ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.512
Committed: Fri Nov 22 19:54:38 2019 UTC (4 years, 5 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: EV-rel-4_30
Changes since 1.511: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO EV_FEATURE_BACKENDS
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130 # ifndef EV_USE_IOURING
131 # define EV_USE_IOURING EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_IOURING
135 # define EV_USE_IOURING 0
136 # endif
137
138 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139 # ifndef EV_USE_KQUEUE
140 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE 0
145 # endif
146
147 # if HAVE_PORT_H && HAVE_PORT_CREATE
148 # ifndef EV_USE_PORT
149 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 # endif
151 # else
152 # undef EV_USE_PORT
153 # define EV_USE_PORT 0
154 # endif
155
156 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157 # ifndef EV_USE_INOTIFY
158 # define EV_USE_INOTIFY EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY 0
163 # endif
164
165 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166 # ifndef EV_USE_SIGNALFD
167 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD 0
172 # endif
173
174 # if HAVE_EVENTFD
175 # ifndef EV_USE_EVENTFD
176 # define EV_USE_EVENTFD EV_FEATURE_OS
177 # endif
178 # else
179 # undef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD 0
181 # endif
182
183 #endif
184
185 /* OS X, in its infinite idiocy, actually HARDCODES
186 * a limit of 1024 into their select. Where people have brains,
187 * OS X engineers apparently have a vacuum. Or maybe they were
188 * ordered to have a vacuum, or they do anything for money.
189 * This might help. Or not.
190 * Note that this must be defined early, as other include files
191 * will rely on this define as well.
192 */
193 #define _DARWIN_UNLIMITED_SELECT 1
194
195 #include <stdlib.h>
196 #include <string.h>
197 #include <fcntl.h>
198 #include <stddef.h>
199
200 #include <stdio.h>
201
202 #include <assert.h>
203 #include <errno.h>
204 #include <sys/types.h>
205 #include <time.h>
206 #include <limits.h>
207
208 #include <signal.h>
209
210 #ifdef EV_H
211 # include EV_H
212 #else
213 # include "ev.h"
214 #endif
215
216 #if EV_NO_THREADS
217 # undef EV_NO_SMP
218 # define EV_NO_SMP 1
219 # undef ECB_NO_THREADS
220 # define ECB_NO_THREADS 1
221 #endif
222 #if EV_NO_SMP
223 # undef EV_NO_SMP
224 # define ECB_NO_SMP 1
225 #endif
226
227 #ifndef _WIN32
228 # include <sys/time.h>
229 # include <sys/wait.h>
230 # include <unistd.h>
231 #else
232 # include <io.h>
233 # define WIN32_LEAN_AND_MEAN
234 # include <winsock2.h>
235 # include <windows.h>
236 # ifndef EV_SELECT_IS_WINSOCKET
237 # define EV_SELECT_IS_WINSOCKET 1
238 # endif
239 # undef EV_AVOID_STDIO
240 #endif
241
242 /* this block tries to deduce configuration from header-defined symbols and defaults */
243
244 /* try to deduce the maximum number of signals on this platform */
245 #if defined EV_NSIG
246 /* use what's provided */
247 #elif defined NSIG
248 # define EV_NSIG (NSIG)
249 #elif defined _NSIG
250 # define EV_NSIG (_NSIG)
251 #elif defined SIGMAX
252 # define EV_NSIG (SIGMAX+1)
253 #elif defined SIG_MAX
254 # define EV_NSIG (SIG_MAX+1)
255 #elif defined _SIG_MAX
256 # define EV_NSIG (_SIG_MAX+1)
257 #elif defined MAXSIG
258 # define EV_NSIG (MAXSIG+1)
259 #elif defined MAX_SIG
260 # define EV_NSIG (MAX_SIG+1)
261 #elif defined SIGARRAYSIZE
262 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
263 #elif defined _sys_nsig
264 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
265 #else
266 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
267 #endif
268
269 #ifndef EV_USE_FLOOR
270 # define EV_USE_FLOOR 0
271 #endif
272
273 #ifndef EV_USE_CLOCK_SYSCALL
274 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
275 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
276 # else
277 # define EV_USE_CLOCK_SYSCALL 0
278 # endif
279 #endif
280
281 #if !(_POSIX_TIMERS > 0)
282 # ifndef EV_USE_MONOTONIC
283 # define EV_USE_MONOTONIC 0
284 # endif
285 # ifndef EV_USE_REALTIME
286 # define EV_USE_REALTIME 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_MONOTONIC
291 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
292 # define EV_USE_MONOTONIC EV_FEATURE_OS
293 # else
294 # define EV_USE_MONOTONIC 0
295 # endif
296 #endif
297
298 #ifndef EV_USE_REALTIME
299 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
300 #endif
301
302 #ifndef EV_USE_NANOSLEEP
303 # if _POSIX_C_SOURCE >= 199309L
304 # define EV_USE_NANOSLEEP EV_FEATURE_OS
305 # else
306 # define EV_USE_NANOSLEEP 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_SELECT
311 # define EV_USE_SELECT EV_FEATURE_BACKENDS
312 #endif
313
314 #ifndef EV_USE_POLL
315 # ifdef _WIN32
316 # define EV_USE_POLL 0
317 # else
318 # define EV_USE_POLL EV_FEATURE_BACKENDS
319 # endif
320 #endif
321
322 #ifndef EV_USE_EPOLL
323 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
324 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
325 # else
326 # define EV_USE_EPOLL 0
327 # endif
328 #endif
329
330 #ifndef EV_USE_KQUEUE
331 # define EV_USE_KQUEUE 0
332 #endif
333
334 #ifndef EV_USE_PORT
335 # define EV_USE_PORT 0
336 #endif
337
338 #ifndef EV_USE_LINUXAIO
339 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
340 # define EV_USE_LINUXAIO 1
341 # else
342 # define EV_USE_LINUXAIO 0
343 # endif
344 #endif
345
346 #ifndef EV_USE_IOURING
347 # if __linux /* later checks might disable again */
348 # define EV_USE_IOURING 1
349 # else
350 # define EV_USE_IOURING 0
351 # endif
352 #endif
353
354 #ifndef EV_USE_INOTIFY
355 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
356 # define EV_USE_INOTIFY EV_FEATURE_OS
357 # else
358 # define EV_USE_INOTIFY 0
359 # endif
360 #endif
361
362 #ifndef EV_PID_HASHSIZE
363 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
364 #endif
365
366 #ifndef EV_INOTIFY_HASHSIZE
367 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
368 #endif
369
370 #ifndef EV_USE_EVENTFD
371 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
372 # define EV_USE_EVENTFD EV_FEATURE_OS
373 # else
374 # define EV_USE_EVENTFD 0
375 # endif
376 #endif
377
378 #ifndef EV_USE_SIGNALFD
379 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
380 # define EV_USE_SIGNALFD EV_FEATURE_OS
381 # else
382 # define EV_USE_SIGNALFD 0
383 # endif
384 #endif
385
386 #if 0 /* debugging */
387 # define EV_VERIFY 3
388 # define EV_USE_4HEAP 1
389 # define EV_HEAP_CACHE_AT 1
390 #endif
391
392 #ifndef EV_VERIFY
393 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
394 #endif
395
396 #ifndef EV_USE_4HEAP
397 # define EV_USE_4HEAP EV_FEATURE_DATA
398 #endif
399
400 #ifndef EV_HEAP_CACHE_AT
401 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
402 #endif
403
404 #ifdef __ANDROID__
405 /* supposedly, android doesn't typedef fd_mask */
406 # undef EV_USE_SELECT
407 # define EV_USE_SELECT 0
408 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
409 # undef EV_USE_CLOCK_SYSCALL
410 # define EV_USE_CLOCK_SYSCALL 0
411 #endif
412
413 /* aix's poll.h seems to cause lots of trouble */
414 #ifdef _AIX
415 /* AIX has a completely broken poll.h header */
416 # undef EV_USE_POLL
417 # define EV_USE_POLL 0
418 #endif
419
420 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
421 /* which makes programs even slower. might work on other unices, too. */
422 #if EV_USE_CLOCK_SYSCALL
423 # include <sys/syscall.h>
424 # ifdef SYS_clock_gettime
425 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
426 # undef EV_USE_MONOTONIC
427 # define EV_USE_MONOTONIC 1
428 # define EV_NEED_SYSCALL 1
429 # else
430 # undef EV_USE_CLOCK_SYSCALL
431 # define EV_USE_CLOCK_SYSCALL 0
432 # endif
433 #endif
434
435 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
436
437 #ifndef CLOCK_MONOTONIC
438 # undef EV_USE_MONOTONIC
439 # define EV_USE_MONOTONIC 0
440 #endif
441
442 #ifndef CLOCK_REALTIME
443 # undef EV_USE_REALTIME
444 # define EV_USE_REALTIME 0
445 #endif
446
447 #if !EV_STAT_ENABLE
448 # undef EV_USE_INOTIFY
449 # define EV_USE_INOTIFY 0
450 #endif
451
452 #if __linux && EV_USE_IOURING
453 # include <linux/version.h>
454 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
455 # undef EV_USE_IOURING
456 # define EV_USE_IOURING 0
457 # endif
458 #endif
459
460 #if !EV_USE_NANOSLEEP
461 /* hp-ux has it in sys/time.h, which we unconditionally include above */
462 # if !defined _WIN32 && !defined __hpux
463 # include <sys/select.h>
464 # endif
465 #endif
466
467 #if EV_USE_LINUXAIO
468 # include <sys/syscall.h>
469 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
470 # define EV_NEED_SYSCALL 1
471 # else
472 # undef EV_USE_LINUXAIO
473 # define EV_USE_LINUXAIO 0
474 # endif
475 #endif
476
477 #if EV_USE_IOURING
478 # include <sys/syscall.h>
479 # if !SYS_io_uring_setup && __linux && !__alpha
480 # define SYS_io_uring_setup 425
481 # define SYS_io_uring_enter 426
482 # define SYS_io_uring_wregister 427
483 # endif
484 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
485 # define EV_NEED_SYSCALL 1
486 # else
487 # undef EV_USE_IOURING
488 # define EV_USE_IOURING 0
489 # endif
490 #endif
491
492 #if EV_USE_INOTIFY
493 # include <sys/statfs.h>
494 # include <sys/inotify.h>
495 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
496 # ifndef IN_DONT_FOLLOW
497 # undef EV_USE_INOTIFY
498 # define EV_USE_INOTIFY 0
499 # endif
500 #endif
501
502 #if EV_USE_EVENTFD
503 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
504 # include <stdint.h>
505 # ifndef EFD_NONBLOCK
506 # define EFD_NONBLOCK O_NONBLOCK
507 # endif
508 # ifndef EFD_CLOEXEC
509 # ifdef O_CLOEXEC
510 # define EFD_CLOEXEC O_CLOEXEC
511 # else
512 # define EFD_CLOEXEC 02000000
513 # endif
514 # endif
515 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
516 #endif
517
518 #if EV_USE_SIGNALFD
519 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
520 # include <stdint.h>
521 # ifndef SFD_NONBLOCK
522 # define SFD_NONBLOCK O_NONBLOCK
523 # endif
524 # ifndef SFD_CLOEXEC
525 # ifdef O_CLOEXEC
526 # define SFD_CLOEXEC O_CLOEXEC
527 # else
528 # define SFD_CLOEXEC 02000000
529 # endif
530 # endif
531 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
532
533 struct signalfd_siginfo
534 {
535 uint32_t ssi_signo;
536 char pad[128 - sizeof (uint32_t)];
537 };
538 #endif
539
540 /*****************************************************************************/
541
542 #if EV_VERIFY >= 3
543 # define EV_FREQUENT_CHECK ev_verify (EV_A)
544 #else
545 # define EV_FREQUENT_CHECK do { } while (0)
546 #endif
547
548 /*
549 * This is used to work around floating point rounding problems.
550 * This value is good at least till the year 4000.
551 */
552 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
553 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
554
555 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
556 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
557
558 /* find a portable timestamp that is "always" in the future but fits into time_t.
559 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
560 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
561 #define EV_TSTAMP_HUGE \
562 (sizeof (time_t) >= 8 ? 10000000000000. \
563 : 0 < (time_t)4294967295 ? 4294967295. \
564 : 2147483647.) \
565
566 #ifndef EV_TS_CONST
567 # define EV_TS_CONST(nv) nv
568 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
569 # define EV_TS_FROM_USEC(us) us * 1e-6
570 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
571 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
572 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
573 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
574 #endif
575
576 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
577 /* ECB.H BEGIN */
578 /*
579 * libecb - http://software.schmorp.de/pkg/libecb
580 *
581 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
582 * Copyright (©) 2011 Emanuele Giaquinta
583 * All rights reserved.
584 *
585 * Redistribution and use in source and binary forms, with or without modifica-
586 * tion, are permitted provided that the following conditions are met:
587 *
588 * 1. Redistributions of source code must retain the above copyright notice,
589 * this list of conditions and the following disclaimer.
590 *
591 * 2. Redistributions in binary form must reproduce the above copyright
592 * notice, this list of conditions and the following disclaimer in the
593 * documentation and/or other materials provided with the distribution.
594 *
595 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
596 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
597 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
598 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
599 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
600 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
601 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
602 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
603 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
604 * OF THE POSSIBILITY OF SUCH DAMAGE.
605 *
606 * Alternatively, the contents of this file may be used under the terms of
607 * the GNU General Public License ("GPL") version 2 or any later version,
608 * in which case the provisions of the GPL are applicable instead of
609 * the above. If you wish to allow the use of your version of this file
610 * only under the terms of the GPL and not to allow others to use your
611 * version of this file under the BSD license, indicate your decision
612 * by deleting the provisions above and replace them with the notice
613 * and other provisions required by the GPL. If you do not delete the
614 * provisions above, a recipient may use your version of this file under
615 * either the BSD or the GPL.
616 */
617
618 #ifndef ECB_H
619 #define ECB_H
620
621 /* 16 bits major, 16 bits minor */
622 #define ECB_VERSION 0x00010006
623
624 #ifdef _WIN32
625 typedef signed char int8_t;
626 typedef unsigned char uint8_t;
627 typedef signed short int16_t;
628 typedef unsigned short uint16_t;
629 typedef signed int int32_t;
630 typedef unsigned int uint32_t;
631 #if __GNUC__
632 typedef signed long long int64_t;
633 typedef unsigned long long uint64_t;
634 #else /* _MSC_VER || __BORLANDC__ */
635 typedef signed __int64 int64_t;
636 typedef unsigned __int64 uint64_t;
637 #endif
638 #ifdef _WIN64
639 #define ECB_PTRSIZE 8
640 typedef uint64_t uintptr_t;
641 typedef int64_t intptr_t;
642 #else
643 #define ECB_PTRSIZE 4
644 typedef uint32_t uintptr_t;
645 typedef int32_t intptr_t;
646 #endif
647 #else
648 #include <inttypes.h>
649 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
650 #define ECB_PTRSIZE 8
651 #else
652 #define ECB_PTRSIZE 4
653 #endif
654 #endif
655
656 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
657 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
658
659 /* work around x32 idiocy by defining proper macros */
660 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
661 #if _ILP32
662 #define ECB_AMD64_X32 1
663 #else
664 #define ECB_AMD64 1
665 #endif
666 #endif
667
668 /* many compilers define _GNUC_ to some versions but then only implement
669 * what their idiot authors think are the "more important" extensions,
670 * causing enormous grief in return for some better fake benchmark numbers.
671 * or so.
672 * we try to detect these and simply assume they are not gcc - if they have
673 * an issue with that they should have done it right in the first place.
674 */
675 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
676 #define ECB_GCC_VERSION(major,minor) 0
677 #else
678 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
679 #endif
680
681 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
682
683 #if __clang__ && defined __has_builtin
684 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
685 #else
686 #define ECB_CLANG_BUILTIN(x) 0
687 #endif
688
689 #if __clang__ && defined __has_extension
690 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
691 #else
692 #define ECB_CLANG_EXTENSION(x) 0
693 #endif
694
695 #define ECB_CPP (__cplusplus+0)
696 #define ECB_CPP11 (__cplusplus >= 201103L)
697 #define ECB_CPP14 (__cplusplus >= 201402L)
698 #define ECB_CPP17 (__cplusplus >= 201703L)
699
700 #if ECB_CPP
701 #define ECB_C 0
702 #define ECB_STDC_VERSION 0
703 #else
704 #define ECB_C 1
705 #define ECB_STDC_VERSION __STDC_VERSION__
706 #endif
707
708 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
709 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
710 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
711
712 #if ECB_CPP
713 #define ECB_EXTERN_C extern "C"
714 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
715 #define ECB_EXTERN_C_END }
716 #else
717 #define ECB_EXTERN_C extern
718 #define ECB_EXTERN_C_BEG
719 #define ECB_EXTERN_C_END
720 #endif
721
722 /*****************************************************************************/
723
724 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
725 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
726
727 #if ECB_NO_THREADS
728 #define ECB_NO_SMP 1
729 #endif
730
731 #if ECB_NO_SMP
732 #define ECB_MEMORY_FENCE do { } while (0)
733 #endif
734
735 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
736 #if __xlC__ && ECB_CPP
737 #include <builtins.h>
738 #endif
739
740 #if 1400 <= _MSC_VER
741 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
742 #endif
743
744 #ifndef ECB_MEMORY_FENCE
745 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
747 #if __i386 || __i386__
748 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
749 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
750 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
751 #elif ECB_GCC_AMD64
752 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
753 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
754 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
755 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
756 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
757 #elif defined __ARM_ARCH_2__ \
758 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
759 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
760 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
761 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
762 || defined __ARM_ARCH_5TEJ__
763 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
764 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
765 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
766 || defined __ARM_ARCH_6T2__
767 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
768 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
769 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
770 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
771 #elif __aarch64__
772 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
773 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
774 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
775 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
776 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
777 #elif defined __s390__ || defined __s390x__
778 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
779 #elif defined __mips__
780 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
781 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
782 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
783 #elif defined __alpha__
784 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
785 #elif defined __hppa__
786 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
787 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
788 #elif defined __ia64__
789 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
790 #elif defined __m68k__
791 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
792 #elif defined __m88k__
793 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
794 #elif defined __sh__
795 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
796 #endif
797 #endif
798 #endif
799
800 #ifndef ECB_MEMORY_FENCE
801 #if ECB_GCC_VERSION(4,7)
802 /* see comment below (stdatomic.h) about the C11 memory model. */
803 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
804 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
805 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
806 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
807
808 #elif ECB_CLANG_EXTENSION(c_atomic)
809 /* see comment below (stdatomic.h) about the C11 memory model. */
810 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
811 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
812 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
813 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
814
815 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
816 #define ECB_MEMORY_FENCE __sync_synchronize ()
817 #elif _MSC_VER >= 1500 /* VC++ 2008 */
818 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
819 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
820 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
821 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
822 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
823 #elif _MSC_VER >= 1400 /* VC++ 2005 */
824 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
825 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
826 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
827 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
828 #elif defined _WIN32
829 #include <WinNT.h>
830 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
831 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
832 #include <mbarrier.h>
833 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
834 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
835 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
836 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
837 #elif __xlC__
838 #define ECB_MEMORY_FENCE __sync ()
839 #endif
840 #endif
841
842 #ifndef ECB_MEMORY_FENCE
843 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
844 /* we assume that these memory fences work on all variables/all memory accesses, */
845 /* not just C11 atomics and atomic accesses */
846 #include <stdatomic.h>
847 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
848 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
849 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
850 #endif
851 #endif
852
853 #ifndef ECB_MEMORY_FENCE
854 #if !ECB_AVOID_PTHREADS
855 /*
856 * if you get undefined symbol references to pthread_mutex_lock,
857 * or failure to find pthread.h, then you should implement
858 * the ECB_MEMORY_FENCE operations for your cpu/compiler
859 * OR provide pthread.h and link against the posix thread library
860 * of your system.
861 */
862 #include <pthread.h>
863 #define ECB_NEEDS_PTHREADS 1
864 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
865
866 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
867 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
868 #endif
869 #endif
870
871 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
872 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
873 #endif
874
875 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
876 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
877 #endif
878
879 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
880 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
881 #endif
882
883 /*****************************************************************************/
884
885 #if ECB_CPP
886 #define ecb_inline static inline
887 #elif ECB_GCC_VERSION(2,5)
888 #define ecb_inline static __inline__
889 #elif ECB_C99
890 #define ecb_inline static inline
891 #else
892 #define ecb_inline static
893 #endif
894
895 #if ECB_GCC_VERSION(3,3)
896 #define ecb_restrict __restrict__
897 #elif ECB_C99
898 #define ecb_restrict restrict
899 #else
900 #define ecb_restrict
901 #endif
902
903 typedef int ecb_bool;
904
905 #define ECB_CONCAT_(a, b) a ## b
906 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
907 #define ECB_STRINGIFY_(a) # a
908 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
909 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
910
911 #define ecb_function_ ecb_inline
912
913 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
914 #define ecb_attribute(attrlist) __attribute__ (attrlist)
915 #else
916 #define ecb_attribute(attrlist)
917 #endif
918
919 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
920 #define ecb_is_constant(expr) __builtin_constant_p (expr)
921 #else
922 /* possible C11 impl for integral types
923 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
924 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
925
926 #define ecb_is_constant(expr) 0
927 #endif
928
929 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
930 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
931 #else
932 #define ecb_expect(expr,value) (expr)
933 #endif
934
935 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
936 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
937 #else
938 #define ecb_prefetch(addr,rw,locality)
939 #endif
940
941 /* no emulation for ecb_decltype */
942 #if ECB_CPP11
943 // older implementations might have problems with decltype(x)::type, work around it
944 template<class T> struct ecb_decltype_t { typedef T type; };
945 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
946 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
947 #define ecb_decltype(x) __typeof__ (x)
948 #endif
949
950 #if _MSC_VER >= 1300
951 #define ecb_deprecated __declspec (deprecated)
952 #else
953 #define ecb_deprecated ecb_attribute ((__deprecated__))
954 #endif
955
956 #if _MSC_VER >= 1500
957 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
958 #elif ECB_GCC_VERSION(4,5)
959 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
960 #else
961 #define ecb_deprecated_message(msg) ecb_deprecated
962 #endif
963
964 #if _MSC_VER >= 1400
965 #define ecb_noinline __declspec (noinline)
966 #else
967 #define ecb_noinline ecb_attribute ((__noinline__))
968 #endif
969
970 #define ecb_unused ecb_attribute ((__unused__))
971 #define ecb_const ecb_attribute ((__const__))
972 #define ecb_pure ecb_attribute ((__pure__))
973
974 #if ECB_C11 || __IBMC_NORETURN
975 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
976 #define ecb_noreturn _Noreturn
977 #elif ECB_CPP11
978 #define ecb_noreturn [[noreturn]]
979 #elif _MSC_VER >= 1200
980 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
981 #define ecb_noreturn __declspec (noreturn)
982 #else
983 #define ecb_noreturn ecb_attribute ((__noreturn__))
984 #endif
985
986 #if ECB_GCC_VERSION(4,3)
987 #define ecb_artificial ecb_attribute ((__artificial__))
988 #define ecb_hot ecb_attribute ((__hot__))
989 #define ecb_cold ecb_attribute ((__cold__))
990 #else
991 #define ecb_artificial
992 #define ecb_hot
993 #define ecb_cold
994 #endif
995
996 /* put around conditional expressions if you are very sure that the */
997 /* expression is mostly true or mostly false. note that these return */
998 /* booleans, not the expression. */
999 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1000 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1001 /* for compatibility to the rest of the world */
1002 #define ecb_likely(expr) ecb_expect_true (expr)
1003 #define ecb_unlikely(expr) ecb_expect_false (expr)
1004
1005 /* count trailing zero bits and count # of one bits */
1006 #if ECB_GCC_VERSION(3,4) \
1007 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1008 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1009 && ECB_CLANG_BUILTIN(__builtin_popcount))
1010 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1011 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1012 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1013 #define ecb_ctz32(x) __builtin_ctz (x)
1014 #define ecb_ctz64(x) __builtin_ctzll (x)
1015 #define ecb_popcount32(x) __builtin_popcount (x)
1016 /* no popcountll */
1017 #else
1018 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1019 ecb_function_ ecb_const int
1020 ecb_ctz32 (uint32_t x)
1021 {
1022 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1023 unsigned long r;
1024 _BitScanForward (&r, x);
1025 return (int)r;
1026 #else
1027 int r = 0;
1028
1029 x &= ~x + 1; /* this isolates the lowest bit */
1030
1031 #if ECB_branchless_on_i386
1032 r += !!(x & 0xaaaaaaaa) << 0;
1033 r += !!(x & 0xcccccccc) << 1;
1034 r += !!(x & 0xf0f0f0f0) << 2;
1035 r += !!(x & 0xff00ff00) << 3;
1036 r += !!(x & 0xffff0000) << 4;
1037 #else
1038 if (x & 0xaaaaaaaa) r += 1;
1039 if (x & 0xcccccccc) r += 2;
1040 if (x & 0xf0f0f0f0) r += 4;
1041 if (x & 0xff00ff00) r += 8;
1042 if (x & 0xffff0000) r += 16;
1043 #endif
1044
1045 return r;
1046 #endif
1047 }
1048
1049 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1050 ecb_function_ ecb_const int
1051 ecb_ctz64 (uint64_t x)
1052 {
1053 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1054 unsigned long r;
1055 _BitScanForward64 (&r, x);
1056 return (int)r;
1057 #else
1058 int shift = x & 0xffffffff ? 0 : 32;
1059 return ecb_ctz32 (x >> shift) + shift;
1060 #endif
1061 }
1062
1063 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1064 ecb_function_ ecb_const int
1065 ecb_popcount32 (uint32_t x)
1066 {
1067 x -= (x >> 1) & 0x55555555;
1068 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1069 x = ((x >> 4) + x) & 0x0f0f0f0f;
1070 x *= 0x01010101;
1071
1072 return x >> 24;
1073 }
1074
1075 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1076 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1077 {
1078 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1079 unsigned long r;
1080 _BitScanReverse (&r, x);
1081 return (int)r;
1082 #else
1083 int r = 0;
1084
1085 if (x >> 16) { x >>= 16; r += 16; }
1086 if (x >> 8) { x >>= 8; r += 8; }
1087 if (x >> 4) { x >>= 4; r += 4; }
1088 if (x >> 2) { x >>= 2; r += 2; }
1089 if (x >> 1) { r += 1; }
1090
1091 return r;
1092 #endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1096 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1097 {
1098 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1099 unsigned long r;
1100 _BitScanReverse64 (&r, x);
1101 return (int)r;
1102 #else
1103 int r = 0;
1104
1105 if (x >> 32) { x >>= 32; r += 32; }
1106
1107 return r + ecb_ld32 (x);
1108 #endif
1109 }
1110 #endif
1111
1112 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1113 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1114 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1115 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1116
1117 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1118 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1119 {
1120 return ( (x * 0x0802U & 0x22110U)
1121 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1122 }
1123
1124 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1125 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1126 {
1127 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1128 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1129 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1130 x = ( x >> 8 ) | ( x << 8);
1131
1132 return x;
1133 }
1134
1135 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1136 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1137 {
1138 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1139 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1140 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1141 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1142 x = ( x >> 16 ) | ( x << 16);
1143
1144 return x;
1145 }
1146
1147 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1148 /* so for this version we are lazy */
1149 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1150 ecb_function_ ecb_const int
1151 ecb_popcount64 (uint64_t x)
1152 {
1153 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1154 }
1155
1156 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1157 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1158 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1159 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1160 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1161 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1162 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1163 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1164
1165 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1166 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1167 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1168 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1169 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1170 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1171 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1172 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1173
1174 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1175 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1176 #define ecb_bswap16(x) __builtin_bswap16 (x)
1177 #else
1178 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1179 #endif
1180 #define ecb_bswap32(x) __builtin_bswap32 (x)
1181 #define ecb_bswap64(x) __builtin_bswap64 (x)
1182 #elif _MSC_VER
1183 #include <stdlib.h>
1184 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1185 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1186 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1187 #else
1188 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1189 ecb_function_ ecb_const uint16_t
1190 ecb_bswap16 (uint16_t x)
1191 {
1192 return ecb_rotl16 (x, 8);
1193 }
1194
1195 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1196 ecb_function_ ecb_const uint32_t
1197 ecb_bswap32 (uint32_t x)
1198 {
1199 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1200 }
1201
1202 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1203 ecb_function_ ecb_const uint64_t
1204 ecb_bswap64 (uint64_t x)
1205 {
1206 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1207 }
1208 #endif
1209
1210 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1211 #define ecb_unreachable() __builtin_unreachable ()
1212 #else
1213 /* this seems to work fine, but gcc always emits a warning for it :/ */
1214 ecb_inline ecb_noreturn void ecb_unreachable (void);
1215 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1216 #endif
1217
1218 /* try to tell the compiler that some condition is definitely true */
1219 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1220
1221 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1222 ecb_inline ecb_const uint32_t
1223 ecb_byteorder_helper (void)
1224 {
1225 /* the union code still generates code under pressure in gcc, */
1226 /* but less than using pointers, and always seems to */
1227 /* successfully return a constant. */
1228 /* the reason why we have this horrible preprocessor mess */
1229 /* is to avoid it in all cases, at least on common architectures */
1230 /* or when using a recent enough gcc version (>= 4.6) */
1231 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1232 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1233 #define ECB_LITTLE_ENDIAN 1
1234 return 0x44332211;
1235 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1236 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1237 #define ECB_BIG_ENDIAN 1
1238 return 0x11223344;
1239 #else
1240 union
1241 {
1242 uint8_t c[4];
1243 uint32_t u;
1244 } u = { 0x11, 0x22, 0x33, 0x44 };
1245 return u.u;
1246 #endif
1247 }
1248
1249 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1250 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1251 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1252 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1253
1254 #if ECB_GCC_VERSION(3,0) || ECB_C99
1255 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1256 #else
1257 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1258 #endif
1259
1260 #if ECB_CPP
1261 template<typename T>
1262 static inline T ecb_div_rd (T val, T div)
1263 {
1264 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1265 }
1266 template<typename T>
1267 static inline T ecb_div_ru (T val, T div)
1268 {
1269 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1270 }
1271 #else
1272 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1273 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1274 #endif
1275
1276 #if ecb_cplusplus_does_not_suck
1277 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1278 template<typename T, int N>
1279 static inline int ecb_array_length (const T (&arr)[N])
1280 {
1281 return N;
1282 }
1283 #else
1284 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1285 #endif
1286
1287 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1288 ecb_function_ ecb_const uint32_t
1289 ecb_binary16_to_binary32 (uint32_t x)
1290 {
1291 unsigned int s = (x & 0x8000) << (31 - 15);
1292 int e = (x >> 10) & 0x001f;
1293 unsigned int m = x & 0x03ff;
1294
1295 if (ecb_expect_false (e == 31))
1296 /* infinity or NaN */
1297 e = 255 - (127 - 15);
1298 else if (ecb_expect_false (!e))
1299 {
1300 if (ecb_expect_true (!m))
1301 /* zero, handled by code below by forcing e to 0 */
1302 e = 0 - (127 - 15);
1303 else
1304 {
1305 /* subnormal, renormalise */
1306 unsigned int s = 10 - ecb_ld32 (m);
1307
1308 m = (m << s) & 0x3ff; /* mask implicit bit */
1309 e -= s - 1;
1310 }
1311 }
1312
1313 /* e and m now are normalised, or zero, (or inf or nan) */
1314 e += 127 - 15;
1315
1316 return s | (e << 23) | (m << (23 - 10));
1317 }
1318
1319 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1320 ecb_function_ ecb_const uint16_t
1321 ecb_binary32_to_binary16 (uint32_t x)
1322 {
1323 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1324 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1325 unsigned int m = x & 0x007fffff;
1326
1327 x &= 0x7fffffff;
1328
1329 /* if it's within range of binary16 normals, use fast path */
1330 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1331 {
1332 /* mantissa round-to-even */
1333 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1334
1335 /* handle overflow */
1336 if (ecb_expect_false (m >= 0x00800000))
1337 {
1338 m >>= 1;
1339 e += 1;
1340 }
1341
1342 return s | (e << 10) | (m >> (23 - 10));
1343 }
1344
1345 /* handle large numbers and infinity */
1346 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1347 return s | 0x7c00;
1348
1349 /* handle zero, subnormals and small numbers */
1350 if (ecb_expect_true (x < 0x38800000))
1351 {
1352 /* zero */
1353 if (ecb_expect_true (!x))
1354 return s;
1355
1356 /* handle subnormals */
1357
1358 /* too small, will be zero */
1359 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1360 return s;
1361
1362 m |= 0x00800000; /* make implicit bit explicit */
1363
1364 /* very tricky - we need to round to the nearest e (+10) bit value */
1365 {
1366 unsigned int bits = 14 - e;
1367 unsigned int half = (1 << (bits - 1)) - 1;
1368 unsigned int even = (m >> bits) & 1;
1369
1370 /* if this overflows, we will end up with a normalised number */
1371 m = (m + half + even) >> bits;
1372 }
1373
1374 return s | m;
1375 }
1376
1377 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1378 m >>= 13;
1379
1380 return s | 0x7c00 | m | !m;
1381 }
1382
1383 /*******************************************************************************/
1384 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1385
1386 /* basically, everything uses "ieee pure-endian" floating point numbers */
1387 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1388 #if 0 \
1389 || __i386 || __i386__ \
1390 || ECB_GCC_AMD64 \
1391 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1392 || defined __s390__ || defined __s390x__ \
1393 || defined __mips__ \
1394 || defined __alpha__ \
1395 || defined __hppa__ \
1396 || defined __ia64__ \
1397 || defined __m68k__ \
1398 || defined __m88k__ \
1399 || defined __sh__ \
1400 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1401 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1402 || defined __aarch64__
1403 #define ECB_STDFP 1
1404 #include <string.h> /* for memcpy */
1405 #else
1406 #define ECB_STDFP 0
1407 #endif
1408
1409 #ifndef ECB_NO_LIBM
1410
1411 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1412
1413 /* only the oldest of old doesn't have this one. solaris. */
1414 #ifdef INFINITY
1415 #define ECB_INFINITY INFINITY
1416 #else
1417 #define ECB_INFINITY HUGE_VAL
1418 #endif
1419
1420 #ifdef NAN
1421 #define ECB_NAN NAN
1422 #else
1423 #define ECB_NAN ECB_INFINITY
1424 #endif
1425
1426 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1427 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1428 #define ecb_frexpf(x,e) frexpf ((x), (e))
1429 #else
1430 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1431 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1432 #endif
1433
1434 /* convert a float to ieee single/binary32 */
1435 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1436 ecb_function_ ecb_const uint32_t
1437 ecb_float_to_binary32 (float x)
1438 {
1439 uint32_t r;
1440
1441 #if ECB_STDFP
1442 memcpy (&r, &x, 4);
1443 #else
1444 /* slow emulation, works for anything but -0 */
1445 uint32_t m;
1446 int e;
1447
1448 if (x == 0e0f ) return 0x00000000U;
1449 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1450 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1451 if (x != x ) return 0x7fbfffffU;
1452
1453 m = ecb_frexpf (x, &e) * 0x1000000U;
1454
1455 r = m & 0x80000000U;
1456
1457 if (r)
1458 m = -m;
1459
1460 if (e <= -126)
1461 {
1462 m &= 0xffffffU;
1463 m >>= (-125 - e);
1464 e = -126;
1465 }
1466
1467 r |= (e + 126) << 23;
1468 r |= m & 0x7fffffU;
1469 #endif
1470
1471 return r;
1472 }
1473
1474 /* converts an ieee single/binary32 to a float */
1475 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1476 ecb_function_ ecb_const float
1477 ecb_binary32_to_float (uint32_t x)
1478 {
1479 float r;
1480
1481 #if ECB_STDFP
1482 memcpy (&r, &x, 4);
1483 #else
1484 /* emulation, only works for normals and subnormals and +0 */
1485 int neg = x >> 31;
1486 int e = (x >> 23) & 0xffU;
1487
1488 x &= 0x7fffffU;
1489
1490 if (e)
1491 x |= 0x800000U;
1492 else
1493 e = 1;
1494
1495 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1496 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1497
1498 r = neg ? -r : r;
1499 #endif
1500
1501 return r;
1502 }
1503
1504 /* convert a double to ieee double/binary64 */
1505 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1506 ecb_function_ ecb_const uint64_t
1507 ecb_double_to_binary64 (double x)
1508 {
1509 uint64_t r;
1510
1511 #if ECB_STDFP
1512 memcpy (&r, &x, 8);
1513 #else
1514 /* slow emulation, works for anything but -0 */
1515 uint64_t m;
1516 int e;
1517
1518 if (x == 0e0 ) return 0x0000000000000000U;
1519 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1520 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1521 if (x != x ) return 0X7ff7ffffffffffffU;
1522
1523 m = frexp (x, &e) * 0x20000000000000U;
1524
1525 r = m & 0x8000000000000000;;
1526
1527 if (r)
1528 m = -m;
1529
1530 if (e <= -1022)
1531 {
1532 m &= 0x1fffffffffffffU;
1533 m >>= (-1021 - e);
1534 e = -1022;
1535 }
1536
1537 r |= ((uint64_t)(e + 1022)) << 52;
1538 r |= m & 0xfffffffffffffU;
1539 #endif
1540
1541 return r;
1542 }
1543
1544 /* converts an ieee double/binary64 to a double */
1545 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1546 ecb_function_ ecb_const double
1547 ecb_binary64_to_double (uint64_t x)
1548 {
1549 double r;
1550
1551 #if ECB_STDFP
1552 memcpy (&r, &x, 8);
1553 #else
1554 /* emulation, only works for normals and subnormals and +0 */
1555 int neg = x >> 63;
1556 int e = (x >> 52) & 0x7ffU;
1557
1558 x &= 0xfffffffffffffU;
1559
1560 if (e)
1561 x |= 0x10000000000000U;
1562 else
1563 e = 1;
1564
1565 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1566 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1567
1568 r = neg ? -r : r;
1569 #endif
1570
1571 return r;
1572 }
1573
1574 /* convert a float to ieee half/binary16 */
1575 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1576 ecb_function_ ecb_const uint16_t
1577 ecb_float_to_binary16 (float x)
1578 {
1579 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1580 }
1581
1582 /* convert an ieee half/binary16 to float */
1583 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1584 ecb_function_ ecb_const float
1585 ecb_binary16_to_float (uint16_t x)
1586 {
1587 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1588 }
1589
1590 #endif
1591
1592 #endif
1593
1594 /* ECB.H END */
1595
1596 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1597 /* if your architecture doesn't need memory fences, e.g. because it is
1598 * single-cpu/core, or if you use libev in a project that doesn't use libev
1599 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1600 * libev, in which cases the memory fences become nops.
1601 * alternatively, you can remove this #error and link against libpthread,
1602 * which will then provide the memory fences.
1603 */
1604 # error "memory fences not defined for your architecture, please report"
1605 #endif
1606
1607 #ifndef ECB_MEMORY_FENCE
1608 # define ECB_MEMORY_FENCE do { } while (0)
1609 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1610 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1611 #endif
1612
1613 #define inline_size ecb_inline
1614
1615 #if EV_FEATURE_CODE
1616 # define inline_speed ecb_inline
1617 #else
1618 # define inline_speed ecb_noinline static
1619 #endif
1620
1621 /*****************************************************************************/
1622 /* raw syscall wrappers */
1623
1624 #if EV_NEED_SYSCALL
1625
1626 #include <sys/syscall.h>
1627
1628 /*
1629 * define some syscall wrappers for common architectures
1630 * this is mostly for nice looks during debugging, not performance.
1631 * our syscalls return < 0, not == -1, on error. which is good
1632 * enough for linux aio.
1633 * TODO: arm is also common nowadays, maybe even mips and x86
1634 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1635 */
1636 #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1637 /* the costly errno access probably kills this for size optimisation */
1638
1639 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1640 ({ \
1641 long res; \
1642 register unsigned long r6 __asm__ ("r9" ); \
1643 register unsigned long r5 __asm__ ("r8" ); \
1644 register unsigned long r4 __asm__ ("r10"); \
1645 register unsigned long r3 __asm__ ("rdx"); \
1646 register unsigned long r2 __asm__ ("rsi"); \
1647 register unsigned long r1 __asm__ ("rdi"); \
1648 if (narg >= 6) r6 = (unsigned long)(arg6); \
1649 if (narg >= 5) r5 = (unsigned long)(arg5); \
1650 if (narg >= 4) r4 = (unsigned long)(arg4); \
1651 if (narg >= 3) r3 = (unsigned long)(arg3); \
1652 if (narg >= 2) r2 = (unsigned long)(arg2); \
1653 if (narg >= 1) r1 = (unsigned long)(arg1); \
1654 __asm__ __volatile__ ( \
1655 "syscall\n\t" \
1656 : "=a" (res) \
1657 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1658 : "cc", "r11", "cx", "memory"); \
1659 errno = -res; \
1660 res; \
1661 })
1662
1663 #endif
1664
1665 #ifdef ev_syscall
1666 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1667 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1668 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1669 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1670 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1671 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1672 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1673 #else
1674 #define ev_syscall0(nr) syscall (nr)
1675 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1676 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1677 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1678 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1679 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1680 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1681 #endif
1682
1683 #endif
1684
1685 /*****************************************************************************/
1686
1687 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1688
1689 #if EV_MINPRI == EV_MAXPRI
1690 # define ABSPRI(w) (((W)w), 0)
1691 #else
1692 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1693 #endif
1694
1695 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1696
1697 typedef ev_watcher *W;
1698 typedef ev_watcher_list *WL;
1699 typedef ev_watcher_time *WT;
1700
1701 #define ev_active(w) ((W)(w))->active
1702 #define ev_at(w) ((WT)(w))->at
1703
1704 #if EV_USE_REALTIME
1705 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1706 /* giving it a reasonably high chance of working on typical architectures */
1707 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1708 #endif
1709
1710 #if EV_USE_MONOTONIC
1711 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1712 #endif
1713
1714 #ifndef EV_FD_TO_WIN32_HANDLE
1715 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1716 #endif
1717 #ifndef EV_WIN32_HANDLE_TO_FD
1718 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1719 #endif
1720 #ifndef EV_WIN32_CLOSE_FD
1721 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1722 #endif
1723
1724 #ifdef _WIN32
1725 # include "ev_win32.c"
1726 #endif
1727
1728 /*****************************************************************************/
1729
1730 #if EV_USE_LINUXAIO
1731 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1732 #endif
1733
1734 /* define a suitable floor function (only used by periodics atm) */
1735
1736 #if EV_USE_FLOOR
1737 # include <math.h>
1738 # define ev_floor(v) floor (v)
1739 #else
1740
1741 #include <float.h>
1742
1743 /* a floor() replacement function, should be independent of ev_tstamp type */
1744 ecb_noinline
1745 static ev_tstamp
1746 ev_floor (ev_tstamp v)
1747 {
1748 /* the choice of shift factor is not terribly important */
1749 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1750 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1751 #else
1752 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1753 #endif
1754
1755 /* special treatment for negative arguments */
1756 if (ecb_expect_false (v < 0.))
1757 {
1758 ev_tstamp f = -ev_floor (-v);
1759
1760 return f - (f == v ? 0 : 1);
1761 }
1762
1763 /* argument too large for an unsigned long? then reduce it */
1764 if (ecb_expect_false (v >= shift))
1765 {
1766 ev_tstamp f;
1767
1768 if (v == v - 1.)
1769 return v; /* very large numbers are assumed to be integer */
1770
1771 f = shift * ev_floor (v * (1. / shift));
1772 return f + ev_floor (v - f);
1773 }
1774
1775 /* fits into an unsigned long */
1776 return (unsigned long)v;
1777 }
1778
1779 #endif
1780
1781 /*****************************************************************************/
1782
1783 #ifdef __linux
1784 # include <sys/utsname.h>
1785 #endif
1786
1787 ecb_noinline ecb_cold
1788 static unsigned int
1789 ev_linux_version (void)
1790 {
1791 #ifdef __linux
1792 unsigned int v = 0;
1793 struct utsname buf;
1794 int i;
1795 char *p = buf.release;
1796
1797 if (uname (&buf))
1798 return 0;
1799
1800 for (i = 3+1; --i; )
1801 {
1802 unsigned int c = 0;
1803
1804 for (;;)
1805 {
1806 if (*p >= '0' && *p <= '9')
1807 c = c * 10 + *p++ - '0';
1808 else
1809 {
1810 p += *p == '.';
1811 break;
1812 }
1813 }
1814
1815 v = (v << 8) | c;
1816 }
1817
1818 return v;
1819 #else
1820 return 0;
1821 #endif
1822 }
1823
1824 /*****************************************************************************/
1825
1826 #if EV_AVOID_STDIO
1827 ecb_noinline ecb_cold
1828 static void
1829 ev_printerr (const char *msg)
1830 {
1831 write (STDERR_FILENO, msg, strlen (msg));
1832 }
1833 #endif
1834
1835 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1836
1837 ecb_cold
1838 void
1839 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1840 {
1841 syserr_cb = cb;
1842 }
1843
1844 ecb_noinline ecb_cold
1845 static void
1846 ev_syserr (const char *msg)
1847 {
1848 if (!msg)
1849 msg = "(libev) system error";
1850
1851 if (syserr_cb)
1852 syserr_cb (msg);
1853 else
1854 {
1855 #if EV_AVOID_STDIO
1856 ev_printerr (msg);
1857 ev_printerr (": ");
1858 ev_printerr (strerror (errno));
1859 ev_printerr ("\n");
1860 #else
1861 perror (msg);
1862 #endif
1863 abort ();
1864 }
1865 }
1866
1867 static void *
1868 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1869 {
1870 /* some systems, notably openbsd and darwin, fail to properly
1871 * implement realloc (x, 0) (as required by both ansi c-89 and
1872 * the single unix specification, so work around them here.
1873 * recently, also (at least) fedora and debian started breaking it,
1874 * despite documenting it otherwise.
1875 */
1876
1877 if (size)
1878 return realloc (ptr, size);
1879
1880 free (ptr);
1881 return 0;
1882 }
1883
1884 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1885
1886 ecb_cold
1887 void
1888 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1889 {
1890 alloc = cb;
1891 }
1892
1893 inline_speed void *
1894 ev_realloc (void *ptr, long size)
1895 {
1896 ptr = alloc (ptr, size);
1897
1898 if (!ptr && size)
1899 {
1900 #if EV_AVOID_STDIO
1901 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1902 #else
1903 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1904 #endif
1905 abort ();
1906 }
1907
1908 return ptr;
1909 }
1910
1911 #define ev_malloc(size) ev_realloc (0, (size))
1912 #define ev_free(ptr) ev_realloc ((ptr), 0)
1913
1914 /*****************************************************************************/
1915
1916 /* set in reify when reification needed */
1917 #define EV_ANFD_REIFY 1
1918
1919 /* file descriptor info structure */
1920 typedef struct
1921 {
1922 WL head;
1923 unsigned char events; /* the events watched for */
1924 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1925 unsigned char emask; /* some backends store the actual kernel mask in here */
1926 unsigned char eflags; /* flags field for use by backends */
1927 #if EV_USE_EPOLL
1928 unsigned int egen; /* generation counter to counter epoll bugs */
1929 #endif
1930 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1931 SOCKET handle;
1932 #endif
1933 #if EV_USE_IOCP
1934 OVERLAPPED or, ow;
1935 #endif
1936 } ANFD;
1937
1938 /* stores the pending event set for a given watcher */
1939 typedef struct
1940 {
1941 W w;
1942 int events; /* the pending event set for the given watcher */
1943 } ANPENDING;
1944
1945 #if EV_USE_INOTIFY
1946 /* hash table entry per inotify-id */
1947 typedef struct
1948 {
1949 WL head;
1950 } ANFS;
1951 #endif
1952
1953 /* Heap Entry */
1954 #if EV_HEAP_CACHE_AT
1955 /* a heap element */
1956 typedef struct {
1957 ev_tstamp at;
1958 WT w;
1959 } ANHE;
1960
1961 #define ANHE_w(he) (he).w /* access watcher, read-write */
1962 #define ANHE_at(he) (he).at /* access cached at, read-only */
1963 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1964 #else
1965 /* a heap element */
1966 typedef WT ANHE;
1967
1968 #define ANHE_w(he) (he)
1969 #define ANHE_at(he) (he)->at
1970 #define ANHE_at_cache(he)
1971 #endif
1972
1973 #if EV_MULTIPLICITY
1974
1975 struct ev_loop
1976 {
1977 ev_tstamp ev_rt_now;
1978 #define ev_rt_now ((loop)->ev_rt_now)
1979 #define VAR(name,decl) decl;
1980 #include "ev_vars.h"
1981 #undef VAR
1982 };
1983 #include "ev_wrap.h"
1984
1985 static struct ev_loop default_loop_struct;
1986 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1987
1988 #else
1989
1990 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
1991 #define VAR(name,decl) static decl;
1992 #include "ev_vars.h"
1993 #undef VAR
1994
1995 static int ev_default_loop_ptr;
1996
1997 #endif
1998
1999 #if EV_FEATURE_API
2000 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2001 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2002 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2003 #else
2004 # define EV_RELEASE_CB (void)0
2005 # define EV_ACQUIRE_CB (void)0
2006 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2007 #endif
2008
2009 #define EVBREAK_RECURSE 0x80
2010
2011 /*****************************************************************************/
2012
2013 #ifndef EV_HAVE_EV_TIME
2014 ev_tstamp
2015 ev_time (void) EV_NOEXCEPT
2016 {
2017 #if EV_USE_REALTIME
2018 if (ecb_expect_true (have_realtime))
2019 {
2020 struct timespec ts;
2021 clock_gettime (CLOCK_REALTIME, &ts);
2022 return EV_TS_GET (ts);
2023 }
2024 #endif
2025
2026 {
2027 struct timeval tv;
2028 gettimeofday (&tv, 0);
2029 return EV_TV_GET (tv);
2030 }
2031 }
2032 #endif
2033
2034 inline_size ev_tstamp
2035 get_clock (void)
2036 {
2037 #if EV_USE_MONOTONIC
2038 if (ecb_expect_true (have_monotonic))
2039 {
2040 struct timespec ts;
2041 clock_gettime (CLOCK_MONOTONIC, &ts);
2042 return EV_TS_GET (ts);
2043 }
2044 #endif
2045
2046 return ev_time ();
2047 }
2048
2049 #if EV_MULTIPLICITY
2050 ev_tstamp
2051 ev_now (EV_P) EV_NOEXCEPT
2052 {
2053 return ev_rt_now;
2054 }
2055 #endif
2056
2057 void
2058 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2059 {
2060 if (delay > EV_TS_CONST (0.))
2061 {
2062 #if EV_USE_NANOSLEEP
2063 struct timespec ts;
2064
2065 EV_TS_SET (ts, delay);
2066 nanosleep (&ts, 0);
2067 #elif defined _WIN32
2068 /* maybe this should round up, as ms is very low resolution */
2069 /* compared to select (µs) or nanosleep (ns) */
2070 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2071 #else
2072 struct timeval tv;
2073
2074 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2075 /* something not guaranteed by newer posix versions, but guaranteed */
2076 /* by older ones */
2077 EV_TV_SET (tv, delay);
2078 select (0, 0, 0, 0, &tv);
2079 #endif
2080 }
2081 }
2082
2083 /*****************************************************************************/
2084
2085 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2086
2087 /* find a suitable new size for the given array, */
2088 /* hopefully by rounding to a nice-to-malloc size */
2089 inline_size int
2090 array_nextsize (int elem, int cur, int cnt)
2091 {
2092 int ncur = cur + 1;
2093
2094 do
2095 ncur <<= 1;
2096 while (cnt > ncur);
2097
2098 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2099 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2100 {
2101 ncur *= elem;
2102 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2103 ncur = ncur - sizeof (void *) * 4;
2104 ncur /= elem;
2105 }
2106
2107 return ncur;
2108 }
2109
2110 ecb_noinline ecb_cold
2111 static void *
2112 array_realloc (int elem, void *base, int *cur, int cnt)
2113 {
2114 *cur = array_nextsize (elem, *cur, cnt);
2115 return ev_realloc (base, elem * *cur);
2116 }
2117
2118 #define array_needsize_noinit(base,offset,count)
2119
2120 #define array_needsize_zerofill(base,offset,count) \
2121 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2122
2123 #define array_needsize(type,base,cur,cnt,init) \
2124 if (ecb_expect_false ((cnt) > (cur))) \
2125 { \
2126 ecb_unused int ocur_ = (cur); \
2127 (base) = (type *)array_realloc \
2128 (sizeof (type), (base), &(cur), (cnt)); \
2129 init ((base), ocur_, ((cur) - ocur_)); \
2130 }
2131
2132 #if 0
2133 #define array_slim(type,stem) \
2134 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2135 { \
2136 stem ## max = array_roundsize (stem ## cnt >> 1); \
2137 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2138 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2139 }
2140 #endif
2141
2142 #define array_free(stem, idx) \
2143 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2144
2145 /*****************************************************************************/
2146
2147 /* dummy callback for pending events */
2148 ecb_noinline
2149 static void
2150 pendingcb (EV_P_ ev_prepare *w, int revents)
2151 {
2152 }
2153
2154 ecb_noinline
2155 void
2156 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2157 {
2158 W w_ = (W)w;
2159 int pri = ABSPRI (w_);
2160
2161 if (ecb_expect_false (w_->pending))
2162 pendings [pri][w_->pending - 1].events |= revents;
2163 else
2164 {
2165 w_->pending = ++pendingcnt [pri];
2166 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2167 pendings [pri][w_->pending - 1].w = w_;
2168 pendings [pri][w_->pending - 1].events = revents;
2169 }
2170
2171 pendingpri = NUMPRI - 1;
2172 }
2173
2174 inline_speed void
2175 feed_reverse (EV_P_ W w)
2176 {
2177 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2178 rfeeds [rfeedcnt++] = w;
2179 }
2180
2181 inline_size void
2182 feed_reverse_done (EV_P_ int revents)
2183 {
2184 do
2185 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2186 while (rfeedcnt);
2187 }
2188
2189 inline_speed void
2190 queue_events (EV_P_ W *events, int eventcnt, int type)
2191 {
2192 int i;
2193
2194 for (i = 0; i < eventcnt; ++i)
2195 ev_feed_event (EV_A_ events [i], type);
2196 }
2197
2198 /*****************************************************************************/
2199
2200 inline_speed void
2201 fd_event_nocheck (EV_P_ int fd, int revents)
2202 {
2203 ANFD *anfd = anfds + fd;
2204 ev_io *w;
2205
2206 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2207 {
2208 int ev = w->events & revents;
2209
2210 if (ev)
2211 ev_feed_event (EV_A_ (W)w, ev);
2212 }
2213 }
2214
2215 /* do not submit kernel events for fds that have reify set */
2216 /* because that means they changed while we were polling for new events */
2217 inline_speed void
2218 fd_event (EV_P_ int fd, int revents)
2219 {
2220 ANFD *anfd = anfds + fd;
2221
2222 if (ecb_expect_true (!anfd->reify))
2223 fd_event_nocheck (EV_A_ fd, revents);
2224 }
2225
2226 void
2227 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2228 {
2229 if (fd >= 0 && fd < anfdmax)
2230 fd_event_nocheck (EV_A_ fd, revents);
2231 }
2232
2233 /* make sure the external fd watch events are in-sync */
2234 /* with the kernel/libev internal state */
2235 inline_size void
2236 fd_reify (EV_P)
2237 {
2238 int i;
2239
2240 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2241 for (i = 0; i < fdchangecnt; ++i)
2242 {
2243 int fd = fdchanges [i];
2244 ANFD *anfd = anfds + fd;
2245
2246 if (anfd->reify & EV__IOFDSET && anfd->head)
2247 {
2248 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2249
2250 if (handle != anfd->handle)
2251 {
2252 unsigned long arg;
2253
2254 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2255
2256 /* handle changed, but fd didn't - we need to do it in two steps */
2257 backend_modify (EV_A_ fd, anfd->events, 0);
2258 anfd->events = 0;
2259 anfd->handle = handle;
2260 }
2261 }
2262 }
2263 #endif
2264
2265 for (i = 0; i < fdchangecnt; ++i)
2266 {
2267 int fd = fdchanges [i];
2268 ANFD *anfd = anfds + fd;
2269 ev_io *w;
2270
2271 unsigned char o_events = anfd->events;
2272 unsigned char o_reify = anfd->reify;
2273
2274 anfd->reify = 0;
2275
2276 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2277 {
2278 anfd->events = 0;
2279
2280 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2281 anfd->events |= (unsigned char)w->events;
2282
2283 if (o_events != anfd->events)
2284 o_reify = EV__IOFDSET; /* actually |= */
2285 }
2286
2287 if (o_reify & EV__IOFDSET)
2288 backend_modify (EV_A_ fd, o_events, anfd->events);
2289 }
2290
2291 fdchangecnt = 0;
2292 }
2293
2294 /* something about the given fd changed */
2295 inline_size
2296 void
2297 fd_change (EV_P_ int fd, int flags)
2298 {
2299 unsigned char reify = anfds [fd].reify;
2300 anfds [fd].reify |= flags;
2301
2302 if (ecb_expect_true (!reify))
2303 {
2304 ++fdchangecnt;
2305 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2306 fdchanges [fdchangecnt - 1] = fd;
2307 }
2308 }
2309
2310 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2311 inline_speed ecb_cold void
2312 fd_kill (EV_P_ int fd)
2313 {
2314 ev_io *w;
2315
2316 while ((w = (ev_io *)anfds [fd].head))
2317 {
2318 ev_io_stop (EV_A_ w);
2319 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2320 }
2321 }
2322
2323 /* check whether the given fd is actually valid, for error recovery */
2324 inline_size ecb_cold int
2325 fd_valid (int fd)
2326 {
2327 #ifdef _WIN32
2328 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2329 #else
2330 return fcntl (fd, F_GETFD) != -1;
2331 #endif
2332 }
2333
2334 /* called on EBADF to verify fds */
2335 ecb_noinline ecb_cold
2336 static void
2337 fd_ebadf (EV_P)
2338 {
2339 int fd;
2340
2341 for (fd = 0; fd < anfdmax; ++fd)
2342 if (anfds [fd].events)
2343 if (!fd_valid (fd) && errno == EBADF)
2344 fd_kill (EV_A_ fd);
2345 }
2346
2347 /* called on ENOMEM in select/poll to kill some fds and retry */
2348 ecb_noinline ecb_cold
2349 static void
2350 fd_enomem (EV_P)
2351 {
2352 int fd;
2353
2354 for (fd = anfdmax; fd--; )
2355 if (anfds [fd].events)
2356 {
2357 fd_kill (EV_A_ fd);
2358 break;
2359 }
2360 }
2361
2362 /* usually called after fork if backend needs to re-arm all fds from scratch */
2363 ecb_noinline
2364 static void
2365 fd_rearm_all (EV_P)
2366 {
2367 int fd;
2368
2369 for (fd = 0; fd < anfdmax; ++fd)
2370 if (anfds [fd].events)
2371 {
2372 anfds [fd].events = 0;
2373 anfds [fd].emask = 0;
2374 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2375 }
2376 }
2377
2378 /* used to prepare libev internal fd's */
2379 /* this is not fork-safe */
2380 inline_speed void
2381 fd_intern (int fd)
2382 {
2383 #ifdef _WIN32
2384 unsigned long arg = 1;
2385 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2386 #else
2387 fcntl (fd, F_SETFD, FD_CLOEXEC);
2388 fcntl (fd, F_SETFL, O_NONBLOCK);
2389 #endif
2390 }
2391
2392 /*****************************************************************************/
2393
2394 /*
2395 * the heap functions want a real array index. array index 0 is guaranteed to not
2396 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2397 * the branching factor of the d-tree.
2398 */
2399
2400 /*
2401 * at the moment we allow libev the luxury of two heaps,
2402 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2403 * which is more cache-efficient.
2404 * the difference is about 5% with 50000+ watchers.
2405 */
2406 #if EV_USE_4HEAP
2407
2408 #define DHEAP 4
2409 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2410 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2411 #define UPHEAP_DONE(p,k) ((p) == (k))
2412
2413 /* away from the root */
2414 inline_speed void
2415 downheap (ANHE *heap, int N, int k)
2416 {
2417 ANHE he = heap [k];
2418 ANHE *E = heap + N + HEAP0;
2419
2420 for (;;)
2421 {
2422 ev_tstamp minat;
2423 ANHE *minpos;
2424 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2425
2426 /* find minimum child */
2427 if (ecb_expect_true (pos + DHEAP - 1 < E))
2428 {
2429 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2430 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2431 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2432 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2433 }
2434 else if (pos < E)
2435 {
2436 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2437 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2438 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2439 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2440 }
2441 else
2442 break;
2443
2444 if (ANHE_at (he) <= minat)
2445 break;
2446
2447 heap [k] = *minpos;
2448 ev_active (ANHE_w (*minpos)) = k;
2449
2450 k = minpos - heap;
2451 }
2452
2453 heap [k] = he;
2454 ev_active (ANHE_w (he)) = k;
2455 }
2456
2457 #else /* not 4HEAP */
2458
2459 #define HEAP0 1
2460 #define HPARENT(k) ((k) >> 1)
2461 #define UPHEAP_DONE(p,k) (!(p))
2462
2463 /* away from the root */
2464 inline_speed void
2465 downheap (ANHE *heap, int N, int k)
2466 {
2467 ANHE he = heap [k];
2468
2469 for (;;)
2470 {
2471 int c = k << 1;
2472
2473 if (c >= N + HEAP0)
2474 break;
2475
2476 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2477 ? 1 : 0;
2478
2479 if (ANHE_at (he) <= ANHE_at (heap [c]))
2480 break;
2481
2482 heap [k] = heap [c];
2483 ev_active (ANHE_w (heap [k])) = k;
2484
2485 k = c;
2486 }
2487
2488 heap [k] = he;
2489 ev_active (ANHE_w (he)) = k;
2490 }
2491 #endif
2492
2493 /* towards the root */
2494 inline_speed void
2495 upheap (ANHE *heap, int k)
2496 {
2497 ANHE he = heap [k];
2498
2499 for (;;)
2500 {
2501 int p = HPARENT (k);
2502
2503 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2504 break;
2505
2506 heap [k] = heap [p];
2507 ev_active (ANHE_w (heap [k])) = k;
2508 k = p;
2509 }
2510
2511 heap [k] = he;
2512 ev_active (ANHE_w (he)) = k;
2513 }
2514
2515 /* move an element suitably so it is in a correct place */
2516 inline_size void
2517 adjustheap (ANHE *heap, int N, int k)
2518 {
2519 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2520 upheap (heap, k);
2521 else
2522 downheap (heap, N, k);
2523 }
2524
2525 /* rebuild the heap: this function is used only once and executed rarely */
2526 inline_size void
2527 reheap (ANHE *heap, int N)
2528 {
2529 int i;
2530
2531 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2532 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2533 for (i = 0; i < N; ++i)
2534 upheap (heap, i + HEAP0);
2535 }
2536
2537 /*****************************************************************************/
2538
2539 /* associate signal watchers to a signal signal */
2540 typedef struct
2541 {
2542 EV_ATOMIC_T pending;
2543 #if EV_MULTIPLICITY
2544 EV_P;
2545 #endif
2546 WL head;
2547 } ANSIG;
2548
2549 static ANSIG signals [EV_NSIG - 1];
2550
2551 /*****************************************************************************/
2552
2553 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2554
2555 ecb_noinline ecb_cold
2556 static void
2557 evpipe_init (EV_P)
2558 {
2559 if (!ev_is_active (&pipe_w))
2560 {
2561 int fds [2];
2562
2563 # if EV_USE_EVENTFD
2564 fds [0] = -1;
2565 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2566 if (fds [1] < 0 && errno == EINVAL)
2567 fds [1] = eventfd (0, 0);
2568
2569 if (fds [1] < 0)
2570 # endif
2571 {
2572 while (pipe (fds))
2573 ev_syserr ("(libev) error creating signal/async pipe");
2574
2575 fd_intern (fds [0]);
2576 }
2577
2578 evpipe [0] = fds [0];
2579
2580 if (evpipe [1] < 0)
2581 evpipe [1] = fds [1]; /* first call, set write fd */
2582 else
2583 {
2584 /* on subsequent calls, do not change evpipe [1] */
2585 /* so that evpipe_write can always rely on its value. */
2586 /* this branch does not do anything sensible on windows, */
2587 /* so must not be executed on windows */
2588
2589 dup2 (fds [1], evpipe [1]);
2590 close (fds [1]);
2591 }
2592
2593 fd_intern (evpipe [1]);
2594
2595 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2596 ev_io_start (EV_A_ &pipe_w);
2597 ev_unref (EV_A); /* watcher should not keep loop alive */
2598 }
2599 }
2600
2601 inline_speed void
2602 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2603 {
2604 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2605
2606 if (ecb_expect_true (*flag))
2607 return;
2608
2609 *flag = 1;
2610 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2611
2612 pipe_write_skipped = 1;
2613
2614 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2615
2616 if (pipe_write_wanted)
2617 {
2618 int old_errno;
2619
2620 pipe_write_skipped = 0;
2621 ECB_MEMORY_FENCE_RELEASE;
2622
2623 old_errno = errno; /* save errno because write will clobber it */
2624
2625 #if EV_USE_EVENTFD
2626 if (evpipe [0] < 0)
2627 {
2628 uint64_t counter = 1;
2629 write (evpipe [1], &counter, sizeof (uint64_t));
2630 }
2631 else
2632 #endif
2633 {
2634 #ifdef _WIN32
2635 WSABUF buf;
2636 DWORD sent;
2637 buf.buf = (char *)&buf;
2638 buf.len = 1;
2639 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2640 #else
2641 write (evpipe [1], &(evpipe [1]), 1);
2642 #endif
2643 }
2644
2645 errno = old_errno;
2646 }
2647 }
2648
2649 /* called whenever the libev signal pipe */
2650 /* got some events (signal, async) */
2651 static void
2652 pipecb (EV_P_ ev_io *iow, int revents)
2653 {
2654 int i;
2655
2656 if (revents & EV_READ)
2657 {
2658 #if EV_USE_EVENTFD
2659 if (evpipe [0] < 0)
2660 {
2661 uint64_t counter;
2662 read (evpipe [1], &counter, sizeof (uint64_t));
2663 }
2664 else
2665 #endif
2666 {
2667 char dummy[4];
2668 #ifdef _WIN32
2669 WSABUF buf;
2670 DWORD recvd;
2671 DWORD flags = 0;
2672 buf.buf = dummy;
2673 buf.len = sizeof (dummy);
2674 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2675 #else
2676 read (evpipe [0], &dummy, sizeof (dummy));
2677 #endif
2678 }
2679 }
2680
2681 pipe_write_skipped = 0;
2682
2683 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2684
2685 #if EV_SIGNAL_ENABLE
2686 if (sig_pending)
2687 {
2688 sig_pending = 0;
2689
2690 ECB_MEMORY_FENCE;
2691
2692 for (i = EV_NSIG - 1; i--; )
2693 if (ecb_expect_false (signals [i].pending))
2694 ev_feed_signal_event (EV_A_ i + 1);
2695 }
2696 #endif
2697
2698 #if EV_ASYNC_ENABLE
2699 if (async_pending)
2700 {
2701 async_pending = 0;
2702
2703 ECB_MEMORY_FENCE;
2704
2705 for (i = asynccnt; i--; )
2706 if (asyncs [i]->sent)
2707 {
2708 asyncs [i]->sent = 0;
2709 ECB_MEMORY_FENCE_RELEASE;
2710 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2711 }
2712 }
2713 #endif
2714 }
2715
2716 /*****************************************************************************/
2717
2718 void
2719 ev_feed_signal (int signum) EV_NOEXCEPT
2720 {
2721 #if EV_MULTIPLICITY
2722 EV_P;
2723 ECB_MEMORY_FENCE_ACQUIRE;
2724 EV_A = signals [signum - 1].loop;
2725
2726 if (!EV_A)
2727 return;
2728 #endif
2729
2730 signals [signum - 1].pending = 1;
2731 evpipe_write (EV_A_ &sig_pending);
2732 }
2733
2734 static void
2735 ev_sighandler (int signum)
2736 {
2737 #ifdef _WIN32
2738 signal (signum, ev_sighandler);
2739 #endif
2740
2741 ev_feed_signal (signum);
2742 }
2743
2744 ecb_noinline
2745 void
2746 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2747 {
2748 WL w;
2749
2750 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2751 return;
2752
2753 --signum;
2754
2755 #if EV_MULTIPLICITY
2756 /* it is permissible to try to feed a signal to the wrong loop */
2757 /* or, likely more useful, feeding a signal nobody is waiting for */
2758
2759 if (ecb_expect_false (signals [signum].loop != EV_A))
2760 return;
2761 #endif
2762
2763 signals [signum].pending = 0;
2764 ECB_MEMORY_FENCE_RELEASE;
2765
2766 for (w = signals [signum].head; w; w = w->next)
2767 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2768 }
2769
2770 #if EV_USE_SIGNALFD
2771 static void
2772 sigfdcb (EV_P_ ev_io *iow, int revents)
2773 {
2774 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2775
2776 for (;;)
2777 {
2778 ssize_t res = read (sigfd, si, sizeof (si));
2779
2780 /* not ISO-C, as res might be -1, but works with SuS */
2781 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2782 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2783
2784 if (res < (ssize_t)sizeof (si))
2785 break;
2786 }
2787 }
2788 #endif
2789
2790 #endif
2791
2792 /*****************************************************************************/
2793
2794 #if EV_CHILD_ENABLE
2795 static WL childs [EV_PID_HASHSIZE];
2796
2797 static ev_signal childev;
2798
2799 #ifndef WIFCONTINUED
2800 # define WIFCONTINUED(status) 0
2801 #endif
2802
2803 /* handle a single child status event */
2804 inline_speed void
2805 child_reap (EV_P_ int chain, int pid, int status)
2806 {
2807 ev_child *w;
2808 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2809
2810 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2811 {
2812 if ((w->pid == pid || !w->pid)
2813 && (!traced || (w->flags & 1)))
2814 {
2815 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2816 w->rpid = pid;
2817 w->rstatus = status;
2818 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2819 }
2820 }
2821 }
2822
2823 #ifndef WCONTINUED
2824 # define WCONTINUED 0
2825 #endif
2826
2827 /* called on sigchld etc., calls waitpid */
2828 static void
2829 childcb (EV_P_ ev_signal *sw, int revents)
2830 {
2831 int pid, status;
2832
2833 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2834 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2835 if (!WCONTINUED
2836 || errno != EINVAL
2837 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2838 return;
2839
2840 /* make sure we are called again until all children have been reaped */
2841 /* we need to do it this way so that the callback gets called before we continue */
2842 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2843
2844 child_reap (EV_A_ pid, pid, status);
2845 if ((EV_PID_HASHSIZE) > 1)
2846 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2847 }
2848
2849 #endif
2850
2851 /*****************************************************************************/
2852
2853 #if EV_USE_IOCP
2854 # include "ev_iocp.c"
2855 #endif
2856 #if EV_USE_PORT
2857 # include "ev_port.c"
2858 #endif
2859 #if EV_USE_KQUEUE
2860 # include "ev_kqueue.c"
2861 #endif
2862 #if EV_USE_EPOLL
2863 # include "ev_epoll.c"
2864 #endif
2865 #if EV_USE_LINUXAIO
2866 # include "ev_linuxaio.c"
2867 #endif
2868 #if EV_USE_IOURING
2869 # include "ev_iouring.c"
2870 #endif
2871 #if EV_USE_POLL
2872 # include "ev_poll.c"
2873 #endif
2874 #if EV_USE_SELECT
2875 # include "ev_select.c"
2876 #endif
2877
2878 ecb_cold int
2879 ev_version_major (void) EV_NOEXCEPT
2880 {
2881 return EV_VERSION_MAJOR;
2882 }
2883
2884 ecb_cold int
2885 ev_version_minor (void) EV_NOEXCEPT
2886 {
2887 return EV_VERSION_MINOR;
2888 }
2889
2890 /* return true if we are running with elevated privileges and should ignore env variables */
2891 inline_size ecb_cold int
2892 enable_secure (void)
2893 {
2894 #ifdef _WIN32
2895 return 0;
2896 #else
2897 return getuid () != geteuid ()
2898 || getgid () != getegid ();
2899 #endif
2900 }
2901
2902 ecb_cold
2903 unsigned int
2904 ev_supported_backends (void) EV_NOEXCEPT
2905 {
2906 unsigned int flags = 0;
2907
2908 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2909 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2910 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2911 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2912 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2913 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2914 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2915
2916 return flags;
2917 }
2918
2919 ecb_cold
2920 unsigned int
2921 ev_recommended_backends (void) EV_NOEXCEPT
2922 {
2923 unsigned int flags = ev_supported_backends ();
2924
2925 #ifndef __NetBSD__
2926 /* kqueue is borked on everything but netbsd apparently */
2927 /* it usually doesn't work correctly on anything but sockets and pipes */
2928 flags &= ~EVBACKEND_KQUEUE;
2929 #endif
2930 #ifdef __APPLE__
2931 /* only select works correctly on that "unix-certified" platform */
2932 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2933 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2934 #endif
2935 #ifdef __FreeBSD__
2936 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2937 #endif
2938
2939 /* TODO: linuxaio is very experimental */
2940 #if !EV_RECOMMEND_LINUXAIO
2941 flags &= ~EVBACKEND_LINUXAIO;
2942 #endif
2943 /* TODO: linuxaio is super experimental */
2944 #if !EV_RECOMMEND_IOURING
2945 flags &= ~EVBACKEND_IOURING;
2946 #endif
2947
2948 return flags;
2949 }
2950
2951 ecb_cold
2952 unsigned int
2953 ev_embeddable_backends (void) EV_NOEXCEPT
2954 {
2955 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2956
2957 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2958 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2959 flags &= ~EVBACKEND_EPOLL;
2960
2961 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
2962
2963 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
2964 * because our backend_fd is the epoll fd we need as fallback.
2965 * if the kernel ever is fixed, this might change...
2966 */
2967
2968 return flags;
2969 }
2970
2971 unsigned int
2972 ev_backend (EV_P) EV_NOEXCEPT
2973 {
2974 return backend;
2975 }
2976
2977 #if EV_FEATURE_API
2978 unsigned int
2979 ev_iteration (EV_P) EV_NOEXCEPT
2980 {
2981 return loop_count;
2982 }
2983
2984 unsigned int
2985 ev_depth (EV_P) EV_NOEXCEPT
2986 {
2987 return loop_depth;
2988 }
2989
2990 void
2991 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2992 {
2993 io_blocktime = interval;
2994 }
2995
2996 void
2997 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2998 {
2999 timeout_blocktime = interval;
3000 }
3001
3002 void
3003 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3004 {
3005 userdata = data;
3006 }
3007
3008 void *
3009 ev_userdata (EV_P) EV_NOEXCEPT
3010 {
3011 return userdata;
3012 }
3013
3014 void
3015 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3016 {
3017 invoke_cb = invoke_pending_cb;
3018 }
3019
3020 void
3021 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3022 {
3023 release_cb = release;
3024 acquire_cb = acquire;
3025 }
3026 #endif
3027
3028 /* initialise a loop structure, must be zero-initialised */
3029 ecb_noinline ecb_cold
3030 static void
3031 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3032 {
3033 if (!backend)
3034 {
3035 origflags = flags;
3036
3037 #if EV_USE_REALTIME
3038 if (!have_realtime)
3039 {
3040 struct timespec ts;
3041
3042 if (!clock_gettime (CLOCK_REALTIME, &ts))
3043 have_realtime = 1;
3044 }
3045 #endif
3046
3047 #if EV_USE_MONOTONIC
3048 if (!have_monotonic)
3049 {
3050 struct timespec ts;
3051
3052 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3053 have_monotonic = 1;
3054 }
3055 #endif
3056
3057 /* pid check not overridable via env */
3058 #ifndef _WIN32
3059 if (flags & EVFLAG_FORKCHECK)
3060 curpid = getpid ();
3061 #endif
3062
3063 if (!(flags & EVFLAG_NOENV)
3064 && !enable_secure ()
3065 && getenv ("LIBEV_FLAGS"))
3066 flags = atoi (getenv ("LIBEV_FLAGS"));
3067
3068 ev_rt_now = ev_time ();
3069 mn_now = get_clock ();
3070 now_floor = mn_now;
3071 rtmn_diff = ev_rt_now - mn_now;
3072 #if EV_FEATURE_API
3073 invoke_cb = ev_invoke_pending;
3074 #endif
3075
3076 io_blocktime = 0.;
3077 timeout_blocktime = 0.;
3078 backend = 0;
3079 backend_fd = -1;
3080 sig_pending = 0;
3081 #if EV_ASYNC_ENABLE
3082 async_pending = 0;
3083 #endif
3084 pipe_write_skipped = 0;
3085 pipe_write_wanted = 0;
3086 evpipe [0] = -1;
3087 evpipe [1] = -1;
3088 #if EV_USE_INOTIFY
3089 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3090 #endif
3091 #if EV_USE_SIGNALFD
3092 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3093 #endif
3094
3095 if (!(flags & EVBACKEND_MASK))
3096 flags |= ev_recommended_backends ();
3097
3098 #if EV_USE_IOCP
3099 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3100 #endif
3101 #if EV_USE_PORT
3102 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3103 #endif
3104 #if EV_USE_KQUEUE
3105 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3106 #endif
3107 #if EV_USE_IOURING
3108 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3109 #endif
3110 #if EV_USE_LINUXAIO
3111 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3112 #endif
3113 #if EV_USE_EPOLL
3114 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3115 #endif
3116 #if EV_USE_POLL
3117 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3118 #endif
3119 #if EV_USE_SELECT
3120 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3121 #endif
3122
3123 ev_prepare_init (&pending_w, pendingcb);
3124
3125 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3126 ev_init (&pipe_w, pipecb);
3127 ev_set_priority (&pipe_w, EV_MAXPRI);
3128 #endif
3129 }
3130 }
3131
3132 /* free up a loop structure */
3133 ecb_cold
3134 void
3135 ev_loop_destroy (EV_P)
3136 {
3137 int i;
3138
3139 #if EV_MULTIPLICITY
3140 /* mimic free (0) */
3141 if (!EV_A)
3142 return;
3143 #endif
3144
3145 #if EV_CLEANUP_ENABLE
3146 /* queue cleanup watchers (and execute them) */
3147 if (ecb_expect_false (cleanupcnt))
3148 {
3149 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3150 EV_INVOKE_PENDING;
3151 }
3152 #endif
3153
3154 #if EV_CHILD_ENABLE
3155 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3156 {
3157 ev_ref (EV_A); /* child watcher */
3158 ev_signal_stop (EV_A_ &childev);
3159 }
3160 #endif
3161
3162 if (ev_is_active (&pipe_w))
3163 {
3164 /*ev_ref (EV_A);*/
3165 /*ev_io_stop (EV_A_ &pipe_w);*/
3166
3167 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3168 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3169 }
3170
3171 #if EV_USE_SIGNALFD
3172 if (ev_is_active (&sigfd_w))
3173 close (sigfd);
3174 #endif
3175
3176 #if EV_USE_INOTIFY
3177 if (fs_fd >= 0)
3178 close (fs_fd);
3179 #endif
3180
3181 if (backend_fd >= 0)
3182 close (backend_fd);
3183
3184 #if EV_USE_IOCP
3185 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3186 #endif
3187 #if EV_USE_PORT
3188 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3189 #endif
3190 #if EV_USE_KQUEUE
3191 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3192 #endif
3193 #if EV_USE_IOURING
3194 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3195 #endif
3196 #if EV_USE_LINUXAIO
3197 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3198 #endif
3199 #if EV_USE_EPOLL
3200 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3201 #endif
3202 #if EV_USE_POLL
3203 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3204 #endif
3205 #if EV_USE_SELECT
3206 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3207 #endif
3208
3209 for (i = NUMPRI; i--; )
3210 {
3211 array_free (pending, [i]);
3212 #if EV_IDLE_ENABLE
3213 array_free (idle, [i]);
3214 #endif
3215 }
3216
3217 ev_free (anfds); anfds = 0; anfdmax = 0;
3218
3219 /* have to use the microsoft-never-gets-it-right macro */
3220 array_free (rfeed, EMPTY);
3221 array_free (fdchange, EMPTY);
3222 array_free (timer, EMPTY);
3223 #if EV_PERIODIC_ENABLE
3224 array_free (periodic, EMPTY);
3225 #endif
3226 #if EV_FORK_ENABLE
3227 array_free (fork, EMPTY);
3228 #endif
3229 #if EV_CLEANUP_ENABLE
3230 array_free (cleanup, EMPTY);
3231 #endif
3232 array_free (prepare, EMPTY);
3233 array_free (check, EMPTY);
3234 #if EV_ASYNC_ENABLE
3235 array_free (async, EMPTY);
3236 #endif
3237
3238 backend = 0;
3239
3240 #if EV_MULTIPLICITY
3241 if (ev_is_default_loop (EV_A))
3242 #endif
3243 ev_default_loop_ptr = 0;
3244 #if EV_MULTIPLICITY
3245 else
3246 ev_free (EV_A);
3247 #endif
3248 }
3249
3250 #if EV_USE_INOTIFY
3251 inline_size void infy_fork (EV_P);
3252 #endif
3253
3254 inline_size void
3255 loop_fork (EV_P)
3256 {
3257 #if EV_USE_PORT
3258 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3259 #endif
3260 #if EV_USE_KQUEUE
3261 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3262 #endif
3263 #if EV_USE_IOURING
3264 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3265 #endif
3266 #if EV_USE_LINUXAIO
3267 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3268 #endif
3269 #if EV_USE_EPOLL
3270 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3271 #endif
3272 #if EV_USE_INOTIFY
3273 infy_fork (EV_A);
3274 #endif
3275
3276 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3277 if (ev_is_active (&pipe_w) && postfork != 2)
3278 {
3279 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3280
3281 ev_ref (EV_A);
3282 ev_io_stop (EV_A_ &pipe_w);
3283
3284 if (evpipe [0] >= 0)
3285 EV_WIN32_CLOSE_FD (evpipe [0]);
3286
3287 evpipe_init (EV_A);
3288 /* iterate over everything, in case we missed something before */
3289 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3290 }
3291 #endif
3292
3293 postfork = 0;
3294 }
3295
3296 #if EV_MULTIPLICITY
3297
3298 ecb_cold
3299 struct ev_loop *
3300 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3301 {
3302 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3303
3304 memset (EV_A, 0, sizeof (struct ev_loop));
3305 loop_init (EV_A_ flags);
3306
3307 if (ev_backend (EV_A))
3308 return EV_A;
3309
3310 ev_free (EV_A);
3311 return 0;
3312 }
3313
3314 #endif /* multiplicity */
3315
3316 #if EV_VERIFY
3317 ecb_noinline ecb_cold
3318 static void
3319 verify_watcher (EV_P_ W w)
3320 {
3321 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3322
3323 if (w->pending)
3324 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3325 }
3326
3327 ecb_noinline ecb_cold
3328 static void
3329 verify_heap (EV_P_ ANHE *heap, int N)
3330 {
3331 int i;
3332
3333 for (i = HEAP0; i < N + HEAP0; ++i)
3334 {
3335 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3336 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3337 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3338
3339 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3340 }
3341 }
3342
3343 ecb_noinline ecb_cold
3344 static void
3345 array_verify (EV_P_ W *ws, int cnt)
3346 {
3347 while (cnt--)
3348 {
3349 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3350 verify_watcher (EV_A_ ws [cnt]);
3351 }
3352 }
3353 #endif
3354
3355 #if EV_FEATURE_API
3356 void ecb_cold
3357 ev_verify (EV_P) EV_NOEXCEPT
3358 {
3359 #if EV_VERIFY
3360 int i;
3361 WL w, w2;
3362
3363 assert (activecnt >= -1);
3364
3365 assert (fdchangemax >= fdchangecnt);
3366 for (i = 0; i < fdchangecnt; ++i)
3367 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3368
3369 assert (anfdmax >= 0);
3370 for (i = 0; i < anfdmax; ++i)
3371 {
3372 int j = 0;
3373
3374 for (w = w2 = anfds [i].head; w; w = w->next)
3375 {
3376 verify_watcher (EV_A_ (W)w);
3377
3378 if (j++ & 1)
3379 {
3380 assert (("libev: io watcher list contains a loop", w != w2));
3381 w2 = w2->next;
3382 }
3383
3384 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3385 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3386 }
3387 }
3388
3389 assert (timermax >= timercnt);
3390 verify_heap (EV_A_ timers, timercnt);
3391
3392 #if EV_PERIODIC_ENABLE
3393 assert (periodicmax >= periodiccnt);
3394 verify_heap (EV_A_ periodics, periodiccnt);
3395 #endif
3396
3397 for (i = NUMPRI; i--; )
3398 {
3399 assert (pendingmax [i] >= pendingcnt [i]);
3400 #if EV_IDLE_ENABLE
3401 assert (idleall >= 0);
3402 assert (idlemax [i] >= idlecnt [i]);
3403 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3404 #endif
3405 }
3406
3407 #if EV_FORK_ENABLE
3408 assert (forkmax >= forkcnt);
3409 array_verify (EV_A_ (W *)forks, forkcnt);
3410 #endif
3411
3412 #if EV_CLEANUP_ENABLE
3413 assert (cleanupmax >= cleanupcnt);
3414 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3415 #endif
3416
3417 #if EV_ASYNC_ENABLE
3418 assert (asyncmax >= asynccnt);
3419 array_verify (EV_A_ (W *)asyncs, asynccnt);
3420 #endif
3421
3422 #if EV_PREPARE_ENABLE
3423 assert (preparemax >= preparecnt);
3424 array_verify (EV_A_ (W *)prepares, preparecnt);
3425 #endif
3426
3427 #if EV_CHECK_ENABLE
3428 assert (checkmax >= checkcnt);
3429 array_verify (EV_A_ (W *)checks, checkcnt);
3430 #endif
3431
3432 # if 0
3433 #if EV_CHILD_ENABLE
3434 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3435 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3436 #endif
3437 # endif
3438 #endif
3439 }
3440 #endif
3441
3442 #if EV_MULTIPLICITY
3443 ecb_cold
3444 struct ev_loop *
3445 #else
3446 int
3447 #endif
3448 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3449 {
3450 if (!ev_default_loop_ptr)
3451 {
3452 #if EV_MULTIPLICITY
3453 EV_P = ev_default_loop_ptr = &default_loop_struct;
3454 #else
3455 ev_default_loop_ptr = 1;
3456 #endif
3457
3458 loop_init (EV_A_ flags);
3459
3460 if (ev_backend (EV_A))
3461 {
3462 #if EV_CHILD_ENABLE
3463 ev_signal_init (&childev, childcb, SIGCHLD);
3464 ev_set_priority (&childev, EV_MAXPRI);
3465 ev_signal_start (EV_A_ &childev);
3466 ev_unref (EV_A); /* child watcher should not keep loop alive */
3467 #endif
3468 }
3469 else
3470 ev_default_loop_ptr = 0;
3471 }
3472
3473 return ev_default_loop_ptr;
3474 }
3475
3476 void
3477 ev_loop_fork (EV_P) EV_NOEXCEPT
3478 {
3479 postfork = 1;
3480 }
3481
3482 /*****************************************************************************/
3483
3484 void
3485 ev_invoke (EV_P_ void *w, int revents)
3486 {
3487 EV_CB_INVOKE ((W)w, revents);
3488 }
3489
3490 unsigned int
3491 ev_pending_count (EV_P) EV_NOEXCEPT
3492 {
3493 int pri;
3494 unsigned int count = 0;
3495
3496 for (pri = NUMPRI; pri--; )
3497 count += pendingcnt [pri];
3498
3499 return count;
3500 }
3501
3502 ecb_noinline
3503 void
3504 ev_invoke_pending (EV_P)
3505 {
3506 pendingpri = NUMPRI;
3507
3508 do
3509 {
3510 --pendingpri;
3511
3512 /* pendingpri possibly gets modified in the inner loop */
3513 while (pendingcnt [pendingpri])
3514 {
3515 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3516
3517 p->w->pending = 0;
3518 EV_CB_INVOKE (p->w, p->events);
3519 EV_FREQUENT_CHECK;
3520 }
3521 }
3522 while (pendingpri);
3523 }
3524
3525 #if EV_IDLE_ENABLE
3526 /* make idle watchers pending. this handles the "call-idle */
3527 /* only when higher priorities are idle" logic */
3528 inline_size void
3529 idle_reify (EV_P)
3530 {
3531 if (ecb_expect_false (idleall))
3532 {
3533 int pri;
3534
3535 for (pri = NUMPRI; pri--; )
3536 {
3537 if (pendingcnt [pri])
3538 break;
3539
3540 if (idlecnt [pri])
3541 {
3542 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3543 break;
3544 }
3545 }
3546 }
3547 }
3548 #endif
3549
3550 /* make timers pending */
3551 inline_size void
3552 timers_reify (EV_P)
3553 {
3554 EV_FREQUENT_CHECK;
3555
3556 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3557 {
3558 do
3559 {
3560 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3561
3562 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3563
3564 /* first reschedule or stop timer */
3565 if (w->repeat)
3566 {
3567 ev_at (w) += w->repeat;
3568 if (ev_at (w) < mn_now)
3569 ev_at (w) = mn_now;
3570
3571 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3572
3573 ANHE_at_cache (timers [HEAP0]);
3574 downheap (timers, timercnt, HEAP0);
3575 }
3576 else
3577 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3578
3579 EV_FREQUENT_CHECK;
3580 feed_reverse (EV_A_ (W)w);
3581 }
3582 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3583
3584 feed_reverse_done (EV_A_ EV_TIMER);
3585 }
3586 }
3587
3588 #if EV_PERIODIC_ENABLE
3589
3590 ecb_noinline
3591 static void
3592 periodic_recalc (EV_P_ ev_periodic *w)
3593 {
3594 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3595 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3596
3597 /* the above almost always errs on the low side */
3598 while (at <= ev_rt_now)
3599 {
3600 ev_tstamp nat = at + w->interval;
3601
3602 /* when resolution fails us, we use ev_rt_now */
3603 if (ecb_expect_false (nat == at))
3604 {
3605 at = ev_rt_now;
3606 break;
3607 }
3608
3609 at = nat;
3610 }
3611
3612 ev_at (w) = at;
3613 }
3614
3615 /* make periodics pending */
3616 inline_size void
3617 periodics_reify (EV_P)
3618 {
3619 EV_FREQUENT_CHECK;
3620
3621 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3622 {
3623 do
3624 {
3625 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3626
3627 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3628
3629 /* first reschedule or stop timer */
3630 if (w->reschedule_cb)
3631 {
3632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3633
3634 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3635
3636 ANHE_at_cache (periodics [HEAP0]);
3637 downheap (periodics, periodiccnt, HEAP0);
3638 }
3639 else if (w->interval)
3640 {
3641 periodic_recalc (EV_A_ w);
3642 ANHE_at_cache (periodics [HEAP0]);
3643 downheap (periodics, periodiccnt, HEAP0);
3644 }
3645 else
3646 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3647
3648 EV_FREQUENT_CHECK;
3649 feed_reverse (EV_A_ (W)w);
3650 }
3651 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3652
3653 feed_reverse_done (EV_A_ EV_PERIODIC);
3654 }
3655 }
3656
3657 /* simply recalculate all periodics */
3658 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3659 ecb_noinline ecb_cold
3660 static void
3661 periodics_reschedule (EV_P)
3662 {
3663 int i;
3664
3665 /* adjust periodics after time jump */
3666 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3667 {
3668 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3669
3670 if (w->reschedule_cb)
3671 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3672 else if (w->interval)
3673 periodic_recalc (EV_A_ w);
3674
3675 ANHE_at_cache (periodics [i]);
3676 }
3677
3678 reheap (periodics, periodiccnt);
3679 }
3680 #endif
3681
3682 /* adjust all timers by a given offset */
3683 ecb_noinline ecb_cold
3684 static void
3685 timers_reschedule (EV_P_ ev_tstamp adjust)
3686 {
3687 int i;
3688
3689 for (i = 0; i < timercnt; ++i)
3690 {
3691 ANHE *he = timers + i + HEAP0;
3692 ANHE_w (*he)->at += adjust;
3693 ANHE_at_cache (*he);
3694 }
3695 }
3696
3697 /* fetch new monotonic and realtime times from the kernel */
3698 /* also detect if there was a timejump, and act accordingly */
3699 inline_speed void
3700 time_update (EV_P_ ev_tstamp max_block)
3701 {
3702 #if EV_USE_MONOTONIC
3703 if (ecb_expect_true (have_monotonic))
3704 {
3705 int i;
3706 ev_tstamp odiff = rtmn_diff;
3707
3708 mn_now = get_clock ();
3709
3710 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3711 /* interpolate in the meantime */
3712 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3713 {
3714 ev_rt_now = rtmn_diff + mn_now;
3715 return;
3716 }
3717
3718 now_floor = mn_now;
3719 ev_rt_now = ev_time ();
3720
3721 /* loop a few times, before making important decisions.
3722 * on the choice of "4": one iteration isn't enough,
3723 * in case we get preempted during the calls to
3724 * ev_time and get_clock. a second call is almost guaranteed
3725 * to succeed in that case, though. and looping a few more times
3726 * doesn't hurt either as we only do this on time-jumps or
3727 * in the unlikely event of having been preempted here.
3728 */
3729 for (i = 4; --i; )
3730 {
3731 ev_tstamp diff;
3732 rtmn_diff = ev_rt_now - mn_now;
3733
3734 diff = odiff - rtmn_diff;
3735
3736 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3737 return; /* all is well */
3738
3739 ev_rt_now = ev_time ();
3740 mn_now = get_clock ();
3741 now_floor = mn_now;
3742 }
3743
3744 /* no timer adjustment, as the monotonic clock doesn't jump */
3745 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3746 # if EV_PERIODIC_ENABLE
3747 periodics_reschedule (EV_A);
3748 # endif
3749 }
3750 else
3751 #endif
3752 {
3753 ev_rt_now = ev_time ();
3754
3755 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3756 {
3757 /* adjust timers. this is easy, as the offset is the same for all of them */
3758 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3759 #if EV_PERIODIC_ENABLE
3760 periodics_reschedule (EV_A);
3761 #endif
3762 }
3763
3764 mn_now = ev_rt_now;
3765 }
3766 }
3767
3768 int
3769 ev_run (EV_P_ int flags)
3770 {
3771 #if EV_FEATURE_API
3772 ++loop_depth;
3773 #endif
3774
3775 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3776
3777 loop_done = EVBREAK_CANCEL;
3778
3779 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3780
3781 do
3782 {
3783 #if EV_VERIFY >= 2
3784 ev_verify (EV_A);
3785 #endif
3786
3787 #ifndef _WIN32
3788 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3789 if (ecb_expect_false (getpid () != curpid))
3790 {
3791 curpid = getpid ();
3792 postfork = 1;
3793 }
3794 #endif
3795
3796 #if EV_FORK_ENABLE
3797 /* we might have forked, so queue fork handlers */
3798 if (ecb_expect_false (postfork))
3799 if (forkcnt)
3800 {
3801 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3802 EV_INVOKE_PENDING;
3803 }
3804 #endif
3805
3806 #if EV_PREPARE_ENABLE
3807 /* queue prepare watchers (and execute them) */
3808 if (ecb_expect_false (preparecnt))
3809 {
3810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3811 EV_INVOKE_PENDING;
3812 }
3813 #endif
3814
3815 if (ecb_expect_false (loop_done))
3816 break;
3817
3818 /* we might have forked, so reify kernel state if necessary */
3819 if (ecb_expect_false (postfork))
3820 loop_fork (EV_A);
3821
3822 /* update fd-related kernel structures */
3823 fd_reify (EV_A);
3824
3825 /* calculate blocking time */
3826 {
3827 ev_tstamp waittime = 0.;
3828 ev_tstamp sleeptime = 0.;
3829
3830 /* remember old timestamp for io_blocktime calculation */
3831 ev_tstamp prev_mn_now = mn_now;
3832
3833 /* update time to cancel out callback processing overhead */
3834 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3835
3836 /* from now on, we want a pipe-wake-up */
3837 pipe_write_wanted = 1;
3838
3839 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3840
3841 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3842 {
3843 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3844
3845 if (timercnt)
3846 {
3847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3848 if (waittime > to) waittime = to;
3849 }
3850
3851 #if EV_PERIODIC_ENABLE
3852 if (periodiccnt)
3853 {
3854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3855 if (waittime > to) waittime = to;
3856 }
3857 #endif
3858
3859 /* don't let timeouts decrease the waittime below timeout_blocktime */
3860 if (ecb_expect_false (waittime < timeout_blocktime))
3861 waittime = timeout_blocktime;
3862
3863 /* at this point, we NEED to wait, so we have to ensure */
3864 /* to pass a minimum nonzero value to the backend */
3865 if (ecb_expect_false (waittime < backend_mintime))
3866 waittime = backend_mintime;
3867
3868 /* extra check because io_blocktime is commonly 0 */
3869 if (ecb_expect_false (io_blocktime))
3870 {
3871 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3872
3873 if (sleeptime > waittime - backend_mintime)
3874 sleeptime = waittime - backend_mintime;
3875
3876 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3877 {
3878 ev_sleep (sleeptime);
3879 waittime -= sleeptime;
3880 }
3881 }
3882 }
3883
3884 #if EV_FEATURE_API
3885 ++loop_count;
3886 #endif
3887 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3888 backend_poll (EV_A_ waittime);
3889 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3890
3891 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3892
3893 ECB_MEMORY_FENCE_ACQUIRE;
3894 if (pipe_write_skipped)
3895 {
3896 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3897 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3898 }
3899
3900 /* update ev_rt_now, do magic */
3901 time_update (EV_A_ waittime + sleeptime);
3902 }
3903
3904 /* queue pending timers and reschedule them */
3905 timers_reify (EV_A); /* relative timers called last */
3906 #if EV_PERIODIC_ENABLE
3907 periodics_reify (EV_A); /* absolute timers called first */
3908 #endif
3909
3910 #if EV_IDLE_ENABLE
3911 /* queue idle watchers unless other events are pending */
3912 idle_reify (EV_A);
3913 #endif
3914
3915 #if EV_CHECK_ENABLE
3916 /* queue check watchers, to be executed first */
3917 if (ecb_expect_false (checkcnt))
3918 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3919 #endif
3920
3921 EV_INVOKE_PENDING;
3922 }
3923 while (ecb_expect_true (
3924 activecnt
3925 && !loop_done
3926 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3927 ));
3928
3929 if (loop_done == EVBREAK_ONE)
3930 loop_done = EVBREAK_CANCEL;
3931
3932 #if EV_FEATURE_API
3933 --loop_depth;
3934 #endif
3935
3936 return activecnt;
3937 }
3938
3939 void
3940 ev_break (EV_P_ int how) EV_NOEXCEPT
3941 {
3942 loop_done = how;
3943 }
3944
3945 void
3946 ev_ref (EV_P) EV_NOEXCEPT
3947 {
3948 ++activecnt;
3949 }
3950
3951 void
3952 ev_unref (EV_P) EV_NOEXCEPT
3953 {
3954 --activecnt;
3955 }
3956
3957 void
3958 ev_now_update (EV_P) EV_NOEXCEPT
3959 {
3960 time_update (EV_A_ EV_TSTAMP_HUGE);
3961 }
3962
3963 void
3964 ev_suspend (EV_P) EV_NOEXCEPT
3965 {
3966 ev_now_update (EV_A);
3967 }
3968
3969 void
3970 ev_resume (EV_P) EV_NOEXCEPT
3971 {
3972 ev_tstamp mn_prev = mn_now;
3973
3974 ev_now_update (EV_A);
3975 timers_reschedule (EV_A_ mn_now - mn_prev);
3976 #if EV_PERIODIC_ENABLE
3977 /* TODO: really do this? */
3978 periodics_reschedule (EV_A);
3979 #endif
3980 }
3981
3982 /*****************************************************************************/
3983 /* singly-linked list management, used when the expected list length is short */
3984
3985 inline_size void
3986 wlist_add (WL *head, WL elem)
3987 {
3988 elem->next = *head;
3989 *head = elem;
3990 }
3991
3992 inline_size void
3993 wlist_del (WL *head, WL elem)
3994 {
3995 while (*head)
3996 {
3997 if (ecb_expect_true (*head == elem))
3998 {
3999 *head = elem->next;
4000 break;
4001 }
4002
4003 head = &(*head)->next;
4004 }
4005 }
4006
4007 /* internal, faster, version of ev_clear_pending */
4008 inline_speed void
4009 clear_pending (EV_P_ W w)
4010 {
4011 if (w->pending)
4012 {
4013 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4014 w->pending = 0;
4015 }
4016 }
4017
4018 int
4019 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4020 {
4021 W w_ = (W)w;
4022 int pending = w_->pending;
4023
4024 if (ecb_expect_true (pending))
4025 {
4026 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4027 p->w = (W)&pending_w;
4028 w_->pending = 0;
4029 return p->events;
4030 }
4031 else
4032 return 0;
4033 }
4034
4035 inline_size void
4036 pri_adjust (EV_P_ W w)
4037 {
4038 int pri = ev_priority (w);
4039 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4040 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4041 ev_set_priority (w, pri);
4042 }
4043
4044 inline_speed void
4045 ev_start (EV_P_ W w, int active)
4046 {
4047 pri_adjust (EV_A_ w);
4048 w->active = active;
4049 ev_ref (EV_A);
4050 }
4051
4052 inline_size void
4053 ev_stop (EV_P_ W w)
4054 {
4055 ev_unref (EV_A);
4056 w->active = 0;
4057 }
4058
4059 /*****************************************************************************/
4060
4061 ecb_noinline
4062 void
4063 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4064 {
4065 int fd = w->fd;
4066
4067 if (ecb_expect_false (ev_is_active (w)))
4068 return;
4069
4070 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4071 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4072
4073 #if EV_VERIFY >= 2
4074 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4075 #endif
4076 EV_FREQUENT_CHECK;
4077
4078 ev_start (EV_A_ (W)w, 1);
4079 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4080 wlist_add (&anfds[fd].head, (WL)w);
4081
4082 /* common bug, apparently */
4083 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4084
4085 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4086 w->events &= ~EV__IOFDSET;
4087
4088 EV_FREQUENT_CHECK;
4089 }
4090
4091 ecb_noinline
4092 void
4093 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4094 {
4095 clear_pending (EV_A_ (W)w);
4096 if (ecb_expect_false (!ev_is_active (w)))
4097 return;
4098
4099 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4100
4101 #if EV_VERIFY >= 2
4102 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4103 #endif
4104 EV_FREQUENT_CHECK;
4105
4106 wlist_del (&anfds[w->fd].head, (WL)w);
4107 ev_stop (EV_A_ (W)w);
4108
4109 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4110
4111 EV_FREQUENT_CHECK;
4112 }
4113
4114 ecb_noinline
4115 void
4116 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4117 {
4118 if (ecb_expect_false (ev_is_active (w)))
4119 return;
4120
4121 ev_at (w) += mn_now;
4122
4123 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4124
4125 EV_FREQUENT_CHECK;
4126
4127 ++timercnt;
4128 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4129 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4130 ANHE_w (timers [ev_active (w)]) = (WT)w;
4131 ANHE_at_cache (timers [ev_active (w)]);
4132 upheap (timers, ev_active (w));
4133
4134 EV_FREQUENT_CHECK;
4135
4136 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4137 }
4138
4139 ecb_noinline
4140 void
4141 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4142 {
4143 clear_pending (EV_A_ (W)w);
4144 if (ecb_expect_false (!ev_is_active (w)))
4145 return;
4146
4147 EV_FREQUENT_CHECK;
4148
4149 {
4150 int active = ev_active (w);
4151
4152 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4153
4154 --timercnt;
4155
4156 if (ecb_expect_true (active < timercnt + HEAP0))
4157 {
4158 timers [active] = timers [timercnt + HEAP0];
4159 adjustheap (timers, timercnt, active);
4160 }
4161 }
4162
4163 ev_at (w) -= mn_now;
4164
4165 ev_stop (EV_A_ (W)w);
4166
4167 EV_FREQUENT_CHECK;
4168 }
4169
4170 ecb_noinline
4171 void
4172 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4173 {
4174 EV_FREQUENT_CHECK;
4175
4176 clear_pending (EV_A_ (W)w);
4177
4178 if (ev_is_active (w))
4179 {
4180 if (w->repeat)
4181 {
4182 ev_at (w) = mn_now + w->repeat;
4183 ANHE_at_cache (timers [ev_active (w)]);
4184 adjustheap (timers, timercnt, ev_active (w));
4185 }
4186 else
4187 ev_timer_stop (EV_A_ w);
4188 }
4189 else if (w->repeat)
4190 {
4191 ev_at (w) = w->repeat;
4192 ev_timer_start (EV_A_ w);
4193 }
4194
4195 EV_FREQUENT_CHECK;
4196 }
4197
4198 ev_tstamp
4199 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4200 {
4201 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4202 }
4203
4204 #if EV_PERIODIC_ENABLE
4205 ecb_noinline
4206 void
4207 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4208 {
4209 if (ecb_expect_false (ev_is_active (w)))
4210 return;
4211
4212 if (w->reschedule_cb)
4213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4214 else if (w->interval)
4215 {
4216 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4217 periodic_recalc (EV_A_ w);
4218 }
4219 else
4220 ev_at (w) = w->offset;
4221
4222 EV_FREQUENT_CHECK;
4223
4224 ++periodiccnt;
4225 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4226 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4227 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4228 ANHE_at_cache (periodics [ev_active (w)]);
4229 upheap (periodics, ev_active (w));
4230
4231 EV_FREQUENT_CHECK;
4232
4233 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4234 }
4235
4236 ecb_noinline
4237 void
4238 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4239 {
4240 clear_pending (EV_A_ (W)w);
4241 if (ecb_expect_false (!ev_is_active (w)))
4242 return;
4243
4244 EV_FREQUENT_CHECK;
4245
4246 {
4247 int active = ev_active (w);
4248
4249 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4250
4251 --periodiccnt;
4252
4253 if (ecb_expect_true (active < periodiccnt + HEAP0))
4254 {
4255 periodics [active] = periodics [periodiccnt + HEAP0];
4256 adjustheap (periodics, periodiccnt, active);
4257 }
4258 }
4259
4260 ev_stop (EV_A_ (W)w);
4261
4262 EV_FREQUENT_CHECK;
4263 }
4264
4265 ecb_noinline
4266 void
4267 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4268 {
4269 /* TODO: use adjustheap and recalculation */
4270 ev_periodic_stop (EV_A_ w);
4271 ev_periodic_start (EV_A_ w);
4272 }
4273 #endif
4274
4275 #ifndef SA_RESTART
4276 # define SA_RESTART 0
4277 #endif
4278
4279 #if EV_SIGNAL_ENABLE
4280
4281 ecb_noinline
4282 void
4283 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4284 {
4285 if (ecb_expect_false (ev_is_active (w)))
4286 return;
4287
4288 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4289
4290 #if EV_MULTIPLICITY
4291 assert (("libev: a signal must not be attached to two different loops",
4292 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4293
4294 signals [w->signum - 1].loop = EV_A;
4295 ECB_MEMORY_FENCE_RELEASE;
4296 #endif
4297
4298 EV_FREQUENT_CHECK;
4299
4300 #if EV_USE_SIGNALFD
4301 if (sigfd == -2)
4302 {
4303 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4304 if (sigfd < 0 && errno == EINVAL)
4305 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4306
4307 if (sigfd >= 0)
4308 {
4309 fd_intern (sigfd); /* doing it twice will not hurt */
4310
4311 sigemptyset (&sigfd_set);
4312
4313 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4314 ev_set_priority (&sigfd_w, EV_MAXPRI);
4315 ev_io_start (EV_A_ &sigfd_w);
4316 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4317 }
4318 }
4319
4320 if (sigfd >= 0)
4321 {
4322 /* TODO: check .head */
4323 sigaddset (&sigfd_set, w->signum);
4324 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4325
4326 signalfd (sigfd, &sigfd_set, 0);
4327 }
4328 #endif
4329
4330 ev_start (EV_A_ (W)w, 1);
4331 wlist_add (&signals [w->signum - 1].head, (WL)w);
4332
4333 if (!((WL)w)->next)
4334 # if EV_USE_SIGNALFD
4335 if (sigfd < 0) /*TODO*/
4336 # endif
4337 {
4338 # ifdef _WIN32
4339 evpipe_init (EV_A);
4340
4341 signal (w->signum, ev_sighandler);
4342 # else
4343 struct sigaction sa;
4344
4345 evpipe_init (EV_A);
4346
4347 sa.sa_handler = ev_sighandler;
4348 sigfillset (&sa.sa_mask);
4349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4350 sigaction (w->signum, &sa, 0);
4351
4352 if (origflags & EVFLAG_NOSIGMASK)
4353 {
4354 sigemptyset (&sa.sa_mask);
4355 sigaddset (&sa.sa_mask, w->signum);
4356 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4357 }
4358 #endif
4359 }
4360
4361 EV_FREQUENT_CHECK;
4362 }
4363
4364 ecb_noinline
4365 void
4366 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4367 {
4368 clear_pending (EV_A_ (W)w);
4369 if (ecb_expect_false (!ev_is_active (w)))
4370 return;
4371
4372 EV_FREQUENT_CHECK;
4373
4374 wlist_del (&signals [w->signum - 1].head, (WL)w);
4375 ev_stop (EV_A_ (W)w);
4376
4377 if (!signals [w->signum - 1].head)
4378 {
4379 #if EV_MULTIPLICITY
4380 signals [w->signum - 1].loop = 0; /* unattach from signal */
4381 #endif
4382 #if EV_USE_SIGNALFD
4383 if (sigfd >= 0)
4384 {
4385 sigset_t ss;
4386
4387 sigemptyset (&ss);
4388 sigaddset (&ss, w->signum);
4389 sigdelset (&sigfd_set, w->signum);
4390
4391 signalfd (sigfd, &sigfd_set, 0);
4392 sigprocmask (SIG_UNBLOCK, &ss, 0);
4393 }
4394 else
4395 #endif
4396 signal (w->signum, SIG_DFL);
4397 }
4398
4399 EV_FREQUENT_CHECK;
4400 }
4401
4402 #endif
4403
4404 #if EV_CHILD_ENABLE
4405
4406 void
4407 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4408 {
4409 #if EV_MULTIPLICITY
4410 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4411 #endif
4412 if (ecb_expect_false (ev_is_active (w)))
4413 return;
4414
4415 EV_FREQUENT_CHECK;
4416
4417 ev_start (EV_A_ (W)w, 1);
4418 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4419
4420 EV_FREQUENT_CHECK;
4421 }
4422
4423 void
4424 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4425 {
4426 clear_pending (EV_A_ (W)w);
4427 if (ecb_expect_false (!ev_is_active (w)))
4428 return;
4429
4430 EV_FREQUENT_CHECK;
4431
4432 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4433 ev_stop (EV_A_ (W)w);
4434
4435 EV_FREQUENT_CHECK;
4436 }
4437
4438 #endif
4439
4440 #if EV_STAT_ENABLE
4441
4442 # ifdef _WIN32
4443 # undef lstat
4444 # define lstat(a,b) _stati64 (a,b)
4445 # endif
4446
4447 #define DEF_STAT_INTERVAL 5.0074891
4448 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4449 #define MIN_STAT_INTERVAL 0.1074891
4450
4451 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4452
4453 #if EV_USE_INOTIFY
4454
4455 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4456 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4457
4458 ecb_noinline
4459 static void
4460 infy_add (EV_P_ ev_stat *w)
4461 {
4462 w->wd = inotify_add_watch (fs_fd, w->path,
4463 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4464 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4465 | IN_DONT_FOLLOW | IN_MASK_ADD);
4466
4467 if (w->wd >= 0)
4468 {
4469 struct statfs sfs;
4470
4471 /* now local changes will be tracked by inotify, but remote changes won't */
4472 /* unless the filesystem is known to be local, we therefore still poll */
4473 /* also do poll on <2.6.25, but with normal frequency */
4474
4475 if (!fs_2625)
4476 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4477 else if (!statfs (w->path, &sfs)
4478 && (sfs.f_type == 0x1373 /* devfs */
4479 || sfs.f_type == 0x4006 /* fat */
4480 || sfs.f_type == 0x4d44 /* msdos */
4481 || sfs.f_type == 0xEF53 /* ext2/3 */
4482 || sfs.f_type == 0x72b6 /* jffs2 */
4483 || sfs.f_type == 0x858458f6 /* ramfs */
4484 || sfs.f_type == 0x5346544e /* ntfs */
4485 || sfs.f_type == 0x3153464a /* jfs */
4486 || sfs.f_type == 0x9123683e /* btrfs */
4487 || sfs.f_type == 0x52654973 /* reiser3 */
4488 || sfs.f_type == 0x01021994 /* tmpfs */
4489 || sfs.f_type == 0x58465342 /* xfs */))
4490 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4491 else
4492 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4493 }
4494 else
4495 {
4496 /* can't use inotify, continue to stat */
4497 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4498
4499 /* if path is not there, monitor some parent directory for speedup hints */
4500 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4501 /* but an efficiency issue only */
4502 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4503 {
4504 char path [4096];
4505 strcpy (path, w->path);
4506
4507 do
4508 {
4509 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4510 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4511
4512 char *pend = strrchr (path, '/');
4513
4514 if (!pend || pend == path)
4515 break;
4516
4517 *pend = 0;
4518 w->wd = inotify_add_watch (fs_fd, path, mask);
4519 }
4520 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4521 }
4522 }
4523
4524 if (w->wd >= 0)
4525 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4526
4527 /* now re-arm timer, if required */
4528 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4529 ev_timer_again (EV_A_ &w->timer);
4530 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4531 }
4532
4533 ecb_noinline
4534 static void
4535 infy_del (EV_P_ ev_stat *w)
4536 {
4537 int slot;
4538 int wd = w->wd;
4539
4540 if (wd < 0)
4541 return;
4542
4543 w->wd = -2;
4544 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4545 wlist_del (&fs_hash [slot].head, (WL)w);
4546
4547 /* remove this watcher, if others are watching it, they will rearm */
4548 inotify_rm_watch (fs_fd, wd);
4549 }
4550
4551 ecb_noinline
4552 static void
4553 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4554 {
4555 if (slot < 0)
4556 /* overflow, need to check for all hash slots */
4557 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4558 infy_wd (EV_A_ slot, wd, ev);
4559 else
4560 {
4561 WL w_;
4562
4563 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4564 {
4565 ev_stat *w = (ev_stat *)w_;
4566 w_ = w_->next; /* lets us remove this watcher and all before it */
4567
4568 if (w->wd == wd || wd == -1)
4569 {
4570 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4571 {
4572 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4573 w->wd = -1;
4574 infy_add (EV_A_ w); /* re-add, no matter what */
4575 }
4576
4577 stat_timer_cb (EV_A_ &w->timer, 0);
4578 }
4579 }
4580 }
4581 }
4582
4583 static void
4584 infy_cb (EV_P_ ev_io *w, int revents)
4585 {
4586 char buf [EV_INOTIFY_BUFSIZE];
4587 int ofs;
4588 int len = read (fs_fd, buf, sizeof (buf));
4589
4590 for (ofs = 0; ofs < len; )
4591 {
4592 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4594 ofs += sizeof (struct inotify_event) + ev->len;
4595 }
4596 }
4597
4598 inline_size ecb_cold
4599 void
4600 ev_check_2625 (EV_P)
4601 {
4602 /* kernels < 2.6.25 are borked
4603 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4604 */
4605 if (ev_linux_version () < 0x020619)
4606 return;
4607
4608 fs_2625 = 1;
4609 }
4610
4611 inline_size int
4612 infy_newfd (void)
4613 {
4614 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4615 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4616 if (fd >= 0)
4617 return fd;
4618 #endif
4619 return inotify_init ();
4620 }
4621
4622 inline_size void
4623 infy_init (EV_P)
4624 {
4625 if (fs_fd != -2)
4626 return;
4627
4628 fs_fd = -1;
4629
4630 ev_check_2625 (EV_A);
4631
4632 fs_fd = infy_newfd ();
4633
4634 if (fs_fd >= 0)
4635 {
4636 fd_intern (fs_fd);
4637 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4638 ev_set_priority (&fs_w, EV_MAXPRI);
4639 ev_io_start (EV_A_ &fs_w);
4640 ev_unref (EV_A);
4641 }
4642 }
4643
4644 inline_size void
4645 infy_fork (EV_P)
4646 {
4647 int slot;
4648
4649 if (fs_fd < 0)
4650 return;
4651
4652 ev_ref (EV_A);
4653 ev_io_stop (EV_A_ &fs_w);
4654 close (fs_fd);
4655 fs_fd = infy_newfd ();
4656
4657 if (fs_fd >= 0)
4658 {
4659 fd_intern (fs_fd);
4660 ev_io_set (&fs_w, fs_fd, EV_READ);
4661 ev_io_start (EV_A_ &fs_w);
4662 ev_unref (EV_A);
4663 }
4664
4665 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4666 {
4667 WL w_ = fs_hash [slot].head;
4668 fs_hash [slot].head = 0;
4669
4670 while (w_)
4671 {
4672 ev_stat *w = (ev_stat *)w_;
4673 w_ = w_->next; /* lets us add this watcher */
4674
4675 w->wd = -1;
4676
4677 if (fs_fd >= 0)
4678 infy_add (EV_A_ w); /* re-add, no matter what */
4679 else
4680 {
4681 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4682 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4683 ev_timer_again (EV_A_ &w->timer);
4684 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4685 }
4686 }
4687 }
4688 }
4689
4690 #endif
4691
4692 #ifdef _WIN32
4693 # define EV_LSTAT(p,b) _stati64 (p, b)
4694 #else
4695 # define EV_LSTAT(p,b) lstat (p, b)
4696 #endif
4697
4698 void
4699 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4700 {
4701 if (lstat (w->path, &w->attr) < 0)
4702 w->attr.st_nlink = 0;
4703 else if (!w->attr.st_nlink)
4704 w->attr.st_nlink = 1;
4705 }
4706
4707 ecb_noinline
4708 static void
4709 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4710 {
4711 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4712
4713 ev_statdata prev = w->attr;
4714 ev_stat_stat (EV_A_ w);
4715
4716 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4717 if (
4718 prev.st_dev != w->attr.st_dev
4719 || prev.st_ino != w->attr.st_ino
4720 || prev.st_mode != w->attr.st_mode
4721 || prev.st_nlink != w->attr.st_nlink
4722 || prev.st_uid != w->attr.st_uid
4723 || prev.st_gid != w->attr.st_gid
4724 || prev.st_rdev != w->attr.st_rdev
4725 || prev.st_size != w->attr.st_size
4726 || prev.st_atime != w->attr.st_atime
4727 || prev.st_mtime != w->attr.st_mtime
4728 || prev.st_ctime != w->attr.st_ctime
4729 ) {
4730 /* we only update w->prev on actual differences */
4731 /* in case we test more often than invoke the callback, */
4732 /* to ensure that prev is always different to attr */
4733 w->prev = prev;
4734
4735 #if EV_USE_INOTIFY
4736 if (fs_fd >= 0)
4737 {
4738 infy_del (EV_A_ w);
4739 infy_add (EV_A_ w);
4740 ev_stat_stat (EV_A_ w); /* avoid race... */
4741 }
4742 #endif
4743
4744 ev_feed_event (EV_A_ w, EV_STAT);
4745 }
4746 }
4747
4748 void
4749 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4750 {
4751 if (ecb_expect_false (ev_is_active (w)))
4752 return;
4753
4754 ev_stat_stat (EV_A_ w);
4755
4756 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4757 w->interval = MIN_STAT_INTERVAL;
4758
4759 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4760 ev_set_priority (&w->timer, ev_priority (w));
4761
4762 #if EV_USE_INOTIFY
4763 infy_init (EV_A);
4764
4765 if (fs_fd >= 0)
4766 infy_add (EV_A_ w);
4767 else
4768 #endif
4769 {
4770 ev_timer_again (EV_A_ &w->timer);
4771 ev_unref (EV_A);
4772 }
4773
4774 ev_start (EV_A_ (W)w, 1);
4775
4776 EV_FREQUENT_CHECK;
4777 }
4778
4779 void
4780 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4781 {
4782 clear_pending (EV_A_ (W)w);
4783 if (ecb_expect_false (!ev_is_active (w)))
4784 return;
4785
4786 EV_FREQUENT_CHECK;
4787
4788 #if EV_USE_INOTIFY
4789 infy_del (EV_A_ w);
4790 #endif
4791
4792 if (ev_is_active (&w->timer))
4793 {
4794 ev_ref (EV_A);
4795 ev_timer_stop (EV_A_ &w->timer);
4796 }
4797
4798 ev_stop (EV_A_ (W)w);
4799
4800 EV_FREQUENT_CHECK;
4801 }
4802 #endif
4803
4804 #if EV_IDLE_ENABLE
4805 void
4806 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4807 {
4808 if (ecb_expect_false (ev_is_active (w)))
4809 return;
4810
4811 pri_adjust (EV_A_ (W)w);
4812
4813 EV_FREQUENT_CHECK;
4814
4815 {
4816 int active = ++idlecnt [ABSPRI (w)];
4817
4818 ++idleall;
4819 ev_start (EV_A_ (W)w, active);
4820
4821 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4822 idles [ABSPRI (w)][active - 1] = w;
4823 }
4824
4825 EV_FREQUENT_CHECK;
4826 }
4827
4828 void
4829 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4830 {
4831 clear_pending (EV_A_ (W)w);
4832 if (ecb_expect_false (!ev_is_active (w)))
4833 return;
4834
4835 EV_FREQUENT_CHECK;
4836
4837 {
4838 int active = ev_active (w);
4839
4840 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4841 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4842
4843 ev_stop (EV_A_ (W)w);
4844 --idleall;
4845 }
4846
4847 EV_FREQUENT_CHECK;
4848 }
4849 #endif
4850
4851 #if EV_PREPARE_ENABLE
4852 void
4853 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4854 {
4855 if (ecb_expect_false (ev_is_active (w)))
4856 return;
4857
4858 EV_FREQUENT_CHECK;
4859
4860 ev_start (EV_A_ (W)w, ++preparecnt);
4861 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4862 prepares [preparecnt - 1] = w;
4863
4864 EV_FREQUENT_CHECK;
4865 }
4866
4867 void
4868 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4869 {
4870 clear_pending (EV_A_ (W)w);
4871 if (ecb_expect_false (!ev_is_active (w)))
4872 return;
4873
4874 EV_FREQUENT_CHECK;
4875
4876 {
4877 int active = ev_active (w);
4878
4879 prepares [active - 1] = prepares [--preparecnt];
4880 ev_active (prepares [active - 1]) = active;
4881 }
4882
4883 ev_stop (EV_A_ (W)w);
4884
4885 EV_FREQUENT_CHECK;
4886 }
4887 #endif
4888
4889 #if EV_CHECK_ENABLE
4890 void
4891 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4892 {
4893 if (ecb_expect_false (ev_is_active (w)))
4894 return;
4895
4896 EV_FREQUENT_CHECK;
4897
4898 ev_start (EV_A_ (W)w, ++checkcnt);
4899 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
4900 checks [checkcnt - 1] = w;
4901
4902 EV_FREQUENT_CHECK;
4903 }
4904
4905 void
4906 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4907 {
4908 clear_pending (EV_A_ (W)w);
4909 if (ecb_expect_false (!ev_is_active (w)))
4910 return;
4911
4912 EV_FREQUENT_CHECK;
4913
4914 {
4915 int active = ev_active (w);
4916
4917 checks [active - 1] = checks [--checkcnt];
4918 ev_active (checks [active - 1]) = active;
4919 }
4920
4921 ev_stop (EV_A_ (W)w);
4922
4923 EV_FREQUENT_CHECK;
4924 }
4925 #endif
4926
4927 #if EV_EMBED_ENABLE
4928 ecb_noinline
4929 void
4930 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4931 {
4932 ev_run (w->other, EVRUN_NOWAIT);
4933 }
4934
4935 static void
4936 embed_io_cb (EV_P_ ev_io *io, int revents)
4937 {
4938 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4939
4940 if (ev_cb (w))
4941 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4942 else
4943 ev_run (w->other, EVRUN_NOWAIT);
4944 }
4945
4946 static void
4947 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4948 {
4949 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4950
4951 {
4952 EV_P = w->other;
4953
4954 while (fdchangecnt)
4955 {
4956 fd_reify (EV_A);
4957 ev_run (EV_A_ EVRUN_NOWAIT);
4958 }
4959 }
4960 }
4961
4962 static void
4963 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4964 {
4965 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4966
4967 ev_embed_stop (EV_A_ w);
4968
4969 {
4970 EV_P = w->other;
4971
4972 ev_loop_fork (EV_A);
4973 ev_run (EV_A_ EVRUN_NOWAIT);
4974 }
4975
4976 ev_embed_start (EV_A_ w);
4977 }
4978
4979 #if 0
4980 static void
4981 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4982 {
4983 ev_idle_stop (EV_A_ idle);
4984 }
4985 #endif
4986
4987 void
4988 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4989 {
4990 if (ecb_expect_false (ev_is_active (w)))
4991 return;
4992
4993 {
4994 EV_P = w->other;
4995 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4996 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4997 }
4998
4999 EV_FREQUENT_CHECK;
5000
5001 ev_set_priority (&w->io, ev_priority (w));
5002 ev_io_start (EV_A_ &w->io);
5003
5004 ev_prepare_init (&w->prepare, embed_prepare_cb);
5005 ev_set_priority (&w->prepare, EV_MINPRI);
5006 ev_prepare_start (EV_A_ &w->prepare);
5007
5008 ev_fork_init (&w->fork, embed_fork_cb);
5009 ev_fork_start (EV_A_ &w->fork);
5010
5011 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5012
5013 ev_start (EV_A_ (W)w, 1);
5014
5015 EV_FREQUENT_CHECK;
5016 }
5017
5018 void
5019 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5020 {
5021 clear_pending (EV_A_ (W)w);
5022 if (ecb_expect_false (!ev_is_active (w)))
5023 return;
5024
5025 EV_FREQUENT_CHECK;
5026
5027 ev_io_stop (EV_A_ &w->io);
5028 ev_prepare_stop (EV_A_ &w->prepare);
5029 ev_fork_stop (EV_A_ &w->fork);
5030
5031 ev_stop (EV_A_ (W)w);
5032
5033 EV_FREQUENT_CHECK;
5034 }
5035 #endif
5036
5037 #if EV_FORK_ENABLE
5038 void
5039 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5040 {
5041 if (ecb_expect_false (ev_is_active (w)))
5042 return;
5043
5044 EV_FREQUENT_CHECK;
5045
5046 ev_start (EV_A_ (W)w, ++forkcnt);
5047 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5048 forks [forkcnt - 1] = w;
5049
5050 EV_FREQUENT_CHECK;
5051 }
5052
5053 void
5054 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5055 {
5056 clear_pending (EV_A_ (W)w);
5057 if (ecb_expect_false (!ev_is_active (w)))
5058 return;
5059
5060 EV_FREQUENT_CHECK;
5061
5062 {
5063 int active = ev_active (w);
5064
5065 forks [active - 1] = forks [--forkcnt];
5066 ev_active (forks [active - 1]) = active;
5067 }
5068
5069 ev_stop (EV_A_ (W)w);
5070
5071 EV_FREQUENT_CHECK;
5072 }
5073 #endif
5074
5075 #if EV_CLEANUP_ENABLE
5076 void
5077 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5078 {
5079 if (ecb_expect_false (ev_is_active (w)))
5080 return;
5081
5082 EV_FREQUENT_CHECK;
5083
5084 ev_start (EV_A_ (W)w, ++cleanupcnt);
5085 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5086 cleanups [cleanupcnt - 1] = w;
5087
5088 /* cleanup watchers should never keep a refcount on the loop */
5089 ev_unref (EV_A);
5090 EV_FREQUENT_CHECK;
5091 }
5092
5093 void
5094 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5095 {
5096 clear_pending (EV_A_ (W)w);
5097 if (ecb_expect_false (!ev_is_active (w)))
5098 return;
5099
5100 EV_FREQUENT_CHECK;
5101 ev_ref (EV_A);
5102
5103 {
5104 int active = ev_active (w);
5105
5106 cleanups [active - 1] = cleanups [--cleanupcnt];
5107 ev_active (cleanups [active - 1]) = active;
5108 }
5109
5110 ev_stop (EV_A_ (W)w);
5111
5112 EV_FREQUENT_CHECK;
5113 }
5114 #endif
5115
5116 #if EV_ASYNC_ENABLE
5117 void
5118 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5119 {
5120 if (ecb_expect_false (ev_is_active (w)))
5121 return;
5122
5123 w->sent = 0;
5124
5125 evpipe_init (EV_A);
5126
5127 EV_FREQUENT_CHECK;
5128
5129 ev_start (EV_A_ (W)w, ++asynccnt);
5130 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5131 asyncs [asynccnt - 1] = w;
5132
5133 EV_FREQUENT_CHECK;
5134 }
5135
5136 void
5137 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5138 {
5139 clear_pending (EV_A_ (W)w);
5140 if (ecb_expect_false (!ev_is_active (w)))
5141 return;
5142
5143 EV_FREQUENT_CHECK;
5144
5145 {
5146 int active = ev_active (w);
5147
5148 asyncs [active - 1] = asyncs [--asynccnt];
5149 ev_active (asyncs [active - 1]) = active;
5150 }
5151
5152 ev_stop (EV_A_ (W)w);
5153
5154 EV_FREQUENT_CHECK;
5155 }
5156
5157 void
5158 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5159 {
5160 w->sent = 1;
5161 evpipe_write (EV_A_ &async_pending);
5162 }
5163 #endif
5164
5165 /*****************************************************************************/
5166
5167 struct ev_once
5168 {
5169 ev_io io;
5170 ev_timer to;
5171 void (*cb)(int revents, void *arg);
5172 void *arg;
5173 };
5174
5175 static void
5176 once_cb (EV_P_ struct ev_once *once, int revents)
5177 {
5178 void (*cb)(int revents, void *arg) = once->cb;
5179 void *arg = once->arg;
5180
5181 ev_io_stop (EV_A_ &once->io);
5182 ev_timer_stop (EV_A_ &once->to);
5183 ev_free (once);
5184
5185 cb (revents, arg);
5186 }
5187
5188 static void
5189 once_cb_io (EV_P_ ev_io *w, int revents)
5190 {
5191 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5192
5193 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5194 }
5195
5196 static void
5197 once_cb_to (EV_P_ ev_timer *w, int revents)
5198 {
5199 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5200
5201 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5202 }
5203
5204 void
5205 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5206 {
5207 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5208
5209 once->cb = cb;
5210 once->arg = arg;
5211
5212 ev_init (&once->io, once_cb_io);
5213 if (fd >= 0)
5214 {
5215 ev_io_set (&once->io, fd, events);
5216 ev_io_start (EV_A_ &once->io);
5217 }
5218
5219 ev_init (&once->to, once_cb_to);
5220 if (timeout >= 0.)
5221 {
5222 ev_timer_set (&once->to, timeout, 0.);
5223 ev_timer_start (EV_A_ &once->to);
5224 }
5225 }
5226
5227 /*****************************************************************************/
5228
5229 #if EV_WALK_ENABLE
5230 ecb_cold
5231 void
5232 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5233 {
5234 int i, j;
5235 ev_watcher_list *wl, *wn;
5236
5237 if (types & (EV_IO | EV_EMBED))
5238 for (i = 0; i < anfdmax; ++i)
5239 for (wl = anfds [i].head; wl; )
5240 {
5241 wn = wl->next;
5242
5243 #if EV_EMBED_ENABLE
5244 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5245 {
5246 if (types & EV_EMBED)
5247 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5248 }
5249 else
5250 #endif
5251 #if EV_USE_INOTIFY
5252 if (ev_cb ((ev_io *)wl) == infy_cb)
5253 ;
5254 else
5255 #endif
5256 if ((ev_io *)wl != &pipe_w)
5257 if (types & EV_IO)
5258 cb (EV_A_ EV_IO, wl);
5259
5260 wl = wn;
5261 }
5262
5263 if (types & (EV_TIMER | EV_STAT))
5264 for (i = timercnt + HEAP0; i-- > HEAP0; )
5265 #if EV_STAT_ENABLE
5266 /*TODO: timer is not always active*/
5267 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5268 {
5269 if (types & EV_STAT)
5270 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5271 }
5272 else
5273 #endif
5274 if (types & EV_TIMER)
5275 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5276
5277 #if EV_PERIODIC_ENABLE
5278 if (types & EV_PERIODIC)
5279 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5280 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5281 #endif
5282
5283 #if EV_IDLE_ENABLE
5284 if (types & EV_IDLE)
5285 for (j = NUMPRI; j--; )
5286 for (i = idlecnt [j]; i--; )
5287 cb (EV_A_ EV_IDLE, idles [j][i]);
5288 #endif
5289
5290 #if EV_FORK_ENABLE
5291 if (types & EV_FORK)
5292 for (i = forkcnt; i--; )
5293 if (ev_cb (forks [i]) != embed_fork_cb)
5294 cb (EV_A_ EV_FORK, forks [i]);
5295 #endif
5296
5297 #if EV_ASYNC_ENABLE
5298 if (types & EV_ASYNC)
5299 for (i = asynccnt; i--; )
5300 cb (EV_A_ EV_ASYNC, asyncs [i]);
5301 #endif
5302
5303 #if EV_PREPARE_ENABLE
5304 if (types & EV_PREPARE)
5305 for (i = preparecnt; i--; )
5306 # if EV_EMBED_ENABLE
5307 if (ev_cb (prepares [i]) != embed_prepare_cb)
5308 # endif
5309 cb (EV_A_ EV_PREPARE, prepares [i]);
5310 #endif
5311
5312 #if EV_CHECK_ENABLE
5313 if (types & EV_CHECK)
5314 for (i = checkcnt; i--; )
5315 cb (EV_A_ EV_CHECK, checks [i]);
5316 #endif
5317
5318 #if EV_SIGNAL_ENABLE
5319 if (types & EV_SIGNAL)
5320 for (i = 0; i < EV_NSIG - 1; ++i)
5321 for (wl = signals [i].head; wl; )
5322 {
5323 wn = wl->next;
5324 cb (EV_A_ EV_SIGNAL, wl);
5325 wl = wn;
5326 }
5327 #endif
5328
5329 #if EV_CHILD_ENABLE
5330 if (types & EV_CHILD)
5331 for (i = (EV_PID_HASHSIZE); i--; )
5332 for (wl = childs [i]; wl; )
5333 {
5334 wn = wl->next;
5335 cb (EV_A_ EV_CHILD, wl);
5336 wl = wn;
5337 }
5338 #endif
5339 /* EV_STAT 0x00001000 /* stat data changed */
5340 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5341 }
5342 #endif
5343
5344 #if EV_MULTIPLICITY
5345 #include "ev_wrap.h"
5346 #endif
5347