ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.509
Committed: Sat Aug 17 05:30:16 2019 UTC (4 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.508: +20 -17 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
130 # ifndef EV_USE_KQUEUE
131 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_KQUEUE
135 # define EV_USE_KQUEUE 0
136 # endif
137
138 # if HAVE_PORT_H && HAVE_PORT_CREATE
139 # ifndef EV_USE_PORT
140 # define EV_USE_PORT EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_PORT
144 # define EV_USE_PORT 0
145 # endif
146
147 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
148 # ifndef EV_USE_INOTIFY
149 # define EV_USE_INOTIFY EV_FEATURE_OS
150 # endif
151 # else
152 # undef EV_USE_INOTIFY
153 # define EV_USE_INOTIFY 0
154 # endif
155
156 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
157 # ifndef EV_USE_SIGNALFD
158 # define EV_USE_SIGNALFD EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_SIGNALFD
162 # define EV_USE_SIGNALFD 0
163 # endif
164
165 # if HAVE_EVENTFD
166 # ifndef EV_USE_EVENTFD
167 # define EV_USE_EVENTFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_EVENTFD
171 # define EV_USE_EVENTFD 0
172 # endif
173
174 #endif
175
176 /* OS X, in its infinite idiocy, actually HARDCODES
177 * a limit of 1024 into their select. Where people have brains,
178 * OS X engineers apparently have a vacuum. Or maybe they were
179 * ordered to have a vacuum, or they do anything for money.
180 * This might help. Or not.
181 * Note that this must be defined early, as other include files
182 * will rely on this define as well.
183 */
184 #define _DARWIN_UNLIMITED_SELECT 1
185
186 #include <stdlib.h>
187 #include <string.h>
188 #include <fcntl.h>
189 #include <stddef.h>
190
191 #include <stdio.h>
192
193 #include <assert.h>
194 #include <errno.h>
195 #include <sys/types.h>
196 #include <time.h>
197 #include <limits.h>
198
199 #include <signal.h>
200
201 #ifdef EV_H
202 # include EV_H
203 #else
204 # include "ev.h"
205 #endif
206
207 #if EV_NO_THREADS
208 # undef EV_NO_SMP
209 # define EV_NO_SMP 1
210 # undef ECB_NO_THREADS
211 # define ECB_NO_THREADS 1
212 #endif
213 #if EV_NO_SMP
214 # undef EV_NO_SMP
215 # define ECB_NO_SMP 1
216 #endif
217
218 #ifndef _WIN32
219 # include <sys/time.h>
220 # include <sys/wait.h>
221 # include <unistd.h>
222 #else
223 # include <io.h>
224 # define WIN32_LEAN_AND_MEAN
225 # include <winsock2.h>
226 # include <windows.h>
227 # ifndef EV_SELECT_IS_WINSOCKET
228 # define EV_SELECT_IS_WINSOCKET 1
229 # endif
230 # undef EV_AVOID_STDIO
231 #endif
232
233 /* this block tries to deduce configuration from header-defined symbols and defaults */
234
235 /* try to deduce the maximum number of signals on this platform */
236 #if defined EV_NSIG
237 /* use what's provided */
238 #elif defined NSIG
239 # define EV_NSIG (NSIG)
240 #elif defined _NSIG
241 # define EV_NSIG (_NSIG)
242 #elif defined SIGMAX
243 # define EV_NSIG (SIGMAX+1)
244 #elif defined SIG_MAX
245 # define EV_NSIG (SIG_MAX+1)
246 #elif defined _SIG_MAX
247 # define EV_NSIG (_SIG_MAX+1)
248 #elif defined MAXSIG
249 # define EV_NSIG (MAXSIG+1)
250 #elif defined MAX_SIG
251 # define EV_NSIG (MAX_SIG+1)
252 #elif defined SIGARRAYSIZE
253 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
254 #elif defined _sys_nsig
255 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
256 #else
257 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
258 #endif
259
260 #ifndef EV_USE_FLOOR
261 # define EV_USE_FLOOR 0
262 #endif
263
264 #ifndef EV_USE_CLOCK_SYSCALL
265 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
266 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
267 # else
268 # define EV_USE_CLOCK_SYSCALL 0
269 # endif
270 #endif
271
272 #if !(_POSIX_TIMERS > 0)
273 # ifndef EV_USE_MONOTONIC
274 # define EV_USE_MONOTONIC 0
275 # endif
276 # ifndef EV_USE_REALTIME
277 # define EV_USE_REALTIME 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_MONOTONIC
282 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
283 # define EV_USE_MONOTONIC EV_FEATURE_OS
284 # else
285 # define EV_USE_MONOTONIC 0
286 # endif
287 #endif
288
289 #ifndef EV_USE_REALTIME
290 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
291 #endif
292
293 #ifndef EV_USE_NANOSLEEP
294 # if _POSIX_C_SOURCE >= 199309L
295 # define EV_USE_NANOSLEEP EV_FEATURE_OS
296 # else
297 # define EV_USE_NANOSLEEP 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_SELECT
302 # define EV_USE_SELECT EV_FEATURE_BACKENDS
303 #endif
304
305 #ifndef EV_USE_POLL
306 # ifdef _WIN32
307 # define EV_USE_POLL 0
308 # else
309 # define EV_USE_POLL EV_FEATURE_BACKENDS
310 # endif
311 #endif
312
313 #ifndef EV_USE_EPOLL
314 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
315 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
316 # else
317 # define EV_USE_EPOLL 0
318 # endif
319 #endif
320
321 #ifndef EV_USE_KQUEUE
322 # define EV_USE_KQUEUE 0
323 #endif
324
325 #ifndef EV_USE_PORT
326 # define EV_USE_PORT 0
327 #endif
328
329 #ifndef EV_USE_LINUXAIO
330 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
331 # define EV_USE_LINUXAIO 1
332 # else
333 # define EV_USE_LINUXAIO 0
334 # endif
335 #endif
336
337 #ifndef EV_USE_IOURING
338 # if __linux
339 # define EV_USE_IOURING 0
340 # else
341 # define EV_USE_IOURING 0
342 # endif
343 #endif
344
345 #ifndef EV_USE_INOTIFY
346 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
347 # define EV_USE_INOTIFY EV_FEATURE_OS
348 # else
349 # define EV_USE_INOTIFY 0
350 # endif
351 #endif
352
353 #ifndef EV_PID_HASHSIZE
354 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
355 #endif
356
357 #ifndef EV_INOTIFY_HASHSIZE
358 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
359 #endif
360
361 #ifndef EV_USE_EVENTFD
362 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
363 # define EV_USE_EVENTFD EV_FEATURE_OS
364 # else
365 # define EV_USE_EVENTFD 0
366 # endif
367 #endif
368
369 #ifndef EV_USE_SIGNALFD
370 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
371 # define EV_USE_SIGNALFD EV_FEATURE_OS
372 # else
373 # define EV_USE_SIGNALFD 0
374 # endif
375 #endif
376
377 #if 0 /* debugging */
378 # define EV_VERIFY 3
379 # define EV_USE_4HEAP 1
380 # define EV_HEAP_CACHE_AT 1
381 #endif
382
383 #ifndef EV_VERIFY
384 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
385 #endif
386
387 #ifndef EV_USE_4HEAP
388 # define EV_USE_4HEAP EV_FEATURE_DATA
389 #endif
390
391 #ifndef EV_HEAP_CACHE_AT
392 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
393 #endif
394
395 #ifdef __ANDROID__
396 /* supposedly, android doesn't typedef fd_mask */
397 # undef EV_USE_SELECT
398 # define EV_USE_SELECT 0
399 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
400 # undef EV_USE_CLOCK_SYSCALL
401 # define EV_USE_CLOCK_SYSCALL 0
402 #endif
403
404 /* aix's poll.h seems to cause lots of trouble */
405 #ifdef _AIX
406 /* AIX has a completely broken poll.h header */
407 # undef EV_USE_POLL
408 # define EV_USE_POLL 0
409 #endif
410
411 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
412 /* which makes programs even slower. might work on other unices, too. */
413 #if EV_USE_CLOCK_SYSCALL
414 # include <sys/syscall.h>
415 # ifdef SYS_clock_gettime
416 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
417 # undef EV_USE_MONOTONIC
418 # define EV_USE_MONOTONIC 1
419 # define EV_NEED_SYSCALL 1
420 # else
421 # undef EV_USE_CLOCK_SYSCALL
422 # define EV_USE_CLOCK_SYSCALL 0
423 # endif
424 #endif
425
426 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
427
428 #ifndef CLOCK_MONOTONIC
429 # undef EV_USE_MONOTONIC
430 # define EV_USE_MONOTONIC 0
431 #endif
432
433 #ifndef CLOCK_REALTIME
434 # undef EV_USE_REALTIME
435 # define EV_USE_REALTIME 0
436 #endif
437
438 #if !EV_STAT_ENABLE
439 # undef EV_USE_INOTIFY
440 # define EV_USE_INOTIFY 0
441 #endif
442
443 #if !EV_USE_NANOSLEEP
444 /* hp-ux has it in sys/time.h, which we unconditionally include above */
445 # if !defined _WIN32 && !defined __hpux
446 # include <sys/select.h>
447 # endif
448 #endif
449
450 #if EV_USE_LINUXAIO
451 # include <sys/syscall.h>
452 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
453 # define EV_NEED_SYSCALL 1
454 # else
455 # undef EV_USE_LINUXAIO
456 # define EV_USE_LINUXAIO 0
457 # endif
458 #endif
459
460 #if EV_USE_IOURING
461 # include <sys/syscall.h>
462 # if !SYS_io_uring_setup && __linux && !__alpha
463 # define SYS_io_uring_setup 425
464 # define SYS_io_uring_enter 426
465 # define SYS_io_uring_wregister 427
466 # endif
467 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
468 # define EV_NEED_SYSCALL 1
469 # else
470 # undef EV_USE_IOURING
471 # define EV_USE_IOURING 0
472 # endif
473 #endif
474
475 #if EV_USE_INOTIFY
476 # include <sys/statfs.h>
477 # include <sys/inotify.h>
478 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
479 # ifndef IN_DONT_FOLLOW
480 # undef EV_USE_INOTIFY
481 # define EV_USE_INOTIFY 0
482 # endif
483 #endif
484
485 #if EV_USE_EVENTFD
486 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
487 # include <stdint.h>
488 # ifndef EFD_NONBLOCK
489 # define EFD_NONBLOCK O_NONBLOCK
490 # endif
491 # ifndef EFD_CLOEXEC
492 # ifdef O_CLOEXEC
493 # define EFD_CLOEXEC O_CLOEXEC
494 # else
495 # define EFD_CLOEXEC 02000000
496 # endif
497 # endif
498 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
499 #endif
500
501 #if EV_USE_SIGNALFD
502 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
503 # include <stdint.h>
504 # ifndef SFD_NONBLOCK
505 # define SFD_NONBLOCK O_NONBLOCK
506 # endif
507 # ifndef SFD_CLOEXEC
508 # ifdef O_CLOEXEC
509 # define SFD_CLOEXEC O_CLOEXEC
510 # else
511 # define SFD_CLOEXEC 02000000
512 # endif
513 # endif
514 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
515
516 struct signalfd_siginfo
517 {
518 uint32_t ssi_signo;
519 char pad[128 - sizeof (uint32_t)];
520 };
521 #endif
522
523 /*****************************************************************************/
524
525 #if EV_VERIFY >= 3
526 # define EV_FREQUENT_CHECK ev_verify (EV_A)
527 #else
528 # define EV_FREQUENT_CHECK do { } while (0)
529 #endif
530
531 /*
532 * This is used to work around floating point rounding problems.
533 * This value is good at least till the year 4000.
534 */
535 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
536 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
537
538 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
539 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
540
541 /* find a portable timestamp that is "always" in the future but fits into time_t.
542 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
543 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
544 #define EV_TSTAMP_HUGE \
545 (sizeof (time_t) >= 8 ? 10000000000000. \
546 : 0 < (time_t)4294967295 ? 4294967295. \
547 : 2147483647.) \
548
549 #ifndef EV_TS_CONST
550 # define EV_TS_CONST(nv) nv
551 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
552 # define EV_TS_FROM_USEC(us) us * 1e-6
553 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
554 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
555 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
556 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
557 #endif
558
559 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
560 /* ECB.H BEGIN */
561 /*
562 * libecb - http://software.schmorp.de/pkg/libecb
563 *
564 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
565 * Copyright (©) 2011 Emanuele Giaquinta
566 * All rights reserved.
567 *
568 * Redistribution and use in source and binary forms, with or without modifica-
569 * tion, are permitted provided that the following conditions are met:
570 *
571 * 1. Redistributions of source code must retain the above copyright notice,
572 * this list of conditions and the following disclaimer.
573 *
574 * 2. Redistributions in binary form must reproduce the above copyright
575 * notice, this list of conditions and the following disclaimer in the
576 * documentation and/or other materials provided with the distribution.
577 *
578 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
579 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
580 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
581 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
582 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
583 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
584 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
585 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
586 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
587 * OF THE POSSIBILITY OF SUCH DAMAGE.
588 *
589 * Alternatively, the contents of this file may be used under the terms of
590 * the GNU General Public License ("GPL") version 2 or any later version,
591 * in which case the provisions of the GPL are applicable instead of
592 * the above. If you wish to allow the use of your version of this file
593 * only under the terms of the GPL and not to allow others to use your
594 * version of this file under the BSD license, indicate your decision
595 * by deleting the provisions above and replace them with the notice
596 * and other provisions required by the GPL. If you do not delete the
597 * provisions above, a recipient may use your version of this file under
598 * either the BSD or the GPL.
599 */
600
601 #ifndef ECB_H
602 #define ECB_H
603
604 /* 16 bits major, 16 bits minor */
605 #define ECB_VERSION 0x00010006
606
607 #ifdef _WIN32
608 typedef signed char int8_t;
609 typedef unsigned char uint8_t;
610 typedef signed short int16_t;
611 typedef unsigned short uint16_t;
612 typedef signed int int32_t;
613 typedef unsigned int uint32_t;
614 #if __GNUC__
615 typedef signed long long int64_t;
616 typedef unsigned long long uint64_t;
617 #else /* _MSC_VER || __BORLANDC__ */
618 typedef signed __int64 int64_t;
619 typedef unsigned __int64 uint64_t;
620 #endif
621 #ifdef _WIN64
622 #define ECB_PTRSIZE 8
623 typedef uint64_t uintptr_t;
624 typedef int64_t intptr_t;
625 #else
626 #define ECB_PTRSIZE 4
627 typedef uint32_t uintptr_t;
628 typedef int32_t intptr_t;
629 #endif
630 #else
631 #include <inttypes.h>
632 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
633 #define ECB_PTRSIZE 8
634 #else
635 #define ECB_PTRSIZE 4
636 #endif
637 #endif
638
639 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
640 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
641
642 /* work around x32 idiocy by defining proper macros */
643 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
644 #if _ILP32
645 #define ECB_AMD64_X32 1
646 #else
647 #define ECB_AMD64 1
648 #endif
649 #endif
650
651 /* many compilers define _GNUC_ to some versions but then only implement
652 * what their idiot authors think are the "more important" extensions,
653 * causing enormous grief in return for some better fake benchmark numbers.
654 * or so.
655 * we try to detect these and simply assume they are not gcc - if they have
656 * an issue with that they should have done it right in the first place.
657 */
658 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
659 #define ECB_GCC_VERSION(major,minor) 0
660 #else
661 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
662 #endif
663
664 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
665
666 #if __clang__ && defined __has_builtin
667 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
668 #else
669 #define ECB_CLANG_BUILTIN(x) 0
670 #endif
671
672 #if __clang__ && defined __has_extension
673 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
674 #else
675 #define ECB_CLANG_EXTENSION(x) 0
676 #endif
677
678 #define ECB_CPP (__cplusplus+0)
679 #define ECB_CPP11 (__cplusplus >= 201103L)
680 #define ECB_CPP14 (__cplusplus >= 201402L)
681 #define ECB_CPP17 (__cplusplus >= 201703L)
682
683 #if ECB_CPP
684 #define ECB_C 0
685 #define ECB_STDC_VERSION 0
686 #else
687 #define ECB_C 1
688 #define ECB_STDC_VERSION __STDC_VERSION__
689 #endif
690
691 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
692 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
693 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
694
695 #if ECB_CPP
696 #define ECB_EXTERN_C extern "C"
697 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
698 #define ECB_EXTERN_C_END }
699 #else
700 #define ECB_EXTERN_C extern
701 #define ECB_EXTERN_C_BEG
702 #define ECB_EXTERN_C_END
703 #endif
704
705 /*****************************************************************************/
706
707 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
708 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
709
710 #if ECB_NO_THREADS
711 #define ECB_NO_SMP 1
712 #endif
713
714 #if ECB_NO_SMP
715 #define ECB_MEMORY_FENCE do { } while (0)
716 #endif
717
718 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
719 #if __xlC__ && ECB_CPP
720 #include <builtins.h>
721 #endif
722
723 #if 1400 <= _MSC_VER
724 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
725 #endif
726
727 #ifndef ECB_MEMORY_FENCE
728 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
730 #if __i386 || __i386__
731 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
732 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
733 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
734 #elif ECB_GCC_AMD64
735 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
736 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
737 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
738 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
739 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
740 #elif defined __ARM_ARCH_2__ \
741 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
742 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
743 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
744 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
745 || defined __ARM_ARCH_5TEJ__
746 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
747 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
748 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
749 || defined __ARM_ARCH_6T2__
750 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
751 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
752 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
753 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
754 #elif __aarch64__
755 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
756 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
757 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
758 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
759 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
760 #elif defined __s390__ || defined __s390x__
761 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
762 #elif defined __mips__
763 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
764 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
765 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
766 #elif defined __alpha__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
768 #elif defined __hppa__
769 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
770 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
771 #elif defined __ia64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
773 #elif defined __m68k__
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
775 #elif defined __m88k__
776 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
777 #elif defined __sh__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
779 #endif
780 #endif
781 #endif
782
783 #ifndef ECB_MEMORY_FENCE
784 #if ECB_GCC_VERSION(4,7)
785 /* see comment below (stdatomic.h) about the C11 memory model. */
786 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
787 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
788 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
789 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
790
791 #elif ECB_CLANG_EXTENSION(c_atomic)
792 /* see comment below (stdatomic.h) about the C11 memory model. */
793 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
794 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
795 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
796 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
797
798 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
799 #define ECB_MEMORY_FENCE __sync_synchronize ()
800 #elif _MSC_VER >= 1500 /* VC++ 2008 */
801 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
802 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
803 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
804 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
805 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
806 #elif _MSC_VER >= 1400 /* VC++ 2005 */
807 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
808 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
809 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
810 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
811 #elif defined _WIN32
812 #include <WinNT.h>
813 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
814 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
815 #include <mbarrier.h>
816 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
817 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
818 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
819 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
820 #elif __xlC__
821 #define ECB_MEMORY_FENCE __sync ()
822 #endif
823 #endif
824
825 #ifndef ECB_MEMORY_FENCE
826 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
827 /* we assume that these memory fences work on all variables/all memory accesses, */
828 /* not just C11 atomics and atomic accesses */
829 #include <stdatomic.h>
830 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
831 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
832 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
833 #endif
834 #endif
835
836 #ifndef ECB_MEMORY_FENCE
837 #if !ECB_AVOID_PTHREADS
838 /*
839 * if you get undefined symbol references to pthread_mutex_lock,
840 * or failure to find pthread.h, then you should implement
841 * the ECB_MEMORY_FENCE operations for your cpu/compiler
842 * OR provide pthread.h and link against the posix thread library
843 * of your system.
844 */
845 #include <pthread.h>
846 #define ECB_NEEDS_PTHREADS 1
847 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
848
849 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
850 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
851 #endif
852 #endif
853
854 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
855 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
856 #endif
857
858 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
859 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
860 #endif
861
862 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
863 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
864 #endif
865
866 /*****************************************************************************/
867
868 #if ECB_CPP
869 #define ecb_inline static inline
870 #elif ECB_GCC_VERSION(2,5)
871 #define ecb_inline static __inline__
872 #elif ECB_C99
873 #define ecb_inline static inline
874 #else
875 #define ecb_inline static
876 #endif
877
878 #if ECB_GCC_VERSION(3,3)
879 #define ecb_restrict __restrict__
880 #elif ECB_C99
881 #define ecb_restrict restrict
882 #else
883 #define ecb_restrict
884 #endif
885
886 typedef int ecb_bool;
887
888 #define ECB_CONCAT_(a, b) a ## b
889 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
890 #define ECB_STRINGIFY_(a) # a
891 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
892 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
893
894 #define ecb_function_ ecb_inline
895
896 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
897 #define ecb_attribute(attrlist) __attribute__ (attrlist)
898 #else
899 #define ecb_attribute(attrlist)
900 #endif
901
902 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
903 #define ecb_is_constant(expr) __builtin_constant_p (expr)
904 #else
905 /* possible C11 impl for integral types
906 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
907 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
908
909 #define ecb_is_constant(expr) 0
910 #endif
911
912 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
913 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
914 #else
915 #define ecb_expect(expr,value) (expr)
916 #endif
917
918 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
919 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
920 #else
921 #define ecb_prefetch(addr,rw,locality)
922 #endif
923
924 /* no emulation for ecb_decltype */
925 #if ECB_CPP11
926 // older implementations might have problems with decltype(x)::type, work around it
927 template<class T> struct ecb_decltype_t { typedef T type; };
928 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
929 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
930 #define ecb_decltype(x) __typeof__ (x)
931 #endif
932
933 #if _MSC_VER >= 1300
934 #define ecb_deprecated __declspec (deprecated)
935 #else
936 #define ecb_deprecated ecb_attribute ((__deprecated__))
937 #endif
938
939 #if _MSC_VER >= 1500
940 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
941 #elif ECB_GCC_VERSION(4,5)
942 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
943 #else
944 #define ecb_deprecated_message(msg) ecb_deprecated
945 #endif
946
947 #if _MSC_VER >= 1400
948 #define ecb_noinline __declspec (noinline)
949 #else
950 #define ecb_noinline ecb_attribute ((__noinline__))
951 #endif
952
953 #define ecb_unused ecb_attribute ((__unused__))
954 #define ecb_const ecb_attribute ((__const__))
955 #define ecb_pure ecb_attribute ((__pure__))
956
957 #if ECB_C11 || __IBMC_NORETURN
958 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
959 #define ecb_noreturn _Noreturn
960 #elif ECB_CPP11
961 #define ecb_noreturn [[noreturn]]
962 #elif _MSC_VER >= 1200
963 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
964 #define ecb_noreturn __declspec (noreturn)
965 #else
966 #define ecb_noreturn ecb_attribute ((__noreturn__))
967 #endif
968
969 #if ECB_GCC_VERSION(4,3)
970 #define ecb_artificial ecb_attribute ((__artificial__))
971 #define ecb_hot ecb_attribute ((__hot__))
972 #define ecb_cold ecb_attribute ((__cold__))
973 #else
974 #define ecb_artificial
975 #define ecb_hot
976 #define ecb_cold
977 #endif
978
979 /* put around conditional expressions if you are very sure that the */
980 /* expression is mostly true or mostly false. note that these return */
981 /* booleans, not the expression. */
982 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
983 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
984 /* for compatibility to the rest of the world */
985 #define ecb_likely(expr) ecb_expect_true (expr)
986 #define ecb_unlikely(expr) ecb_expect_false (expr)
987
988 /* count trailing zero bits and count # of one bits */
989 #if ECB_GCC_VERSION(3,4) \
990 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
991 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
992 && ECB_CLANG_BUILTIN(__builtin_popcount))
993 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
994 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
995 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
996 #define ecb_ctz32(x) __builtin_ctz (x)
997 #define ecb_ctz64(x) __builtin_ctzll (x)
998 #define ecb_popcount32(x) __builtin_popcount (x)
999 /* no popcountll */
1000 #else
1001 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1002 ecb_function_ ecb_const int
1003 ecb_ctz32 (uint32_t x)
1004 {
1005 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1006 unsigned long r;
1007 _BitScanForward (&r, x);
1008 return (int)r;
1009 #else
1010 int r = 0;
1011
1012 x &= ~x + 1; /* this isolates the lowest bit */
1013
1014 #if ECB_branchless_on_i386
1015 r += !!(x & 0xaaaaaaaa) << 0;
1016 r += !!(x & 0xcccccccc) << 1;
1017 r += !!(x & 0xf0f0f0f0) << 2;
1018 r += !!(x & 0xff00ff00) << 3;
1019 r += !!(x & 0xffff0000) << 4;
1020 #else
1021 if (x & 0xaaaaaaaa) r += 1;
1022 if (x & 0xcccccccc) r += 2;
1023 if (x & 0xf0f0f0f0) r += 4;
1024 if (x & 0xff00ff00) r += 8;
1025 if (x & 0xffff0000) r += 16;
1026 #endif
1027
1028 return r;
1029 #endif
1030 }
1031
1032 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1033 ecb_function_ ecb_const int
1034 ecb_ctz64 (uint64_t x)
1035 {
1036 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1037 unsigned long r;
1038 _BitScanForward64 (&r, x);
1039 return (int)r;
1040 #else
1041 int shift = x & 0xffffffff ? 0 : 32;
1042 return ecb_ctz32 (x >> shift) + shift;
1043 #endif
1044 }
1045
1046 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1047 ecb_function_ ecb_const int
1048 ecb_popcount32 (uint32_t x)
1049 {
1050 x -= (x >> 1) & 0x55555555;
1051 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1052 x = ((x >> 4) + x) & 0x0f0f0f0f;
1053 x *= 0x01010101;
1054
1055 return x >> 24;
1056 }
1057
1058 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1059 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1060 {
1061 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1062 unsigned long r;
1063 _BitScanReverse (&r, x);
1064 return (int)r;
1065 #else
1066 int r = 0;
1067
1068 if (x >> 16) { x >>= 16; r += 16; }
1069 if (x >> 8) { x >>= 8; r += 8; }
1070 if (x >> 4) { x >>= 4; r += 4; }
1071 if (x >> 2) { x >>= 2; r += 2; }
1072 if (x >> 1) { r += 1; }
1073
1074 return r;
1075 #endif
1076 }
1077
1078 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1079 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1080 {
1081 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1082 unsigned long r;
1083 _BitScanReverse64 (&r, x);
1084 return (int)r;
1085 #else
1086 int r = 0;
1087
1088 if (x >> 32) { x >>= 32; r += 32; }
1089
1090 return r + ecb_ld32 (x);
1091 #endif
1092 }
1093 #endif
1094
1095 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1096 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1097 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1098 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1099
1100 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1101 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1102 {
1103 return ( (x * 0x0802U & 0x22110U)
1104 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1105 }
1106
1107 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1108 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1109 {
1110 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1111 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1112 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1113 x = ( x >> 8 ) | ( x << 8);
1114
1115 return x;
1116 }
1117
1118 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1119 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1120 {
1121 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1122 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1123 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1124 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1125 x = ( x >> 16 ) | ( x << 16);
1126
1127 return x;
1128 }
1129
1130 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1131 /* so for this version we are lazy */
1132 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1133 ecb_function_ ecb_const int
1134 ecb_popcount64 (uint64_t x)
1135 {
1136 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1137 }
1138
1139 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1140 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1141 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1142 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1143 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1144 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1145 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1146 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1147
1148 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1149 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1150 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1151 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1152 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1153 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1154 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1155 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1156
1157 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1158 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1159 #define ecb_bswap16(x) __builtin_bswap16 (x)
1160 #else
1161 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1162 #endif
1163 #define ecb_bswap32(x) __builtin_bswap32 (x)
1164 #define ecb_bswap64(x) __builtin_bswap64 (x)
1165 #elif _MSC_VER
1166 #include <stdlib.h>
1167 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1168 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1169 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1170 #else
1171 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1172 ecb_function_ ecb_const uint16_t
1173 ecb_bswap16 (uint16_t x)
1174 {
1175 return ecb_rotl16 (x, 8);
1176 }
1177
1178 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1179 ecb_function_ ecb_const uint32_t
1180 ecb_bswap32 (uint32_t x)
1181 {
1182 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1183 }
1184
1185 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1186 ecb_function_ ecb_const uint64_t
1187 ecb_bswap64 (uint64_t x)
1188 {
1189 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1190 }
1191 #endif
1192
1193 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1194 #define ecb_unreachable() __builtin_unreachable ()
1195 #else
1196 /* this seems to work fine, but gcc always emits a warning for it :/ */
1197 ecb_inline ecb_noreturn void ecb_unreachable (void);
1198 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1199 #endif
1200
1201 /* try to tell the compiler that some condition is definitely true */
1202 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1203
1204 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1205 ecb_inline ecb_const uint32_t
1206 ecb_byteorder_helper (void)
1207 {
1208 /* the union code still generates code under pressure in gcc, */
1209 /* but less than using pointers, and always seems to */
1210 /* successfully return a constant. */
1211 /* the reason why we have this horrible preprocessor mess */
1212 /* is to avoid it in all cases, at least on common architectures */
1213 /* or when using a recent enough gcc version (>= 4.6) */
1214 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1215 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1216 #define ECB_LITTLE_ENDIAN 1
1217 return 0x44332211;
1218 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1219 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1220 #define ECB_BIG_ENDIAN 1
1221 return 0x11223344;
1222 #else
1223 union
1224 {
1225 uint8_t c[4];
1226 uint32_t u;
1227 } u = { 0x11, 0x22, 0x33, 0x44 };
1228 return u.u;
1229 #endif
1230 }
1231
1232 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1233 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1234 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1235 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1236
1237 #if ECB_GCC_VERSION(3,0) || ECB_C99
1238 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1239 #else
1240 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1241 #endif
1242
1243 #if ECB_CPP
1244 template<typename T>
1245 static inline T ecb_div_rd (T val, T div)
1246 {
1247 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1248 }
1249 template<typename T>
1250 static inline T ecb_div_ru (T val, T div)
1251 {
1252 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1253 }
1254 #else
1255 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1256 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1257 #endif
1258
1259 #if ecb_cplusplus_does_not_suck
1260 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1261 template<typename T, int N>
1262 static inline int ecb_array_length (const T (&arr)[N])
1263 {
1264 return N;
1265 }
1266 #else
1267 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1268 #endif
1269
1270 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1271 ecb_function_ ecb_const uint32_t
1272 ecb_binary16_to_binary32 (uint32_t x)
1273 {
1274 unsigned int s = (x & 0x8000) << (31 - 15);
1275 int e = (x >> 10) & 0x001f;
1276 unsigned int m = x & 0x03ff;
1277
1278 if (ecb_expect_false (e == 31))
1279 /* infinity or NaN */
1280 e = 255 - (127 - 15);
1281 else if (ecb_expect_false (!e))
1282 {
1283 if (ecb_expect_true (!m))
1284 /* zero, handled by code below by forcing e to 0 */
1285 e = 0 - (127 - 15);
1286 else
1287 {
1288 /* subnormal, renormalise */
1289 unsigned int s = 10 - ecb_ld32 (m);
1290
1291 m = (m << s) & 0x3ff; /* mask implicit bit */
1292 e -= s - 1;
1293 }
1294 }
1295
1296 /* e and m now are normalised, or zero, (or inf or nan) */
1297 e += 127 - 15;
1298
1299 return s | (e << 23) | (m << (23 - 10));
1300 }
1301
1302 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1303 ecb_function_ ecb_const uint16_t
1304 ecb_binary32_to_binary16 (uint32_t x)
1305 {
1306 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1307 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1308 unsigned int m = x & 0x007fffff;
1309
1310 x &= 0x7fffffff;
1311
1312 /* if it's within range of binary16 normals, use fast path */
1313 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1314 {
1315 /* mantissa round-to-even */
1316 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1317
1318 /* handle overflow */
1319 if (ecb_expect_false (m >= 0x00800000))
1320 {
1321 m >>= 1;
1322 e += 1;
1323 }
1324
1325 return s | (e << 10) | (m >> (23 - 10));
1326 }
1327
1328 /* handle large numbers and infinity */
1329 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1330 return s | 0x7c00;
1331
1332 /* handle zero, subnormals and small numbers */
1333 if (ecb_expect_true (x < 0x38800000))
1334 {
1335 /* zero */
1336 if (ecb_expect_true (!x))
1337 return s;
1338
1339 /* handle subnormals */
1340
1341 /* too small, will be zero */
1342 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1343 return s;
1344
1345 m |= 0x00800000; /* make implicit bit explicit */
1346
1347 /* very tricky - we need to round to the nearest e (+10) bit value */
1348 {
1349 unsigned int bits = 14 - e;
1350 unsigned int half = (1 << (bits - 1)) - 1;
1351 unsigned int even = (m >> bits) & 1;
1352
1353 /* if this overflows, we will end up with a normalised number */
1354 m = (m + half + even) >> bits;
1355 }
1356
1357 return s | m;
1358 }
1359
1360 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1361 m >>= 13;
1362
1363 return s | 0x7c00 | m | !m;
1364 }
1365
1366 /*******************************************************************************/
1367 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1368
1369 /* basically, everything uses "ieee pure-endian" floating point numbers */
1370 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1371 #if 0 \
1372 || __i386 || __i386__ \
1373 || ECB_GCC_AMD64 \
1374 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1375 || defined __s390__ || defined __s390x__ \
1376 || defined __mips__ \
1377 || defined __alpha__ \
1378 || defined __hppa__ \
1379 || defined __ia64__ \
1380 || defined __m68k__ \
1381 || defined __m88k__ \
1382 || defined __sh__ \
1383 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1384 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1385 || defined __aarch64__
1386 #define ECB_STDFP 1
1387 #include <string.h> /* for memcpy */
1388 #else
1389 #define ECB_STDFP 0
1390 #endif
1391
1392 #ifndef ECB_NO_LIBM
1393
1394 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1395
1396 /* only the oldest of old doesn't have this one. solaris. */
1397 #ifdef INFINITY
1398 #define ECB_INFINITY INFINITY
1399 #else
1400 #define ECB_INFINITY HUGE_VAL
1401 #endif
1402
1403 #ifdef NAN
1404 #define ECB_NAN NAN
1405 #else
1406 #define ECB_NAN ECB_INFINITY
1407 #endif
1408
1409 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1410 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1411 #define ecb_frexpf(x,e) frexpf ((x), (e))
1412 #else
1413 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1414 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1415 #endif
1416
1417 /* convert a float to ieee single/binary32 */
1418 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1419 ecb_function_ ecb_const uint32_t
1420 ecb_float_to_binary32 (float x)
1421 {
1422 uint32_t r;
1423
1424 #if ECB_STDFP
1425 memcpy (&r, &x, 4);
1426 #else
1427 /* slow emulation, works for anything but -0 */
1428 uint32_t m;
1429 int e;
1430
1431 if (x == 0e0f ) return 0x00000000U;
1432 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1433 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1434 if (x != x ) return 0x7fbfffffU;
1435
1436 m = ecb_frexpf (x, &e) * 0x1000000U;
1437
1438 r = m & 0x80000000U;
1439
1440 if (r)
1441 m = -m;
1442
1443 if (e <= -126)
1444 {
1445 m &= 0xffffffU;
1446 m >>= (-125 - e);
1447 e = -126;
1448 }
1449
1450 r |= (e + 126) << 23;
1451 r |= m & 0x7fffffU;
1452 #endif
1453
1454 return r;
1455 }
1456
1457 /* converts an ieee single/binary32 to a float */
1458 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1459 ecb_function_ ecb_const float
1460 ecb_binary32_to_float (uint32_t x)
1461 {
1462 float r;
1463
1464 #if ECB_STDFP
1465 memcpy (&r, &x, 4);
1466 #else
1467 /* emulation, only works for normals and subnormals and +0 */
1468 int neg = x >> 31;
1469 int e = (x >> 23) & 0xffU;
1470
1471 x &= 0x7fffffU;
1472
1473 if (e)
1474 x |= 0x800000U;
1475 else
1476 e = 1;
1477
1478 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1479 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1480
1481 r = neg ? -r : r;
1482 #endif
1483
1484 return r;
1485 }
1486
1487 /* convert a double to ieee double/binary64 */
1488 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1489 ecb_function_ ecb_const uint64_t
1490 ecb_double_to_binary64 (double x)
1491 {
1492 uint64_t r;
1493
1494 #if ECB_STDFP
1495 memcpy (&r, &x, 8);
1496 #else
1497 /* slow emulation, works for anything but -0 */
1498 uint64_t m;
1499 int e;
1500
1501 if (x == 0e0 ) return 0x0000000000000000U;
1502 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1503 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1504 if (x != x ) return 0X7ff7ffffffffffffU;
1505
1506 m = frexp (x, &e) * 0x20000000000000U;
1507
1508 r = m & 0x8000000000000000;;
1509
1510 if (r)
1511 m = -m;
1512
1513 if (e <= -1022)
1514 {
1515 m &= 0x1fffffffffffffU;
1516 m >>= (-1021 - e);
1517 e = -1022;
1518 }
1519
1520 r |= ((uint64_t)(e + 1022)) << 52;
1521 r |= m & 0xfffffffffffffU;
1522 #endif
1523
1524 return r;
1525 }
1526
1527 /* converts an ieee double/binary64 to a double */
1528 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1529 ecb_function_ ecb_const double
1530 ecb_binary64_to_double (uint64_t x)
1531 {
1532 double r;
1533
1534 #if ECB_STDFP
1535 memcpy (&r, &x, 8);
1536 #else
1537 /* emulation, only works for normals and subnormals and +0 */
1538 int neg = x >> 63;
1539 int e = (x >> 52) & 0x7ffU;
1540
1541 x &= 0xfffffffffffffU;
1542
1543 if (e)
1544 x |= 0x10000000000000U;
1545 else
1546 e = 1;
1547
1548 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1549 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1550
1551 r = neg ? -r : r;
1552 #endif
1553
1554 return r;
1555 }
1556
1557 /* convert a float to ieee half/binary16 */
1558 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1559 ecb_function_ ecb_const uint16_t
1560 ecb_float_to_binary16 (float x)
1561 {
1562 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1563 }
1564
1565 /* convert an ieee half/binary16 to float */
1566 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1567 ecb_function_ ecb_const float
1568 ecb_binary16_to_float (uint16_t x)
1569 {
1570 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1571 }
1572
1573 #endif
1574
1575 #endif
1576
1577 /* ECB.H END */
1578
1579 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1580 /* if your architecture doesn't need memory fences, e.g. because it is
1581 * single-cpu/core, or if you use libev in a project that doesn't use libev
1582 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1583 * libev, in which cases the memory fences become nops.
1584 * alternatively, you can remove this #error and link against libpthread,
1585 * which will then provide the memory fences.
1586 */
1587 # error "memory fences not defined for your architecture, please report"
1588 #endif
1589
1590 #ifndef ECB_MEMORY_FENCE
1591 # define ECB_MEMORY_FENCE do { } while (0)
1592 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1593 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1594 #endif
1595
1596 #define inline_size ecb_inline
1597
1598 #if EV_FEATURE_CODE
1599 # define inline_speed ecb_inline
1600 #else
1601 # define inline_speed ecb_noinline static
1602 #endif
1603
1604 /*****************************************************************************/
1605 /* raw syscall wrappers */
1606
1607 #if EV_NEED_SYSCALL
1608
1609 #include <sys/syscall.h>
1610
1611 /*
1612 * define some syscall wrappers for common architectures
1613 * this is mostly for nice looks during debugging, not performance.
1614 * our syscalls return < 0, not == -1, on error. which is good
1615 * enough for linux aio.
1616 * TODO: arm is also common nowadays, maybe even mips and x86
1617 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1618 */
1619 #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1620 /* the costly errno access probably kills this for size optimisation */
1621
1622 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1623 ({ \
1624 long res; \
1625 register unsigned long r6 __asm__ ("r9" ); \
1626 register unsigned long r5 __asm__ ("r8" ); \
1627 register unsigned long r4 __asm__ ("r10"); \
1628 register unsigned long r3 __asm__ ("rdx"); \
1629 register unsigned long r2 __asm__ ("rsi"); \
1630 register unsigned long r1 __asm__ ("rdi"); \
1631 if (narg >= 6) r6 = (unsigned long)(arg6); \
1632 if (narg >= 5) r5 = (unsigned long)(arg5); \
1633 if (narg >= 4) r4 = (unsigned long)(arg4); \
1634 if (narg >= 3) r3 = (unsigned long)(arg3); \
1635 if (narg >= 2) r2 = (unsigned long)(arg2); \
1636 if (narg >= 1) r1 = (unsigned long)(arg1); \
1637 __asm__ __volatile__ ( \
1638 "syscall\n\t" \
1639 : "=a" (res) \
1640 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1641 : "cc", "r11", "cx", "memory"); \
1642 errno = -res; \
1643 res; \
1644 })
1645
1646 #endif
1647
1648 #ifdef ev_syscall
1649 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1650 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1651 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1652 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1653 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1654 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1655 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1656 #else
1657 #define ev_syscall0(nr) syscall (nr)
1658 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1659 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1660 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1661 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1662 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1663 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1664 #endif
1665
1666 #endif
1667
1668 /*****************************************************************************/
1669
1670 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1671
1672 #if EV_MINPRI == EV_MAXPRI
1673 # define ABSPRI(w) (((W)w), 0)
1674 #else
1675 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1676 #endif
1677
1678 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1679
1680 typedef ev_watcher *W;
1681 typedef ev_watcher_list *WL;
1682 typedef ev_watcher_time *WT;
1683
1684 #define ev_active(w) ((W)(w))->active
1685 #define ev_at(w) ((WT)(w))->at
1686
1687 #if EV_USE_REALTIME
1688 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1689 /* giving it a reasonably high chance of working on typical architectures */
1690 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1691 #endif
1692
1693 #if EV_USE_MONOTONIC
1694 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1695 #endif
1696
1697 #ifndef EV_FD_TO_WIN32_HANDLE
1698 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1699 #endif
1700 #ifndef EV_WIN32_HANDLE_TO_FD
1701 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1702 #endif
1703 #ifndef EV_WIN32_CLOSE_FD
1704 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1705 #endif
1706
1707 #ifdef _WIN32
1708 # include "ev_win32.c"
1709 #endif
1710
1711 /*****************************************************************************/
1712
1713 #if EV_USE_LINUXAIO
1714 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1715 #endif
1716
1717 /* define a suitable floor function (only used by periodics atm) */
1718
1719 #if EV_USE_FLOOR
1720 # include <math.h>
1721 # define ev_floor(v) floor (v)
1722 #else
1723
1724 #include <float.h>
1725
1726 /* a floor() replacement function, should be independent of ev_tstamp type */
1727 ecb_noinline
1728 static ev_tstamp
1729 ev_floor (ev_tstamp v)
1730 {
1731 /* the choice of shift factor is not terribly important */
1732 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1733 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1734 #else
1735 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1736 #endif
1737
1738 /* special treatment for negative arguments */
1739 if (ecb_expect_false (v < 0.))
1740 {
1741 ev_tstamp f = -ev_floor (-v);
1742
1743 return f - (f == v ? 0 : 1);
1744 }
1745
1746 /* argument too large for an unsigned long? then reduce it */
1747 if (ecb_expect_false (v >= shift))
1748 {
1749 ev_tstamp f;
1750
1751 if (v == v - 1.)
1752 return v; /* very large numbers are assumed to be integer */
1753
1754 f = shift * ev_floor (v * (1. / shift));
1755 return f + ev_floor (v - f);
1756 }
1757
1758 /* fits into an unsigned long */
1759 return (unsigned long)v;
1760 }
1761
1762 #endif
1763
1764 /*****************************************************************************/
1765
1766 #ifdef __linux
1767 # include <sys/utsname.h>
1768 #endif
1769
1770 ecb_noinline ecb_cold
1771 static unsigned int
1772 ev_linux_version (void)
1773 {
1774 #ifdef __linux
1775 unsigned int v = 0;
1776 struct utsname buf;
1777 int i;
1778 char *p = buf.release;
1779
1780 if (uname (&buf))
1781 return 0;
1782
1783 for (i = 3+1; --i; )
1784 {
1785 unsigned int c = 0;
1786
1787 for (;;)
1788 {
1789 if (*p >= '0' && *p <= '9')
1790 c = c * 10 + *p++ - '0';
1791 else
1792 {
1793 p += *p == '.';
1794 break;
1795 }
1796 }
1797
1798 v = (v << 8) | c;
1799 }
1800
1801 return v;
1802 #else
1803 return 0;
1804 #endif
1805 }
1806
1807 /*****************************************************************************/
1808
1809 #if EV_AVOID_STDIO
1810 ecb_noinline ecb_cold
1811 static void
1812 ev_printerr (const char *msg)
1813 {
1814 write (STDERR_FILENO, msg, strlen (msg));
1815 }
1816 #endif
1817
1818 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1819
1820 ecb_cold
1821 void
1822 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1823 {
1824 syserr_cb = cb;
1825 }
1826
1827 ecb_noinline ecb_cold
1828 static void
1829 ev_syserr (const char *msg)
1830 {
1831 if (!msg)
1832 msg = "(libev) system error";
1833
1834 if (syserr_cb)
1835 syserr_cb (msg);
1836 else
1837 {
1838 #if EV_AVOID_STDIO
1839 ev_printerr (msg);
1840 ev_printerr (": ");
1841 ev_printerr (strerror (errno));
1842 ev_printerr ("\n");
1843 #else
1844 perror (msg);
1845 #endif
1846 abort ();
1847 }
1848 }
1849
1850 static void *
1851 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1852 {
1853 /* some systems, notably openbsd and darwin, fail to properly
1854 * implement realloc (x, 0) (as required by both ansi c-89 and
1855 * the single unix specification, so work around them here.
1856 * recently, also (at least) fedora and debian started breaking it,
1857 * despite documenting it otherwise.
1858 */
1859
1860 if (size)
1861 return realloc (ptr, size);
1862
1863 free (ptr);
1864 return 0;
1865 }
1866
1867 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1868
1869 ecb_cold
1870 void
1871 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1872 {
1873 alloc = cb;
1874 }
1875
1876 inline_speed void *
1877 ev_realloc (void *ptr, long size)
1878 {
1879 ptr = alloc (ptr, size);
1880
1881 if (!ptr && size)
1882 {
1883 #if EV_AVOID_STDIO
1884 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1885 #else
1886 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1887 #endif
1888 abort ();
1889 }
1890
1891 return ptr;
1892 }
1893
1894 #define ev_malloc(size) ev_realloc (0, (size))
1895 #define ev_free(ptr) ev_realloc ((ptr), 0)
1896
1897 /*****************************************************************************/
1898
1899 /* set in reify when reification needed */
1900 #define EV_ANFD_REIFY 1
1901
1902 /* file descriptor info structure */
1903 typedef struct
1904 {
1905 WL head;
1906 unsigned char events; /* the events watched for */
1907 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1908 unsigned char emask; /* some backends store the actual kernel mask in here */
1909 unsigned char eflags; /* flags field for use by backends */
1910 #if EV_USE_EPOLL
1911 unsigned int egen; /* generation counter to counter epoll bugs */
1912 #endif
1913 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1914 SOCKET handle;
1915 #endif
1916 #if EV_USE_IOCP
1917 OVERLAPPED or, ow;
1918 #endif
1919 } ANFD;
1920
1921 /* stores the pending event set for a given watcher */
1922 typedef struct
1923 {
1924 W w;
1925 int events; /* the pending event set for the given watcher */
1926 } ANPENDING;
1927
1928 #if EV_USE_INOTIFY
1929 /* hash table entry per inotify-id */
1930 typedef struct
1931 {
1932 WL head;
1933 } ANFS;
1934 #endif
1935
1936 /* Heap Entry */
1937 #if EV_HEAP_CACHE_AT
1938 /* a heap element */
1939 typedef struct {
1940 ev_tstamp at;
1941 WT w;
1942 } ANHE;
1943
1944 #define ANHE_w(he) (he).w /* access watcher, read-write */
1945 #define ANHE_at(he) (he).at /* access cached at, read-only */
1946 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1947 #else
1948 /* a heap element */
1949 typedef WT ANHE;
1950
1951 #define ANHE_w(he) (he)
1952 #define ANHE_at(he) (he)->at
1953 #define ANHE_at_cache(he)
1954 #endif
1955
1956 #if EV_MULTIPLICITY
1957
1958 struct ev_loop
1959 {
1960 ev_tstamp ev_rt_now;
1961 #define ev_rt_now ((loop)->ev_rt_now)
1962 #define VAR(name,decl) decl;
1963 #include "ev_vars.h"
1964 #undef VAR
1965 };
1966 #include "ev_wrap.h"
1967
1968 static struct ev_loop default_loop_struct;
1969 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1970
1971 #else
1972
1973 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
1974 #define VAR(name,decl) static decl;
1975 #include "ev_vars.h"
1976 #undef VAR
1977
1978 static int ev_default_loop_ptr;
1979
1980 #endif
1981
1982 #if EV_FEATURE_API
1983 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
1984 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
1985 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1986 #else
1987 # define EV_RELEASE_CB (void)0
1988 # define EV_ACQUIRE_CB (void)0
1989 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1990 #endif
1991
1992 #define EVBREAK_RECURSE 0x80
1993
1994 /*****************************************************************************/
1995
1996 #ifndef EV_HAVE_EV_TIME
1997 ev_tstamp
1998 ev_time (void) EV_NOEXCEPT
1999 {
2000 #if EV_USE_REALTIME
2001 if (ecb_expect_true (have_realtime))
2002 {
2003 struct timespec ts;
2004 clock_gettime (CLOCK_REALTIME, &ts);
2005 return EV_TS_GET (ts);
2006 }
2007 #endif
2008
2009 struct timeval tv;
2010 gettimeofday (&tv, 0);
2011 return EV_TV_GET (tv);
2012 }
2013 #endif
2014
2015 inline_size ev_tstamp
2016 get_clock (void)
2017 {
2018 #if EV_USE_MONOTONIC
2019 if (ecb_expect_true (have_monotonic))
2020 {
2021 struct timespec ts;
2022 clock_gettime (CLOCK_MONOTONIC, &ts);
2023 return EV_TS_GET (ts);
2024 }
2025 #endif
2026
2027 return ev_time ();
2028 }
2029
2030 #if EV_MULTIPLICITY
2031 ev_tstamp
2032 ev_now (EV_P) EV_NOEXCEPT
2033 {
2034 return ev_rt_now;
2035 }
2036 #endif
2037
2038 void
2039 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2040 {
2041 if (delay > EV_TS_CONST (0.))
2042 {
2043 #if EV_USE_NANOSLEEP
2044 struct timespec ts;
2045
2046 EV_TS_SET (ts, delay);
2047 nanosleep (&ts, 0);
2048 #elif defined _WIN32
2049 /* maybe this should round up, as ms is very low resolution */
2050 /* compared to select (µs) or nanosleep (ns) */
2051 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2052 #else
2053 struct timeval tv;
2054
2055 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2056 /* something not guaranteed by newer posix versions, but guaranteed */
2057 /* by older ones */
2058 EV_TV_SET (tv, delay);
2059 select (0, 0, 0, 0, &tv);
2060 #endif
2061 }
2062 }
2063
2064 /*****************************************************************************/
2065
2066 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2067
2068 /* find a suitable new size for the given array, */
2069 /* hopefully by rounding to a nice-to-malloc size */
2070 inline_size int
2071 array_nextsize (int elem, int cur, int cnt)
2072 {
2073 int ncur = cur + 1;
2074
2075 do
2076 ncur <<= 1;
2077 while (cnt > ncur);
2078
2079 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2080 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2081 {
2082 ncur *= elem;
2083 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2084 ncur = ncur - sizeof (void *) * 4;
2085 ncur /= elem;
2086 }
2087
2088 return ncur;
2089 }
2090
2091 ecb_noinline ecb_cold
2092 static void *
2093 array_realloc (int elem, void *base, int *cur, int cnt)
2094 {
2095 *cur = array_nextsize (elem, *cur, cnt);
2096 return ev_realloc (base, elem * *cur);
2097 }
2098
2099 #define array_needsize_noinit(base,offset,count)
2100
2101 #define array_needsize_zerofill(base,offset,count) \
2102 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2103
2104 #define array_needsize(type,base,cur,cnt,init) \
2105 if (ecb_expect_false ((cnt) > (cur))) \
2106 { \
2107 ecb_unused int ocur_ = (cur); \
2108 (base) = (type *)array_realloc \
2109 (sizeof (type), (base), &(cur), (cnt)); \
2110 init ((base), ocur_, ((cur) - ocur_)); \
2111 }
2112
2113 #if 0
2114 #define array_slim(type,stem) \
2115 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2116 { \
2117 stem ## max = array_roundsize (stem ## cnt >> 1); \
2118 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2119 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2120 }
2121 #endif
2122
2123 #define array_free(stem, idx) \
2124 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2125
2126 /*****************************************************************************/
2127
2128 /* dummy callback for pending events */
2129 ecb_noinline
2130 static void
2131 pendingcb (EV_P_ ev_prepare *w, int revents)
2132 {
2133 }
2134
2135 ecb_noinline
2136 void
2137 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2138 {
2139 W w_ = (W)w;
2140 int pri = ABSPRI (w_);
2141
2142 if (ecb_expect_false (w_->pending))
2143 pendings [pri][w_->pending - 1].events |= revents;
2144 else
2145 {
2146 w_->pending = ++pendingcnt [pri];
2147 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2148 pendings [pri][w_->pending - 1].w = w_;
2149 pendings [pri][w_->pending - 1].events = revents;
2150 }
2151
2152 pendingpri = NUMPRI - 1;
2153 }
2154
2155 inline_speed void
2156 feed_reverse (EV_P_ W w)
2157 {
2158 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2159 rfeeds [rfeedcnt++] = w;
2160 }
2161
2162 inline_size void
2163 feed_reverse_done (EV_P_ int revents)
2164 {
2165 do
2166 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2167 while (rfeedcnt);
2168 }
2169
2170 inline_speed void
2171 queue_events (EV_P_ W *events, int eventcnt, int type)
2172 {
2173 int i;
2174
2175 for (i = 0; i < eventcnt; ++i)
2176 ev_feed_event (EV_A_ events [i], type);
2177 }
2178
2179 /*****************************************************************************/
2180
2181 inline_speed void
2182 fd_event_nocheck (EV_P_ int fd, int revents)
2183 {
2184 ANFD *anfd = anfds + fd;
2185 ev_io *w;
2186
2187 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2188 {
2189 int ev = w->events & revents;
2190
2191 if (ev)
2192 ev_feed_event (EV_A_ (W)w, ev);
2193 }
2194 }
2195
2196 /* do not submit kernel events for fds that have reify set */
2197 /* because that means they changed while we were polling for new events */
2198 inline_speed void
2199 fd_event (EV_P_ int fd, int revents)
2200 {
2201 ANFD *anfd = anfds + fd;
2202
2203 if (ecb_expect_true (!anfd->reify))
2204 fd_event_nocheck (EV_A_ fd, revents);
2205 }
2206
2207 void
2208 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2209 {
2210 if (fd >= 0 && fd < anfdmax)
2211 fd_event_nocheck (EV_A_ fd, revents);
2212 }
2213
2214 /* make sure the external fd watch events are in-sync */
2215 /* with the kernel/libev internal state */
2216 inline_size void
2217 fd_reify (EV_P)
2218 {
2219 int i;
2220
2221 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2222 for (i = 0; i < fdchangecnt; ++i)
2223 {
2224 int fd = fdchanges [i];
2225 ANFD *anfd = anfds + fd;
2226
2227 if (anfd->reify & EV__IOFDSET && anfd->head)
2228 {
2229 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2230
2231 if (handle != anfd->handle)
2232 {
2233 unsigned long arg;
2234
2235 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2236
2237 /* handle changed, but fd didn't - we need to do it in two steps */
2238 backend_modify (EV_A_ fd, anfd->events, 0);
2239 anfd->events = 0;
2240 anfd->handle = handle;
2241 }
2242 }
2243 }
2244 #endif
2245
2246 for (i = 0; i < fdchangecnt; ++i)
2247 {
2248 int fd = fdchanges [i];
2249 ANFD *anfd = anfds + fd;
2250 ev_io *w;
2251
2252 unsigned char o_events = anfd->events;
2253 unsigned char o_reify = anfd->reify;
2254
2255 anfd->reify = 0;
2256
2257 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2258 {
2259 anfd->events = 0;
2260
2261 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2262 anfd->events |= (unsigned char)w->events;
2263
2264 if (o_events != anfd->events)
2265 o_reify = EV__IOFDSET; /* actually |= */
2266 }
2267
2268 if (o_reify & EV__IOFDSET)
2269 backend_modify (EV_A_ fd, o_events, anfd->events);
2270 }
2271
2272 fdchangecnt = 0;
2273 }
2274
2275 /* something about the given fd changed */
2276 inline_size
2277 void
2278 fd_change (EV_P_ int fd, int flags)
2279 {
2280 unsigned char reify = anfds [fd].reify;
2281 anfds [fd].reify |= flags;
2282
2283 if (ecb_expect_true (!reify))
2284 {
2285 ++fdchangecnt;
2286 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2287 fdchanges [fdchangecnt - 1] = fd;
2288 }
2289 }
2290
2291 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2292 inline_speed ecb_cold void
2293 fd_kill (EV_P_ int fd)
2294 {
2295 ev_io *w;
2296
2297 while ((w = (ev_io *)anfds [fd].head))
2298 {
2299 ev_io_stop (EV_A_ w);
2300 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2301 }
2302 }
2303
2304 /* check whether the given fd is actually valid, for error recovery */
2305 inline_size ecb_cold int
2306 fd_valid (int fd)
2307 {
2308 #ifdef _WIN32
2309 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2310 #else
2311 return fcntl (fd, F_GETFD) != -1;
2312 #endif
2313 }
2314
2315 /* called on EBADF to verify fds */
2316 ecb_noinline ecb_cold
2317 static void
2318 fd_ebadf (EV_P)
2319 {
2320 int fd;
2321
2322 for (fd = 0; fd < anfdmax; ++fd)
2323 if (anfds [fd].events)
2324 if (!fd_valid (fd) && errno == EBADF)
2325 fd_kill (EV_A_ fd);
2326 }
2327
2328 /* called on ENOMEM in select/poll to kill some fds and retry */
2329 ecb_noinline ecb_cold
2330 static void
2331 fd_enomem (EV_P)
2332 {
2333 int fd;
2334
2335 for (fd = anfdmax; fd--; )
2336 if (anfds [fd].events)
2337 {
2338 fd_kill (EV_A_ fd);
2339 break;
2340 }
2341 }
2342
2343 /* usually called after fork if backend needs to re-arm all fds from scratch */
2344 ecb_noinline
2345 static void
2346 fd_rearm_all (EV_P)
2347 {
2348 int fd;
2349
2350 for (fd = 0; fd < anfdmax; ++fd)
2351 if (anfds [fd].events)
2352 {
2353 anfds [fd].events = 0;
2354 anfds [fd].emask = 0;
2355 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2356 }
2357 }
2358
2359 /* used to prepare libev internal fd's */
2360 /* this is not fork-safe */
2361 inline_speed void
2362 fd_intern (int fd)
2363 {
2364 #ifdef _WIN32
2365 unsigned long arg = 1;
2366 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2367 #else
2368 fcntl (fd, F_SETFD, FD_CLOEXEC);
2369 fcntl (fd, F_SETFL, O_NONBLOCK);
2370 #endif
2371 }
2372
2373 /*****************************************************************************/
2374
2375 /*
2376 * the heap functions want a real array index. array index 0 is guaranteed to not
2377 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2378 * the branching factor of the d-tree.
2379 */
2380
2381 /*
2382 * at the moment we allow libev the luxury of two heaps,
2383 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2384 * which is more cache-efficient.
2385 * the difference is about 5% with 50000+ watchers.
2386 */
2387 #if EV_USE_4HEAP
2388
2389 #define DHEAP 4
2390 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2391 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2392 #define UPHEAP_DONE(p,k) ((p) == (k))
2393
2394 /* away from the root */
2395 inline_speed void
2396 downheap (ANHE *heap, int N, int k)
2397 {
2398 ANHE he = heap [k];
2399 ANHE *E = heap + N + HEAP0;
2400
2401 for (;;)
2402 {
2403 ev_tstamp minat;
2404 ANHE *minpos;
2405 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2406
2407 /* find minimum child */
2408 if (ecb_expect_true (pos + DHEAP - 1 < E))
2409 {
2410 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2411 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2412 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2413 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2414 }
2415 else if (pos < E)
2416 {
2417 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2418 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2419 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2420 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2421 }
2422 else
2423 break;
2424
2425 if (ANHE_at (he) <= minat)
2426 break;
2427
2428 heap [k] = *minpos;
2429 ev_active (ANHE_w (*minpos)) = k;
2430
2431 k = minpos - heap;
2432 }
2433
2434 heap [k] = he;
2435 ev_active (ANHE_w (he)) = k;
2436 }
2437
2438 #else /* not 4HEAP */
2439
2440 #define HEAP0 1
2441 #define HPARENT(k) ((k) >> 1)
2442 #define UPHEAP_DONE(p,k) (!(p))
2443
2444 /* away from the root */
2445 inline_speed void
2446 downheap (ANHE *heap, int N, int k)
2447 {
2448 ANHE he = heap [k];
2449
2450 for (;;)
2451 {
2452 int c = k << 1;
2453
2454 if (c >= N + HEAP0)
2455 break;
2456
2457 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2458 ? 1 : 0;
2459
2460 if (ANHE_at (he) <= ANHE_at (heap [c]))
2461 break;
2462
2463 heap [k] = heap [c];
2464 ev_active (ANHE_w (heap [k])) = k;
2465
2466 k = c;
2467 }
2468
2469 heap [k] = he;
2470 ev_active (ANHE_w (he)) = k;
2471 }
2472 #endif
2473
2474 /* towards the root */
2475 inline_speed void
2476 upheap (ANHE *heap, int k)
2477 {
2478 ANHE he = heap [k];
2479
2480 for (;;)
2481 {
2482 int p = HPARENT (k);
2483
2484 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2485 break;
2486
2487 heap [k] = heap [p];
2488 ev_active (ANHE_w (heap [k])) = k;
2489 k = p;
2490 }
2491
2492 heap [k] = he;
2493 ev_active (ANHE_w (he)) = k;
2494 }
2495
2496 /* move an element suitably so it is in a correct place */
2497 inline_size void
2498 adjustheap (ANHE *heap, int N, int k)
2499 {
2500 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2501 upheap (heap, k);
2502 else
2503 downheap (heap, N, k);
2504 }
2505
2506 /* rebuild the heap: this function is used only once and executed rarely */
2507 inline_size void
2508 reheap (ANHE *heap, int N)
2509 {
2510 int i;
2511
2512 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2513 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2514 for (i = 0; i < N; ++i)
2515 upheap (heap, i + HEAP0);
2516 }
2517
2518 /*****************************************************************************/
2519
2520 /* associate signal watchers to a signal signal */
2521 typedef struct
2522 {
2523 EV_ATOMIC_T pending;
2524 #if EV_MULTIPLICITY
2525 EV_P;
2526 #endif
2527 WL head;
2528 } ANSIG;
2529
2530 static ANSIG signals [EV_NSIG - 1];
2531
2532 /*****************************************************************************/
2533
2534 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2535
2536 ecb_noinline ecb_cold
2537 static void
2538 evpipe_init (EV_P)
2539 {
2540 if (!ev_is_active (&pipe_w))
2541 {
2542 int fds [2];
2543
2544 # if EV_USE_EVENTFD
2545 fds [0] = -1;
2546 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2547 if (fds [1] < 0 && errno == EINVAL)
2548 fds [1] = eventfd (0, 0);
2549
2550 if (fds [1] < 0)
2551 # endif
2552 {
2553 while (pipe (fds))
2554 ev_syserr ("(libev) error creating signal/async pipe");
2555
2556 fd_intern (fds [0]);
2557 }
2558
2559 evpipe [0] = fds [0];
2560
2561 if (evpipe [1] < 0)
2562 evpipe [1] = fds [1]; /* first call, set write fd */
2563 else
2564 {
2565 /* on subsequent calls, do not change evpipe [1] */
2566 /* so that evpipe_write can always rely on its value. */
2567 /* this branch does not do anything sensible on windows, */
2568 /* so must not be executed on windows */
2569
2570 dup2 (fds [1], evpipe [1]);
2571 close (fds [1]);
2572 }
2573
2574 fd_intern (evpipe [1]);
2575
2576 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2577 ev_io_start (EV_A_ &pipe_w);
2578 ev_unref (EV_A); /* watcher should not keep loop alive */
2579 }
2580 }
2581
2582 inline_speed void
2583 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2584 {
2585 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2586
2587 if (ecb_expect_true (*flag))
2588 return;
2589
2590 *flag = 1;
2591 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2592
2593 pipe_write_skipped = 1;
2594
2595 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2596
2597 if (pipe_write_wanted)
2598 {
2599 int old_errno;
2600
2601 pipe_write_skipped = 0;
2602 ECB_MEMORY_FENCE_RELEASE;
2603
2604 old_errno = errno; /* save errno because write will clobber it */
2605
2606 #if EV_USE_EVENTFD
2607 if (evpipe [0] < 0)
2608 {
2609 uint64_t counter = 1;
2610 write (evpipe [1], &counter, sizeof (uint64_t));
2611 }
2612 else
2613 #endif
2614 {
2615 #ifdef _WIN32
2616 WSABUF buf;
2617 DWORD sent;
2618 buf.buf = (char *)&buf;
2619 buf.len = 1;
2620 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2621 #else
2622 write (evpipe [1], &(evpipe [1]), 1);
2623 #endif
2624 }
2625
2626 errno = old_errno;
2627 }
2628 }
2629
2630 /* called whenever the libev signal pipe */
2631 /* got some events (signal, async) */
2632 static void
2633 pipecb (EV_P_ ev_io *iow, int revents)
2634 {
2635 int i;
2636
2637 if (revents & EV_READ)
2638 {
2639 #if EV_USE_EVENTFD
2640 if (evpipe [0] < 0)
2641 {
2642 uint64_t counter;
2643 read (evpipe [1], &counter, sizeof (uint64_t));
2644 }
2645 else
2646 #endif
2647 {
2648 char dummy[4];
2649 #ifdef _WIN32
2650 WSABUF buf;
2651 DWORD recvd;
2652 DWORD flags = 0;
2653 buf.buf = dummy;
2654 buf.len = sizeof (dummy);
2655 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2656 #else
2657 read (evpipe [0], &dummy, sizeof (dummy));
2658 #endif
2659 }
2660 }
2661
2662 pipe_write_skipped = 0;
2663
2664 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2665
2666 #if EV_SIGNAL_ENABLE
2667 if (sig_pending)
2668 {
2669 sig_pending = 0;
2670
2671 ECB_MEMORY_FENCE;
2672
2673 for (i = EV_NSIG - 1; i--; )
2674 if (ecb_expect_false (signals [i].pending))
2675 ev_feed_signal_event (EV_A_ i + 1);
2676 }
2677 #endif
2678
2679 #if EV_ASYNC_ENABLE
2680 if (async_pending)
2681 {
2682 async_pending = 0;
2683
2684 ECB_MEMORY_FENCE;
2685
2686 for (i = asynccnt; i--; )
2687 if (asyncs [i]->sent)
2688 {
2689 asyncs [i]->sent = 0;
2690 ECB_MEMORY_FENCE_RELEASE;
2691 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2692 }
2693 }
2694 #endif
2695 }
2696
2697 /*****************************************************************************/
2698
2699 void
2700 ev_feed_signal (int signum) EV_NOEXCEPT
2701 {
2702 #if EV_MULTIPLICITY
2703 EV_P;
2704 ECB_MEMORY_FENCE_ACQUIRE;
2705 EV_A = signals [signum - 1].loop;
2706
2707 if (!EV_A)
2708 return;
2709 #endif
2710
2711 signals [signum - 1].pending = 1;
2712 evpipe_write (EV_A_ &sig_pending);
2713 }
2714
2715 static void
2716 ev_sighandler (int signum)
2717 {
2718 #ifdef _WIN32
2719 signal (signum, ev_sighandler);
2720 #endif
2721
2722 ev_feed_signal (signum);
2723 }
2724
2725 ecb_noinline
2726 void
2727 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2728 {
2729 WL w;
2730
2731 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2732 return;
2733
2734 --signum;
2735
2736 #if EV_MULTIPLICITY
2737 /* it is permissible to try to feed a signal to the wrong loop */
2738 /* or, likely more useful, feeding a signal nobody is waiting for */
2739
2740 if (ecb_expect_false (signals [signum].loop != EV_A))
2741 return;
2742 #endif
2743
2744 signals [signum].pending = 0;
2745 ECB_MEMORY_FENCE_RELEASE;
2746
2747 for (w = signals [signum].head; w; w = w->next)
2748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2749 }
2750
2751 #if EV_USE_SIGNALFD
2752 static void
2753 sigfdcb (EV_P_ ev_io *iow, int revents)
2754 {
2755 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2756
2757 for (;;)
2758 {
2759 ssize_t res = read (sigfd, si, sizeof (si));
2760
2761 /* not ISO-C, as res might be -1, but works with SuS */
2762 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2763 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2764
2765 if (res < (ssize_t)sizeof (si))
2766 break;
2767 }
2768 }
2769 #endif
2770
2771 #endif
2772
2773 /*****************************************************************************/
2774
2775 #if EV_CHILD_ENABLE
2776 static WL childs [EV_PID_HASHSIZE];
2777
2778 static ev_signal childev;
2779
2780 #ifndef WIFCONTINUED
2781 # define WIFCONTINUED(status) 0
2782 #endif
2783
2784 /* handle a single child status event */
2785 inline_speed void
2786 child_reap (EV_P_ int chain, int pid, int status)
2787 {
2788 ev_child *w;
2789 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2790
2791 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2792 {
2793 if ((w->pid == pid || !w->pid)
2794 && (!traced || (w->flags & 1)))
2795 {
2796 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2797 w->rpid = pid;
2798 w->rstatus = status;
2799 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2800 }
2801 }
2802 }
2803
2804 #ifndef WCONTINUED
2805 # define WCONTINUED 0
2806 #endif
2807
2808 /* called on sigchld etc., calls waitpid */
2809 static void
2810 childcb (EV_P_ ev_signal *sw, int revents)
2811 {
2812 int pid, status;
2813
2814 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2815 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2816 if (!WCONTINUED
2817 || errno != EINVAL
2818 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2819 return;
2820
2821 /* make sure we are called again until all children have been reaped */
2822 /* we need to do it this way so that the callback gets called before we continue */
2823 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2824
2825 child_reap (EV_A_ pid, pid, status);
2826 if ((EV_PID_HASHSIZE) > 1)
2827 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2828 }
2829
2830 #endif
2831
2832 /*****************************************************************************/
2833
2834 #if EV_USE_IOCP
2835 # include "ev_iocp.c"
2836 #endif
2837 #if EV_USE_PORT
2838 # include "ev_port.c"
2839 #endif
2840 #if EV_USE_KQUEUE
2841 # include "ev_kqueue.c"
2842 #endif
2843 #if EV_USE_EPOLL
2844 # include "ev_epoll.c"
2845 #endif
2846 #if EV_USE_LINUXAIO
2847 # include "ev_linuxaio.c"
2848 #endif
2849 #if EV_USE_IOURING
2850 # include "ev_iouring.c"
2851 #endif
2852 #if EV_USE_POLL
2853 # include "ev_poll.c"
2854 #endif
2855 #if EV_USE_SELECT
2856 # include "ev_select.c"
2857 #endif
2858
2859 ecb_cold int
2860 ev_version_major (void) EV_NOEXCEPT
2861 {
2862 return EV_VERSION_MAJOR;
2863 }
2864
2865 ecb_cold int
2866 ev_version_minor (void) EV_NOEXCEPT
2867 {
2868 return EV_VERSION_MINOR;
2869 }
2870
2871 /* return true if we are running with elevated privileges and should ignore env variables */
2872 inline_size ecb_cold int
2873 enable_secure (void)
2874 {
2875 #ifdef _WIN32
2876 return 0;
2877 #else
2878 return getuid () != geteuid ()
2879 || getgid () != getegid ();
2880 #endif
2881 }
2882
2883 ecb_cold
2884 unsigned int
2885 ev_supported_backends (void) EV_NOEXCEPT
2886 {
2887 unsigned int flags = 0;
2888
2889 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2890 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2891 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2892 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2893 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2894 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2895 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2896
2897 return flags;
2898 }
2899
2900 ecb_cold
2901 unsigned int
2902 ev_recommended_backends (void) EV_NOEXCEPT
2903 {
2904 unsigned int flags = ev_supported_backends ();
2905
2906 #ifndef __NetBSD__
2907 /* kqueue is borked on everything but netbsd apparently */
2908 /* it usually doesn't work correctly on anything but sockets and pipes */
2909 flags &= ~EVBACKEND_KQUEUE;
2910 #endif
2911 #ifdef __APPLE__
2912 /* only select works correctly on that "unix-certified" platform */
2913 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2914 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2915 #endif
2916 #ifdef __FreeBSD__
2917 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2918 #endif
2919
2920 /* TODO: linuxaio is very experimental */
2921 #if !EV_RECOMMEND_LINUXAIO
2922 flags &= ~EVBACKEND_LINUXAIO;
2923 #endif
2924 /* TODO: linuxaio is super experimental */
2925 #if !EV_RECOMMEND_IOURING
2926 flags &= ~EVBACKEND_IOURING;
2927 #endif
2928
2929 return flags;
2930 }
2931
2932 ecb_cold
2933 unsigned int
2934 ev_embeddable_backends (void) EV_NOEXCEPT
2935 {
2936 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2937
2938 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2939 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2940 flags &= ~EVBACKEND_EPOLL;
2941
2942 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2943
2944 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2945 * because our backend_fd is the epoll fd we need as fallback.
2946 * if the kernel ever is fixed, this might change...
2947 */
2948
2949 return flags;
2950 }
2951
2952 unsigned int
2953 ev_backend (EV_P) EV_NOEXCEPT
2954 {
2955 return backend;
2956 }
2957
2958 #if EV_FEATURE_API
2959 unsigned int
2960 ev_iteration (EV_P) EV_NOEXCEPT
2961 {
2962 return loop_count;
2963 }
2964
2965 unsigned int
2966 ev_depth (EV_P) EV_NOEXCEPT
2967 {
2968 return loop_depth;
2969 }
2970
2971 void
2972 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2973 {
2974 io_blocktime = interval;
2975 }
2976
2977 void
2978 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2979 {
2980 timeout_blocktime = interval;
2981 }
2982
2983 void
2984 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2985 {
2986 userdata = data;
2987 }
2988
2989 void *
2990 ev_userdata (EV_P) EV_NOEXCEPT
2991 {
2992 return userdata;
2993 }
2994
2995 void
2996 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2997 {
2998 invoke_cb = invoke_pending_cb;
2999 }
3000
3001 void
3002 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3003 {
3004 release_cb = release;
3005 acquire_cb = acquire;
3006 }
3007 #endif
3008
3009 /* initialise a loop structure, must be zero-initialised */
3010 ecb_noinline ecb_cold
3011 static void
3012 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3013 {
3014 if (!backend)
3015 {
3016 origflags = flags;
3017
3018 #if EV_USE_REALTIME
3019 if (!have_realtime)
3020 {
3021 struct timespec ts;
3022
3023 if (!clock_gettime (CLOCK_REALTIME, &ts))
3024 have_realtime = 1;
3025 }
3026 #endif
3027
3028 #if EV_USE_MONOTONIC
3029 if (!have_monotonic)
3030 {
3031 struct timespec ts;
3032
3033 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3034 have_monotonic = 1;
3035 }
3036 #endif
3037
3038 /* pid check not overridable via env */
3039 #ifndef _WIN32
3040 if (flags & EVFLAG_FORKCHECK)
3041 curpid = getpid ();
3042 #endif
3043
3044 if (!(flags & EVFLAG_NOENV)
3045 && !enable_secure ()
3046 && getenv ("LIBEV_FLAGS"))
3047 flags = atoi (getenv ("LIBEV_FLAGS"));
3048
3049 ev_rt_now = ev_time ();
3050 mn_now = get_clock ();
3051 now_floor = mn_now;
3052 rtmn_diff = ev_rt_now - mn_now;
3053 #if EV_FEATURE_API
3054 invoke_cb = ev_invoke_pending;
3055 #endif
3056
3057 io_blocktime = 0.;
3058 timeout_blocktime = 0.;
3059 backend = 0;
3060 backend_fd = -1;
3061 sig_pending = 0;
3062 #if EV_ASYNC_ENABLE
3063 async_pending = 0;
3064 #endif
3065 pipe_write_skipped = 0;
3066 pipe_write_wanted = 0;
3067 evpipe [0] = -1;
3068 evpipe [1] = -1;
3069 #if EV_USE_INOTIFY
3070 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3071 #endif
3072 #if EV_USE_SIGNALFD
3073 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3074 #endif
3075
3076 if (!(flags & EVBACKEND_MASK))
3077 flags |= ev_recommended_backends ();
3078
3079 #if EV_USE_IOCP
3080 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3081 #endif
3082 #if EV_USE_PORT
3083 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3084 #endif
3085 #if EV_USE_KQUEUE
3086 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3087 #endif
3088 #if EV_USE_IOURING
3089 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3090 #endif
3091 #if EV_USE_LINUXAIO
3092 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3093 #endif
3094 #if EV_USE_EPOLL
3095 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3096 #endif
3097 #if EV_USE_POLL
3098 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3099 #endif
3100 #if EV_USE_SELECT
3101 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3102 #endif
3103
3104 ev_prepare_init (&pending_w, pendingcb);
3105
3106 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3107 ev_init (&pipe_w, pipecb);
3108 ev_set_priority (&pipe_w, EV_MAXPRI);
3109 #endif
3110 }
3111 }
3112
3113 /* free up a loop structure */
3114 ecb_cold
3115 void
3116 ev_loop_destroy (EV_P)
3117 {
3118 int i;
3119
3120 #if EV_MULTIPLICITY
3121 /* mimic free (0) */
3122 if (!EV_A)
3123 return;
3124 #endif
3125
3126 #if EV_CLEANUP_ENABLE
3127 /* queue cleanup watchers (and execute them) */
3128 if (ecb_expect_false (cleanupcnt))
3129 {
3130 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3131 EV_INVOKE_PENDING;
3132 }
3133 #endif
3134
3135 #if EV_CHILD_ENABLE
3136 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3137 {
3138 ev_ref (EV_A); /* child watcher */
3139 ev_signal_stop (EV_A_ &childev);
3140 }
3141 #endif
3142
3143 if (ev_is_active (&pipe_w))
3144 {
3145 /*ev_ref (EV_A);*/
3146 /*ev_io_stop (EV_A_ &pipe_w);*/
3147
3148 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3149 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3150 }
3151
3152 #if EV_USE_SIGNALFD
3153 if (ev_is_active (&sigfd_w))
3154 close (sigfd);
3155 #endif
3156
3157 #if EV_USE_INOTIFY
3158 if (fs_fd >= 0)
3159 close (fs_fd);
3160 #endif
3161
3162 if (backend_fd >= 0)
3163 close (backend_fd);
3164
3165 #if EV_USE_IOCP
3166 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3167 #endif
3168 #if EV_USE_PORT
3169 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3170 #endif
3171 #if EV_USE_KQUEUE
3172 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3173 #endif
3174 #if EV_USE_IOURING
3175 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3176 #endif
3177 #if EV_USE_LINUXAIO
3178 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3179 #endif
3180 #if EV_USE_EPOLL
3181 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3182 #endif
3183 #if EV_USE_POLL
3184 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3185 #endif
3186 #if EV_USE_SELECT
3187 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3188 #endif
3189
3190 for (i = NUMPRI; i--; )
3191 {
3192 array_free (pending, [i]);
3193 #if EV_IDLE_ENABLE
3194 array_free (idle, [i]);
3195 #endif
3196 }
3197
3198 ev_free (anfds); anfds = 0; anfdmax = 0;
3199
3200 /* have to use the microsoft-never-gets-it-right macro */
3201 array_free (rfeed, EMPTY);
3202 array_free (fdchange, EMPTY);
3203 array_free (timer, EMPTY);
3204 #if EV_PERIODIC_ENABLE
3205 array_free (periodic, EMPTY);
3206 #endif
3207 #if EV_FORK_ENABLE
3208 array_free (fork, EMPTY);
3209 #endif
3210 #if EV_CLEANUP_ENABLE
3211 array_free (cleanup, EMPTY);
3212 #endif
3213 array_free (prepare, EMPTY);
3214 array_free (check, EMPTY);
3215 #if EV_ASYNC_ENABLE
3216 array_free (async, EMPTY);
3217 #endif
3218
3219 backend = 0;
3220
3221 #if EV_MULTIPLICITY
3222 if (ev_is_default_loop (EV_A))
3223 #endif
3224 ev_default_loop_ptr = 0;
3225 #if EV_MULTIPLICITY
3226 else
3227 ev_free (EV_A);
3228 #endif
3229 }
3230
3231 #if EV_USE_INOTIFY
3232 inline_size void infy_fork (EV_P);
3233 #endif
3234
3235 inline_size void
3236 loop_fork (EV_P)
3237 {
3238 #if EV_USE_PORT
3239 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3240 #endif
3241 #if EV_USE_KQUEUE
3242 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3243 #endif
3244 #if EV_USE_IOURING
3245 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3246 #endif
3247 #if EV_USE_LINUXAIO
3248 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3249 #endif
3250 #if EV_USE_EPOLL
3251 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3252 #endif
3253 #if EV_USE_INOTIFY
3254 infy_fork (EV_A);
3255 #endif
3256
3257 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3258 if (ev_is_active (&pipe_w) && postfork != 2)
3259 {
3260 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3261
3262 ev_ref (EV_A);
3263 ev_io_stop (EV_A_ &pipe_w);
3264
3265 if (evpipe [0] >= 0)
3266 EV_WIN32_CLOSE_FD (evpipe [0]);
3267
3268 evpipe_init (EV_A);
3269 /* iterate over everything, in case we missed something before */
3270 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3271 }
3272 #endif
3273
3274 postfork = 0;
3275 }
3276
3277 #if EV_MULTIPLICITY
3278
3279 ecb_cold
3280 struct ev_loop *
3281 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3282 {
3283 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3284
3285 memset (EV_A, 0, sizeof (struct ev_loop));
3286 loop_init (EV_A_ flags);
3287
3288 if (ev_backend (EV_A))
3289 return EV_A;
3290
3291 ev_free (EV_A);
3292 return 0;
3293 }
3294
3295 #endif /* multiplicity */
3296
3297 #if EV_VERIFY
3298 ecb_noinline ecb_cold
3299 static void
3300 verify_watcher (EV_P_ W w)
3301 {
3302 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3303
3304 if (w->pending)
3305 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3306 }
3307
3308 ecb_noinline ecb_cold
3309 static void
3310 verify_heap (EV_P_ ANHE *heap, int N)
3311 {
3312 int i;
3313
3314 for (i = HEAP0; i < N + HEAP0; ++i)
3315 {
3316 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3317 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3318 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3319
3320 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3321 }
3322 }
3323
3324 ecb_noinline ecb_cold
3325 static void
3326 array_verify (EV_P_ W *ws, int cnt)
3327 {
3328 while (cnt--)
3329 {
3330 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3331 verify_watcher (EV_A_ ws [cnt]);
3332 }
3333 }
3334 #endif
3335
3336 #if EV_FEATURE_API
3337 void ecb_cold
3338 ev_verify (EV_P) EV_NOEXCEPT
3339 {
3340 #if EV_VERIFY
3341 int i;
3342 WL w, w2;
3343
3344 assert (activecnt >= -1);
3345
3346 assert (fdchangemax >= fdchangecnt);
3347 for (i = 0; i < fdchangecnt; ++i)
3348 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3349
3350 assert (anfdmax >= 0);
3351 for (i = 0; i < anfdmax; ++i)
3352 {
3353 int j = 0;
3354
3355 for (w = w2 = anfds [i].head; w; w = w->next)
3356 {
3357 verify_watcher (EV_A_ (W)w);
3358
3359 if (j++ & 1)
3360 {
3361 assert (("libev: io watcher list contains a loop", w != w2));
3362 w2 = w2->next;
3363 }
3364
3365 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3366 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3367 }
3368 }
3369
3370 assert (timermax >= timercnt);
3371 verify_heap (EV_A_ timers, timercnt);
3372
3373 #if EV_PERIODIC_ENABLE
3374 assert (periodicmax >= periodiccnt);
3375 verify_heap (EV_A_ periodics, periodiccnt);
3376 #endif
3377
3378 for (i = NUMPRI; i--; )
3379 {
3380 assert (pendingmax [i] >= pendingcnt [i]);
3381 #if EV_IDLE_ENABLE
3382 assert (idleall >= 0);
3383 assert (idlemax [i] >= idlecnt [i]);
3384 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3385 #endif
3386 }
3387
3388 #if EV_FORK_ENABLE
3389 assert (forkmax >= forkcnt);
3390 array_verify (EV_A_ (W *)forks, forkcnt);
3391 #endif
3392
3393 #if EV_CLEANUP_ENABLE
3394 assert (cleanupmax >= cleanupcnt);
3395 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3396 #endif
3397
3398 #if EV_ASYNC_ENABLE
3399 assert (asyncmax >= asynccnt);
3400 array_verify (EV_A_ (W *)asyncs, asynccnt);
3401 #endif
3402
3403 #if EV_PREPARE_ENABLE
3404 assert (preparemax >= preparecnt);
3405 array_verify (EV_A_ (W *)prepares, preparecnt);
3406 #endif
3407
3408 #if EV_CHECK_ENABLE
3409 assert (checkmax >= checkcnt);
3410 array_verify (EV_A_ (W *)checks, checkcnt);
3411 #endif
3412
3413 # if 0
3414 #if EV_CHILD_ENABLE
3415 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3416 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3417 #endif
3418 # endif
3419 #endif
3420 }
3421 #endif
3422
3423 #if EV_MULTIPLICITY
3424 ecb_cold
3425 struct ev_loop *
3426 #else
3427 int
3428 #endif
3429 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3430 {
3431 if (!ev_default_loop_ptr)
3432 {
3433 #if EV_MULTIPLICITY
3434 EV_P = ev_default_loop_ptr = &default_loop_struct;
3435 #else
3436 ev_default_loop_ptr = 1;
3437 #endif
3438
3439 loop_init (EV_A_ flags);
3440
3441 if (ev_backend (EV_A))
3442 {
3443 #if EV_CHILD_ENABLE
3444 ev_signal_init (&childev, childcb, SIGCHLD);
3445 ev_set_priority (&childev, EV_MAXPRI);
3446 ev_signal_start (EV_A_ &childev);
3447 ev_unref (EV_A); /* child watcher should not keep loop alive */
3448 #endif
3449 }
3450 else
3451 ev_default_loop_ptr = 0;
3452 }
3453
3454 return ev_default_loop_ptr;
3455 }
3456
3457 void
3458 ev_loop_fork (EV_P) EV_NOEXCEPT
3459 {
3460 postfork = 1;
3461 }
3462
3463 /*****************************************************************************/
3464
3465 void
3466 ev_invoke (EV_P_ void *w, int revents)
3467 {
3468 EV_CB_INVOKE ((W)w, revents);
3469 }
3470
3471 unsigned int
3472 ev_pending_count (EV_P) EV_NOEXCEPT
3473 {
3474 int pri;
3475 unsigned int count = 0;
3476
3477 for (pri = NUMPRI; pri--; )
3478 count += pendingcnt [pri];
3479
3480 return count;
3481 }
3482
3483 ecb_noinline
3484 void
3485 ev_invoke_pending (EV_P)
3486 {
3487 pendingpri = NUMPRI;
3488
3489 do
3490 {
3491 --pendingpri;
3492
3493 /* pendingpri possibly gets modified in the inner loop */
3494 while (pendingcnt [pendingpri])
3495 {
3496 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3497
3498 p->w->pending = 0;
3499 EV_CB_INVOKE (p->w, p->events);
3500 EV_FREQUENT_CHECK;
3501 }
3502 }
3503 while (pendingpri);
3504 }
3505
3506 #if EV_IDLE_ENABLE
3507 /* make idle watchers pending. this handles the "call-idle */
3508 /* only when higher priorities are idle" logic */
3509 inline_size void
3510 idle_reify (EV_P)
3511 {
3512 if (ecb_expect_false (idleall))
3513 {
3514 int pri;
3515
3516 for (pri = NUMPRI; pri--; )
3517 {
3518 if (pendingcnt [pri])
3519 break;
3520
3521 if (idlecnt [pri])
3522 {
3523 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3524 break;
3525 }
3526 }
3527 }
3528 }
3529 #endif
3530
3531 /* make timers pending */
3532 inline_size void
3533 timers_reify (EV_P)
3534 {
3535 EV_FREQUENT_CHECK;
3536
3537 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3538 {
3539 do
3540 {
3541 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3542
3543 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3544
3545 /* first reschedule or stop timer */
3546 if (w->repeat)
3547 {
3548 ev_at (w) += w->repeat;
3549 if (ev_at (w) < mn_now)
3550 ev_at (w) = mn_now;
3551
3552 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3553
3554 ANHE_at_cache (timers [HEAP0]);
3555 downheap (timers, timercnt, HEAP0);
3556 }
3557 else
3558 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3559
3560 EV_FREQUENT_CHECK;
3561 feed_reverse (EV_A_ (W)w);
3562 }
3563 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3564
3565 feed_reverse_done (EV_A_ EV_TIMER);
3566 }
3567 }
3568
3569 #if EV_PERIODIC_ENABLE
3570
3571 ecb_noinline
3572 static void
3573 periodic_recalc (EV_P_ ev_periodic *w)
3574 {
3575 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3576 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3577
3578 /* the above almost always errs on the low side */
3579 while (at <= ev_rt_now)
3580 {
3581 ev_tstamp nat = at + w->interval;
3582
3583 /* when resolution fails us, we use ev_rt_now */
3584 if (ecb_expect_false (nat == at))
3585 {
3586 at = ev_rt_now;
3587 break;
3588 }
3589
3590 at = nat;
3591 }
3592
3593 ev_at (w) = at;
3594 }
3595
3596 /* make periodics pending */
3597 inline_size void
3598 periodics_reify (EV_P)
3599 {
3600 EV_FREQUENT_CHECK;
3601
3602 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3603 {
3604 do
3605 {
3606 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3607
3608 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3609
3610 /* first reschedule or stop timer */
3611 if (w->reschedule_cb)
3612 {
3613 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3614
3615 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3616
3617 ANHE_at_cache (periodics [HEAP0]);
3618 downheap (periodics, periodiccnt, HEAP0);
3619 }
3620 else if (w->interval)
3621 {
3622 periodic_recalc (EV_A_ w);
3623 ANHE_at_cache (periodics [HEAP0]);
3624 downheap (periodics, periodiccnt, HEAP0);
3625 }
3626 else
3627 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3628
3629 EV_FREQUENT_CHECK;
3630 feed_reverse (EV_A_ (W)w);
3631 }
3632 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3633
3634 feed_reverse_done (EV_A_ EV_PERIODIC);
3635 }
3636 }
3637
3638 /* simply recalculate all periodics */
3639 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3640 ecb_noinline ecb_cold
3641 static void
3642 periodics_reschedule (EV_P)
3643 {
3644 int i;
3645
3646 /* adjust periodics after time jump */
3647 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3648 {
3649 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3650
3651 if (w->reschedule_cb)
3652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3653 else if (w->interval)
3654 periodic_recalc (EV_A_ w);
3655
3656 ANHE_at_cache (periodics [i]);
3657 }
3658
3659 reheap (periodics, periodiccnt);
3660 }
3661 #endif
3662
3663 /* adjust all timers by a given offset */
3664 ecb_noinline ecb_cold
3665 static void
3666 timers_reschedule (EV_P_ ev_tstamp adjust)
3667 {
3668 int i;
3669
3670 for (i = 0; i < timercnt; ++i)
3671 {
3672 ANHE *he = timers + i + HEAP0;
3673 ANHE_w (*he)->at += adjust;
3674 ANHE_at_cache (*he);
3675 }
3676 }
3677
3678 /* fetch new monotonic and realtime times from the kernel */
3679 /* also detect if there was a timejump, and act accordingly */
3680 inline_speed void
3681 time_update (EV_P_ ev_tstamp max_block)
3682 {
3683 #if EV_USE_MONOTONIC
3684 if (ecb_expect_true (have_monotonic))
3685 {
3686 int i;
3687 ev_tstamp odiff = rtmn_diff;
3688
3689 mn_now = get_clock ();
3690
3691 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3692 /* interpolate in the meantime */
3693 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3694 {
3695 ev_rt_now = rtmn_diff + mn_now;
3696 return;
3697 }
3698
3699 now_floor = mn_now;
3700 ev_rt_now = ev_time ();
3701
3702 /* loop a few times, before making important decisions.
3703 * on the choice of "4": one iteration isn't enough,
3704 * in case we get preempted during the calls to
3705 * ev_time and get_clock. a second call is almost guaranteed
3706 * to succeed in that case, though. and looping a few more times
3707 * doesn't hurt either as we only do this on time-jumps or
3708 * in the unlikely event of having been preempted here.
3709 */
3710 for (i = 4; --i; )
3711 {
3712 ev_tstamp diff;
3713 rtmn_diff = ev_rt_now - mn_now;
3714
3715 diff = odiff - rtmn_diff;
3716
3717 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3718 return; /* all is well */
3719
3720 ev_rt_now = ev_time ();
3721 mn_now = get_clock ();
3722 now_floor = mn_now;
3723 }
3724
3725 /* no timer adjustment, as the monotonic clock doesn't jump */
3726 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3727 # if EV_PERIODIC_ENABLE
3728 periodics_reschedule (EV_A);
3729 # endif
3730 }
3731 else
3732 #endif
3733 {
3734 ev_rt_now = ev_time ();
3735
3736 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3737 {
3738 /* adjust timers. this is easy, as the offset is the same for all of them */
3739 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3740 #if EV_PERIODIC_ENABLE
3741 periodics_reschedule (EV_A);
3742 #endif
3743 }
3744
3745 mn_now = ev_rt_now;
3746 }
3747 }
3748
3749 int
3750 ev_run (EV_P_ int flags)
3751 {
3752 #if EV_FEATURE_API
3753 ++loop_depth;
3754 #endif
3755
3756 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3757
3758 loop_done = EVBREAK_CANCEL;
3759
3760 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3761
3762 do
3763 {
3764 #if EV_VERIFY >= 2
3765 ev_verify (EV_A);
3766 #endif
3767
3768 #ifndef _WIN32
3769 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3770 if (ecb_expect_false (getpid () != curpid))
3771 {
3772 curpid = getpid ();
3773 postfork = 1;
3774 }
3775 #endif
3776
3777 #if EV_FORK_ENABLE
3778 /* we might have forked, so queue fork handlers */
3779 if (ecb_expect_false (postfork))
3780 if (forkcnt)
3781 {
3782 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3783 EV_INVOKE_PENDING;
3784 }
3785 #endif
3786
3787 #if EV_PREPARE_ENABLE
3788 /* queue prepare watchers (and execute them) */
3789 if (ecb_expect_false (preparecnt))
3790 {
3791 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3792 EV_INVOKE_PENDING;
3793 }
3794 #endif
3795
3796 if (ecb_expect_false (loop_done))
3797 break;
3798
3799 /* we might have forked, so reify kernel state if necessary */
3800 if (ecb_expect_false (postfork))
3801 loop_fork (EV_A);
3802
3803 /* update fd-related kernel structures */
3804 fd_reify (EV_A);
3805
3806 /* calculate blocking time */
3807 {
3808 ev_tstamp waittime = 0.;
3809 ev_tstamp sleeptime = 0.;
3810
3811 /* remember old timestamp for io_blocktime calculation */
3812 ev_tstamp prev_mn_now = mn_now;
3813
3814 /* update time to cancel out callback processing overhead */
3815 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3816
3817 /* from now on, we want a pipe-wake-up */
3818 pipe_write_wanted = 1;
3819
3820 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3821
3822 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3823 {
3824 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3825
3826 if (timercnt)
3827 {
3828 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3829 if (waittime > to) waittime = to;
3830 }
3831
3832 #if EV_PERIODIC_ENABLE
3833 if (periodiccnt)
3834 {
3835 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3836 if (waittime > to) waittime = to;
3837 }
3838 #endif
3839
3840 /* don't let timeouts decrease the waittime below timeout_blocktime */
3841 if (ecb_expect_false (waittime < timeout_blocktime))
3842 waittime = timeout_blocktime;
3843
3844 /* at this point, we NEED to wait, so we have to ensure */
3845 /* to pass a minimum nonzero value to the backend */
3846 if (ecb_expect_false (waittime < backend_mintime))
3847 waittime = backend_mintime;
3848
3849 /* extra check because io_blocktime is commonly 0 */
3850 if (ecb_expect_false (io_blocktime))
3851 {
3852 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3853
3854 if (sleeptime > waittime - backend_mintime)
3855 sleeptime = waittime - backend_mintime;
3856
3857 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3858 {
3859 ev_sleep (sleeptime);
3860 waittime -= sleeptime;
3861 }
3862 }
3863 }
3864
3865 #if EV_FEATURE_API
3866 ++loop_count;
3867 #endif
3868 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3869 backend_poll (EV_A_ waittime);
3870 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3871
3872 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3873
3874 ECB_MEMORY_FENCE_ACQUIRE;
3875 if (pipe_write_skipped)
3876 {
3877 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3878 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3879 }
3880
3881 /* update ev_rt_now, do magic */
3882 time_update (EV_A_ waittime + sleeptime);
3883 }
3884
3885 /* queue pending timers and reschedule them */
3886 timers_reify (EV_A); /* relative timers called last */
3887 #if EV_PERIODIC_ENABLE
3888 periodics_reify (EV_A); /* absolute timers called first */
3889 #endif
3890
3891 #if EV_IDLE_ENABLE
3892 /* queue idle watchers unless other events are pending */
3893 idle_reify (EV_A);
3894 #endif
3895
3896 #if EV_CHECK_ENABLE
3897 /* queue check watchers, to be executed first */
3898 if (ecb_expect_false (checkcnt))
3899 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3900 #endif
3901
3902 EV_INVOKE_PENDING;
3903 }
3904 while (ecb_expect_true (
3905 activecnt
3906 && !loop_done
3907 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3908 ));
3909
3910 if (loop_done == EVBREAK_ONE)
3911 loop_done = EVBREAK_CANCEL;
3912
3913 #if EV_FEATURE_API
3914 --loop_depth;
3915 #endif
3916
3917 return activecnt;
3918 }
3919
3920 void
3921 ev_break (EV_P_ int how) EV_NOEXCEPT
3922 {
3923 loop_done = how;
3924 }
3925
3926 void
3927 ev_ref (EV_P) EV_NOEXCEPT
3928 {
3929 ++activecnt;
3930 }
3931
3932 void
3933 ev_unref (EV_P) EV_NOEXCEPT
3934 {
3935 --activecnt;
3936 }
3937
3938 void
3939 ev_now_update (EV_P) EV_NOEXCEPT
3940 {
3941 time_update (EV_A_ EV_TSTAMP_HUGE);
3942 }
3943
3944 void
3945 ev_suspend (EV_P) EV_NOEXCEPT
3946 {
3947 ev_now_update (EV_A);
3948 }
3949
3950 void
3951 ev_resume (EV_P) EV_NOEXCEPT
3952 {
3953 ev_tstamp mn_prev = mn_now;
3954
3955 ev_now_update (EV_A);
3956 timers_reschedule (EV_A_ mn_now - mn_prev);
3957 #if EV_PERIODIC_ENABLE
3958 /* TODO: really do this? */
3959 periodics_reschedule (EV_A);
3960 #endif
3961 }
3962
3963 /*****************************************************************************/
3964 /* singly-linked list management, used when the expected list length is short */
3965
3966 inline_size void
3967 wlist_add (WL *head, WL elem)
3968 {
3969 elem->next = *head;
3970 *head = elem;
3971 }
3972
3973 inline_size void
3974 wlist_del (WL *head, WL elem)
3975 {
3976 while (*head)
3977 {
3978 if (ecb_expect_true (*head == elem))
3979 {
3980 *head = elem->next;
3981 break;
3982 }
3983
3984 head = &(*head)->next;
3985 }
3986 }
3987
3988 /* internal, faster, version of ev_clear_pending */
3989 inline_speed void
3990 clear_pending (EV_P_ W w)
3991 {
3992 if (w->pending)
3993 {
3994 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3995 w->pending = 0;
3996 }
3997 }
3998
3999 int
4000 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4001 {
4002 W w_ = (W)w;
4003 int pending = w_->pending;
4004
4005 if (ecb_expect_true (pending))
4006 {
4007 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4008 p->w = (W)&pending_w;
4009 w_->pending = 0;
4010 return p->events;
4011 }
4012 else
4013 return 0;
4014 }
4015
4016 inline_size void
4017 pri_adjust (EV_P_ W w)
4018 {
4019 int pri = ev_priority (w);
4020 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4021 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4022 ev_set_priority (w, pri);
4023 }
4024
4025 inline_speed void
4026 ev_start (EV_P_ W w, int active)
4027 {
4028 pri_adjust (EV_A_ w);
4029 w->active = active;
4030 ev_ref (EV_A);
4031 }
4032
4033 inline_size void
4034 ev_stop (EV_P_ W w)
4035 {
4036 ev_unref (EV_A);
4037 w->active = 0;
4038 }
4039
4040 /*****************************************************************************/
4041
4042 ecb_noinline
4043 void
4044 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4045 {
4046 int fd = w->fd;
4047
4048 if (ecb_expect_false (ev_is_active (w)))
4049 return;
4050
4051 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4052 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4053
4054 #if EV_VERIFY >= 2
4055 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4056 #endif
4057 EV_FREQUENT_CHECK;
4058
4059 ev_start (EV_A_ (W)w, 1);
4060 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4061 wlist_add (&anfds[fd].head, (WL)w);
4062
4063 /* common bug, apparently */
4064 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4065
4066 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4067 w->events &= ~EV__IOFDSET;
4068
4069 EV_FREQUENT_CHECK;
4070 }
4071
4072 ecb_noinline
4073 void
4074 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4075 {
4076 clear_pending (EV_A_ (W)w);
4077 if (ecb_expect_false (!ev_is_active (w)))
4078 return;
4079
4080 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4081
4082 #if EV_VERIFY >= 2
4083 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4084 #endif
4085 EV_FREQUENT_CHECK;
4086
4087 wlist_del (&anfds[w->fd].head, (WL)w);
4088 ev_stop (EV_A_ (W)w);
4089
4090 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4091
4092 EV_FREQUENT_CHECK;
4093 }
4094
4095 ecb_noinline
4096 void
4097 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4098 {
4099 if (ecb_expect_false (ev_is_active (w)))
4100 return;
4101
4102 ev_at (w) += mn_now;
4103
4104 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4105
4106 EV_FREQUENT_CHECK;
4107
4108 ++timercnt;
4109 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4110 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4111 ANHE_w (timers [ev_active (w)]) = (WT)w;
4112 ANHE_at_cache (timers [ev_active (w)]);
4113 upheap (timers, ev_active (w));
4114
4115 EV_FREQUENT_CHECK;
4116
4117 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4118 }
4119
4120 ecb_noinline
4121 void
4122 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4123 {
4124 clear_pending (EV_A_ (W)w);
4125 if (ecb_expect_false (!ev_is_active (w)))
4126 return;
4127
4128 EV_FREQUENT_CHECK;
4129
4130 {
4131 int active = ev_active (w);
4132
4133 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4134
4135 --timercnt;
4136
4137 if (ecb_expect_true (active < timercnt + HEAP0))
4138 {
4139 timers [active] = timers [timercnt + HEAP0];
4140 adjustheap (timers, timercnt, active);
4141 }
4142 }
4143
4144 ev_at (w) -= mn_now;
4145
4146 ev_stop (EV_A_ (W)w);
4147
4148 EV_FREQUENT_CHECK;
4149 }
4150
4151 ecb_noinline
4152 void
4153 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4154 {
4155 EV_FREQUENT_CHECK;
4156
4157 clear_pending (EV_A_ (W)w);
4158
4159 if (ev_is_active (w))
4160 {
4161 if (w->repeat)
4162 {
4163 ev_at (w) = mn_now + w->repeat;
4164 ANHE_at_cache (timers [ev_active (w)]);
4165 adjustheap (timers, timercnt, ev_active (w));
4166 }
4167 else
4168 ev_timer_stop (EV_A_ w);
4169 }
4170 else if (w->repeat)
4171 {
4172 ev_at (w) = w->repeat;
4173 ev_timer_start (EV_A_ w);
4174 }
4175
4176 EV_FREQUENT_CHECK;
4177 }
4178
4179 ev_tstamp
4180 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4181 {
4182 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4183 }
4184
4185 #if EV_PERIODIC_ENABLE
4186 ecb_noinline
4187 void
4188 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4189 {
4190 if (ecb_expect_false (ev_is_active (w)))
4191 return;
4192
4193 if (w->reschedule_cb)
4194 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4195 else if (w->interval)
4196 {
4197 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4198 periodic_recalc (EV_A_ w);
4199 }
4200 else
4201 ev_at (w) = w->offset;
4202
4203 EV_FREQUENT_CHECK;
4204
4205 ++periodiccnt;
4206 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4207 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4208 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4209 ANHE_at_cache (periodics [ev_active (w)]);
4210 upheap (periodics, ev_active (w));
4211
4212 EV_FREQUENT_CHECK;
4213
4214 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4215 }
4216
4217 ecb_noinline
4218 void
4219 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4220 {
4221 clear_pending (EV_A_ (W)w);
4222 if (ecb_expect_false (!ev_is_active (w)))
4223 return;
4224
4225 EV_FREQUENT_CHECK;
4226
4227 {
4228 int active = ev_active (w);
4229
4230 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4231
4232 --periodiccnt;
4233
4234 if (ecb_expect_true (active < periodiccnt + HEAP0))
4235 {
4236 periodics [active] = periodics [periodiccnt + HEAP0];
4237 adjustheap (periodics, periodiccnt, active);
4238 }
4239 }
4240
4241 ev_stop (EV_A_ (W)w);
4242
4243 EV_FREQUENT_CHECK;
4244 }
4245
4246 ecb_noinline
4247 void
4248 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4249 {
4250 /* TODO: use adjustheap and recalculation */
4251 ev_periodic_stop (EV_A_ w);
4252 ev_periodic_start (EV_A_ w);
4253 }
4254 #endif
4255
4256 #ifndef SA_RESTART
4257 # define SA_RESTART 0
4258 #endif
4259
4260 #if EV_SIGNAL_ENABLE
4261
4262 ecb_noinline
4263 void
4264 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4265 {
4266 if (ecb_expect_false (ev_is_active (w)))
4267 return;
4268
4269 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4270
4271 #if EV_MULTIPLICITY
4272 assert (("libev: a signal must not be attached to two different loops",
4273 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4274
4275 signals [w->signum - 1].loop = EV_A;
4276 ECB_MEMORY_FENCE_RELEASE;
4277 #endif
4278
4279 EV_FREQUENT_CHECK;
4280
4281 #if EV_USE_SIGNALFD
4282 if (sigfd == -2)
4283 {
4284 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4285 if (sigfd < 0 && errno == EINVAL)
4286 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4287
4288 if (sigfd >= 0)
4289 {
4290 fd_intern (sigfd); /* doing it twice will not hurt */
4291
4292 sigemptyset (&sigfd_set);
4293
4294 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4295 ev_set_priority (&sigfd_w, EV_MAXPRI);
4296 ev_io_start (EV_A_ &sigfd_w);
4297 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4298 }
4299 }
4300
4301 if (sigfd >= 0)
4302 {
4303 /* TODO: check .head */
4304 sigaddset (&sigfd_set, w->signum);
4305 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4306
4307 signalfd (sigfd, &sigfd_set, 0);
4308 }
4309 #endif
4310
4311 ev_start (EV_A_ (W)w, 1);
4312 wlist_add (&signals [w->signum - 1].head, (WL)w);
4313
4314 if (!((WL)w)->next)
4315 # if EV_USE_SIGNALFD
4316 if (sigfd < 0) /*TODO*/
4317 # endif
4318 {
4319 # ifdef _WIN32
4320 evpipe_init (EV_A);
4321
4322 signal (w->signum, ev_sighandler);
4323 # else
4324 struct sigaction sa;
4325
4326 evpipe_init (EV_A);
4327
4328 sa.sa_handler = ev_sighandler;
4329 sigfillset (&sa.sa_mask);
4330 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4331 sigaction (w->signum, &sa, 0);
4332
4333 if (origflags & EVFLAG_NOSIGMASK)
4334 {
4335 sigemptyset (&sa.sa_mask);
4336 sigaddset (&sa.sa_mask, w->signum);
4337 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4338 }
4339 #endif
4340 }
4341
4342 EV_FREQUENT_CHECK;
4343 }
4344
4345 ecb_noinline
4346 void
4347 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4348 {
4349 clear_pending (EV_A_ (W)w);
4350 if (ecb_expect_false (!ev_is_active (w)))
4351 return;
4352
4353 EV_FREQUENT_CHECK;
4354
4355 wlist_del (&signals [w->signum - 1].head, (WL)w);
4356 ev_stop (EV_A_ (W)w);
4357
4358 if (!signals [w->signum - 1].head)
4359 {
4360 #if EV_MULTIPLICITY
4361 signals [w->signum - 1].loop = 0; /* unattach from signal */
4362 #endif
4363 #if EV_USE_SIGNALFD
4364 if (sigfd >= 0)
4365 {
4366 sigset_t ss;
4367
4368 sigemptyset (&ss);
4369 sigaddset (&ss, w->signum);
4370 sigdelset (&sigfd_set, w->signum);
4371
4372 signalfd (sigfd, &sigfd_set, 0);
4373 sigprocmask (SIG_UNBLOCK, &ss, 0);
4374 }
4375 else
4376 #endif
4377 signal (w->signum, SIG_DFL);
4378 }
4379
4380 EV_FREQUENT_CHECK;
4381 }
4382
4383 #endif
4384
4385 #if EV_CHILD_ENABLE
4386
4387 void
4388 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4389 {
4390 #if EV_MULTIPLICITY
4391 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4392 #endif
4393 if (ecb_expect_false (ev_is_active (w)))
4394 return;
4395
4396 EV_FREQUENT_CHECK;
4397
4398 ev_start (EV_A_ (W)w, 1);
4399 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4400
4401 EV_FREQUENT_CHECK;
4402 }
4403
4404 void
4405 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4406 {
4407 clear_pending (EV_A_ (W)w);
4408 if (ecb_expect_false (!ev_is_active (w)))
4409 return;
4410
4411 EV_FREQUENT_CHECK;
4412
4413 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4414 ev_stop (EV_A_ (W)w);
4415
4416 EV_FREQUENT_CHECK;
4417 }
4418
4419 #endif
4420
4421 #if EV_STAT_ENABLE
4422
4423 # ifdef _WIN32
4424 # undef lstat
4425 # define lstat(a,b) _stati64 (a,b)
4426 # endif
4427
4428 #define DEF_STAT_INTERVAL 5.0074891
4429 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4430 #define MIN_STAT_INTERVAL 0.1074891
4431
4432 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4433
4434 #if EV_USE_INOTIFY
4435
4436 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4437 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4438
4439 ecb_noinline
4440 static void
4441 infy_add (EV_P_ ev_stat *w)
4442 {
4443 w->wd = inotify_add_watch (fs_fd, w->path,
4444 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4445 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4446 | IN_DONT_FOLLOW | IN_MASK_ADD);
4447
4448 if (w->wd >= 0)
4449 {
4450 struct statfs sfs;
4451
4452 /* now local changes will be tracked by inotify, but remote changes won't */
4453 /* unless the filesystem is known to be local, we therefore still poll */
4454 /* also do poll on <2.6.25, but with normal frequency */
4455
4456 if (!fs_2625)
4457 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4458 else if (!statfs (w->path, &sfs)
4459 && (sfs.f_type == 0x1373 /* devfs */
4460 || sfs.f_type == 0x4006 /* fat */
4461 || sfs.f_type == 0x4d44 /* msdos */
4462 || sfs.f_type == 0xEF53 /* ext2/3 */
4463 || sfs.f_type == 0x72b6 /* jffs2 */
4464 || sfs.f_type == 0x858458f6 /* ramfs */
4465 || sfs.f_type == 0x5346544e /* ntfs */
4466 || sfs.f_type == 0x3153464a /* jfs */
4467 || sfs.f_type == 0x9123683e /* btrfs */
4468 || sfs.f_type == 0x52654973 /* reiser3 */
4469 || sfs.f_type == 0x01021994 /* tmpfs */
4470 || sfs.f_type == 0x58465342 /* xfs */))
4471 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4472 else
4473 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4474 }
4475 else
4476 {
4477 /* can't use inotify, continue to stat */
4478 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4479
4480 /* if path is not there, monitor some parent directory for speedup hints */
4481 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4482 /* but an efficiency issue only */
4483 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4484 {
4485 char path [4096];
4486 strcpy (path, w->path);
4487
4488 do
4489 {
4490 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4491 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4492
4493 char *pend = strrchr (path, '/');
4494
4495 if (!pend || pend == path)
4496 break;
4497
4498 *pend = 0;
4499 w->wd = inotify_add_watch (fs_fd, path, mask);
4500 }
4501 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4502 }
4503 }
4504
4505 if (w->wd >= 0)
4506 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4507
4508 /* now re-arm timer, if required */
4509 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4510 ev_timer_again (EV_A_ &w->timer);
4511 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4512 }
4513
4514 ecb_noinline
4515 static void
4516 infy_del (EV_P_ ev_stat *w)
4517 {
4518 int slot;
4519 int wd = w->wd;
4520
4521 if (wd < 0)
4522 return;
4523
4524 w->wd = -2;
4525 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4526 wlist_del (&fs_hash [slot].head, (WL)w);
4527
4528 /* remove this watcher, if others are watching it, they will rearm */
4529 inotify_rm_watch (fs_fd, wd);
4530 }
4531
4532 ecb_noinline
4533 static void
4534 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4535 {
4536 if (slot < 0)
4537 /* overflow, need to check for all hash slots */
4538 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4539 infy_wd (EV_A_ slot, wd, ev);
4540 else
4541 {
4542 WL w_;
4543
4544 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4545 {
4546 ev_stat *w = (ev_stat *)w_;
4547 w_ = w_->next; /* lets us remove this watcher and all before it */
4548
4549 if (w->wd == wd || wd == -1)
4550 {
4551 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4552 {
4553 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4554 w->wd = -1;
4555 infy_add (EV_A_ w); /* re-add, no matter what */
4556 }
4557
4558 stat_timer_cb (EV_A_ &w->timer, 0);
4559 }
4560 }
4561 }
4562 }
4563
4564 static void
4565 infy_cb (EV_P_ ev_io *w, int revents)
4566 {
4567 char buf [EV_INOTIFY_BUFSIZE];
4568 int ofs;
4569 int len = read (fs_fd, buf, sizeof (buf));
4570
4571 for (ofs = 0; ofs < len; )
4572 {
4573 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4574 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4575 ofs += sizeof (struct inotify_event) + ev->len;
4576 }
4577 }
4578
4579 inline_size ecb_cold
4580 void
4581 ev_check_2625 (EV_P)
4582 {
4583 /* kernels < 2.6.25 are borked
4584 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4585 */
4586 if (ev_linux_version () < 0x020619)
4587 return;
4588
4589 fs_2625 = 1;
4590 }
4591
4592 inline_size int
4593 infy_newfd (void)
4594 {
4595 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4596 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4597 if (fd >= 0)
4598 return fd;
4599 #endif
4600 return inotify_init ();
4601 }
4602
4603 inline_size void
4604 infy_init (EV_P)
4605 {
4606 if (fs_fd != -2)
4607 return;
4608
4609 fs_fd = -1;
4610
4611 ev_check_2625 (EV_A);
4612
4613 fs_fd = infy_newfd ();
4614
4615 if (fs_fd >= 0)
4616 {
4617 fd_intern (fs_fd);
4618 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4619 ev_set_priority (&fs_w, EV_MAXPRI);
4620 ev_io_start (EV_A_ &fs_w);
4621 ev_unref (EV_A);
4622 }
4623 }
4624
4625 inline_size void
4626 infy_fork (EV_P)
4627 {
4628 int slot;
4629
4630 if (fs_fd < 0)
4631 return;
4632
4633 ev_ref (EV_A);
4634 ev_io_stop (EV_A_ &fs_w);
4635 close (fs_fd);
4636 fs_fd = infy_newfd ();
4637
4638 if (fs_fd >= 0)
4639 {
4640 fd_intern (fs_fd);
4641 ev_io_set (&fs_w, fs_fd, EV_READ);
4642 ev_io_start (EV_A_ &fs_w);
4643 ev_unref (EV_A);
4644 }
4645
4646 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4647 {
4648 WL w_ = fs_hash [slot].head;
4649 fs_hash [slot].head = 0;
4650
4651 while (w_)
4652 {
4653 ev_stat *w = (ev_stat *)w_;
4654 w_ = w_->next; /* lets us add this watcher */
4655
4656 w->wd = -1;
4657
4658 if (fs_fd >= 0)
4659 infy_add (EV_A_ w); /* re-add, no matter what */
4660 else
4661 {
4662 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4663 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4664 ev_timer_again (EV_A_ &w->timer);
4665 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4666 }
4667 }
4668 }
4669 }
4670
4671 #endif
4672
4673 #ifdef _WIN32
4674 # define EV_LSTAT(p,b) _stati64 (p, b)
4675 #else
4676 # define EV_LSTAT(p,b) lstat (p, b)
4677 #endif
4678
4679 void
4680 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4681 {
4682 if (lstat (w->path, &w->attr) < 0)
4683 w->attr.st_nlink = 0;
4684 else if (!w->attr.st_nlink)
4685 w->attr.st_nlink = 1;
4686 }
4687
4688 ecb_noinline
4689 static void
4690 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4691 {
4692 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4693
4694 ev_statdata prev = w->attr;
4695 ev_stat_stat (EV_A_ w);
4696
4697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4698 if (
4699 prev.st_dev != w->attr.st_dev
4700 || prev.st_ino != w->attr.st_ino
4701 || prev.st_mode != w->attr.st_mode
4702 || prev.st_nlink != w->attr.st_nlink
4703 || prev.st_uid != w->attr.st_uid
4704 || prev.st_gid != w->attr.st_gid
4705 || prev.st_rdev != w->attr.st_rdev
4706 || prev.st_size != w->attr.st_size
4707 || prev.st_atime != w->attr.st_atime
4708 || prev.st_mtime != w->attr.st_mtime
4709 || prev.st_ctime != w->attr.st_ctime
4710 ) {
4711 /* we only update w->prev on actual differences */
4712 /* in case we test more often than invoke the callback, */
4713 /* to ensure that prev is always different to attr */
4714 w->prev = prev;
4715
4716 #if EV_USE_INOTIFY
4717 if (fs_fd >= 0)
4718 {
4719 infy_del (EV_A_ w);
4720 infy_add (EV_A_ w);
4721 ev_stat_stat (EV_A_ w); /* avoid race... */
4722 }
4723 #endif
4724
4725 ev_feed_event (EV_A_ w, EV_STAT);
4726 }
4727 }
4728
4729 void
4730 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4731 {
4732 if (ecb_expect_false (ev_is_active (w)))
4733 return;
4734
4735 ev_stat_stat (EV_A_ w);
4736
4737 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4738 w->interval = MIN_STAT_INTERVAL;
4739
4740 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4741 ev_set_priority (&w->timer, ev_priority (w));
4742
4743 #if EV_USE_INOTIFY
4744 infy_init (EV_A);
4745
4746 if (fs_fd >= 0)
4747 infy_add (EV_A_ w);
4748 else
4749 #endif
4750 {
4751 ev_timer_again (EV_A_ &w->timer);
4752 ev_unref (EV_A);
4753 }
4754
4755 ev_start (EV_A_ (W)w, 1);
4756
4757 EV_FREQUENT_CHECK;
4758 }
4759
4760 void
4761 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4762 {
4763 clear_pending (EV_A_ (W)w);
4764 if (ecb_expect_false (!ev_is_active (w)))
4765 return;
4766
4767 EV_FREQUENT_CHECK;
4768
4769 #if EV_USE_INOTIFY
4770 infy_del (EV_A_ w);
4771 #endif
4772
4773 if (ev_is_active (&w->timer))
4774 {
4775 ev_ref (EV_A);
4776 ev_timer_stop (EV_A_ &w->timer);
4777 }
4778
4779 ev_stop (EV_A_ (W)w);
4780
4781 EV_FREQUENT_CHECK;
4782 }
4783 #endif
4784
4785 #if EV_IDLE_ENABLE
4786 void
4787 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4788 {
4789 if (ecb_expect_false (ev_is_active (w)))
4790 return;
4791
4792 pri_adjust (EV_A_ (W)w);
4793
4794 EV_FREQUENT_CHECK;
4795
4796 {
4797 int active = ++idlecnt [ABSPRI (w)];
4798
4799 ++idleall;
4800 ev_start (EV_A_ (W)w, active);
4801
4802 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4803 idles [ABSPRI (w)][active - 1] = w;
4804 }
4805
4806 EV_FREQUENT_CHECK;
4807 }
4808
4809 void
4810 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4811 {
4812 clear_pending (EV_A_ (W)w);
4813 if (ecb_expect_false (!ev_is_active (w)))
4814 return;
4815
4816 EV_FREQUENT_CHECK;
4817
4818 {
4819 int active = ev_active (w);
4820
4821 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4822 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4823
4824 ev_stop (EV_A_ (W)w);
4825 --idleall;
4826 }
4827
4828 EV_FREQUENT_CHECK;
4829 }
4830 #endif
4831
4832 #if EV_PREPARE_ENABLE
4833 void
4834 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4835 {
4836 if (ecb_expect_false (ev_is_active (w)))
4837 return;
4838
4839 EV_FREQUENT_CHECK;
4840
4841 ev_start (EV_A_ (W)w, ++preparecnt);
4842 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4843 prepares [preparecnt - 1] = w;
4844
4845 EV_FREQUENT_CHECK;
4846 }
4847
4848 void
4849 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4850 {
4851 clear_pending (EV_A_ (W)w);
4852 if (ecb_expect_false (!ev_is_active (w)))
4853 return;
4854
4855 EV_FREQUENT_CHECK;
4856
4857 {
4858 int active = ev_active (w);
4859
4860 prepares [active - 1] = prepares [--preparecnt];
4861 ev_active (prepares [active - 1]) = active;
4862 }
4863
4864 ev_stop (EV_A_ (W)w);
4865
4866 EV_FREQUENT_CHECK;
4867 }
4868 #endif
4869
4870 #if EV_CHECK_ENABLE
4871 void
4872 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4873 {
4874 if (ecb_expect_false (ev_is_active (w)))
4875 return;
4876
4877 EV_FREQUENT_CHECK;
4878
4879 ev_start (EV_A_ (W)w, ++checkcnt);
4880 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4881 checks [checkcnt - 1] = w;
4882
4883 EV_FREQUENT_CHECK;
4884 }
4885
4886 void
4887 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4888 {
4889 clear_pending (EV_A_ (W)w);
4890 if (ecb_expect_false (!ev_is_active (w)))
4891 return;
4892
4893 EV_FREQUENT_CHECK;
4894
4895 {
4896 int active = ev_active (w);
4897
4898 checks [active - 1] = checks [--checkcnt];
4899 ev_active (checks [active - 1]) = active;
4900 }
4901
4902 ev_stop (EV_A_ (W)w);
4903
4904 EV_FREQUENT_CHECK;
4905 }
4906 #endif
4907
4908 #if EV_EMBED_ENABLE
4909 ecb_noinline
4910 void
4911 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4912 {
4913 ev_run (w->other, EVRUN_NOWAIT);
4914 }
4915
4916 static void
4917 embed_io_cb (EV_P_ ev_io *io, int revents)
4918 {
4919 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4920
4921 if (ev_cb (w))
4922 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4923 else
4924 ev_run (w->other, EVRUN_NOWAIT);
4925 }
4926
4927 static void
4928 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4929 {
4930 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4931
4932 {
4933 EV_P = w->other;
4934
4935 while (fdchangecnt)
4936 {
4937 fd_reify (EV_A);
4938 ev_run (EV_A_ EVRUN_NOWAIT);
4939 }
4940 }
4941 }
4942
4943 static void
4944 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4945 {
4946 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4947
4948 ev_embed_stop (EV_A_ w);
4949
4950 {
4951 EV_P = w->other;
4952
4953 ev_loop_fork (EV_A);
4954 ev_run (EV_A_ EVRUN_NOWAIT);
4955 }
4956
4957 ev_embed_start (EV_A_ w);
4958 }
4959
4960 #if 0
4961 static void
4962 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4963 {
4964 ev_idle_stop (EV_A_ idle);
4965 }
4966 #endif
4967
4968 void
4969 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4970 {
4971 if (ecb_expect_false (ev_is_active (w)))
4972 return;
4973
4974 {
4975 EV_P = w->other;
4976 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4977 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4978 }
4979
4980 EV_FREQUENT_CHECK;
4981
4982 ev_set_priority (&w->io, ev_priority (w));
4983 ev_io_start (EV_A_ &w->io);
4984
4985 ev_prepare_init (&w->prepare, embed_prepare_cb);
4986 ev_set_priority (&w->prepare, EV_MINPRI);
4987 ev_prepare_start (EV_A_ &w->prepare);
4988
4989 ev_fork_init (&w->fork, embed_fork_cb);
4990 ev_fork_start (EV_A_ &w->fork);
4991
4992 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4993
4994 ev_start (EV_A_ (W)w, 1);
4995
4996 EV_FREQUENT_CHECK;
4997 }
4998
4999 void
5000 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5001 {
5002 clear_pending (EV_A_ (W)w);
5003 if (ecb_expect_false (!ev_is_active (w)))
5004 return;
5005
5006 EV_FREQUENT_CHECK;
5007
5008 ev_io_stop (EV_A_ &w->io);
5009 ev_prepare_stop (EV_A_ &w->prepare);
5010 ev_fork_stop (EV_A_ &w->fork);
5011
5012 ev_stop (EV_A_ (W)w);
5013
5014 EV_FREQUENT_CHECK;
5015 }
5016 #endif
5017
5018 #if EV_FORK_ENABLE
5019 void
5020 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5021 {
5022 if (ecb_expect_false (ev_is_active (w)))
5023 return;
5024
5025 EV_FREQUENT_CHECK;
5026
5027 ev_start (EV_A_ (W)w, ++forkcnt);
5028 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5029 forks [forkcnt - 1] = w;
5030
5031 EV_FREQUENT_CHECK;
5032 }
5033
5034 void
5035 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5036 {
5037 clear_pending (EV_A_ (W)w);
5038 if (ecb_expect_false (!ev_is_active (w)))
5039 return;
5040
5041 EV_FREQUENT_CHECK;
5042
5043 {
5044 int active = ev_active (w);
5045
5046 forks [active - 1] = forks [--forkcnt];
5047 ev_active (forks [active - 1]) = active;
5048 }
5049
5050 ev_stop (EV_A_ (W)w);
5051
5052 EV_FREQUENT_CHECK;
5053 }
5054 #endif
5055
5056 #if EV_CLEANUP_ENABLE
5057 void
5058 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5059 {
5060 if (ecb_expect_false (ev_is_active (w)))
5061 return;
5062
5063 EV_FREQUENT_CHECK;
5064
5065 ev_start (EV_A_ (W)w, ++cleanupcnt);
5066 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5067 cleanups [cleanupcnt - 1] = w;
5068
5069 /* cleanup watchers should never keep a refcount on the loop */
5070 ev_unref (EV_A);
5071 EV_FREQUENT_CHECK;
5072 }
5073
5074 void
5075 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5076 {
5077 clear_pending (EV_A_ (W)w);
5078 if (ecb_expect_false (!ev_is_active (w)))
5079 return;
5080
5081 EV_FREQUENT_CHECK;
5082 ev_ref (EV_A);
5083
5084 {
5085 int active = ev_active (w);
5086
5087 cleanups [active - 1] = cleanups [--cleanupcnt];
5088 ev_active (cleanups [active - 1]) = active;
5089 }
5090
5091 ev_stop (EV_A_ (W)w);
5092
5093 EV_FREQUENT_CHECK;
5094 }
5095 #endif
5096
5097 #if EV_ASYNC_ENABLE
5098 void
5099 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5100 {
5101 if (ecb_expect_false (ev_is_active (w)))
5102 return;
5103
5104 w->sent = 0;
5105
5106 evpipe_init (EV_A);
5107
5108 EV_FREQUENT_CHECK;
5109
5110 ev_start (EV_A_ (W)w, ++asynccnt);
5111 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5112 asyncs [asynccnt - 1] = w;
5113
5114 EV_FREQUENT_CHECK;
5115 }
5116
5117 void
5118 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5119 {
5120 clear_pending (EV_A_ (W)w);
5121 if (ecb_expect_false (!ev_is_active (w)))
5122 return;
5123
5124 EV_FREQUENT_CHECK;
5125
5126 {
5127 int active = ev_active (w);
5128
5129 asyncs [active - 1] = asyncs [--asynccnt];
5130 ev_active (asyncs [active - 1]) = active;
5131 }
5132
5133 ev_stop (EV_A_ (W)w);
5134
5135 EV_FREQUENT_CHECK;
5136 }
5137
5138 void
5139 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5140 {
5141 w->sent = 1;
5142 evpipe_write (EV_A_ &async_pending);
5143 }
5144 #endif
5145
5146 /*****************************************************************************/
5147
5148 struct ev_once
5149 {
5150 ev_io io;
5151 ev_timer to;
5152 void (*cb)(int revents, void *arg);
5153 void *arg;
5154 };
5155
5156 static void
5157 once_cb (EV_P_ struct ev_once *once, int revents)
5158 {
5159 void (*cb)(int revents, void *arg) = once->cb;
5160 void *arg = once->arg;
5161
5162 ev_io_stop (EV_A_ &once->io);
5163 ev_timer_stop (EV_A_ &once->to);
5164 ev_free (once);
5165
5166 cb (revents, arg);
5167 }
5168
5169 static void
5170 once_cb_io (EV_P_ ev_io *w, int revents)
5171 {
5172 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5173
5174 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5175 }
5176
5177 static void
5178 once_cb_to (EV_P_ ev_timer *w, int revents)
5179 {
5180 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5181
5182 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5183 }
5184
5185 void
5186 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5187 {
5188 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5189
5190 once->cb = cb;
5191 once->arg = arg;
5192
5193 ev_init (&once->io, once_cb_io);
5194 if (fd >= 0)
5195 {
5196 ev_io_set (&once->io, fd, events);
5197 ev_io_start (EV_A_ &once->io);
5198 }
5199
5200 ev_init (&once->to, once_cb_to);
5201 if (timeout >= 0.)
5202 {
5203 ev_timer_set (&once->to, timeout, 0.);
5204 ev_timer_start (EV_A_ &once->to);
5205 }
5206 }
5207
5208 /*****************************************************************************/
5209
5210 #if EV_WALK_ENABLE
5211 ecb_cold
5212 void
5213 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5214 {
5215 int i, j;
5216 ev_watcher_list *wl, *wn;
5217
5218 if (types & (EV_IO | EV_EMBED))
5219 for (i = 0; i < anfdmax; ++i)
5220 for (wl = anfds [i].head; wl; )
5221 {
5222 wn = wl->next;
5223
5224 #if EV_EMBED_ENABLE
5225 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5226 {
5227 if (types & EV_EMBED)
5228 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5229 }
5230 else
5231 #endif
5232 #if EV_USE_INOTIFY
5233 if (ev_cb ((ev_io *)wl) == infy_cb)
5234 ;
5235 else
5236 #endif
5237 if ((ev_io *)wl != &pipe_w)
5238 if (types & EV_IO)
5239 cb (EV_A_ EV_IO, wl);
5240
5241 wl = wn;
5242 }
5243
5244 if (types & (EV_TIMER | EV_STAT))
5245 for (i = timercnt + HEAP0; i-- > HEAP0; )
5246 #if EV_STAT_ENABLE
5247 /*TODO: timer is not always active*/
5248 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5249 {
5250 if (types & EV_STAT)
5251 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5252 }
5253 else
5254 #endif
5255 if (types & EV_TIMER)
5256 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5257
5258 #if EV_PERIODIC_ENABLE
5259 if (types & EV_PERIODIC)
5260 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5261 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5262 #endif
5263
5264 #if EV_IDLE_ENABLE
5265 if (types & EV_IDLE)
5266 for (j = NUMPRI; j--; )
5267 for (i = idlecnt [j]; i--; )
5268 cb (EV_A_ EV_IDLE, idles [j][i]);
5269 #endif
5270
5271 #if EV_FORK_ENABLE
5272 if (types & EV_FORK)
5273 for (i = forkcnt; i--; )
5274 if (ev_cb (forks [i]) != embed_fork_cb)
5275 cb (EV_A_ EV_FORK, forks [i]);
5276 #endif
5277
5278 #if EV_ASYNC_ENABLE
5279 if (types & EV_ASYNC)
5280 for (i = asynccnt; i--; )
5281 cb (EV_A_ EV_ASYNC, asyncs [i]);
5282 #endif
5283
5284 #if EV_PREPARE_ENABLE
5285 if (types & EV_PREPARE)
5286 for (i = preparecnt; i--; )
5287 # if EV_EMBED_ENABLE
5288 if (ev_cb (prepares [i]) != embed_prepare_cb)
5289 # endif
5290 cb (EV_A_ EV_PREPARE, prepares [i]);
5291 #endif
5292
5293 #if EV_CHECK_ENABLE
5294 if (types & EV_CHECK)
5295 for (i = checkcnt; i--; )
5296 cb (EV_A_ EV_CHECK, checks [i]);
5297 #endif
5298
5299 #if EV_SIGNAL_ENABLE
5300 if (types & EV_SIGNAL)
5301 for (i = 0; i < EV_NSIG - 1; ++i)
5302 for (wl = signals [i].head; wl; )
5303 {
5304 wn = wl->next;
5305 cb (EV_A_ EV_SIGNAL, wl);
5306 wl = wn;
5307 }
5308 #endif
5309
5310 #if EV_CHILD_ENABLE
5311 if (types & EV_CHILD)
5312 for (i = (EV_PID_HASHSIZE); i--; )
5313 for (wl = childs [i]; wl; )
5314 {
5315 wn = wl->next;
5316 cb (EV_A_ EV_CHILD, wl);
5317 wl = wn;
5318 }
5319 #endif
5320 /* EV_STAT 0x00001000 /* stat data changed */
5321 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5322 }
5323 #endif
5324
5325 #if EV_MULTIPLICITY
5326 #include "ev_wrap.h"
5327 #endif
5328