typedef T type; };
923 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
924 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
925 #define ecb_decltype(x) __typeof__ (x)
926 #endif
927
928 #if _MSC_VER >= 1300
929 #define ecb_deprecated __declspec (deprecated)
930 #else
931 #define ecb_deprecated ecb_attribute ((__deprecated__))
932 #endif
933
934 #if _MSC_VER >= 1500
935 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
936 #elif ECB_GCC_VERSION(4,5)
937 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
938 #else
939 #define ecb_deprecated_message(msg) ecb_deprecated
940 #endif
941
942 #if _MSC_VER >= 1400
943 #define ecb_noinline __declspec (noinline)
944 #else
945 #define ecb_noinline ecb_attribute ((__noinline__))
946 #endif
947
948 #define ecb_unused ecb_attribute ((__unused__))
949 #define ecb_const ecb_attribute ((__const__))
950 #define ecb_pure ecb_attribute ((__pure__))
951
952 #if ECB_C11 || __IBMC_NORETURN
953 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
954 #define ecb_noreturn _Noreturn
955 #elif ECB_CPP11
956 #define ecb_noreturn [[noreturn]]
957 #elif _MSC_VER >= 1200
958 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
959 #define ecb_noreturn __declspec (noreturn)
960 #else
961 #define ecb_noreturn ecb_attribute ((__noreturn__))
962 #endif
963
964 #if ECB_GCC_VERSION(4,3)
965 #define ecb_artificial ecb_attribute ((__artificial__))
966 #define ecb_hot ecb_attribute ((__hot__))
967 #define ecb_cold ecb_attribute ((__cold__))
968 #else
969 #define ecb_artificial
970 #define ecb_hot
971 #define ecb_cold
972 #endif
973
974 /* put around conditional expressions if you are very sure that the */
975 /* expression is mostly true or mostly false. note that these return */
976 /* booleans, not the expression. */
977 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
978 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
979 /* for compatibility to the rest of the world */
980 #define ecb_likely(expr) ecb_expect_true (expr)
981 #define ecb_unlikely(expr) ecb_expect_false (expr)
982
983 /* count trailing zero bits and count # of one bits */
984 #if ECB_GCC_VERSION(3,4) \
985 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
986 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
987 && ECB_CLANG_BUILTIN(__builtin_popcount))
988 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
989 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
990 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
991 #define ecb_ctz32(x) __builtin_ctz (x)
992 #define ecb_ctz64(x) __builtin_ctzll (x)
993 #define ecb_popcount32(x) __builtin_popcount (x)
994 /* no popcountll */
995 #else
996 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
997 ecb_function_ ecb_const int
998 ecb_ctz32 (uint32_t x)
999 {
1000 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1001 unsigned long r;
1002 _BitScanForward (&r, x);
1003 return (int)r;
1004 #else
1005 int r = 0;
1006
1007 x &= ~x + 1; /* this isolates the lowest bit */
1008
1009 #if ECB_branchless_on_i386
1010 r += !!(x & 0xaaaaaaaa) << 0;
1011 r += !!(x & 0xcccccccc) << 1;
1012 r += !!(x & 0xf0f0f0f0) << 2;
1013 r += !!(x & 0xff00ff00) << 3;
1014 r += !!(x & 0xffff0000) << 4;
1015 #else
1016 if (x & 0xaaaaaaaa) r += 1;
1017 if (x & 0xcccccccc) r += 2;
1018 if (x & 0xf0f0f0f0) r += 4;
1019 if (x & 0xff00ff00) r += 8;
1020 if (x & 0xffff0000) r += 16;
1021 #endif
1022
1023 return r;
1024 #endif
1025 }
1026
1027 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1028 ecb_function_ ecb_const int
1029 ecb_ctz64 (uint64_t x)
1030 {
1031 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1032 unsigned long r;
1033 _BitScanForward64 (&r, x);
1034 return (int)r;
1035 #else
1036 int shift = x & 0xffffffff ? 0 : 32;
1037 return ecb_ctz32 (x >> shift) + shift;
1038 #endif
1039 }
1040
1041 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1042 ecb_function_ ecb_const int
1043 ecb_popcount32 (uint32_t x)
1044 {
1045 x -= (x >> 1) & 0x55555555;
1046 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1047 x = ((x >> 4) + x) & 0x0f0f0f0f;
1048 x *= 0x01010101;
1049
1050 return x >> 24;
1051 }
1052
1053 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1054 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1055 {
1056 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1057 unsigned long r;
1058 _BitScanReverse (&r, x);
1059 return (int)r;
1060 #else
1061 int r = 0;
1062
1063 if (x >> 16) { x >>= 16; r += 16; }
1064 if (x >> 8) { x >>= 8; r += 8; }
1065 if (x >> 4) { x >>= 4; r += 4; }
1066 if (x >> 2) { x >>= 2; r += 2; }
1067 if (x >> 1) { r += 1; }
1068
1069 return r;
1070 #endif
1071 }
1072
1073 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1074 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1075 {
1076 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1077 unsigned long r;
1078 _BitScanReverse64 (&r, x);
1079 return (int)r;
1080 #else
1081 int r = 0;
1082
1083 if (x >> 32) { x >>= 32; r += 32; }
1084
1085 return r + ecb_ld32 (x);
1086 #endif
1087 }
1088 #endif
1089
1090 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1091 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1092 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1093 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1094
1095 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1096 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1097 {
1098 return ( (x * 0x0802U & 0x22110U)
1099 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1100 }
1101
1102 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1103 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1104 {
1105 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1106 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1107 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1108 x = ( x >> 8 ) | ( x << 8);
1109
1110 return x;
1111 }
1112
1113 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1114 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1115 {
1116 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1117 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1118 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1119 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1120 x = ( x >> 16 ) | ( x << 16);
1121
1122 return x;
1123 }
1124
1125 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1126 /* so for this version we are lazy */
1127 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1128 ecb_function_ ecb_const int
1129 ecb_popcount64 (uint64_t x)
1130 {
1131 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1132 }
1133
1134 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1135 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1136 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1137 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1138 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1139 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1140 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1141 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1142
1143 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1144 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1145 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1146 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1147 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1148 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1149 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1150 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1151
1152 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1153 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1154 #define ecb_bswap16(x) __builtin_bswap16 (x)
1155 #else
1156 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1157 #endif
1158 #define ecb_bswap32(x) __builtin_bswap32 (x)
1159 #define ecb_bswap64(x) __builtin_bswap64 (x)
1160 #elif _MSC_VER
1161 #include <stdlib.h>
1162 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1163 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1164 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1165 #else
1166 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1167 ecb_function_ ecb_const uint16_t
1168 ecb_bswap16 (uint16_t x)
1169 {
1170 return ecb_rotl16 (x, 8);
1171 }
1172
1173 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1174 ecb_function_ ecb_const uint32_t
1175 ecb_bswap32 (uint32_t x)
1176 {
1177 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1178 }
1179
1180 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1181 ecb_function_ ecb_const uint64_t
1182 ecb_bswap64 (uint64_t x)
1183 {
1184 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1185 }
1186 #endif
1187
1188 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1189 #define ecb_unreachable() __builtin_unreachable ()
1190 #else
1191 /* this seems to work fine, but gcc always emits a warning for it :/ */
1192 ecb_inline ecb_noreturn void ecb_unreachable (void);
1193 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1194 #endif
1195
1196 /* try to tell the compiler that some condition is definitely true */
1197 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1198
1199 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1200 ecb_inline ecb_const uint32_t
1201 ecb_byteorder_helper (void)
1202 {
1203 /* the union code still generates code under pressure in gcc, */
1204 /* but less than using pointers, and always seems to */
1205 /* successfully return a constant. */
1206 /* the reason why we have this horrible preprocessor mess */
1207 /* is to avoid it in all cases, at least on common architectures */
1208 /* or when using a recent enough gcc version (>= 4.6) */
1209 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1210 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1211 #define ECB_LITTLE_ENDIAN 1
1212 return 0x44332211;
1213 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1214 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1215 #define ECB_BIG_ENDIAN 1
1216 return 0x11223344;
1217 #else
1218 union
1219 {
1220 uint8_t c[4];
1221 uint32_t u;
1222 } u = { 0x11, 0x22, 0x33, 0x44 };
1223 return u.u;
1224 #endif
1225 }
1226
1227 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1228 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1229 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1230 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1231
1232 #if ECB_GCC_VERSION(3,0) || ECB_C99
1233 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1234 #else
1235 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1236 #endif
1237
1238 #if ECB_CPP
1239 template<typename T>
1240 static inline T ecb_div_rd (T val, T div)
1241 {
1242 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1243 }
1244 template<typename T>
1245 static inline T ecb_div_ru (T val, T div)
1246 {
1247 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1248 }
1249 #else
1250 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1251 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1252 #endif
1253
1254 #if ecb_cplusplus_does_not_suck
1255 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1256 template<typename T, int N>
1257 static inline int ecb_array_length (const T (&arr)[N])
1258 {
1259 return N;
1260 }
1261 #else
1262 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1263 #endif
1264
1265 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1266 ecb_function_ ecb_const uint32_t
1267 ecb_binary16_to_binary32 (uint32_t x)
1268 {
1269 unsigned int s = (x & 0x8000) << (31 - 15);
1270 int e = (x >> 10) & 0x001f;
1271 unsigned int m = x & 0x03ff;
1272
1273 if (ecb_expect_false (e == 31))
1274 /* infinity or NaN */
1275 e = 255 - (127 - 15);
1276 else if (ecb_expect_false (!e))
1277 {
1278 if (ecb_expect_true (!m))
1279 /* zero, handled by code below by forcing e to 0 */
1280 e = 0 - (127 - 15);
1281 else
1282 {
1283 /* subnormal, renormalise */
1284 unsigned int s = 10 - ecb_ld32 (m);
1285
1286 m = (m << s) & 0x3ff; /* mask implicit bit */
1287 e -= s - 1;
1288 }
1289 }
1290
1291 /* e and m now are normalised, or zero, (or inf or nan) */
1292 e += 127 - 15;
1293
1294 return s | (e << 23) | (m << (23 - 10));
1295 }
1296
1297 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1298 ecb_function_ ecb_const uint16_t
1299 ecb_binary32_to_binary16 (uint32_t x)
1300 {
1301 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1302 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1303 unsigned int m = x & 0x007fffff;
1304
1305 x &= 0x7fffffff;
1306
1307 /* if it's within range of binary16 normals, use fast path */
1308 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1309 {
1310 /* mantissa round-to-even */
1311 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1312
1313 /* handle overflow */
1314 if (ecb_expect_false (m >= 0x00800000))
1315 {
1316 m >>= 1;
1317 e += 1;
1318 }
1319
1320 return s | (e << 10) | (m >> (23 - 10));
1321 }
1322
1323 /* handle large numbers and infinity */
1324 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1325 return s | 0x7c00;
1326
1327 /* handle zero, subnormals and small numbers */
1328 if (ecb_expect_true (x < 0x38800000))
1329 {
1330 /* zero */
1331 if (ecb_expect_true (!x))
1332 return s;
1333
1334 /* handle subnormals */
1335
1336 /* too small, will be zero */
1337 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1338 return s;
1339
1340 m |= 0x00800000; /* make implicit bit explicit */
1341
1342 /* very tricky - we need to round to the nearest e (+10) bit value */
1343 {
1344 unsigned int bits = 14 - e;
1345 unsigned int half = (1 << (bits - 1)) - 1;
1346 unsigned int even = (m >> bits) & 1;
1347
1348 /* if this overflows, we will end up with a normalised number */
1349 m = (m + half + even) >> bits;
1350 }
1351
1352 return s | m;
1353 }
1354
1355 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1356 m >>= 13;
1357
1358 return s | 0x7c00 | m | !m;
1359 }
1360
1361 /*******************************************************************************/
1362 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1363
1364 /* basically, everything uses "ieee pure-endian" floating point numbers */
1365 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1366 #if 0 \
1367 || __i386 || __i386__ \
1368 || ECB_GCC_AMD64 \
1369 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1370 || defined __s390__ || defined __s390x__ \
1371 || defined __mips__ \
1372 || defined __alpha__ \
1373 || defined __hppa__ \
1374 || defined __ia64__ \
1375 || defined __m68k__ \
1376 || defined __m88k__ \
1377 || defined __sh__ \
1378 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1379 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1380 || defined __aarch64__
1381 #define ECB_STDFP 1
1382 #include <string.h> /* for memcpy */
1383 #else
1384 #define ECB_STDFP 0
1385 #endif
1386
1387 #ifndef ECB_NO_LIBM
1388
1389 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1390
1391 /* only the oldest of old doesn't have this one. solaris. */
1392 #ifdef INFINITY
1393 #define ECB_INFINITY INFINITY
1394 #else
1395 #define ECB_INFINITY HUGE_VAL
1396 #endif
1397
1398 #ifdef NAN
1399 #define ECB_NAN NAN
1400 #else
1401 #define ECB_NAN ECB_INFINITY
1402 #endif
1403
1404 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1405 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1406 #define ecb_frexpf(x,e) frexpf ((x), (e))
1407 #else
1408 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1409 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1410 #endif
1411
1412 /* convert a float to ieee single/binary32 */
1413 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1414 ecb_function_ ecb_const uint32_t
1415 ecb_float_to_binary32 (float x)
1416 {
1417 uint32_t r;
1418
1419 #if ECB_STDFP
1420 memcpy (&r, &x, 4);
1421 #else
1422 /* slow emulation, works for anything but -0 */
1423 uint32_t m;
1424 int e;
1425
1426 if (x == 0e0f ) return 0x00000000U;
1427 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1428 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1429 if (x != x ) return 0x7fbfffffU;
1430
1431 m = ecb_frexpf (x, &e) * 0x1000000U;
1432
1433 r = m & 0x80000000U;
1434
1435 if (r)
1436 m = -m;
1437
1438 if (e <= -126)
1439 {
1440 m &= 0xffffffU;
1441 m >>= (-125 - e);
1442 e = -126;
1443 }
1444
1445 r |= (e + 126) << 23;
1446 r |= m & 0x7fffffU;
1447 #endif
1448
1449 return r;
1450 }
1451
1452 /* converts an ieee single/binary32 to a float */
1453 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1454 ecb_function_ ecb_const float
1455 ecb_binary32_to_float (uint32_t x)
1456 {
1457 float r;
1458
1459 #if ECB_STDFP
1460 memcpy (&r, &x, 4);
1461 #else
1462 /* emulation, only works for normals and subnormals and +0 */
1463 int neg = x >> 31;
1464 int e = (x >> 23) & 0xffU;
1465
1466 x &= 0x7fffffU;
1467
1468 if (e)
1469 x |= 0x800000U;
1470 else
1471 e = 1;
1472
1473 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1474 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1475
1476 r = neg ? -r : r;
1477 #endif
1478
1479 return r;
1480 }
1481
1482 /* convert a double to ieee double/binary64 */
1483 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1484 ecb_function_ ecb_const uint64_t
1485 ecb_double_to_binary64 (double x)
1486 {
1487 uint64_t r;
1488
1489 #if ECB_STDFP
1490 memcpy (&r, &x, 8);
1491 #else
1492 /* slow emulation, works for anything but -0 */
1493 uint64_t m;
1494 int e;
1495
1496 if (x == 0e0 ) return 0x0000000000000000U;
1497 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1498 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1499 if (x != x ) return 0X7ff7ffffffffffffU;
1500
1501 m = frexp (x, &e) * 0x20000000000000U;
1502
1503 r = m & 0x8000000000000000;;
1504
1505 if (r)
1506 m = -m;
1507
1508 if (e <= -1022)
1509 {
1510 m &= 0x1fffffffffffffU;
1511 m >>= (-1021 - e);
1512 e = -1022;
1513 }
1514
1515 r |= ((uint64_t)(e + 1022)) << 52;
1516 r |= m & 0xfffffffffffffU;
1517 #endif
1518
1519 return r;
1520 }
1521
1522 /* converts an ieee double/binary64 to a double */
1523 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1524 ecb_function_ ecb_const double
1525 ecb_binary64_to_double (uint64_t x)
1526 {
1527 double r;
1528
1529 #if ECB_STDFP
1530 memcpy (&r, &x, 8);
1531 #else
1532 /* emulation, only works for normals and subnormals and +0 */
1533 int neg = x >> 63;
1534 int e = (x >> 52) & 0x7ffU;
1535
1536 x &= 0xfffffffffffffU;
1537
1538 if (e)
1539 x |= 0x10000000000000U;
1540 else
1541 e = 1;
1542
1543 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1544 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1545
1546 r = neg ? -r : r;
1547 #endif
1548
1549 return r;
1550 }
1551
1552 /* convert a float to ieee half/binary16 */
1553 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1554 ecb_function_ ecb_const uint16_t
1555 ecb_float_to_binary16 (float x)
1556 {
1557 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1558 }
1559
1560 /* convert an ieee half/binary16 to float */
1561 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1562 ecb_function_ ecb_const float
1563 ecb_binary16_to_float (uint16_t x)
1564 {
1565 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1566 }
1567
1568 #endif
1569
1570 #endif
1571
1572 /* ECB.H END */
1573
1574 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1575 /* if your architecture doesn't need memory fences, e.g. because it is
1576 * single-cpu/core, or if you use libev in a project that doesn't use libev
1577 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1578 * libev, in which cases the memory fences become nops.
1579 * alternatively, you can remove this #error and link against libpthread,
1580 * which will then provide the memory fences.
1581 */
1582 # error "memory fences not defined for your architecture, please report"
1583 #endif
1584
1585 #ifndef ECB_MEMORY_FENCE
1586 # define ECB_MEMORY_FENCE do { } while (0)
1587 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1588 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1589 #endif
1590
1591 #define inline_size ecb_inline
1592
1593 #if EV_FEATURE_CODE
1594 # define inline_speed ecb_inline
1595 #else
1596 # define inline_speed ecb_noinline static
1597 #endif
1598
1599 /*****************************************************************************/
1600 /* raw syscall wrappers */
1601
1602 #if EV_NEED_SYSCALL
1603
1604 #include <sys/syscall.h>
1605
1606 /*
1607 * define some syscall wrappers for common architectures
1608 * this is mostly for nice looks during debugging, not performance.
1609 * our syscalls return < 0, not == -1, on error. which is good
1610 * enough for linux aio.
1611 * TODO: arm is also common nowadays, maybe even mips and x86
1612 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1613 */
1614 #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1615 /* the costly errno access probably kills this for size optimisation */
1616
1617 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1618 ({ \
1619 long res; \
1620 register unsigned long r6 __asm__ ("r9" ); \
1621 register unsigned long r5 __asm__ ("r8" ); \
1622 register unsigned long r4 __asm__ ("r10"); \
1623 register unsigned long r3 __asm__ ("rdx"); \
1624 register unsigned long r2 __asm__ ("rsi"); \
1625 register unsigned long r1 __asm__ ("rdi"); \
1626 if (narg >= 6) r6 = (unsigned long)(arg6); \
1627 if (narg >= 5) r5 = (unsigned long)(arg5); \
1628 if (narg >= 4) r4 = (unsigned long)(arg4); \
1629 if (narg >= 3) r3 = (unsigned long)(arg3); \
1630 if (narg >= 2) r2 = (unsigned long)(arg2); \
1631 if (narg >= 1) r1 = (unsigned long)(arg1); \
1632 __asm__ __volatile__ ( \
1633 "syscall\n\t" \
1634 : "=a" (res) \
1635 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1636 : "cc", "r11", "cx", "memory"); \
1637 errno = -res; \
1638 res; \
1639 })
1640
1641 #endif
1642
1643 #ifdef ev_syscall
1644 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1645 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1646 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1647 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1648 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1649 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1650 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1651 #else
1652 #define ev_syscall0(nr) syscall (nr)
1653 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1654 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1655 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1656 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1657 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1658 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1659 #endif
1660
1661 #endif
1662
1663 /*****************************************************************************/
1664
1665 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1666
1667 #if EV_MINPRI == EV_MAXPRI
1668 # define ABSPRI(w) (((W)w), 0)
1669 #else
1670 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1671 #endif
1672
1673 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1674
1675 typedef ev_watcher *W;
1676 typedef ev_watcher_list *WL;
1677 typedef ev_watcher_time *WT;
1678
1679 #define ev_active(w) ((W)(w))->active
1680 #define ev_at(w) ((WT)(w))->at
1681
1682 #if EV_USE_REALTIME
1683 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1684 /* giving it a reasonably high chance of working on typical architectures */
1685 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1686 #endif
1687
1688 #if EV_USE_MONOTONIC
1689 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1690 #endif
1691
1692 #ifndef EV_FD_TO_WIN32_HANDLE
1693 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1694 #endif
1695 #ifndef EV_WIN32_HANDLE_TO_FD
1696 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1697 #endif
1698 #ifndef EV_WIN32_CLOSE_FD
1699 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1700 #endif
1701
1702 #ifdef _WIN32
1703 # include "ev_win32.c"
1704 #endif
1705
1706 /*****************************************************************************/
1707
1708 #if EV_USE_LINUXAIO
1709 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1710 #endif
1711
1712 /* define a suitable floor function (only used by periodics atm) */
1713
1714 #if EV_USE_FLOOR
1715 # include <math.h>
1716 # define ev_floor(v) floor (v)
1717 #else
1718
1719 #include <float.h>
1720
1721 /* a floor() replacement function, should be independent of ev_tstamp type */
1722 ecb_noinline
1723 static ev_tstamp
1724 ev_floor (ev_tstamp v)
1725 {
1726 /* the choice of shift factor is not terribly important */
1727 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1728 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1729 #else
1730 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1731 #endif
1732
1733 /* special treatment for negative arguments */
1734 if (ecb_expect_false (v < 0.))
1735 {
1736 ev_tstamp f = -ev_floor (-v);
1737
1738 return f - (f == v ? 0 : 1);
1739 }
1740
1741 /* argument too large for an unsigned long? then reduce it */
1742 if (ecb_expect_false (v >= shift))
1743 {
1744 ev_tstamp f;
1745
1746 if (v == v - 1.)
1747 return v; /* very large numbers are assumed to be integer */
1748
1749 f = shift * ev_floor (v * (1. / shift));
1750 return f + ev_floor (v - f);
1751 }
1752
1753 /* fits into an unsigned long */
1754 return (unsigned long)v;
1755 }
1756
1757 #endif
1758
1759 /*****************************************************************************/
1760
1761 #ifdef __linux
1762 # include <sys/utsname.h>
1763 #endif
1764
1765 ecb_noinline ecb_cold
1766 static unsigned int
1767 ev_linux_version (void)
1768 {
1769 #ifdef __linux
1770 unsigned int v = 0;
1771 struct utsname buf;
1772 int i;
1773 char *p = buf.release;
1774
1775 if (uname (&buf))
1776 return 0;
1777
1778 for (i = 3+1; --i; )
1779 {
1780 unsigned int c = 0;
1781
1782 for (;;)
1783 {
1784 if (*p >= '0' && *p <= '9')
1785 c = c * 10 + *p++ - '0';
1786 else
1787 {
1788 p += *p == '.';
1789 break;
1790 }
1791 }
1792
1793 v = (v << 8) | c;
1794 }
1795
1796 return v;
1797 #else
1798 return 0;
1799 #endif
1800 }
1801
1802 /*****************************************************************************/
1803
1804 #if EV_AVOID_STDIO
1805 ecb_noinline ecb_cold
1806 static void
1807 ev_printerr (const char *msg)
1808 {
1809 write (STDERR_FILENO, msg, strlen (msg));
1810 }
1811 #endif
1812
1813 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1814
1815 ecb_cold
1816 void
1817 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1818 {
1819 syserr_cb = cb;
1820 }
1821
1822 ecb_noinline ecb_cold
1823 static void
1824 ev_syserr (const char *msg)
1825 {
1826 if (!msg)
1827 msg = "(libev) system error";
1828
1829 if (syserr_cb)
1830 syserr_cb (msg);
1831 else
1832 {
1833 #if EV_AVOID_STDIO
1834 ev_printerr (msg);
1835 ev_printerr (": ");
1836 ev_printerr (strerror (errno));
1837 ev_printerr ("\n");
1838 #else
1839 perror (msg);
1840 #endif
1841 abort ();
1842 }
1843 }
1844
1845 static void *
1846 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1847 {
1848 /* some systems, notably openbsd and darwin, fail to properly
1849 * implement realloc (x, 0) (as required by both ansi c-89 and
1850 * the single unix specification, so work around them here.
1851 * recently, also (at least) fedora and debian started breaking it,
1852 * despite documenting it otherwise.
1853 */
1854
1855 if (size)
1856 return realloc (ptr, size);
1857
1858 free (ptr);
1859 return 0;
1860 }
1861
1862 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1863
1864 ecb_cold
1865 void
1866 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1867 {
1868 alloc = cb;
1869 }
1870
1871 inline_speed void *
1872 ev_realloc (void *ptr, long size)
1873 {
1874 ptr = alloc (ptr, size);
1875
1876 if (!ptr && size)
1877 {
1878 #if EV_AVOID_STDIO
1879 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1880 #else
1881 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1882 #endif
1883 abort ();
1884 }
1885
1886 return ptr;
1887 }
1888
1889 #define ev_malloc(size) ev_realloc (0, (size))
1890 #define ev_free(ptr) ev_realloc ((ptr), 0)
1891
1892 /*****************************************************************************/
1893
1894 /* set in reify when reification needed */
1895 #define EV_ANFD_REIFY 1
1896
1897 /* file descriptor info structure */
1898 typedef struct
1899 {
1900 WL head;
1901 unsigned char events; /* the events watched for */
1902 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1903 unsigned char emask; /* some backends store the actual kernel mask in here */
1904 unsigned char eflags; /* flags field for use by backends */
1905 #if EV_USE_EPOLL
1906 unsigned int egen; /* generation counter to counter epoll bugs */
1907 #endif
1908 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1909 SOCKET handle;
1910 #endif
1911 #if EV_USE_IOCP
1912 OVERLAPPED or, ow;
1913 #endif
1914 } ANFD;
1915
1916 /* stores the pending event set for a given watcher */
1917 typedef struct
1918 {
1919 W w;
1920 int events; /* the pending event set for the given watcher */
1921 } ANPENDING;
1922
1923 #if EV_USE_INOTIFY
1924 /* hash table entry per inotify-id */
1925 typedef struct
1926 {
1927 WL head;
1928 } ANFS;
1929 #endif
1930
1931 /* Heap Entry */
1932 #if EV_HEAP_CACHE_AT
1933 /* a heap element */
1934 typedef struct {
1935 ev_tstamp at;
1936 WT w;
1937 } ANHE;
1938
1939 #define ANHE_w(he) (he).w /* access watcher, read-write */
1940 #define ANHE_at(he) (he).at /* access cached at, read-only */
1941 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1942 #else
1943 /* a heap element */
1944 typedef WT ANHE;
1945
1946 #define ANHE_w(he) (he)
1947 #define ANHE_at(he) (he)->at
1948 #define ANHE_at_cache(he)
1949 #endif
1950
1951 #if EV_MULTIPLICITY
1952
1953 struct ev_loop
1954 {
1955 ev_tstamp ev_rt_now;
1956 #define ev_rt_now ((loop)->ev_rt_now)
1957 #define VAR(name,decl) decl;
1958 #include "ev_vars.h"
1959 #undef VAR
1960 };
1961 #include "ev_wrap.h"
1962
1963 static struct ev_loop default_loop_struct;
1964 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1965
1966 #else
1967
1968 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1969 #define VAR(name,decl) static decl;
1970 #include "ev_vars.h"
1971 #undef VAR
1972
1973 static int ev_default_loop_ptr;
1974
1975 #endif
1976
1977 #if EV_FEATURE_API
1978 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1979 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1980 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1981 #else
1982 # define EV_RELEASE_CB (void)0
1983 # define EV_ACQUIRE_CB (void)0
1984 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1985 #endif
1986
1987 #define EVBREAK_RECURSE 0x80
1988
1989 /*****************************************************************************/
1990
1991 #ifndef EV_HAVE_EV_TIME
1992 ev_tstamp
1993 ev_time (void) EV_NOEXCEPT
1994 {
1995 #if EV_USE_REALTIME
1996 if (ecb_expect_true (have_realtime))
1997 {
1998 struct timespec ts;
1999 clock_gettime (CLOCK_REALTIME, &ts);
2000 return EV_TS_GET (ts);
2001 }
2002 #endif
2003
2004 struct timeval tv;
2005 gettimeofday (&tv, 0);
2006 return EV_TV_GET (tv);
2007 }
2008 #endif
2009
2010 inline_size ev_tstamp
2011 get_clock (void)
2012 {
2013 #if EV_USE_MONOTONIC
2014 if (ecb_expect_true (have_monotonic))
2015 {
2016 struct timespec ts;
2017 clock_gettime (CLOCK_MONOTONIC, &ts);
2018 return EV_TS_GET (ts);
2019 }
2020 #endif
2021
2022 return ev_time ();
2023 }
2024
2025 #if EV_MULTIPLICITY
2026 ev_tstamp
2027 ev_now (EV_P) EV_NOEXCEPT
2028 {
2029 return ev_rt_now;
2030 }
2031 #endif
2032
2033 void
2034 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2035 {
2036 if (delay > 0.)
2037 {
2038 #if EV_USE_NANOSLEEP
2039 struct timespec ts;
2040
2041 EV_TS_SET (ts, delay);
2042 nanosleep (&ts, 0);
2043 #elif defined _WIN32
2044 /* maybe this should round up, as ms is very low resolution */
2045 /* compared to select (µs) or nanosleep (ns) */
2046 Sleep ((unsigned long)(delay * 1e3));
2047 #else
2048 struct timeval tv;
2049
2050 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2051 /* something not guaranteed by newer posix versions, but guaranteed */
2052 /* by older ones */
2053 EV_TV_SET (tv, delay);
2054 select (0, 0, 0, 0, &tv);
2055 #endif
2056 }
2057 }
2058
2059 /*****************************************************************************/
2060
2061 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2062
2063 /* find a suitable new size for the given array, */
2064 /* hopefully by rounding to a nice-to-malloc size */
2065 inline_size int
2066 array_nextsize (int elem, int cur, int cnt)
2067 {
2068 int ncur = cur + 1;
2069
2070 do
2071 ncur <<= 1;
2072 while (cnt > ncur);
2073
2074 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2075 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2076 {
2077 ncur *= elem;
2078 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2079 ncur = ncur - sizeof (void *) * 4;
2080 ncur /= elem;
2081 }
2082
2083 return ncur;
2084 }
2085
2086 ecb_noinline ecb_cold
2087 static void *
2088 array_realloc (int elem, void *base, int *cur, int cnt)
2089 {
2090 *cur = array_nextsize (elem, *cur, cnt);
2091 return ev_realloc (base, elem * *cur);
2092 }
2093
2094 #define array_needsize_noinit(base,offset,count)
2095
2096 #define array_needsize_zerofill(base,offset,count) \
2097 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2098
2099 #define array_needsize(type,base,cur,cnt,init) \
2100 if (ecb_expect_false ((cnt) > (cur))) \
2101 { \
2102 ecb_unused int ocur_ = (cur); \
2103 (base) = (type *)array_realloc \
2104 (sizeof (type), (base), &(cur), (cnt)); \
2105 init ((base), ocur_, ((cur) - ocur_)); \
2106 }
2107
2108 #if 0
2109 #define array_slim(type,stem) \
2110 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2111 { \
2112 stem ## max = array_roundsize (stem ## cnt >> 1); \
2113 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2114 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2115 }
2116 #endif
2117
2118 #define array_free(stem, idx) \
2119 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2120
2121 /*****************************************************************************/
2122
2123 /* dummy callback for pending events */
2124 ecb_noinline
2125 static void
2126 pendingcb (EV_P_ ev_prepare *w, int revents)
2127 {
2128 }
2129
2130 ecb_noinline
2131 void
2132 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2133 {
2134 W w_ = (W)w;
2135 int pri = ABSPRI (w_);
2136
2137 if (ecb_expect_false (w_->pending))
2138 pendings [pri][w_->pending - 1].events |= revents;
2139 else
2140 {
2141 w_->pending = ++pendingcnt [pri];
2142 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2143 pendings [pri][w_->pending - 1].w = w_;
2144 pendings [pri][w_->pending - 1].events = revents;
2145 }
2146
2147 pendingpri = NUMPRI - 1;
2148 }
2149
2150 inline_speed void
2151 feed_reverse (EV_P_ W w)
2152 {
2153 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2154 rfeeds [rfeedcnt++] = w;
2155 }
2156
2157 inline_size void
2158 feed_reverse_done (EV_P_ int revents)
2159 {
2160 do
2161 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2162 while (rfeedcnt);
2163 }
2164
2165 inline_speed void
2166 queue_events (EV_P_ W *events, int eventcnt, int type)
2167 {
2168 int i;
2169
2170 for (i = 0; i < eventcnt; ++i)
2171 ev_feed_event (EV_A_ events [i], type);
2172 }
2173
2174 /*****************************************************************************/
2175
2176 inline_speed void
2177 fd_event_nocheck (EV_P_ int fd, int revents)
2178 {
2179 ANFD *anfd = anfds + fd;
2180 ev_io *w;
2181
2182 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2183 {
2184 int ev = w->events & revents;
2185
2186 if (ev)
2187 ev_feed_event (EV_A_ (W)w, ev);
2188 }
2189 }
2190
2191 /* do not submit kernel events for fds that have reify set */
2192 /* because that means they changed while we were polling for new events */
2193 inline_speed void
2194 fd_event (EV_P_ int fd, int revents)
2195 {
2196 ANFD *anfd = anfds + fd;
2197
2198 if (ecb_expect_true (!anfd->reify))
2199 fd_event_nocheck (EV_A_ fd, revents);
2200 }
2201
2202 void
2203 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2204 {
2205 if (fd >= 0 && fd < anfdmax)
2206 fd_event_nocheck (EV_A_ fd, revents);
2207 }
2208
2209 /* make sure the external fd watch events are in-sync */
2210 /* with the kernel/libev internal state */
2211 inline_size void
2212 fd_reify (EV_P)
2213 {
2214 int i;
2215
2216 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2217 for (i = 0; i < fdchangecnt; ++i)
2218 {
2219 int fd = fdchanges [i];
2220 ANFD *anfd = anfds + fd;
2221
2222 if (anfd->reify & EV__IOFDSET && anfd->head)
2223 {
2224 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2225
2226 if (handle != anfd->handle)
2227 {
2228 unsigned long arg;
2229
2230 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2231
2232 /* handle changed, but fd didn't - we need to do it in two steps */
2233 backend_modify (EV_A_ fd, anfd->events, 0);
2234 anfd->events = 0;
2235 anfd->handle = handle;
2236 }
2237 }
2238 }
2239 #endif
2240
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245 ev_io *w;
2246
2247 unsigned char o_events = anfd->events;
2248 unsigned char o_reify = anfd->reify;
2249
2250 anfd->reify = 0;
2251
2252 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2253 {
2254 anfd->events = 0;
2255
2256 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2257 anfd->events |= (unsigned char)w->events;
2258
2259 if (o_events != anfd->events)
2260 o_reify = EV__IOFDSET; /* actually |= */
2261 }
2262
2263 if (o_reify & EV__IOFDSET)
2264 backend_modify (EV_A_ fd, o_events, anfd->events);
2265 }
2266
2267 fdchangecnt = 0;
2268 }
2269
2270 /* something about the given fd changed */
2271 inline_size
2272 void
2273 fd_change (EV_P_ int fd, int flags)
2274 {
2275 unsigned char reify = anfds [fd].reify;
2276 anfds [fd].reify |= flags;
2277
2278 if (ecb_expect_true (!reify))
2279 {
2280 ++fdchangecnt;
2281 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2282 fdchanges [fdchangecnt - 1] = fd;
2283 }
2284 }
2285
2286 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2287 inline_speed ecb_cold void
2288 fd_kill (EV_P_ int fd)
2289 {
2290 ev_io *w;
2291
2292 while ((w = (ev_io *)anfds [fd].head))
2293 {
2294 ev_io_stop (EV_A_ w);
2295 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2296 }
2297 }
2298
2299 /* check whether the given fd is actually valid, for error recovery */
2300 inline_size ecb_cold int
2301 fd_valid (int fd)
2302 {
2303 #ifdef _WIN32
2304 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2305 #else
2306 return fcntl (fd, F_GETFD) != -1;
2307 #endif
2308 }
2309
2310 /* called on EBADF to verify fds */
2311 ecb_noinline ecb_cold
2312 static void
2313 fd_ebadf (EV_P)
2314 {
2315 int fd;
2316
2317 for (fd = 0; fd < anfdmax; ++fd)
2318 if (anfds [fd].events)
2319 if (!fd_valid (fd) && errno == EBADF)
2320 fd_kill (EV_A_ fd);
2321 }
2322
2323 /* called on ENOMEM in select/poll to kill some fds and retry */
2324 ecb_noinline ecb_cold
2325 static void
2326 fd_enomem (EV_P)
2327 {
2328 int fd;
2329
2330 for (fd = anfdmax; fd--; )
2331 if (anfds [fd].events)
2332 {
2333 fd_kill (EV_A_ fd);
2334 break;
2335 }
2336 }
2337
2338 /* usually called after fork if backend needs to re-arm all fds from scratch */
2339 ecb_noinline
2340 static void
2341 fd_rearm_all (EV_P)
2342 {
2343 int fd;
2344
2345 for (fd = 0; fd < anfdmax; ++fd)
2346 if (anfds [fd].events)
2347 {
2348 anfds [fd].events = 0;
2349 anfds [fd].emask = 0;
2350 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2351 }
2352 }
2353
2354 /* used to prepare libev internal fd's */
2355 /* this is not fork-safe */
2356 inline_speed void
2357 fd_intern (int fd)
2358 {
2359 #ifdef _WIN32
2360 unsigned long arg = 1;
2361 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2362 #else
2363 fcntl (fd, F_SETFD, FD_CLOEXEC);
2364 fcntl (fd, F_SETFL, O_NONBLOCK);
2365 #endif
2366 }
2367
2368 /*****************************************************************************/
2369
2370 /*
2371 * the heap functions want a real array index. array index 0 is guaranteed to not
2372 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2373 * the branching factor of the d-tree.
2374 */
2375
2376 /*
2377 * at the moment we allow libev the luxury of two heaps,
2378 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2379 * which is more cache-efficient.
2380 * the difference is about 5% with 50000+ watchers.
2381 */
2382 #if EV_USE_4HEAP
2383
2384 #define DHEAP 4
2385 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2386 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2387 #define UPHEAP_DONE(p,k) ((p) == (k))
2388
2389 /* away from the root */
2390 inline_speed void
2391 downheap (ANHE *heap, int N, int k)
2392 {
2393 ANHE he = heap [k];
2394 ANHE *E = heap + N + HEAP0;
2395
2396 for (;;)
2397 {
2398 ev_tstamp minat;
2399 ANHE *minpos;
2400 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2401
2402 /* find minimum child */
2403 if (ecb_expect_true (pos + DHEAP - 1 < E))
2404 {
2405 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2406 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2407 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2408 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2409 }
2410 else if (pos < E)
2411 {
2412 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2413 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2414 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2415 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2416 }
2417 else
2418 break;
2419
2420 if (ANHE_at (he) <= minat)
2421 break;
2422
2423 heap [k] = *minpos;
2424 ev_active (ANHE_w (*minpos)) = k;
2425
2426 k = minpos - heap;
2427 }
2428
2429 heap [k] = he;
2430 ev_active (ANHE_w (he)) = k;
2431 }
2432
2433 #else /* 4HEAP */
2434
2435 #define HEAP0 1
2436 #define HPARENT(k) ((k) >> 1)
2437 #define UPHEAP_DONE(p,k) (!(p))
2438
2439 /* away from the root */
2440 inline_speed void
2441 downheap (ANHE *heap, int N, int k)
2442 {
2443 ANHE he = heap [k];
2444
2445 for (;;)
2446 {
2447 int c = k << 1;
2448
2449 if (c >= N + HEAP0)
2450 break;
2451
2452 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2453 ? 1 : 0;
2454
2455 if (ANHE_at (he) <= ANHE_at (heap [c]))
2456 break;
2457
2458 heap [k] = heap [c];
2459 ev_active (ANHE_w (heap [k])) = k;
2460
2461 k = c;
2462 }
2463
2464 heap [k] = he;
2465 ev_active (ANHE_w (he)) = k;
2466 }
2467 #endif
2468
2469 /* towards the root */
2470 inline_speed void
2471 upheap (ANHE *heap, int k)
2472 {
2473 ANHE he = heap [k];
2474
2475 for (;;)
2476 {
2477 int p = HPARENT (k);
2478
2479 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2480 break;
2481
2482 heap [k] = heap [p];
2483 ev_active (ANHE_w (heap [k])) = k;
2484 k = p;
2485 }
2486
2487 heap [k] = he;
2488 ev_active (ANHE_w (he)) = k;
2489 }
2490
2491 /* move an element suitably so it is in a correct place */
2492 inline_size void
2493 adjustheap (ANHE *heap, int N, int k)
2494 {
2495 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2496 upheap (heap, k);
2497 else
2498 downheap (heap, N, k);
2499 }
2500
2501 /* rebuild the heap: this function is used only once and executed rarely */
2502 inline_size void
2503 reheap (ANHE *heap, int N)
2504 {
2505 int i;
2506
2507 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2508 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2509 for (i = 0; i < N; ++i)
2510 upheap (heap, i + HEAP0);
2511 }
2512
2513 /*****************************************************************************/
2514
2515 /* associate signal watchers to a signal signal */
2516 typedef struct
2517 {
2518 EV_ATOMIC_T pending;
2519 #if EV_MULTIPLICITY
2520 EV_P;
2521 #endif
2522 WL head;
2523 } ANSIG;
2524
2525 static ANSIG signals [EV_NSIG - 1];
2526
2527 /*****************************************************************************/
2528
2529 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2530
2531 ecb_noinline ecb_cold
2532 static void
2533 evpipe_init (EV_P)
2534 {
2535 if (!ev_is_active (&pipe_w))
2536 {
2537 int fds [2];
2538
2539 # if EV_USE_EVENTFD
2540 fds [0] = -1;
2541 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2542 if (fds [1] < 0 && errno == EINVAL)
2543 fds [1] = eventfd (0, 0);
2544
2545 if (fds [1] < 0)
2546 # endif
2547 {
2548 while (pipe (fds))
2549 ev_syserr ("(libev) error creating signal/async pipe");
2550
2551 fd_intern (fds [0]);
2552 }
2553
2554 evpipe [0] = fds [0];
2555
2556 if (evpipe [1] < 0)
2557 evpipe [1] = fds [1]; /* first call, set write fd */
2558 else
2559 {
2560 /* on subsequent calls, do not change evpipe [1] */
2561 /* so that evpipe_write can always rely on its value. */
2562 /* this branch does not do anything sensible on windows, */
2563 /* so must not be executed on windows */
2564
2565 dup2 (fds [1], evpipe [1]);
2566 close (fds [1]);
2567 }
2568
2569 fd_intern (evpipe [1]);
2570
2571 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2572 ev_io_start (EV_A_ &pipe_w);
2573 ev_unref (EV_A); /* watcher should not keep loop alive */
2574 }
2575 }
2576
2577 inline_speed void
2578 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2579 {
2580 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2581
2582 if (ecb_expect_true (*flag))
2583 return;
2584
2585 *flag = 1;
2586 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2587
2588 pipe_write_skipped = 1;
2589
2590 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2591
2592 if (pipe_write_wanted)
2593 {
2594 int old_errno;
2595
2596 pipe_write_skipped = 0;
2597 ECB_MEMORY_FENCE_RELEASE;
2598
2599 old_errno = errno; /* save errno because write will clobber it */
2600
2601 #if EV_USE_EVENTFD
2602 if (evpipe [0] < 0)
2603 {
2604 uint64_t counter = 1;
2605 write (evpipe [1], &counter, sizeof (uint64_t));
2606 }
2607 else
2608 #endif
2609 {
2610 #ifdef _WIN32
2611 WSABUF buf;
2612 DWORD sent;
2613 buf.buf = (char *)&buf;
2614 buf.len = 1;
2615 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2616 #else
2617 write (evpipe [1], &(evpipe [1]), 1);
2618 #endif
2619 }
2620
2621 errno = old_errno;
2622 }
2623 }
2624
2625 /* called whenever the libev signal pipe */
2626 /* got some events (signal, async) */
2627 static void
2628 pipecb (EV_P_ ev_io *iow, int revents)
2629 {
2630 int i;
2631
2632 if (revents & EV_READ)
2633 {
2634 #if EV_USE_EVENTFD
2635 if (evpipe [0] < 0)
2636 {
2637 uint64_t counter;
2638 read (evpipe [1], &counter, sizeof (uint64_t));
2639 }
2640 else
2641 #endif
2642 {
2643 char dummy[4];
2644 #ifdef _WIN32
2645 WSABUF buf;
2646 DWORD recvd;
2647 DWORD flags = 0;
2648 buf.buf = dummy;
2649 buf.len = sizeof (dummy);
2650 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2651 #else
2652 read (evpipe [0], &dummy, sizeof (dummy));
2653 #endif
2654 }
2655 }
2656
2657 pipe_write_skipped = 0;
2658
2659 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2660
2661 #if EV_SIGNAL_ENABLE
2662 if (sig_pending)
2663 {
2664 sig_pending = 0;
2665
2666 ECB_MEMORY_FENCE;
2667
2668 for (i = EV_NSIG - 1; i--; )
2669 if (ecb_expect_false (signals [i].pending))
2670 ev_feed_signal_event (EV_A_ i + 1);
2671 }
2672 #endif
2673
2674 #if EV_ASYNC_ENABLE
2675 if (async_pending)
2676 {
2677 async_pending = 0;
2678
2679 ECB_MEMORY_FENCE;
2680
2681 for (i = asynccnt; i--; )
2682 if (asyncs [i]->sent)
2683 {
2684 asyncs [i]->sent = 0;
2685 ECB_MEMORY_FENCE_RELEASE;
2686 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2687 }
2688 }
2689 #endif
2690 }
2691
2692 /*****************************************************************************/
2693
2694 void
2695 ev_feed_signal (int signum) EV_NOEXCEPT
2696 {
2697 #if EV_MULTIPLICITY
2698 EV_P;
2699 ECB_MEMORY_FENCE_ACQUIRE;
2700 EV_A = signals [signum - 1].loop;
2701
2702 if (!EV_A)
2703 return;
2704 #endif
2705
2706 signals [signum - 1].pending = 1;
2707 evpipe_write (EV_A_ &sig_pending);
2708 }
2709
2710 static void
2711 ev_sighandler (int signum)
2712 {
2713 #ifdef _WIN32
2714 signal (signum, ev_sighandler);
2715 #endif
2716
2717 ev_feed_signal (signum);
2718 }
2719
2720 ecb_noinline
2721 void
2722 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2723 {
2724 WL w;
2725
2726 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2727 return;
2728
2729 --signum;
2730
2731 #if EV_MULTIPLICITY
2732 /* it is permissible to try to feed a signal to the wrong loop */
2733 /* or, likely more useful, feeding a signal nobody is waiting for */
2734
2735 if (ecb_expect_false (signals [signum].loop != EV_A))
2736 return;
2737 #endif
2738
2739 signals [signum].pending = 0;
2740 ECB_MEMORY_FENCE_RELEASE;
2741
2742 for (w = signals [signum].head; w; w = w->next)
2743 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2744 }
2745
2746 #if EV_USE_SIGNALFD
2747 static void
2748 sigfdcb (EV_P_ ev_io *iow, int revents)
2749 {
2750 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2751
2752 for (;;)
2753 {
2754 ssize_t res = read (sigfd, si, sizeof (si));
2755
2756 /* not ISO-C, as res might be -1, but works with SuS */
2757 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2758 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2759
2760 if (res < (ssize_t)sizeof (si))
2761 break;
2762 }
2763 }
2764 #endif
2765
2766 #endif
2767
2768 /*****************************************************************************/
2769
2770 #if EV_CHILD_ENABLE
2771 static WL childs [EV_PID_HASHSIZE];
2772
2773 static ev_signal childev;
2774
2775 #ifndef WIFCONTINUED
2776 # define WIFCONTINUED(status) 0
2777 #endif
2778
2779 /* handle a single child status event */
2780 inline_speed void
2781 child_reap (EV_P_ int chain, int pid, int status)
2782 {
2783 ev_child *w;
2784 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2785
2786 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2787 {
2788 if ((w->pid == pid || !w->pid)
2789 && (!traced || (w->flags & 1)))
2790 {
2791 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2792 w->rpid = pid;
2793 w->rstatus = status;
2794 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2795 }
2796 }
2797 }
2798
2799 #ifndef WCONTINUED
2800 # define WCONTINUED 0
2801 #endif
2802
2803 /* called on sigchld etc., calls waitpid */
2804 static void
2805 childcb (EV_P_ ev_signal *sw, int revents)
2806 {
2807 int pid, status;
2808
2809 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2810 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2811 if (!WCONTINUED
2812 || errno != EINVAL
2813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2814 return;
2815
2816 /* make sure we are called again until all children have been reaped */
2817 /* we need to do it this way so that the callback gets called before we continue */
2818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2819
2820 child_reap (EV_A_ pid, pid, status);
2821 if ((EV_PID_HASHSIZE) > 1)
2822 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2823 }
2824
2825 #endif
2826
2827 /*****************************************************************************/
2828
2829 #if EV_USE_IOCP
2830 # include "ev_iocp.c"
2831 #endif
2832 #if EV_USE_PORT
2833 # include "ev_port.c"
2834 #endif
2835 #if EV_USE_KQUEUE
2836 # include "ev_kqueue.c"
2837 #endif
2838 #if EV_USE_EPOLL
2839 # include "ev_epoll.c"
2840 #endif
2841 #if EV_USE_LINUXAIO
2842 # include "ev_linuxaio.c"
2843 #endif
2844 #if EV_USE_IOURING
2845 # include "ev_iouring.c"
2846 #endif
2847 #if EV_USE_POLL
2848 # include "ev_poll.c"
2849 #endif
2850 #if EV_USE_SELECT
2851 # include "ev_select.c"
2852 #endif
2853
2854 ecb_cold int
2855 ev_version_major (void) EV_NOEXCEPT
2856 {
2857 return EV_VERSION_MAJOR;
2858 }
2859
2860 ecb_cold int
2861 ev_version_minor (void) EV_NOEXCEPT
2862 {
2863 return EV_VERSION_MINOR;
2864 }
2865
2866 /* return true if we are running with elevated privileges and should ignore env variables */
2867 inline_size ecb_cold int
2868 enable_secure (void)
2869 {
2870 #ifdef _WIN32
2871 return 0;
2872 #else
2873 return getuid () != geteuid ()
2874 || getgid () != getegid ();
2875 #endif
2876 }
2877
2878 ecb_cold
2879 unsigned int
2880 ev_supported_backends (void) EV_NOEXCEPT
2881 {
2882 unsigned int flags = 0;
2883
2884 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2885 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2886 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2887 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2888 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2889 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2890 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2891
2892 return flags;
2893 }
2894
2895 ecb_cold
2896 unsigned int
2897 ev_recommended_backends (void) EV_NOEXCEPT
2898 {
2899 unsigned int flags = ev_supported_backends ();
2900
2901 #ifndef __NetBSD__
2902 /* kqueue is borked on everything but netbsd apparently */
2903 /* it usually doesn't work correctly on anything but sockets and pipes */
2904 flags &= ~EVBACKEND_KQUEUE;
2905 #endif
2906 #ifdef __APPLE__
2907 /* only select works correctly on that "unix-certified" platform */
2908 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2909 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2910 #endif
2911 #ifdef __FreeBSD__
2912 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2913 #endif
2914
2915 /* TODO: linuxaio is very experimental */
2916 #if !EV_RECOMMEND_LINUXAIO
2917 flags &= ~EVBACKEND_LINUXAIO;
2918 #endif
2919 /* TODO: linuxaio is super experimental */
2920 #if !EV_RECOMMEND_IOURING
2921 flags &= ~EVBACKEND_IOURING;
2922 #endif
2923
2924 return flags;
2925 }
2926
2927 ecb_cold
2928 unsigned int
2929 ev_embeddable_backends (void) EV_NOEXCEPT
2930 {
2931 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2932
2933 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2934 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2935 flags &= ~EVBACKEND_EPOLL;
2936
2937 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2938
2939 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2940 * because our backend_fd is the epoll fd we need as fallback.
2941 * if the kernel ever is fixed, this might change...
2942 */
2943
2944 return flags;
2945 }
2946
2947 unsigned int
2948 ev_backend (EV_P) EV_NOEXCEPT
2949 {
2950 return backend;
2951 }
2952
2953 #if EV_FEATURE_API
2954 unsigned int
2955 ev_iteration (EV_P) EV_NOEXCEPT
2956 {
2957 return loop_count;
2958 }
2959
2960 unsigned int
2961 ev_depth (EV_P) EV_NOEXCEPT
2962 {
2963 return loop_depth;
2964 }
2965
2966 void
2967 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2968 {
2969 io_blocktime = interval;
2970 }
2971
2972 void
2973 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2974 {
2975 timeout_blocktime = interval;
2976 }
2977
2978 void
2979 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2980 {
2981 userdata = data;
2982 }
2983
2984 void *
2985 ev_userdata (EV_P) EV_NOEXCEPT
2986 {
2987 return userdata;
2988 }
2989
2990 void
2991 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2992 {
2993 invoke_cb = invoke_pending_cb;
2994 }
2995
2996 void
2997 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2998 {
2999 release_cb = release;
3000 acquire_cb = acquire;
3001 }
3002 #endif
3003
3004 /* initialise a loop structure, must be zero-initialised */
3005 ecb_noinline ecb_cold
3006 static void
3007 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3008 {
3009 if (!backend)
3010 {
3011 origflags = flags;
3012
3013 #if EV_USE_REALTIME
3014 if (!have_realtime)
3015 {
3016 struct timespec ts;
3017
3018 if (!clock_gettime (CLOCK_REALTIME, &ts))
3019 have_realtime = 1;
3020 }
3021 #endif
3022
3023 #if EV_USE_MONOTONIC
3024 if (!have_monotonic)
3025 {
3026 struct timespec ts;
3027
3028 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3029 have_monotonic = 1;
3030 }
3031 #endif
3032
3033 /* pid check not overridable via env */
3034 #ifndef _WIN32
3035 if (flags & EVFLAG_FORKCHECK)
3036 curpid = getpid ();
3037 #endif
3038
3039 if (!(flags & EVFLAG_NOENV)
3040 && !enable_secure ()
3041 && getenv ("LIBEV_FLAGS"))
3042 flags = atoi (getenv ("LIBEV_FLAGS"));
3043
3044 ev_rt_now = ev_time ();
3045 mn_now = get_clock ();
3046 now_floor = mn_now;
3047 rtmn_diff = ev_rt_now - mn_now;
3048 #if EV_FEATURE_API
3049 invoke_cb = ev_invoke_pending;
3050 #endif
3051
3052 io_blocktime = 0.;
3053 timeout_blocktime = 0.;
3054 backend = 0;
3055 backend_fd = -1;
3056 sig_pending = 0;
3057 #if EV_ASYNC_ENABLE
3058 async_pending = 0;
3059 #endif
3060 pipe_write_skipped = 0;
3061 pipe_write_wanted = 0;
3062 evpipe [0] = -1;
3063 evpipe [1] = -1;
3064 #if EV_USE_INOTIFY
3065 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3066 #endif
3067 #if EV_USE_SIGNALFD
3068 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3069 #endif
3070
3071 if (!(flags & EVBACKEND_MASK))
3072 flags |= ev_recommended_backends ();
3073
3074 #if EV_USE_IOCP
3075 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3076 #endif
3077 #if EV_USE_PORT
3078 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3079 #endif
3080 #if EV_USE_KQUEUE
3081 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3082 #endif
3083 #if EV_USE_IOURING
3084 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3085 #endif
3086 #if EV_USE_LINUXAIO
3087 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3088 #endif
3089 #if EV_USE_EPOLL
3090 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3091 #endif
3092 #if EV_USE_POLL
3093 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3094 #endif
3095 #if EV_USE_SELECT
3096 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3097 #endif
3098
3099 ev_prepare_init (&pending_w, pendingcb);
3100
3101 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3102 ev_init (&pipe_w, pipecb);
3103 ev_set_priority (&pipe_w, EV_MAXPRI);
3104 #endif
3105 }
3106 }
3107
3108 /* free up a loop structure */
3109 ecb_cold
3110 void
3111 ev_loop_destroy (EV_P)
3112 {
3113 int i;
3114
3115 #if EV_MULTIPLICITY
3116 /* mimic free (0) */
3117 if (!EV_A)
3118 return;
3119 #endif
3120
3121 #if EV_CLEANUP_ENABLE
3122 /* queue cleanup watchers (and execute them) */
3123 if (ecb_expect_false (cleanupcnt))
3124 {
3125 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3126 EV_INVOKE_PENDING;
3127 }
3128 #endif
3129
3130 #if EV_CHILD_ENABLE
3131 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3132 {
3133 ev_ref (EV_A); /* child watcher */
3134 ev_signal_stop (EV_A_ &childev);
3135 }
3136 #endif
3137
3138 if (ev_is_active (&pipe_w))
3139 {
3140 /*ev_ref (EV_A);*/
3141 /*ev_io_stop (EV_A_ &pipe_w);*/
3142
3143 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3144 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3145 }
3146
3147 #if EV_USE_SIGNALFD
3148 if (ev_is_active (&sigfd_w))
3149 close (sigfd);
3150 #endif
3151
3152 #if EV_USE_INOTIFY
3153 if (fs_fd >= 0)
3154 close (fs_fd);
3155 #endif
3156
3157 if (backend_fd >= 0)
3158 close (backend_fd);
3159
3160 #if EV_USE_IOCP
3161 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3162 #endif
3163 #if EV_USE_PORT
3164 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3165 #endif
3166 #if EV_USE_KQUEUE
3167 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3168 #endif
3169 #if EV_USE_IOURING
3170 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3171 #endif
3172 #if EV_USE_LINUXAIO
3173 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3174 #endif
3175 #if EV_USE_EPOLL
3176 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3177 #endif
3178 #if EV_USE_POLL
3179 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3180 #endif
3181 #if EV_USE_SELECT
3182 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3183 #endif
3184
3185 for (i = NUMPRI; i--; )
3186 {
3187 array_free (pending, [i]);
3188 #if EV_IDLE_ENABLE
3189 array_free (idle, [i]);
3190 #endif
3191 }
3192
3193 ev_free (anfds); anfds = 0; anfdmax = 0;
3194
3195 /* have to use the microsoft-never-gets-it-right macro */
3196 array_free (rfeed, EMPTY);
3197 array_free (fdchange, EMPTY);
3198 array_free (timer, EMPTY);
3199 #if EV_PERIODIC_ENABLE
3200 array_free (periodic, EMPTY);
3201 #endif
3202 #if EV_FORK_ENABLE
3203 array_free (fork, EMPTY);
3204 #endif
3205 #if EV_CLEANUP_ENABLE
3206 array_free (cleanup, EMPTY);
3207 #endif
3208 array_free (prepare, EMPTY);
3209 array_free (check, EMPTY);
3210 #if EV_ASYNC_ENABLE
3211 array_free (async, EMPTY);
3212 #endif
3213
3214 backend = 0;
3215
3216 #if EV_MULTIPLICITY
3217 if (ev_is_default_loop (EV_A))
3218 #endif
3219 ev_default_loop_ptr = 0;
3220 #if EV_MULTIPLICITY
3221 else
3222 ev_free (EV_A);
3223 #endif
3224 }
3225
3226 #if EV_USE_INOTIFY
3227 inline_size void infy_fork (EV_P);
3228 #endif
3229
3230 inline_size void
3231 loop_fork (EV_P)
3232 {
3233 #if EV_USE_PORT
3234 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3235 #endif
3236 #if EV_USE_KQUEUE
3237 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3238 #endif
3239 #if EV_USE_IOURING
3240 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3241 #endif
3242 #if EV_USE_LINUXAIO
3243 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3244 #endif
3245 #if EV_USE_EPOLL
3246 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3247 #endif
3248 #if EV_USE_INOTIFY
3249 infy_fork (EV_A);
3250 #endif
3251
3252 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3253 if (ev_is_active (&pipe_w) && postfork != 2)
3254 {
3255 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3256
3257 ev_ref (EV_A);
3258 ev_io_stop (EV_A_ &pipe_w);
3259
3260 if (evpipe [0] >= 0)
3261 EV_WIN32_CLOSE_FD (evpipe [0]);
3262
3263 evpipe_init (EV_A);
3264 /* iterate over everything, in case we missed something before */
3265 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3266 }
3267 #endif
3268
3269 postfork = 0;
3270 }
3271
3272 #if EV_MULTIPLICITY
3273
3274 ecb_cold
3275 struct ev_loop *
3276 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3277 {
3278 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3279
3280 memset (EV_A, 0, sizeof (struct ev_loop));
3281 loop_init (EV_A_ flags);
3282
3283 if (ev_backend (EV_A))
3284 return EV_A;
3285
3286 ev_free (EV_A);
3287 return 0;
3288 }
3289
3290 #endif /* multiplicity */
3291
3292 #if EV_VERIFY
3293 ecb_noinline ecb_cold
3294 static void
3295 verify_watcher (EV_P_ W w)
3296 {
3297 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3298
3299 if (w->pending)
3300 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3301 }
3302
3303 ecb_noinline ecb_cold
3304 static void
3305 verify_heap (EV_P_ ANHE *heap, int N)
3306 {
3307 int i;
3308
3309 for (i = HEAP0; i < N + HEAP0; ++i)
3310 {
3311 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3312 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3313 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3314
3315 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3316 }
3317 }
3318
3319 ecb_noinline ecb_cold
3320 static void
3321 array_verify (EV_P_ W *ws, int cnt)
3322 {
3323 while (cnt--)
3324 {
3325 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3326 verify_watcher (EV_A_ ws [cnt]);
3327 }
3328 }
3329 #endif
3330
3331 #if EV_FEATURE_API
3332 void ecb_cold
3333 ev_verify (EV_P) EV_NOEXCEPT
3334 {
3335 #if EV_VERIFY
3336 int i;
3337 WL w, w2;
3338
3339 assert (activecnt >= -1);
3340
3341 assert (fdchangemax >= fdchangecnt);
3342 for (i = 0; i < fdchangecnt; ++i)
3343 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3344
3345 assert (anfdmax >= 0);
3346 for (i = 0; i < anfdmax; ++i)
3347 {
3348 int j = 0;
3349
3350 for (w = w2 = anfds [i].head; w; w = w->next)
3351 {
3352 verify_watcher (EV_A_ (W)w);
3353
3354 if (j++ & 1)
3355 {
3356 assert (("libev: io watcher list contains a loop", w != w2));
3357 w2 = w2->next;
3358 }
3359
3360 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3361 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3362 }
3363 }
3364
3365 assert (timermax >= timercnt);
3366 verify_heap (EV_A_ timers, timercnt);
3367
3368 #if EV_PERIODIC_ENABLE
3369 assert (periodicmax >= periodiccnt);
3370 verify_heap (EV_A_ periodics, periodiccnt);
3371 #endif
3372
3373 for (i = NUMPRI; i--; )
3374 {
3375 assert (pendingmax [i] >= pendingcnt [i]);
3376 #if EV_IDLE_ENABLE
3377 assert (idleall >= 0);
3378 assert (idlemax [i] >= idlecnt [i]);
3379 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3380 #endif
3381 }
3382
3383 #if EV_FORK_ENABLE
3384 assert (forkmax >= forkcnt);
3385 array_verify (EV_A_ (W *)forks, forkcnt);
3386 #endif
3387
3388 #if EV_CLEANUP_ENABLE
3389 assert (cleanupmax >= cleanupcnt);
3390 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3391 #endif
3392
3393 #if EV_ASYNC_ENABLE
3394 assert (asyncmax >= asynccnt);
3395 array_verify (EV_A_ (W *)asyncs, asynccnt);
3396 #endif
3397
3398 #if EV_PREPARE_ENABLE
3399 assert (preparemax >= preparecnt);
3400 array_verify (EV_A_ (W *)prepares, preparecnt);
3401 #endif
3402
3403 #if EV_CHECK_ENABLE
3404 assert (checkmax >= checkcnt);
3405 array_verify (EV_A_ (W *)checks, checkcnt);
3406 #endif
3407
3408 # if 0
3409 #if EV_CHILD_ENABLE
3410 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3411 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3412 #endif
3413 # endif
3414 #endif
3415 }
3416 #endif
3417
3418 #if EV_MULTIPLICITY
3419 ecb_cold
3420 struct ev_loop *
3421 #else
3422 int
3423 #endif
3424 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3425 {
3426 if (!ev_default_loop_ptr)
3427 {
3428 #if EV_MULTIPLICITY
3429 EV_P = ev_default_loop_ptr = &default_loop_struct;
3430 #else
3431 ev_default_loop_ptr = 1;
3432 #endif
3433
3434 loop_init (EV_A_ flags);
3435
3436 if (ev_backend (EV_A))
3437 {
3438 #if EV_CHILD_ENABLE
3439 ev_signal_init (&childev, childcb, SIGCHLD);
3440 ev_set_priority (&childev, EV_MAXPRI);
3441 ev_signal_start (EV_A_ &childev);
3442 ev_unref (EV_A); /* child watcher should not keep loop alive */
3443 #endif
3444 }
3445 else
3446 ev_default_loop_ptr = 0;
3447 }
3448
3449 return ev_default_loop_ptr;
3450 }
3451
3452 void
3453 ev_loop_fork (EV_P) EV_NOEXCEPT
3454 {
3455 postfork = 1;
3456 }
3457
3458 /*****************************************************************************/
3459
3460 void
3461 ev_invoke (EV_P_ void *w, int revents)
3462 {
3463 EV_CB_INVOKE ((W)w, revents);
3464 }
3465
3466 unsigned int
3467 ev_pending_count (EV_P) EV_NOEXCEPT
3468 {
3469 int pri;
3470 unsigned int count = 0;
3471
3472 for (pri = NUMPRI; pri--; )
3473 count += pendingcnt [pri];
3474
3475 return count;
3476 }
3477
3478 ecb_noinline
3479 void
3480 ev_invoke_pending (EV_P)
3481 {
3482 pendingpri = NUMPRI;
3483
3484 do
3485 {
3486 --pendingpri;
3487
3488 /* pendingpri possibly gets modified in the inner loop */
3489 while (pendingcnt [pendingpri])
3490 {
3491 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3492
3493 p->w->pending = 0;
3494 EV_CB_INVOKE (p->w, p->events);
3495 EV_FREQUENT_CHECK;
3496 }
3497 }
3498 while (pendingpri);
3499 }
3500
3501 #if EV_IDLE_ENABLE
3502 /* make idle watchers pending. this handles the "call-idle */
3503 /* only when higher priorities are idle" logic */
3504 inline_size void
3505 idle_reify (EV_P)
3506 {
3507 if (ecb_expect_false (idleall))
3508 {
3509 int pri;
3510
3511 for (pri = NUMPRI; pri--; )
3512 {
3513 if (pendingcnt [pri])
3514 break;
3515
3516 if (idlecnt [pri])
3517 {
3518 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3519 break;
3520 }
3521 }
3522 }
3523 }
3524 #endif
3525
3526 /* make timers pending */
3527 inline_size void
3528 timers_reify (EV_P)
3529 {
3530 EV_FREQUENT_CHECK;
3531
3532 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3533 {
3534 do
3535 {
3536 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3537
3538 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3539
3540 /* first reschedule or stop timer */
3541 if (w->repeat)
3542 {
3543 ev_at (w) += w->repeat;
3544 if (ev_at (w) < mn_now)
3545 ev_at (w) = mn_now;
3546
3547 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3548
3549 ANHE_at_cache (timers [HEAP0]);
3550 downheap (timers, timercnt, HEAP0);
3551 }
3552 else
3553 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3554
3555 EV_FREQUENT_CHECK;
3556 feed_reverse (EV_A_ (W)w);
3557 }
3558 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3559
3560 feed_reverse_done (EV_A_ EV_TIMER);
3561 }
3562 }
3563
3564 #if EV_PERIODIC_ENABLE
3565
3566 ecb_noinline
3567 static void
3568 periodic_recalc (EV_P_ ev_periodic *w)
3569 {
3570 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3571 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3572
3573 /* the above almost always errs on the low side */
3574 while (at <= ev_rt_now)
3575 {
3576 ev_tstamp nat = at + w->interval;
3577
3578 /* when resolution fails us, we use ev_rt_now */
3579 if (ecb_expect_false (nat == at))
3580 {
3581 at = ev_rt_now;
3582 break;
3583 }
3584
3585 at = nat;
3586 }
3587
3588 ev_at (w) = at;
3589 }
3590
3591 /* make periodics pending */
3592 inline_size void
3593 periodics_reify (EV_P)
3594 {
3595 EV_FREQUENT_CHECK;
3596
3597 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3598 {
3599 do
3600 {
3601 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3602
3603 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3604
3605 /* first reschedule or stop timer */
3606 if (w->reschedule_cb)
3607 {
3608 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3609
3610 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3611
3612 ANHE_at_cache (periodics [HEAP0]);
3613 downheap (periodics, periodiccnt, HEAP0);
3614 }
3615 else if (w->interval)
3616 {
3617 periodic_recalc (EV_A_ w);
3618 ANHE_at_cache (periodics [HEAP0]);
3619 downheap (periodics, periodiccnt, HEAP0);
3620 }
3621 else
3622 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3623
3624 EV_FREQUENT_CHECK;
3625 feed_reverse (EV_A_ (W)w);
3626 }
3627 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3628
3629 feed_reverse_done (EV_A_ EV_PERIODIC);
3630 }
3631 }
3632
3633 /* simply recalculate all periodics */
3634 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3635 ecb_noinline ecb_cold
3636 static void
3637 periodics_reschedule (EV_P)
3638 {
3639 int i;
3640
3641 /* adjust periodics after time jump */
3642 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3643 {
3644 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3645
3646 if (w->reschedule_cb)
3647 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3648 else if (w->interval)
3649 periodic_recalc (EV_A_ w);
3650
3651 ANHE_at_cache (periodics [i]);
3652 }
3653
3654 reheap (periodics, periodiccnt);
3655 }
3656 #endif
3657
3658 /* adjust all timers by a given offset */
3659 ecb_noinline ecb_cold
3660 static void
3661 timers_reschedule (EV_P_ ev_tstamp adjust)
3662 {
3663 int i;
3664
3665 for (i = 0; i < timercnt; ++i)
3666 {
3667 ANHE *he = timers + i + HEAP0;
3668 ANHE_w (*he)->at += adjust;
3669 ANHE_at_cache (*he);
3670 }
3671 }
3672
3673 /* fetch new monotonic and realtime times from the kernel */
3674 /* also detect if there was a timejump, and act accordingly */
3675 inline_speed void
3676 time_update (EV_P_ ev_tstamp max_block)
3677 {
3678 #if EV_USE_MONOTONIC
3679 if (ecb_expect_true (have_monotonic))
3680 {
3681 int i;
3682 ev_tstamp odiff = rtmn_diff;
3683
3684 mn_now = get_clock ();
3685
3686 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3687 /* interpolate in the meantime */
3688 if (ecb_expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3689 {
3690 ev_rt_now = rtmn_diff + mn_now;
3691 return;
3692 }
3693
3694 now_floor = mn_now;
3695 ev_rt_now = ev_time ();
3696
3697 /* loop a few times, before making important decisions.
3698 * on the choice of "4": one iteration isn't enough,
3699 * in case we get preempted during the calls to
3700 * ev_time and get_clock. a second call is almost guaranteed
3701 * to succeed in that case, though. and looping a few more times
3702 * doesn't hurt either as we only do this on time-jumps or
3703 * in the unlikely event of having been preempted here.
3704 */
3705 for (i = 4; --i; )
3706 {
3707 ev_tstamp diff;
3708 rtmn_diff = ev_rt_now - mn_now;
3709
3710 diff = odiff - rtmn_diff;
3711
3712 if (ecb_expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3713 return; /* all is well */
3714
3715 ev_rt_now = ev_time ();
3716 mn_now = get_clock ();
3717 now_floor = mn_now;
3718 }
3719
3720 /* no timer adjustment, as the monotonic clock doesn't jump */
3721 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3722 # if EV_PERIODIC_ENABLE
3723 periodics_reschedule (EV_A);
3724 # endif
3725 }
3726 else
3727 #endif
3728 {
3729 ev_rt_now = ev_time ();
3730
3731 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3732 {
3733 /* adjust timers. this is easy, as the offset is the same for all of them */
3734 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3735 #if EV_PERIODIC_ENABLE
3736 periodics_reschedule (EV_A);
3737 #endif
3738 }
3739
3740 mn_now = ev_rt_now;
3741 }
3742 }
3743
3744 int
3745 ev_run (EV_P_ int flags)
3746 {
3747 #if EV_FEATURE_API
3748 ++loop_depth;
3749 #endif
3750
3751 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3752
3753 loop_done = EVBREAK_CANCEL;
3754
3755 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3756
3757 do
3758 {
3759 #if EV_VERIFY >= 2
3760 ev_verify (EV_A);
3761 #endif
3762
3763 #ifndef _WIN32
3764 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3765 if (ecb_expect_false (getpid () != curpid))
3766 {
3767 curpid = getpid ();
3768 postfork = 1;
3769 }
3770 #endif
3771
3772 #if EV_FORK_ENABLE
3773 /* we might have forked, so queue fork handlers */
3774 if (ecb_expect_false (postfork))
3775 if (forkcnt)
3776 {
3777 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3778 EV_INVOKE_PENDING;
3779 }
3780 #endif
3781
3782 #if EV_PREPARE_ENABLE
3783 /* queue prepare watchers (and execute them) */
3784 if (ecb_expect_false (preparecnt))
3785 {
3786 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3787 EV_INVOKE_PENDING;
3788 }
3789 #endif
3790
3791 if (ecb_expect_false (loop_done))
3792 break;
3793
3794 /* we might have forked, so reify kernel state if necessary */
3795 if (ecb_expect_false (postfork))
3796 loop_fork (EV_A);
3797
3798 /* update fd-related kernel structures */
3799 fd_reify (EV_A);
3800
3801 /* calculate blocking time */
3802 {
3803 ev_tstamp waittime = 0.;
3804 ev_tstamp sleeptime = 0.;
3805
3806 /* remember old timestamp for io_blocktime calculation */
3807 ev_tstamp prev_mn_now = mn_now;
3808
3809 /* update time to cancel out callback processing overhead */
3810 time_update (EV_A_ 1e100);
3811
3812 /* from now on, we want a pipe-wake-up */
3813 pipe_write_wanted = 1;
3814
3815 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3816
3817 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3818 {
3819 waittime = MAX_BLOCKTIME;
3820
3821 if (timercnt)
3822 {
3823 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3824 if (waittime > to) waittime = to;
3825 }
3826
3827 #if EV_PERIODIC_ENABLE
3828 if (periodiccnt)
3829 {
3830 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3831 if (waittime > to) waittime = to;
3832 }
3833 #endif
3834
3835 /* don't let timeouts decrease the waittime below timeout_blocktime */
3836 if (ecb_expect_false (waittime < timeout_blocktime))
3837 waittime = timeout_blocktime;
3838
3839 /* at this point, we NEED to wait, so we have to ensure */
3840 /* to pass a minimum nonzero value to the backend */
3841 if (ecb_expect_false (waittime < backend_mintime))
3842 waittime = backend_mintime;
3843
3844 /* extra check because io_blocktime is commonly 0 */
3845 if (ecb_expect_false (io_blocktime))
3846 {
3847 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3848
3849 if (sleeptime > waittime - backend_mintime)
3850 sleeptime = waittime - backend_mintime;
3851
3852 if (ecb_expect_true (sleeptime > 0.))
3853 {
3854 ev_sleep (sleeptime);
3855 waittime -= sleeptime;
3856 }
3857 }
3858 }
3859
3860 #if EV_FEATURE_API
3861 ++loop_count;
3862 #endif
3863 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3864 backend_poll (EV_A_ waittime);
3865 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3866
3867 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3868
3869 ECB_MEMORY_FENCE_ACQUIRE;
3870 if (pipe_write_skipped)
3871 {
3872 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3873 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3874 }
3875
3876 /* update ev_rt_now, do magic */
3877 time_update (EV_A_ waittime + sleeptime);
3878 }
3879
3880 /* queue pending timers and reschedule them */
3881 timers_reify (EV_A); /* relative timers called last */
3882 #if EV_PERIODIC_ENABLE
3883 periodics_reify (EV_A); /* absolute timers called first */
3884 #endif
3885
3886 #if EV_IDLE_ENABLE
3887 /* queue idle watchers unless other events are pending */
3888 idle_reify (EV_A);
3889 #endif
3890
3891 #if EV_CHECK_ENABLE
3892 /* queue check watchers, to be executed first */
3893 if (ecb_expect_false (checkcnt))
3894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3895 #endif
3896
3897 EV_INVOKE_PENDING;
3898 }
3899 while (ecb_expect_true (
3900 activecnt
3901 && !loop_done
3902 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3903 ));
3904
3905 if (loop_done == EVBREAK_ONE)
3906 loop_done = EVBREAK_CANCEL;
3907
3908 #if EV_FEATURE_API
3909 --loop_depth;
3910 #endif
3911
3912 return activecnt;
3913 }
3914
3915 void
3916 ev_break (EV_P_ int how) EV_NOEXCEPT
3917 {
3918 loop_done = how;
3919 }
3920
3921 void
3922 ev_ref (EV_P) EV_NOEXCEPT
3923 {
3924 ++activecnt;
3925 }
3926
3927 void
3928 ev_unref (EV_P) EV_NOEXCEPT
3929 {
3930 --activecnt;
3931 }
3932
3933 void
3934 ev_now_update (EV_P) EV_NOEXCEPT
3935 {
3936 time_update (EV_A_ 1e100);
3937 }
3938
3939 void
3940 ev_suspend (EV_P) EV_NOEXCEPT
3941 {
3942 ev_now_update (EV_A);
3943 }
3944
3945 void
3946 ev_resume (EV_P) EV_NOEXCEPT
3947 {
3948 ev_tstamp mn_prev = mn_now;
3949
3950 ev_now_update (EV_A);
3951 timers_reschedule (EV_A_ mn_now - mn_prev);
3952 #if EV_PERIODIC_ENABLE
3953 /* TODO: really do this? */
3954 periodics_reschedule (EV_A);
3955 #endif
3956 }
3957
3958 /*****************************************************************************/
3959 /* singly-linked list management, used when the expected list length is short */
3960
3961 inline_size void
3962 wlist_add (WL *head, WL elem)
3963 {
3964 elem->next = *head;
3965 *head = elem;
3966 }
3967
3968 inline_size void
3969 wlist_del (WL *head, WL elem)
3970 {
3971 while (*head)
3972 {
3973 if (ecb_expect_true (*head == elem))
3974 {
3975 *head = elem->next;
3976 break;
3977 }
3978
3979 head = &(*head)->next;
3980 }
3981 }
3982
3983 /* internal, faster, version of ev_clear_pending */
3984 inline_speed void
3985 clear_pending (EV_P_ W w)
3986 {
3987 if (w->pending)
3988 {
3989 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3990 w->pending = 0;
3991 }
3992 }
3993
3994 int
3995 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3996 {
3997 W w_ = (W)w;
3998 int pending = w_->pending;
3999
4000 if (ecb_expect_true (pending))
4001 {
4002 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4003 p->w = (W)&pending_w;
4004 w_->pending = 0;
4005 return p->events;
4006 }
4007 else
4008 return 0;
4009 }
4010
4011 inline_size void
4012 pri_adjust (EV_P_ W w)
4013 {
4014 int pri = ev_priority (w);
4015 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4016 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4017 ev_set_priority (w, pri);
4018 }
4019
4020 inline_speed void
4021 ev_start (EV_P_ W w, int active)
4022 {
4023 pri_adjust (EV_A_ w);
4024 w->active = active;
4025 ev_ref (EV_A);
4026 }
4027
4028 inline_size void
4029 ev_stop (EV_P_ W w)
4030 {
4031 ev_unref (EV_A);
4032 w->active = 0;
4033 }
4034
4035 /*****************************************************************************/
4036
4037 ecb_noinline
4038 void
4039 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4040 {
4041 int fd = w->fd;
4042
4043 if (ecb_expect_false (ev_is_active (w)))
4044 return;
4045
4046 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4047 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4048
4049 #if EV_VERIFY >= 2
4050 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4051 #endif
4052 EV_FREQUENT_CHECK;
4053
4054 ev_start (EV_A_ (W)w, 1);
4055 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4056 wlist_add (&anfds[fd].head, (WL)w);
4057
4058 /* common bug, apparently */
4059 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4060
4061 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4062 w->events &= ~EV__IOFDSET;
4063
4064 EV_FREQUENT_CHECK;
4065 }
4066
4067 ecb_noinline
4068 void
4069 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4070 {
4071 clear_pending (EV_A_ (W)w);
4072 if (ecb_expect_false (!ev_is_active (w)))
4073 return;
4074
4075 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4076
4077 #if EV_VERIFY >= 2
4078 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4079 #endif
4080 EV_FREQUENT_CHECK;
4081
4082 wlist_del (&anfds[w->fd].head, (WL)w);
4083 ev_stop (EV_A_ (W)w);
4084
4085 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4086
4087 EV_FREQUENT_CHECK;
4088 }
4089
4090 ecb_noinline
4091 void
4092 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4093 {
4094 if (ecb_expect_false (ev_is_active (w)))
4095 return;
4096
4097 ev_at (w) += mn_now;
4098
4099 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4100
4101 EV_FREQUENT_CHECK;
4102
4103 ++timercnt;
4104 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4105 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4106 ANHE_w (timers [ev_active (w)]) = (WT)w;
4107 ANHE_at_cache (timers [ev_active (w)]);
4108 upheap (timers, ev_active (w));
4109
4110 EV_FREQUENT_CHECK;
4111
4112 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4113 }
4114
4115 ecb_noinline
4116 void
4117 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4118 {
4119 clear_pending (EV_A_ (W)w);
4120 if (ecb_expect_false (!ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124
4125 {
4126 int active = ev_active (w);
4127
4128 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4129
4130 --timercnt;
4131
4132 if (ecb_expect_true (active < timercnt + HEAP0))
4133 {
4134 timers [active] = timers [timercnt + HEAP0];
4135 adjustheap (timers, timercnt, active);
4136 }
4137 }
4138
4139 ev_at (w) -= mn_now;
4140
4141 ev_stop (EV_A_ (W)w);
4142
4143 EV_FREQUENT_CHECK;
4144 }
4145
4146 ecb_noinline
4147 void
4148 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4149 {
4150 EV_FREQUENT_CHECK;
4151
4152 clear_pending (EV_A_ (W)w);
4153
4154 if (ev_is_active (w))
4155 {
4156 if (w->repeat)
4157 {
4158 ev_at (w) = mn_now + w->repeat;
4159 ANHE_at_cache (timers [ev_active (w)]);
4160 adjustheap (timers, timercnt, ev_active (w));
4161 }
4162 else
4163 ev_timer_stop (EV_A_ w);
4164 }
4165 else if (w->repeat)
4166 {
4167 ev_at (w) = w->repeat;
4168 ev_timer_start (EV_A_ w);
4169 }
4170
4171 EV_FREQUENT_CHECK;
4172 }
4173
4174 ev_tstamp
4175 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4176 {
4177 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4178 }
4179
4180 #if EV_PERIODIC_ENABLE
4181 ecb_noinline
4182 void
4183 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4184 {
4185 if (ecb_expect_false (ev_is_active (w)))
4186 return;
4187
4188 if (w->reschedule_cb)
4189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4190 else if (w->interval)
4191 {
4192 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4193 periodic_recalc (EV_A_ w);
4194 }
4195 else
4196 ev_at (w) = w->offset;
4197
4198 EV_FREQUENT_CHECK;
4199
4200 ++periodiccnt;
4201 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4202 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4203 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4204 ANHE_at_cache (periodics [ev_active (w)]);
4205 upheap (periodics, ev_active (w));
4206
4207 EV_FREQUENT_CHECK;
4208
4209 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4210 }
4211
4212 ecb_noinline
4213 void
4214 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4215 {
4216 clear_pending (EV_A_ (W)w);
4217 if (ecb_expect_false (!ev_is_active (w)))
4218 return;
4219
4220 EV_FREQUENT_CHECK;
4221
4222 {
4223 int active = ev_active (w);
4224
4225 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4226
4227 --periodiccnt;
4228
4229 if (ecb_expect_true (active < periodiccnt + HEAP0))
4230 {
4231 periodics [active] = periodics [periodiccnt + HEAP0];
4232 adjustheap (periodics, periodiccnt, active);
4233 }
4234 }
4235
4236 ev_stop (EV_A_ (W)w);
4237
4238 EV_FREQUENT_CHECK;
4239 }
4240
4241 ecb_noinline
4242 void
4243 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4244 {
4245 /* TODO: use adjustheap and recalculation */
4246 ev_periodic_stop (EV_A_ w);
4247 ev_periodic_start (EV_A_ w);
4248 }
4249 #endif
4250
4251 #ifndef SA_RESTART
4252 # define SA_RESTART 0
4253 #endif
4254
4255 #if EV_SIGNAL_ENABLE
4256
4257 ecb_noinline
4258 void
4259 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4260 {
4261 if (ecb_expect_false (ev_is_active (w)))
4262 return;
4263
4264 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4265
4266 #if EV_MULTIPLICITY
4267 assert (("libev: a signal must not be attached to two different loops",
4268 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4269
4270 signals [w->signum - 1].loop = EV_A;
4271 ECB_MEMORY_FENCE_RELEASE;
4272 #endif
4273
4274 EV_FREQUENT_CHECK;
4275
4276 #if EV_USE_SIGNALFD
4277 if (sigfd == -2)
4278 {
4279 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4280 if (sigfd < 0 && errno == EINVAL)
4281 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4282
4283 if (sigfd >= 0)
4284 {
4285 fd_intern (sigfd); /* doing it twice will not hurt */
4286
4287 sigemptyset (&sigfd_set);
4288
4289 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4290 ev_set_priority (&sigfd_w, EV_MAXPRI);
4291 ev_io_start (EV_A_ &sigfd_w);
4292 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4293 }
4294 }
4295
4296 if (sigfd >= 0)
4297 {
4298 /* TODO: check .head */
4299 sigaddset (&sigfd_set, w->signum);
4300 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4301
4302 signalfd (sigfd, &sigfd_set, 0);
4303 }
4304 #endif
4305
4306 ev_start (EV_A_ (W)w, 1);
4307 wlist_add (&signals [w->signum - 1].head, (WL)w);
4308
4309 if (!((WL)w)->next)
4310 # if EV_USE_SIGNALFD
4311 if (sigfd < 0) /*TODO*/
4312 # endif
4313 {
4314 # ifdef _WIN32
4315 evpipe_init (EV_A);
4316
4317 signal (w->signum, ev_sighandler);
4318 # else
4319 struct sigaction sa;
4320
4321 evpipe_init (EV_A);
4322
4323 sa.sa_handler = ev_sighandler;
4324 sigfillset (&sa.sa_mask);
4325 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4326 sigaction (w->signum, &sa, 0);
4327
4328 if (origflags & EVFLAG_NOSIGMASK)
4329 {
4330 sigemptyset (&sa.sa_mask);
4331 sigaddset (&sa.sa_mask, w->signum);
4332 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4333 }
4334 #endif
4335 }
4336
4337 EV_FREQUENT_CHECK;
4338 }
4339
4340 ecb_noinline
4341 void
4342 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4343 {
4344 clear_pending (EV_A_ (W)w);
4345 if (ecb_expect_false (!ev_is_active (w)))
4346 return;
4347
4348 EV_FREQUENT_CHECK;
4349
4350 wlist_del (&signals [w->signum - 1].head, (WL)w);
4351 ev_stop (EV_A_ (W)w);
4352
4353 if (!signals [w->signum - 1].head)
4354 {
4355 #if EV_MULTIPLICITY
4356 signals [w->signum - 1].loop = 0; /* unattach from signal */
4357 #endif
4358 #if EV_USE_SIGNALFD
4359 if (sigfd >= 0)
4360 {
4361 sigset_t ss;
4362
4363 sigemptyset (&ss);
4364 sigaddset (&ss, w->signum);
4365 sigdelset (&sigfd_set, w->signum);
4366
4367 signalfd (sigfd, &sigfd_set, 0);
4368 sigprocmask (SIG_UNBLOCK, &ss, 0);
4369 }
4370 else
4371 #endif
4372 signal (w->signum, SIG_DFL);
4373 }
4374
4375 EV_FREQUENT_CHECK;
4376 }
4377
4378 #endif
4379
4380 #if EV_CHILD_ENABLE
4381
4382 void
4383 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4384 {
4385 #if EV_MULTIPLICITY
4386 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4387 #endif
4388 if (ecb_expect_false (ev_is_active (w)))
4389 return;
4390
4391 EV_FREQUENT_CHECK;
4392
4393 ev_start (EV_A_ (W)w, 1);
4394 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4395
4396 EV_FREQUENT_CHECK;
4397 }
4398
4399 void
4400 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4401 {
4402 clear_pending (EV_A_ (W)w);
4403 if (ecb_expect_false (!ev_is_active (w)))
4404 return;
4405
4406 EV_FREQUENT_CHECK;
4407
4408 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4409 ev_stop (EV_A_ (W)w);
4410
4411 EV_FREQUENT_CHECK;
4412 }
4413
4414 #endif
4415
4416 #if EV_STAT_ENABLE
4417
4418 # ifdef _WIN32
4419 # undef lstat
4420 # define lstat(a,b) _stati64 (a,b)
4421 # endif
4422
4423 #define DEF_STAT_INTERVAL 5.0074891
4424 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4425 #define MIN_STAT_INTERVAL 0.1074891
4426
4427 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4428
4429 #if EV_USE_INOTIFY
4430
4431 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4432 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4433
4434 ecb_noinline
4435 static void
4436 infy_add (EV_P_ ev_stat *w)
4437 {
4438 w->wd = inotify_add_watch (fs_fd, w->path,
4439 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4440 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4441 | IN_DONT_FOLLOW | IN_MASK_ADD);
4442
4443 if (w->wd >= 0)
4444 {
4445 struct statfs sfs;
4446
4447 /* now local changes will be tracked by inotify, but remote changes won't */
4448 /* unless the filesystem is known to be local, we therefore still poll */
4449 /* also do poll on <2.6.25, but with normal frequency */
4450
4451 if (!fs_2625)
4452 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4453 else if (!statfs (w->path, &sfs)
4454 && (sfs.f_type == 0x1373 /* devfs */
4455 || sfs.f_type == 0x4006 /* fat */
4456 || sfs.f_type == 0x4d44 /* msdos */
4457 || sfs.f_type == 0xEF53 /* ext2/3 */
4458 || sfs.f_type == 0x72b6 /* jffs2 */
4459 || sfs.f_type == 0x858458f6 /* ramfs */
4460 || sfs.f_type == 0x5346544e /* ntfs */
4461 || sfs.f_type == 0x3153464a /* jfs */
4462 || sfs.f_type == 0x9123683e /* btrfs */
4463 || sfs.f_type == 0x52654973 /* reiser3 */
4464 || sfs.f_type == 0x01021994 /* tmpfs */
4465 || sfs.f_type == 0x58465342 /* xfs */))
4466 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4467 else
4468 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4469 }
4470 else
4471 {
4472 /* can't use inotify, continue to stat */
4473 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4474
4475 /* if path is not there, monitor some parent directory for speedup hints */
4476 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4477 /* but an efficiency issue only */
4478 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4479 {
4480 char path [4096];
4481 strcpy (path, w->path);
4482
4483 do
4484 {
4485 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4486 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4487
4488 char *pend = strrchr (path, '/');
4489
4490 if (!pend || pend == path)
4491 break;
4492
4493 *pend = 0;
4494 w->wd = inotify_add_watch (fs_fd, path, mask);
4495 }
4496 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4497 }
4498 }
4499
4500 if (w->wd >= 0)
4501 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4502
4503 /* now re-arm timer, if required */
4504 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4505 ev_timer_again (EV_A_ &w->timer);
4506 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4507 }
4508
4509 ecb_noinline
4510 static void
4511 infy_del (EV_P_ ev_stat *w)
4512 {
4513 int slot;
4514 int wd = w->wd;
4515
4516 if (wd < 0)
4517 return;
4518
4519 w->wd = -2;
4520 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4521 wlist_del (&fs_hash [slot].head, (WL)w);
4522
4523 /* remove this watcher, if others are watching it, they will rearm */
4524 inotify_rm_watch (fs_fd, wd);
4525 }
4526
4527 ecb_noinline
4528 static void
4529 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4530 {
4531 if (slot < 0)
4532 /* overflow, need to check for all hash slots */
4533 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4534 infy_wd (EV_A_ slot, wd, ev);
4535 else
4536 {
4537 WL w_;
4538
4539 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4540 {
4541 ev_stat *w = (ev_stat *)w_;
4542 w_ = w_->next; /* lets us remove this watcher and all before it */
4543
4544 if (w->wd == wd || wd == -1)
4545 {
4546 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4547 {
4548 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4549 w->wd = -1;
4550 infy_add (EV_A_ w); /* re-add, no matter what */
4551 }
4552
4553 stat_timer_cb (EV_A_ &w->timer, 0);
4554 }
4555 }
4556 }
4557 }
4558
4559 static void
4560 infy_cb (EV_P_ ev_io *w, int revents)
4561 {
4562 char buf [EV_INOTIFY_BUFSIZE];
4563 int ofs;
4564 int len = read (fs_fd, buf, sizeof (buf));
4565
4566 for (ofs = 0; ofs < len; )
4567 {
4568 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4569 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4570 ofs += sizeof (struct inotify_event) + ev->len;
4571 }
4572 }
4573
4574 inline_size ecb_cold
4575 void
4576 ev_check_2625 (EV_P)
4577 {
4578 /* kernels < 2.6.25 are borked
4579 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4580 */
4581 if (ev_linux_version () < 0x020619)
4582 return;
4583
4584 fs_2625 = 1;
4585 }
4586
4587 inline_size int
4588 infy_newfd (void)
4589 {
4590 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4591 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4592 if (fd >= 0)
4593 return fd;
4594 #endif
4595 return inotify_init ();
4596 }
4597
4598 inline_size void
4599 infy_init (EV_P)
4600 {
4601 if (fs_fd != -2)
4602 return;
4603
4604 fs_fd = -1;
4605
4606 ev_check_2625 (EV_A);
4607
4608 fs_fd = infy_newfd ();
4609
4610 if (fs_fd >= 0)
4611 {
4612 fd_intern (fs_fd);
4613 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4614 ev_set_priority (&fs_w, EV_MAXPRI);
4615 ev_io_start (EV_A_ &fs_w);
4616 ev_unref (EV_A);
4617 }
4618 }
4619
4620 inline_size void
4621 infy_fork (EV_P)
4622 {
4623 int slot;
4624
4625 if (fs_fd < 0)
4626 return;
4627
4628 ev_ref (EV_A);
4629 ev_io_stop (EV_A_ &fs_w);
4630 close (fs_fd);
4631 fs_fd = infy_newfd ();
4632
4633 if (fs_fd >= 0)
4634 {
4635 fd_intern (fs_fd);
4636 ev_io_set (&fs_w, fs_fd, EV_READ);
4637 ev_io_start (EV_A_ &fs_w);
4638 ev_unref (EV_A);
4639 }
4640
4641 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4642 {
4643 WL w_ = fs_hash [slot].head;
4644 fs_hash [slot].head = 0;
4645
4646 while (w_)
4647 {
4648 ev_stat *w = (ev_stat *)w_;
4649 w_ = w_->next; /* lets us add this watcher */
4650
4651 w->wd = -1;
4652
4653 if (fs_fd >= 0)
4654 infy_add (EV_A_ w); /* re-add, no matter what */
4655 else
4656 {
4657 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4658 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4659 ev_timer_again (EV_A_ &w->timer);
4660 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4661 }
4662 }
4663 }
4664 }
4665
4666 #endif
4667
4668 #ifdef _WIN32
4669 # define EV_LSTAT(p,b) _stati64 (p, b)
4670 #else
4671 # define EV_LSTAT(p,b) lstat (p, b)
4672 #endif
4673
4674 void
4675 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4676 {
4677 if (lstat (w->path, &w->attr) < 0)
4678 w->attr.st_nlink = 0;
4679 else if (!w->attr.st_nlink)
4680 w->attr.st_nlink = 1;
4681 }
4682
4683 ecb_noinline
4684 static void
4685 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4686 {
4687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4688
4689 ev_statdata prev = w->attr;
4690 ev_stat_stat (EV_A_ w);
4691
4692 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4693 if (
4694 prev.st_dev != w->attr.st_dev
4695 || prev.st_ino != w->attr.st_ino
4696 || prev.st_mode != w->attr.st_mode
4697 || prev.st_nlink != w->attr.st_nlink
4698 || prev.st_uid != w->attr.st_uid
4699 || prev.st_gid != w->attr.st_gid
4700 || prev.st_rdev != w->attr.st_rdev
4701 || prev.st_size != w->attr.st_size
4702 || prev.st_atime != w->attr.st_atime
4703 || prev.st_mtime != w->attr.st_mtime
4704 || prev.st_ctime != w->attr.st_ctime
4705 ) {
4706 /* we only update w->prev on actual differences */
4707 /* in case we test more often than invoke the callback, */
4708 /* to ensure that prev is always different to attr */
4709 w->prev = prev;
4710
4711 #if EV_USE_INOTIFY
4712 if (fs_fd >= 0)
4713 {
4714 infy_del (EV_A_ w);
4715 infy_add (EV_A_ w);
4716 ev_stat_stat (EV_A_ w); /* avoid race... */
4717 }
4718 #endif
4719
4720 ev_feed_event (EV_A_ w, EV_STAT);
4721 }
4722 }
4723
4724 void
4725 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4726 {
4727 if (ecb_expect_false (ev_is_active (w)))
4728 return;
4729
4730 ev_stat_stat (EV_A_ w);
4731
4732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4733 w->interval = MIN_STAT_INTERVAL;
4734
4735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4736 ev_set_priority (&w->timer, ev_priority (w));
4737
4738 #if EV_USE_INOTIFY
4739 infy_init (EV_A);
4740
4741 if (fs_fd >= 0)
4742 infy_add (EV_A_ w);
4743 else
4744 #endif
4745 {
4746 ev_timer_again (EV_A_ &w->timer);
4747 ev_unref (EV_A);
4748 }
4749
4750 ev_start (EV_A_ (W)w, 1);
4751
4752 EV_FREQUENT_CHECK;
4753 }
4754
4755 void
4756 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4757 {
4758 clear_pending (EV_A_ (W)w);
4759 if (ecb_expect_false (!ev_is_active (w)))
4760 return;
4761
4762 EV_FREQUENT_CHECK;
4763
4764 #if EV_USE_INOTIFY
4765 infy_del (EV_A_ w);
4766 #endif
4767
4768 if (ev_is_active (&w->timer))
4769 {
4770 ev_ref (EV_A);
4771 ev_timer_stop (EV_A_ &w->timer);
4772 }
4773
4774 ev_stop (EV_A_ (W)w);
4775
4776 EV_FREQUENT_CHECK;
4777 }
4778 #endif
4779
4780 #if EV_IDLE_ENABLE
4781 void
4782 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4783 {
4784 if (ecb_expect_false (ev_is_active (w)))
4785 return;
4786
4787 pri_adjust (EV_A_ (W)w);
4788
4789 EV_FREQUENT_CHECK;
4790
4791 {
4792 int active = ++idlecnt [ABSPRI (w)];
4793
4794 ++idleall;
4795 ev_start (EV_A_ (W)w, active);
4796
4797 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4798 idles [ABSPRI (w)][active - 1] = w;
4799 }
4800
4801 EV_FREQUENT_CHECK;
4802 }
4803
4804 void
4805 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4806 {
4807 clear_pending (EV_A_ (W)w);
4808 if (ecb_expect_false (!ev_is_active (w)))
4809 return;
4810
4811 EV_FREQUENT_CHECK;
4812
4813 {
4814 int active = ev_active (w);
4815
4816 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4817 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4818
4819 ev_stop (EV_A_ (W)w);
4820 --idleall;
4821 }
4822
4823 EV_FREQUENT_CHECK;
4824 }
4825 #endif
4826
4827 #if EV_PREPARE_ENABLE
4828 void
4829 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4830 {
4831 if (ecb_expect_false (ev_is_active (w)))
4832 return;
4833
4834 EV_FREQUENT_CHECK;
4835
4836 ev_start (EV_A_ (W)w, ++preparecnt);
4837 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4838 prepares [preparecnt - 1] = w;
4839
4840 EV_FREQUENT_CHECK;
4841 }
4842
4843 void
4844 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4845 {
4846 clear_pending (EV_A_ (W)w);
4847 if (ecb_expect_false (!ev_is_active (w)))
4848 return;
4849
4850 EV_FREQUENT_CHECK;
4851
4852 {
4853 int active = ev_active (w);
4854
4855 prepares [active - 1] = prepares [--preparecnt];
4856 ev_active (prepares [active - 1]) = active;
4857 }
4858
4859 ev_stop (EV_A_ (W)w);
4860
4861 EV_FREQUENT_CHECK;
4862 }
4863 #endif
4864
4865 #if EV_CHECK_ENABLE
4866 void
4867 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4868 {
4869 if (ecb_expect_false (ev_is_active (w)))
4870 return;
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++checkcnt);
4875 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4876 checks [checkcnt - 1] = w;
4877
4878 EV_FREQUENT_CHECK;
4879 }
4880
4881 void
4882 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4883 {
4884 clear_pending (EV_A_ (W)w);
4885 if (ecb_expect_false (!ev_is_active (w)))
4886 return;
4887
4888 EV_FREQUENT_CHECK;
4889
4890 {
4891 int active = ev_active (w);
4892
4893 checks [active - 1] = checks [--checkcnt];
4894 ev_active (checks [active - 1]) = active;
4895 }
4896
4897 ev_stop (EV_A_ (W)w);
4898
4899 EV_FREQUENT_CHECK;
4900 }
4901 #endif
4902
4903 #if EV_EMBED_ENABLE
4904 ecb_noinline
4905 void
4906 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4907 {
4908 ev_run (w->other, EVRUN_NOWAIT);
4909 }
4910
4911 static void
4912 embed_io_cb (EV_P_ ev_io *io, int revents)
4913 {
4914 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4915
4916 if (ev_cb (w))
4917 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4918 else
4919 ev_run (w->other, EVRUN_NOWAIT);
4920 }
4921
4922 static void
4923 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4924 {
4925 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4926
4927 {
4928 EV_P = w->other;
4929
4930 while (fdchangecnt)
4931 {
4932 fd_reify (EV_A);
4933 ev_run (EV_A_ EVRUN_NOWAIT);
4934 }
4935 }
4936 }
4937
4938 static void
4939 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4940 {
4941 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4942
4943 ev_embed_stop (EV_A_ w);
4944
4945 {
4946 EV_P = w->other;
4947
4948 ev_loop_fork (EV_A);
4949 ev_run (EV_A_ EVRUN_NOWAIT);
4950 }
4951
4952 ev_embed_start (EV_A_ w);
4953 }
4954
4955 #if 0
4956 static void
4957 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4958 {
4959 ev_idle_stop (EV_A_ idle);
4960 }
4961 #endif
4962
4963 void
4964 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4965 {
4966 if (ecb_expect_false (ev_is_active (w)))
4967 return;
4968
4969 {
4970 EV_P = w->other;
4971 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4972 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4973 }
4974
4975 EV_FREQUENT_CHECK;
4976
4977 ev_set_priority (&w->io, ev_priority (w));
4978 ev_io_start (EV_A_ &w->io);
4979
4980 ev_prepare_init (&w->prepare, embed_prepare_cb);
4981 ev_set_priority (&w->prepare, EV_MINPRI);
4982 ev_prepare_start (EV_A_ &w->prepare);
4983
4984 ev_fork_init (&w->fork, embed_fork_cb);
4985 ev_fork_start (EV_A_ &w->fork);
4986
4987 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4988
4989 ev_start (EV_A_ (W)w, 1);
4990
4991 EV_FREQUENT_CHECK;
4992 }
4993
4994 void
4995 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4996 {
4997 clear_pending (EV_A_ (W)w);
4998 if (ecb_expect_false (!ev_is_active (w)))
4999 return;
5000
5001 EV_FREQUENT_CHECK;
5002
5003 ev_io_stop (EV_A_ &w->io);
5004 ev_prepare_stop (EV_A_ &w->prepare);
5005 ev_fork_stop (EV_A_ &w->fork);
5006
5007 ev_stop (EV_A_ (W)w);
5008
5009 EV_FREQUENT_CHECK;
5010 }
5011 #endif
5012
5013 #if EV_FORK_ENABLE
5014 void
5015 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5016 {
5017 if (ecb_expect_false (ev_is_active (w)))
5018 return;
5019
5020 EV_FREQUENT_CHECK;
5021
5022 ev_start (EV_A_ (W)w, ++forkcnt);
5023 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5024 forks [forkcnt - 1] = w;
5025
5026 EV_FREQUENT_CHECK;
5027 }
5028
5029 void
5030 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5031 {
5032 clear_pending (EV_A_ (W)w);
5033 if (ecb_expect_false (!ev_is_active (w)))
5034 return;
5035
5036 EV_FREQUENT_CHECK;
5037
5038 {
5039 int active = ev_active (w);
5040
5041 forks [active - 1] = forks [--forkcnt];
5042 ev_active (forks [active - 1]) = active;
5043 }
5044
5045 ev_stop (EV_A_ (W)w);
5046
5047 EV_FREQUENT_CHECK;
5048 }
5049 #endif
5050
5051 #if EV_CLEANUP_ENABLE
5052 void
5053 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5054 {
5055 if (ecb_expect_false (ev_is_active (w)))
5056 return;
5057
5058 EV_FREQUENT_CHECK;
5059
5060 ev_start (EV_A_ (W)w, ++cleanupcnt);
5061 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5062 cleanups [cleanupcnt - 1] = w;
5063
5064 /* cleanup watchers should never keep a refcount on the loop */
5065 ev_unref (EV_A);
5066 EV_FREQUENT_CHECK;
5067 }
5068
5069 void
5070 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5071 {
5072 clear_pending (EV_A_ (W)w);
5073 if (ecb_expect_false (!ev_is_active (w)))
5074 return;
5075
5076 EV_FREQUENT_CHECK;
5077 ev_ref (EV_A);
5078
5079 {
5080 int active = ev_active (w);
5081
5082 cleanups [active - 1] = cleanups [--cleanupcnt];
5083 ev_active (cleanups [active - 1]) = active;
5084 }
5085
5086 ev_stop (EV_A_ (W)w);
5087
5088 EV_FREQUENT_CHECK;
5089 }
5090 #endif
5091
5092 #if EV_ASYNC_ENABLE
5093 void
5094 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5095 {
5096 if (ecb_expect_false (ev_is_active (w)))
5097 return;
5098
5099 w->sent = 0;
5100
5101 evpipe_init (EV_A);
5102
5103 EV_FREQUENT_CHECK;
5104
5105 ev_start (EV_A_ (W)w, ++asynccnt);
5106 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5107 asyncs [asynccnt - 1] = w;
5108
5109 EV_FREQUENT_CHECK;
5110 }
5111
5112 void
5113 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5114 {
5115 clear_pending (EV_A_ (W)w);
5116 if (ecb_expect_false (!ev_is_active (w)))
5117 return;
5118
5119 EV_FREQUENT_CHECK;
5120
5121 {
5122 int active = ev_active (w);
5123
5124 asyncs [active - 1] = asyncs [--asynccnt];
5125 ev_active (asyncs [active - 1]) = active;
5126 }
5127
5128 ev_stop (EV_A_ (W)w);
5129
5130 EV_FREQUENT_CHECK;
5131 }
5132
5133 void
5134 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5135 {
5136 w->sent = 1;
5137 evpipe_write (EV_A_ &async_pending);
5138 }
5139 #endif
5140
5141 /*****************************************************************************/
5142
5143 struct ev_once
5144 {
5145 ev_io io;
5146 ev_timer to;
5147 void (*cb)(int revents, void *arg);
5148 void *arg;
5149 };
5150
5151 static void
5152 once_cb (EV_P_ struct ev_once *once, int revents)
5153 {
5154 void (*cb)(int revents, void *arg) = once->cb;
5155 void *arg = once->arg;
5156
5157 ev_io_stop (EV_A_ &once->io);
5158 ev_timer_stop (EV_A_ &once->to);
5159 ev_free (once);
5160
5161 cb (revents, arg);
5162 }
5163
5164 static void
5165 once_cb_io (EV_P_ ev_io *w, int revents)
5166 {
5167 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5168
5169 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5170 }
5171
5172 static void
5173 once_cb_to (EV_P_ ev_timer *w, int revents)
5174 {
5175 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5176
5177 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5178 }
5179
5180 void
5181 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5182 {
5183 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5184
5185 once->cb = cb;
5186 once->arg = arg;
5187
5188 ev_init (&once->io, once_cb_io);
5189 if (fd >= 0)
5190 {
5191 ev_io_set (&once->io, fd, events);
5192 ev_io_start (EV_A_ &once->io);
5193 }
5194
5195 ev_init (&once->to, once_cb_to);
5196 if (timeout >= 0.)
5197 {
5198 ev_timer_set (&once->to, timeout, 0.);
5199 ev_timer_start (EV_A_ &once->to);
5200 }
5201 }
5202
5203 /*****************************************************************************/
5204
5205 #if EV_WALK_ENABLE
5206 ecb_cold
5207 void
5208 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5209 {
5210 int i, j;
5211 ev_watcher_list *wl, *wn;
5212
5213 if (types & (EV_IO | EV_EMBED))
5214 for (i = 0; i < anfdmax; ++i)
5215 for (wl = anfds [i].head; wl; )
5216 {
5217 wn = wl->next;
5218
5219 #if EV_EMBED_ENABLE
5220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5221 {
5222 if (types & EV_EMBED)
5223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5224 }
5225 else
5226 #endif
5227 #if EV_USE_INOTIFY
5228 if (ev_cb ((ev_io *)wl) == infy_cb)
5229 ;
5230 else
5231 #endif
5232 if ((ev_io *)wl != &pipe_w)
5233 if (types & EV_IO)
5234 cb (EV_A_ EV_IO, wl);
5235
5236 wl = wn;
5237 }
5238
5239 if (types & (EV_TIMER | EV_STAT))
5240 for (i = timercnt + HEAP0; i-- > HEAP0; )
5241 #if EV_STAT_ENABLE
5242 /*TODO: timer is not always active*/
5243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5244 {
5245 if (types & EV_STAT)
5246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5247 }
5248 else
5249 #endif
5250 if (types & EV_TIMER)
5251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5252
5253 #if EV_PERIODIC_ENABLE
5254 if (types & EV_PERIODIC)
5255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5257 #endif
5258
5259 #if EV_IDLE_ENABLE
5260 if (types & EV_IDLE)
5261 for (j = NUMPRI; j--; )
5262 for (i = idlecnt [j]; i--; )
5263 cb (EV_A_ EV_IDLE, idles [j][i]);
5264 #endif
5265
5266 #if EV_FORK_ENABLE
5267 if (types & EV_FORK)
5268 for (i = forkcnt; i--; )
5269 if (ev_cb (forks [i]) != embed_fork_cb)
5270 cb (EV_A_ EV_FORK, forks [i]);
5271 #endif
5272
5273 #if EV_ASYNC_ENABLE
5274 if (types & EV_ASYNC)
5275 for (i = asynccnt; i--; )
5276 cb (EV_A_ EV_ASYNC, asyncs [i]);
5277 #endif
5278
5279 #if EV_PREPARE_ENABLE
5280 if (types & EV_PREPARE)
5281 for (i = preparecnt; i--; )
5282 # if EV_EMBED_ENABLE
5283 if (ev_cb (prepares [i]) != embed_prepare_cb)
5284 # endif
5285 cb (EV_A_ EV_PREPARE, prepares [i]);
5286 #endif
5287
5288 #if EV_CHECK_ENABLE
5289 if (types & EV_CHECK)
5290 for (i = checkcnt; i--; )
5291 cb (EV_A_ EV_CHECK, checks [i]);
5292 #endif
5293
5294 #if EV_SIGNAL_ENABLE
5295 if (types & EV_SIGNAL)
5296 for (i = 0; i < EV_NSIG - 1; ++i)
5297 for (wl = signals [i].head; wl; )
5298 {
5299 wn = wl->next;
5300 cb (EV_A_ EV_SIGNAL, wl);
5301 wl = wn;
5302 }
5303 #endif
5304
5305 #if EV_CHILD_ENABLE
5306 if (types & EV_CHILD)
5307 for (i = (EV_PID_HASHSIZE); i--; )
5308 for (wl = childs [i]; wl; )
5309 {
5310 wn = wl->next;
5311 cb (EV_A_ EV_CHILD, wl);
5312 wl = wn;
5313 }