ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.518
Committed: Fri Dec 27 16:12:37 2019 UTC (4 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.517: +2 -2 lines
Log Message:
axe linux aio

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130 # ifndef EV_USE_IOURING
131 # define EV_USE_IOURING EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_IOURING
135 # define EV_USE_IOURING 0
136 # endif
137
138 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139 # ifndef EV_USE_KQUEUE
140 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE 0
145 # endif
146
147 # if HAVE_PORT_H && HAVE_PORT_CREATE
148 # ifndef EV_USE_PORT
149 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 # endif
151 # else
152 # undef EV_USE_PORT
153 # define EV_USE_PORT 0
154 # endif
155
156 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157 # ifndef EV_USE_INOTIFY
158 # define EV_USE_INOTIFY EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY 0
163 # endif
164
165 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166 # ifndef EV_USE_SIGNALFD
167 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD 0
172 # endif
173
174 # if HAVE_EVENTFD
175 # ifndef EV_USE_EVENTFD
176 # define EV_USE_EVENTFD EV_FEATURE_OS
177 # endif
178 # else
179 # undef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD 0
181 # endif
182
183 # if HAVE_SYS_TIMERFD_H
184 # ifndef EV_USE_TIMERFD
185 # define EV_USE_TIMERFD EV_FEATURE_OS
186 # endif
187 # else
188 # undef EV_USE_TIMERFD
189 # define EV_USE_TIMERFD 0
190 # endif
191
192 #endif
193
194 /* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202 #define _DARWIN_UNLIMITED_SELECT 1
203
204 #include <stdlib.h>
205 #include <string.h>
206 #include <fcntl.h>
207 #include <stddef.h>
208
209 #include <stdio.h>
210
211 #include <assert.h>
212 #include <errno.h>
213 #include <sys/types.h>
214 #include <time.h>
215 #include <limits.h>
216
217 #include <signal.h>
218
219 #ifdef EV_H
220 # include EV_H
221 #else
222 # include "ev.h"
223 #endif
224
225 #if EV_NO_THREADS
226 # undef EV_NO_SMP
227 # define EV_NO_SMP 1
228 # undef ECB_NO_THREADS
229 # define ECB_NO_THREADS 1
230 #endif
231 #if EV_NO_SMP
232 # undef EV_NO_SMP
233 # define ECB_NO_SMP 1
234 #endif
235
236 #ifndef _WIN32
237 # include <sys/time.h>
238 # include <sys/wait.h>
239 # include <unistd.h>
240 #else
241 # include <io.h>
242 # define WIN32_LEAN_AND_MEAN
243 # include <winsock2.h>
244 # include <windows.h>
245 # ifndef EV_SELECT_IS_WINSOCKET
246 # define EV_SELECT_IS_WINSOCKET 1
247 # endif
248 # undef EV_AVOID_STDIO
249 #endif
250
251 /* this block tries to deduce configuration from header-defined symbols and defaults */
252
253 /* try to deduce the maximum number of signals on this platform */
254 #if defined EV_NSIG
255 /* use what's provided */
256 #elif defined NSIG
257 # define EV_NSIG (NSIG)
258 #elif defined _NSIG
259 # define EV_NSIG (_NSIG)
260 #elif defined SIGMAX
261 # define EV_NSIG (SIGMAX+1)
262 #elif defined SIG_MAX
263 # define EV_NSIG (SIG_MAX+1)
264 #elif defined _SIG_MAX
265 # define EV_NSIG (_SIG_MAX+1)
266 #elif defined MAXSIG
267 # define EV_NSIG (MAXSIG+1)
268 #elif defined MAX_SIG
269 # define EV_NSIG (MAX_SIG+1)
270 #elif defined SIGARRAYSIZE
271 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272 #elif defined _sys_nsig
273 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274 #else
275 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
276 #endif
277
278 #ifndef EV_USE_FLOOR
279 # define EV_USE_FLOOR 0
280 #endif
281
282 #ifndef EV_USE_CLOCK_SYSCALL
283 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285 # else
286 # define EV_USE_CLOCK_SYSCALL 0
287 # endif
288 #endif
289
290 #if !(_POSIX_TIMERS > 0)
291 # ifndef EV_USE_MONOTONIC
292 # define EV_USE_MONOTONIC 0
293 # endif
294 # ifndef EV_USE_REALTIME
295 # define EV_USE_REALTIME 0
296 # endif
297 #endif
298
299 #ifndef EV_USE_MONOTONIC
300 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301 # define EV_USE_MONOTONIC EV_FEATURE_OS
302 # else
303 # define EV_USE_MONOTONIC 0
304 # endif
305 #endif
306
307 #ifndef EV_USE_REALTIME
308 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309 #endif
310
311 #ifndef EV_USE_NANOSLEEP
312 # if _POSIX_C_SOURCE >= 199309L
313 # define EV_USE_NANOSLEEP EV_FEATURE_OS
314 # else
315 # define EV_USE_NANOSLEEP 0
316 # endif
317 #endif
318
319 #ifndef EV_USE_SELECT
320 # define EV_USE_SELECT EV_FEATURE_BACKENDS
321 #endif
322
323 #ifndef EV_USE_POLL
324 # ifdef _WIN32
325 # define EV_USE_POLL 0
326 # else
327 # define EV_USE_POLL EV_FEATURE_BACKENDS
328 # endif
329 #endif
330
331 #ifndef EV_USE_EPOLL
332 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
334 # else
335 # define EV_USE_EPOLL 0
336 # endif
337 #endif
338
339 #ifndef EV_USE_KQUEUE
340 # define EV_USE_KQUEUE 0
341 #endif
342
343 #ifndef EV_USE_PORT
344 # define EV_USE_PORT 0
345 #endif
346
347 #ifndef EV_USE_LINUXAIO
348 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350 # else
351 # define EV_USE_LINUXAIO 0
352 # endif
353 #endif
354
355 #ifndef EV_USE_IOURING
356 # if __linux /* later checks might disable again */
357 # define EV_USE_IOURING 1
358 # else
359 # define EV_USE_IOURING 0
360 # endif
361 #endif
362
363 #ifndef EV_USE_INOTIFY
364 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365 # define EV_USE_INOTIFY EV_FEATURE_OS
366 # else
367 # define EV_USE_INOTIFY 0
368 # endif
369 #endif
370
371 #ifndef EV_PID_HASHSIZE
372 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373 #endif
374
375 #ifndef EV_INOTIFY_HASHSIZE
376 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 #endif
378
379 #ifndef EV_USE_EVENTFD
380 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381 # define EV_USE_EVENTFD EV_FEATURE_OS
382 # else
383 # define EV_USE_EVENTFD 0
384 # endif
385 #endif
386
387 #ifndef EV_USE_SIGNALFD
388 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389 # define EV_USE_SIGNALFD EV_FEATURE_OS
390 # else
391 # define EV_USE_SIGNALFD 0
392 # endif
393 #endif
394
395 #ifndef EV_USE_TIMERFD
396 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397 # define EV_USE_TIMERFD EV_FEATURE_OS
398 # else
399 # define EV_USE_TIMERFD 0
400 # endif
401 #endif
402
403 #if 0 /* debugging */
404 # define EV_VERIFY 3
405 # define EV_USE_4HEAP 1
406 # define EV_HEAP_CACHE_AT 1
407 #endif
408
409 #ifndef EV_VERIFY
410 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411 #endif
412
413 #ifndef EV_USE_4HEAP
414 # define EV_USE_4HEAP EV_FEATURE_DATA
415 #endif
416
417 #ifndef EV_HEAP_CACHE_AT
418 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419 #endif
420
421 #ifdef __ANDROID__
422 /* supposedly, android doesn't typedef fd_mask */
423 # undef EV_USE_SELECT
424 # define EV_USE_SELECT 0
425 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426 # undef EV_USE_CLOCK_SYSCALL
427 # define EV_USE_CLOCK_SYSCALL 0
428 #endif
429
430 /* aix's poll.h seems to cause lots of trouble */
431 #ifdef _AIX
432 /* AIX has a completely broken poll.h header */
433 # undef EV_USE_POLL
434 # define EV_USE_POLL 0
435 #endif
436
437 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438 /* which makes programs even slower. might work on other unices, too. */
439 #if EV_USE_CLOCK_SYSCALL
440 # include <sys/syscall.h>
441 # ifdef SYS_clock_gettime
442 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443 # undef EV_USE_MONOTONIC
444 # define EV_USE_MONOTONIC 1
445 # define EV_NEED_SYSCALL 1
446 # else
447 # undef EV_USE_CLOCK_SYSCALL
448 # define EV_USE_CLOCK_SYSCALL 0
449 # endif
450 #endif
451
452 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
453
454 #ifndef CLOCK_MONOTONIC
455 # undef EV_USE_MONOTONIC
456 # define EV_USE_MONOTONIC 0
457 #endif
458
459 #ifndef CLOCK_REALTIME
460 # undef EV_USE_REALTIME
461 # define EV_USE_REALTIME 0
462 #endif
463
464 #if !EV_STAT_ENABLE
465 # undef EV_USE_INOTIFY
466 # define EV_USE_INOTIFY 0
467 #endif
468
469 #if __linux && EV_USE_IOURING
470 # include <linux/version.h>
471 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472 # undef EV_USE_IOURING
473 # define EV_USE_IOURING 0
474 # endif
475 #endif
476
477 #if !EV_USE_NANOSLEEP
478 /* hp-ux has it in sys/time.h, which we unconditionally include above */
479 # if !defined _WIN32 && !defined __hpux
480 # include <sys/select.h>
481 # endif
482 #endif
483
484 #if EV_USE_LINUXAIO
485 # include <sys/syscall.h>
486 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487 # define EV_NEED_SYSCALL 1
488 # else
489 # undef EV_USE_LINUXAIO
490 # define EV_USE_LINUXAIO 0
491 # endif
492 #endif
493
494 #if EV_USE_IOURING
495 # include <sys/syscall.h>
496 # if !SYS_io_uring_setup && __linux && !__alpha
497 # define SYS_io_uring_setup 425
498 # define SYS_io_uring_enter 426
499 # define SYS_io_uring_wregister 427
500 # endif
501 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502 # define EV_NEED_SYSCALL 1
503 # else
504 # undef EV_USE_IOURING
505 # define EV_USE_IOURING 0
506 # endif
507 #endif
508
509 #if EV_USE_INOTIFY
510 # include <sys/statfs.h>
511 # include <sys/inotify.h>
512 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513 # ifndef IN_DONT_FOLLOW
514 # undef EV_USE_INOTIFY
515 # define EV_USE_INOTIFY 0
516 # endif
517 #endif
518
519 #if EV_USE_EVENTFD
520 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521 # include <stdint.h>
522 # ifndef EFD_NONBLOCK
523 # define EFD_NONBLOCK O_NONBLOCK
524 # endif
525 # ifndef EFD_CLOEXEC
526 # ifdef O_CLOEXEC
527 # define EFD_CLOEXEC O_CLOEXEC
528 # else
529 # define EFD_CLOEXEC 02000000
530 # endif
531 # endif
532 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533 #endif
534
535 #if EV_USE_SIGNALFD
536 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537 # include <stdint.h>
538 # ifndef SFD_NONBLOCK
539 # define SFD_NONBLOCK O_NONBLOCK
540 # endif
541 # ifndef SFD_CLOEXEC
542 # ifdef O_CLOEXEC
543 # define SFD_CLOEXEC O_CLOEXEC
544 # else
545 # define SFD_CLOEXEC 02000000
546 # endif
547 # endif
548 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550 struct signalfd_siginfo
551 {
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554 };
555 #endif
556
557 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558 #if EV_USE_TIMERFD
559 # include <sys/timerfd.h>
560 /* timerfd is only used for periodics */
561 # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562 # undef EV_USE_TIMERFD
563 # define EV_USE_TIMERFD 0
564 # endif
565 #endif
566
567 /*****************************************************************************/
568
569 #if EV_VERIFY >= 3
570 # define EV_FREQUENT_CHECK ev_verify (EV_A)
571 #else
572 # define EV_FREQUENT_CHECK do { } while (0)
573 #endif
574
575 /*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584
585 /* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588 #define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593 #ifndef EV_TS_CONST
594 # define EV_TS_CONST(nv) nv
595 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596 # define EV_TS_FROM_USEC(us) us * 1e-6
597 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601 #endif
602
603 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604 /* ECB.H BEGIN */
605 /*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645 #ifndef ECB_H
646 #define ECB_H
647
648 /* 16 bits major, 16 bits minor */
649 #define ECB_VERSION 0x00010006
650
651 #ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674 #else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681 #endif
682
683 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686 /* work around x32 idiocy by defining proper macros */
687 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693 #endif
694
695 /* many compilers define _GNUC_ to some versions but then only implement
696 * what their idiot authors think are the "more important" extensions,
697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704 #else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706 #endif
707
708 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710 #if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712 #else
713 #define ECB_CLANG_BUILTIN(x) 0
714 #endif
715
716 #if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718 #else
719 #define ECB_CLANG_EXTENSION(x) 0
720 #endif
721
722 #define ECB_CPP (__cplusplus+0)
723 #define ECB_CPP11 (__cplusplus >= 201103L)
724 #define ECB_CPP14 (__cplusplus >= 201402L)
725 #define ECB_CPP17 (__cplusplus >= 201703L)
726
727 #if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730 #else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733 #endif
734
735 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739 #if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743 #else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747 #endif
748
749 /*****************************************************************************/
750
751 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754 #if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756 #endif
757
758 #if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760 #endif
761
762 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763 #if __xlC__ && ECB_CPP
764 #include <builtins.h>
765 #endif
766
767 #if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769 #endif
770
771 #ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825 #endif
826
827 #ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867 #endif
868
869 #ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878 #endif
879
880 #ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896 #endif
897
898 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900 #endif
901
902 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904 #endif
905
906 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908 #endif
909
910 /*****************************************************************************/
911
912 #if ECB_CPP
913 #define ecb_inline static inline
914 #elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916 #elif ECB_C99
917 #define ecb_inline static inline
918 #else
919 #define ecb_inline static
920 #endif
921
922 #if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924 #elif ECB_C99
925 #define ecb_restrict restrict
926 #else
927 #define ecb_restrict
928 #endif
929
930 typedef int ecb_bool;
931
932 #define ECB_CONCAT_(a, b) a ## b
933 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934 #define ECB_STRINGIFY_(a) # a
935 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938 #define ecb_function_ ecb_inline
939
940 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942 #else
943 #define ecb_attribute(attrlist)
944 #endif
945
946 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948 #else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954 #endif
955
956 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958 #else
959 #define ecb_expect(expr,value) (expr)
960 #endif
961
962 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964 #else
965 #define ecb_prefetch(addr,rw,locality)
966 #endif
967
968 /* no emulation for ecb_decltype */
969 #if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975 #endif
976
977 #if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979 #else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981 #endif
982
983 #if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985 #elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987 #else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989 #endif
990
991 #if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993 #else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995 #endif
996
997 #define ecb_unused ecb_attribute ((__unused__))
998 #define ecb_const ecb_attribute ((__const__))
999 #define ecb_pure ecb_attribute ((__pure__))
1000
1001 #if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004 #elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006 #elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009 #else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011 #endif
1012
1013 #if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017 #else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021 #endif
1022
1023 /* put around conditional expressions if you are very sure that the */
1024 /* expression is mostly true or mostly false. note that these return */
1025 /* booleans, not the expression. */
1026 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028 /* for compatibility to the rest of the world */
1029 #define ecb_likely(expr) ecb_expect_true (expr)
1030 #define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032 /* count trailing zero bits and count # of one bits */
1033 #if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044 #else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053 #else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058 #if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064 #else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070 #endif
1071
1072 return r;
1073 #endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084 #else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087 #endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109 #else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119 #endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129 #else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135 #endif
1136 }
1137 #endif
1138
1139 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146 {
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149 }
1150
1151 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153 {
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160 }
1161
1162 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164 {
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172 }
1173
1174 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1175 /* so for this version we are lazy */
1176 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177 ecb_function_ ecb_const int
1178 ecb_popcount64 (uint64_t x)
1179 {
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181 }
1182
1183 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209 #elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214 #else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235 #endif
1236
1237 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239 #else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243 #endif
1244
1245 /* try to tell the compiler that some condition is definitely true */
1246 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249 ecb_inline ecb_const uint32_t
1250 ecb_byteorder_helper (void)
1251 {
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266 #else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273 #endif
1274 }
1275
1276 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281 #if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283 #else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285 #endif
1286
1287 #if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298 #else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301 #endif
1302
1303 #if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310 #else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312 #endif
1313
1314 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315 ecb_function_ ecb_const uint32_t
1316 ecb_binary16_to_binary32 (uint32_t x)
1317 {
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344 }
1345
1346 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347 ecb_function_ ecb_const uint16_t
1348 ecb_binary32_to_binary16 (uint32_t x)
1349 {
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408 }
1409
1410 /*******************************************************************************/
1411 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413 /* basically, everything uses "ieee pure-endian" floating point numbers */
1414 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415 #if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432 #else
1433 #define ECB_STDFP 0
1434 #endif
1435
1436 #ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617 #endif
1618
1619 #endif
1620
1621 /* ECB.H END */
1622
1623 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624 /* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631 # error "memory fences not defined for your architecture, please report"
1632 #endif
1633
1634 #ifndef ECB_MEMORY_FENCE
1635 # define ECB_MEMORY_FENCE do { } while (0)
1636 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638 #endif
1639
1640 #define inline_size ecb_inline
1641
1642 #if EV_FEATURE_CODE
1643 # define inline_speed ecb_inline
1644 #else
1645 # define inline_speed ecb_noinline static
1646 #endif
1647
1648 /*****************************************************************************/
1649 /* raw syscall wrappers */
1650
1651 #if EV_NEED_SYSCALL
1652
1653 #include <sys/syscall.h>
1654
1655 /*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663 #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690 #endif
1691
1692 #ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700 #else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708 #endif
1709
1710 #endif
1711
1712 /*****************************************************************************/
1713
1714 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716 #if EV_MINPRI == EV_MAXPRI
1717 # define ABSPRI(w) (((W)w), 0)
1718 #else
1719 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720 #endif
1721
1722 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1723
1724 typedef ev_watcher *W;
1725 typedef ev_watcher_list *WL;
1726 typedef ev_watcher_time *WT;
1727
1728 #define ev_active(w) ((W)(w))->active
1729 #define ev_at(w) ((WT)(w))->at
1730
1731 #if EV_USE_REALTIME
1732 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733 /* giving it a reasonably high chance of working on typical architectures */
1734 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735 #endif
1736
1737 #if EV_USE_MONOTONIC
1738 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739 #endif
1740
1741 #ifndef EV_FD_TO_WIN32_HANDLE
1742 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743 #endif
1744 #ifndef EV_WIN32_HANDLE_TO_FD
1745 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746 #endif
1747 #ifndef EV_WIN32_CLOSE_FD
1748 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1749 #endif
1750
1751 #ifdef _WIN32
1752 # include "ev_win32.c"
1753 #endif
1754
1755 /*****************************************************************************/
1756
1757 #if EV_USE_LINUXAIO
1758 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759 #endif
1760
1761 /* define a suitable floor function (only used by periodics atm) */
1762
1763 #if EV_USE_FLOOR
1764 # include <math.h>
1765 # define ev_floor(v) floor (v)
1766 #else
1767
1768 #include <float.h>
1769
1770 /* a floor() replacement function, should be independent of ev_tstamp type */
1771 ecb_noinline
1772 static ev_tstamp
1773 ev_floor (ev_tstamp v)
1774 {
1775 /* the choice of shift factor is not terribly important */
1776 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778 #else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780 #endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804 }
1805
1806 #endif
1807
1808 /*****************************************************************************/
1809
1810 #ifdef __linux
1811 # include <sys/utsname.h>
1812 #endif
1813
1814 ecb_noinline ecb_cold
1815 static unsigned int
1816 ev_linux_version (void)
1817 {
1818 #ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846 #else
1847 return 0;
1848 #endif
1849 }
1850
1851 /*****************************************************************************/
1852
1853 #if EV_AVOID_STDIO
1854 ecb_noinline ecb_cold
1855 static void
1856 ev_printerr (const char *msg)
1857 {
1858 write (STDERR_FILENO, msg, strlen (msg));
1859 }
1860 #endif
1861
1862 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1863
1864 ecb_cold
1865 void
1866 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1867 {
1868 syserr_cb = cb;
1869 }
1870
1871 ecb_noinline ecb_cold
1872 static void
1873 ev_syserr (const char *msg)
1874 {
1875 if (!msg)
1876 msg = "(libev) system error";
1877
1878 if (syserr_cb)
1879 syserr_cb (msg);
1880 else
1881 {
1882 #if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887 #else
1888 perror (msg);
1889 #endif
1890 abort ();
1891 }
1892 }
1893
1894 static void *
1895 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896 {
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909 }
1910
1911 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913 ecb_cold
1914 void
1915 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1916 {
1917 alloc = cb;
1918 }
1919
1920 inline_speed void *
1921 ev_realloc (void *ptr, long size)
1922 {
1923 ptr = alloc (ptr, size);
1924
1925 if (!ptr && size)
1926 {
1927 #if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929 #else
1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931 #endif
1932 abort ();
1933 }
1934
1935 return ptr;
1936 }
1937
1938 #define ev_malloc(size) ev_realloc (0, (size))
1939 #define ev_free(ptr) ev_realloc ((ptr), 0)
1940
1941 /*****************************************************************************/
1942
1943 /* set in reify when reification needed */
1944 #define EV_ANFD_REIFY 1
1945
1946 /* file descriptor info structure */
1947 typedef struct
1948 {
1949 WL head;
1950 unsigned char events; /* the events watched for */
1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954 #if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956 #endif
1957 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1958 SOCKET handle;
1959 #endif
1960 #if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962 #endif
1963 } ANFD;
1964
1965 /* stores the pending event set for a given watcher */
1966 typedef struct
1967 {
1968 W w;
1969 int events; /* the pending event set for the given watcher */
1970 } ANPENDING;
1971
1972 #if EV_USE_INOTIFY
1973 /* hash table entry per inotify-id */
1974 typedef struct
1975 {
1976 WL head;
1977 } ANFS;
1978 #endif
1979
1980 /* Heap Entry */
1981 #if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991 #else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
1998 #endif
1999
2000 #if EV_MULTIPLICITY
2001
2002 struct ev_loop
2003 {
2004 ev_tstamp ev_rt_now;
2005 #define ev_rt_now ((loop)->ev_rt_now)
2006 #define VAR(name,decl) decl;
2007 #include "ev_vars.h"
2008 #undef VAR
2009 };
2010 #include "ev_wrap.h"
2011
2012 static struct ev_loop default_loop_struct;
2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2014
2015 #else
2016
2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2018 #define VAR(name,decl) static decl;
2019 #include "ev_vars.h"
2020 #undef VAR
2021
2022 static int ev_default_loop_ptr;
2023
2024 #endif
2025
2026 #if EV_FEATURE_API
2027 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2030 #else
2031 # define EV_RELEASE_CB (void)0
2032 # define EV_ACQUIRE_CB (void)0
2033 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034 #endif
2035
2036 #define EVBREAK_RECURSE 0x80
2037
2038 /*****************************************************************************/
2039
2040 #ifndef EV_HAVE_EV_TIME
2041 ev_tstamp
2042 ev_time (void) EV_NOEXCEPT
2043 {
2044 #if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
2047 struct timespec ts;
2048 clock_gettime (CLOCK_REALTIME, &ts);
2049 return EV_TS_GET (ts);
2050 }
2051 #endif
2052
2053 {
2054 struct timeval tv;
2055 gettimeofday (&tv, 0);
2056 return EV_TV_GET (tv);
2057 }
2058 }
2059 #endif
2060
2061 inline_size ev_tstamp
2062 get_clock (void)
2063 {
2064 #if EV_USE_MONOTONIC
2065 if (ecb_expect_true (have_monotonic))
2066 {
2067 struct timespec ts;
2068 clock_gettime (CLOCK_MONOTONIC, &ts);
2069 return EV_TS_GET (ts);
2070 }
2071 #endif
2072
2073 return ev_time ();
2074 }
2075
2076 #if EV_MULTIPLICITY
2077 ev_tstamp
2078 ev_now (EV_P) EV_NOEXCEPT
2079 {
2080 return ev_rt_now;
2081 }
2082 #endif
2083
2084 void
2085 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2086 {
2087 if (delay > EV_TS_CONST (0.))
2088 {
2089 #if EV_USE_NANOSLEEP
2090 struct timespec ts;
2091
2092 EV_TS_SET (ts, delay);
2093 nanosleep (&ts, 0);
2094 #elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2098 #else
2099 struct timeval tv;
2100
2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2102 /* something not guaranteed by newer posix versions, but guaranteed */
2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
2105 select (0, 0, 0, 0, &tv);
2106 #endif
2107 }
2108 }
2109
2110 /*****************************************************************************/
2111
2112 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2113
2114 /* find a suitable new size for the given array, */
2115 /* hopefully by rounding to a nice-to-malloc size */
2116 inline_size int
2117 array_nextsize (int elem, int cur, int cnt)
2118 {
2119 int ncur = cur + 1;
2120
2121 do
2122 ncur <<= 1;
2123 while (cnt > ncur);
2124
2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2127 {
2128 ncur *= elem;
2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2130 ncur = ncur - sizeof (void *) * 4;
2131 ncur /= elem;
2132 }
2133
2134 return ncur;
2135 }
2136
2137 ecb_noinline ecb_cold
2138 static void *
2139 array_realloc (int elem, void *base, int *cur, int cnt)
2140 {
2141 *cur = array_nextsize (elem, *cur, cnt);
2142 return ev_realloc (base, elem * *cur);
2143 }
2144
2145 #define array_needsize_noinit(base,offset,count)
2146
2147 #define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
2150 #define array_needsize(type,base,cur,cnt,init) \
2151 if (ecb_expect_false ((cnt) > (cur))) \
2152 { \
2153 ecb_unused int ocur_ = (cur); \
2154 (base) = (type *)array_realloc \
2155 (sizeof (type), (base), &(cur), (cnt)); \
2156 init ((base), ocur_, ((cur) - ocur_)); \
2157 }
2158
2159 #if 0
2160 #define array_slim(type,stem) \
2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2162 { \
2163 stem ## max = array_roundsize (stem ## cnt >> 1); \
2164 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2166 }
2167 #endif
2168
2169 #define array_free(stem, idx) \
2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2171
2172 /*****************************************************************************/
2173
2174 /* dummy callback for pending events */
2175 ecb_noinline
2176 static void
2177 pendingcb (EV_P_ ev_prepare *w, int revents)
2178 {
2179 }
2180
2181 ecb_noinline
2182 void
2183 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2184 {
2185 W w_ = (W)w;
2186 int pri = ABSPRI (w_);
2187
2188 if (ecb_expect_false (w_->pending))
2189 pendings [pri][w_->pending - 1].events |= revents;
2190 else
2191 {
2192 w_->pending = ++pendingcnt [pri];
2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2194 pendings [pri][w_->pending - 1].w = w_;
2195 pendings [pri][w_->pending - 1].events = revents;
2196 }
2197
2198 pendingpri = NUMPRI - 1;
2199 }
2200
2201 inline_speed void
2202 feed_reverse (EV_P_ W w)
2203 {
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206 }
2207
2208 inline_size void
2209 feed_reverse_done (EV_P_ int revents)
2210 {
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214 }
2215
2216 inline_speed void
2217 queue_events (EV_P_ W *events, int eventcnt, int type)
2218 {
2219 int i;
2220
2221 for (i = 0; i < eventcnt; ++i)
2222 ev_feed_event (EV_A_ events [i], type);
2223 }
2224
2225 /*****************************************************************************/
2226
2227 inline_speed void
2228 fd_event_nocheck (EV_P_ int fd, int revents)
2229 {
2230 ANFD *anfd = anfds + fd;
2231 ev_io *w;
2232
2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2234 {
2235 int ev = w->events & revents;
2236
2237 if (ev)
2238 ev_feed_event (EV_A_ (W)w, ev);
2239 }
2240 }
2241
2242 /* do not submit kernel events for fds that have reify set */
2243 /* because that means they changed while we were polling for new events */
2244 inline_speed void
2245 fd_event (EV_P_ int fd, int revents)
2246 {
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251 }
2252
2253 void
2254 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2255 {
2256 if (fd >= 0 && fd < anfdmax)
2257 fd_event_nocheck (EV_A_ fd, revents);
2258 }
2259
2260 /* make sure the external fd watch events are in-sync */
2261 /* with the kernel/libev internal state */
2262 inline_size void
2263 fd_reify (EV_P)
2264 {
2265 int i;
2266
2267 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2268 for (i = 0; i < fdchangecnt; ++i)
2269 {
2270 int fd = fdchanges [i];
2271 ANFD *anfd = anfds + fd;
2272
2273 if (anfd->reify & EV__IOFDSET && anfd->head)
2274 {
2275 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2276
2277 if (handle != anfd->handle)
2278 {
2279 unsigned long arg;
2280
2281 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2282
2283 /* handle changed, but fd didn't - we need to do it in two steps */
2284 backend_modify (EV_A_ fd, anfd->events, 0);
2285 anfd->events = 0;
2286 anfd->handle = handle;
2287 }
2288 }
2289 }
2290 #endif
2291
2292 for (i = 0; i < fdchangecnt; ++i)
2293 {
2294 int fd = fdchanges [i];
2295 ANFD *anfd = anfds + fd;
2296 ev_io *w;
2297
2298 unsigned char o_events = anfd->events;
2299 unsigned char o_reify = anfd->reify;
2300
2301 anfd->reify = 0;
2302
2303 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2304 {
2305 anfd->events = 0;
2306
2307 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2308 anfd->events |= (unsigned char)w->events;
2309
2310 if (o_events != anfd->events)
2311 o_reify = EV__IOFDSET; /* actually |= */
2312 }
2313
2314 if (o_reify & EV__IOFDSET)
2315 backend_modify (EV_A_ fd, o_events, anfd->events);
2316 }
2317
2318 fdchangecnt = 0;
2319 }
2320
2321 /* something about the given fd changed */
2322 inline_size
2323 void
2324 fd_change (EV_P_ int fd, int flags)
2325 {
2326 unsigned char reify = anfds [fd].reify;
2327 anfds [fd].reify |= flags;
2328
2329 if (ecb_expect_true (!reify))
2330 {
2331 ++fdchangecnt;
2332 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2333 fdchanges [fdchangecnt - 1] = fd;
2334 }
2335 }
2336
2337 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2338 inline_speed ecb_cold void
2339 fd_kill (EV_P_ int fd)
2340 {
2341 ev_io *w;
2342
2343 while ((w = (ev_io *)anfds [fd].head))
2344 {
2345 ev_io_stop (EV_A_ w);
2346 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2347 }
2348 }
2349
2350 /* check whether the given fd is actually valid, for error recovery */
2351 inline_size ecb_cold int
2352 fd_valid (int fd)
2353 {
2354 #ifdef _WIN32
2355 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2356 #else
2357 return fcntl (fd, F_GETFD) != -1;
2358 #endif
2359 }
2360
2361 /* called on EBADF to verify fds */
2362 ecb_noinline ecb_cold
2363 static void
2364 fd_ebadf (EV_P)
2365 {
2366 int fd;
2367
2368 for (fd = 0; fd < anfdmax; ++fd)
2369 if (anfds [fd].events)
2370 if (!fd_valid (fd) && errno == EBADF)
2371 fd_kill (EV_A_ fd);
2372 }
2373
2374 /* called on ENOMEM in select/poll to kill some fds and retry */
2375 ecb_noinline ecb_cold
2376 static void
2377 fd_enomem (EV_P)
2378 {
2379 int fd;
2380
2381 for (fd = anfdmax; fd--; )
2382 if (anfds [fd].events)
2383 {
2384 fd_kill (EV_A_ fd);
2385 break;
2386 }
2387 }
2388
2389 /* usually called after fork if backend needs to re-arm all fds from scratch */
2390 ecb_noinline
2391 static void
2392 fd_rearm_all (EV_P)
2393 {
2394 int fd;
2395
2396 for (fd = 0; fd < anfdmax; ++fd)
2397 if (anfds [fd].events)
2398 {
2399 anfds [fd].events = 0;
2400 anfds [fd].emask = 0;
2401 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2402 }
2403 }
2404
2405 /* used to prepare libev internal fd's */
2406 /* this is not fork-safe */
2407 inline_speed void
2408 fd_intern (int fd)
2409 {
2410 #ifdef _WIN32
2411 unsigned long arg = 1;
2412 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2413 #else
2414 fcntl (fd, F_SETFD, FD_CLOEXEC);
2415 fcntl (fd, F_SETFL, O_NONBLOCK);
2416 #endif
2417 }
2418
2419 /*****************************************************************************/
2420
2421 /*
2422 * the heap functions want a real array index. array index 0 is guaranteed to not
2423 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2424 * the branching factor of the d-tree.
2425 */
2426
2427 /*
2428 * at the moment we allow libev the luxury of two heaps,
2429 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2430 * which is more cache-efficient.
2431 * the difference is about 5% with 50000+ watchers.
2432 */
2433 #if EV_USE_4HEAP
2434
2435 #define DHEAP 4
2436 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2437 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2438 #define UPHEAP_DONE(p,k) ((p) == (k))
2439
2440 /* away from the root */
2441 inline_speed void
2442 downheap (ANHE *heap, int N, int k)
2443 {
2444 ANHE he = heap [k];
2445 ANHE *E = heap + N + HEAP0;
2446
2447 for (;;)
2448 {
2449 ev_tstamp minat;
2450 ANHE *minpos;
2451 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2452
2453 /* find minimum child */
2454 if (ecb_expect_true (pos + DHEAP - 1 < E))
2455 {
2456 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2457 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2458 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2459 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2460 }
2461 else if (pos < E)
2462 {
2463 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2464 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2465 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2466 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2467 }
2468 else
2469 break;
2470
2471 if (ANHE_at (he) <= minat)
2472 break;
2473
2474 heap [k] = *minpos;
2475 ev_active (ANHE_w (*minpos)) = k;
2476
2477 k = minpos - heap;
2478 }
2479
2480 heap [k] = he;
2481 ev_active (ANHE_w (he)) = k;
2482 }
2483
2484 #else /* not 4HEAP */
2485
2486 #define HEAP0 1
2487 #define HPARENT(k) ((k) >> 1)
2488 #define UPHEAP_DONE(p,k) (!(p))
2489
2490 /* away from the root */
2491 inline_speed void
2492 downheap (ANHE *heap, int N, int k)
2493 {
2494 ANHE he = heap [k];
2495
2496 for (;;)
2497 {
2498 int c = k << 1;
2499
2500 if (c >= N + HEAP0)
2501 break;
2502
2503 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2504 ? 1 : 0;
2505
2506 if (ANHE_at (he) <= ANHE_at (heap [c]))
2507 break;
2508
2509 heap [k] = heap [c];
2510 ev_active (ANHE_w (heap [k])) = k;
2511
2512 k = c;
2513 }
2514
2515 heap [k] = he;
2516 ev_active (ANHE_w (he)) = k;
2517 }
2518 #endif
2519
2520 /* towards the root */
2521 inline_speed void
2522 upheap (ANHE *heap, int k)
2523 {
2524 ANHE he = heap [k];
2525
2526 for (;;)
2527 {
2528 int p = HPARENT (k);
2529
2530 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2531 break;
2532
2533 heap [k] = heap [p];
2534 ev_active (ANHE_w (heap [k])) = k;
2535 k = p;
2536 }
2537
2538 heap [k] = he;
2539 ev_active (ANHE_w (he)) = k;
2540 }
2541
2542 /* move an element suitably so it is in a correct place */
2543 inline_size void
2544 adjustheap (ANHE *heap, int N, int k)
2545 {
2546 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2547 upheap (heap, k);
2548 else
2549 downheap (heap, N, k);
2550 }
2551
2552 /* rebuild the heap: this function is used only once and executed rarely */
2553 inline_size void
2554 reheap (ANHE *heap, int N)
2555 {
2556 int i;
2557
2558 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2559 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2560 for (i = 0; i < N; ++i)
2561 upheap (heap, i + HEAP0);
2562 }
2563
2564 /*****************************************************************************/
2565
2566 /* associate signal watchers to a signal signal */
2567 typedef struct
2568 {
2569 EV_ATOMIC_T pending;
2570 #if EV_MULTIPLICITY
2571 EV_P;
2572 #endif
2573 WL head;
2574 } ANSIG;
2575
2576 static ANSIG signals [EV_NSIG - 1];
2577
2578 /*****************************************************************************/
2579
2580 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2581
2582 ecb_noinline ecb_cold
2583 static void
2584 evpipe_init (EV_P)
2585 {
2586 if (!ev_is_active (&pipe_w))
2587 {
2588 int fds [2];
2589
2590 # if EV_USE_EVENTFD
2591 fds [0] = -1;
2592 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2593 if (fds [1] < 0 && errno == EINVAL)
2594 fds [1] = eventfd (0, 0);
2595
2596 if (fds [1] < 0)
2597 # endif
2598 {
2599 while (pipe (fds))
2600 ev_syserr ("(libev) error creating signal/async pipe");
2601
2602 fd_intern (fds [0]);
2603 }
2604
2605 evpipe [0] = fds [0];
2606
2607 if (evpipe [1] < 0)
2608 evpipe [1] = fds [1]; /* first call, set write fd */
2609 else
2610 {
2611 /* on subsequent calls, do not change evpipe [1] */
2612 /* so that evpipe_write can always rely on its value. */
2613 /* this branch does not do anything sensible on windows, */
2614 /* so must not be executed on windows */
2615
2616 dup2 (fds [1], evpipe [1]);
2617 close (fds [1]);
2618 }
2619
2620 fd_intern (evpipe [1]);
2621
2622 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2623 ev_io_start (EV_A_ &pipe_w);
2624 ev_unref (EV_A); /* watcher should not keep loop alive */
2625 }
2626 }
2627
2628 inline_speed void
2629 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2630 {
2631 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2632
2633 if (ecb_expect_true (*flag))
2634 return;
2635
2636 *flag = 1;
2637 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2638
2639 pipe_write_skipped = 1;
2640
2641 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2642
2643 if (pipe_write_wanted)
2644 {
2645 int old_errno;
2646
2647 pipe_write_skipped = 0;
2648 ECB_MEMORY_FENCE_RELEASE;
2649
2650 old_errno = errno; /* save errno because write will clobber it */
2651
2652 #if EV_USE_EVENTFD
2653 if (evpipe [0] < 0)
2654 {
2655 uint64_t counter = 1;
2656 write (evpipe [1], &counter, sizeof (uint64_t));
2657 }
2658 else
2659 #endif
2660 {
2661 #ifdef _WIN32
2662 WSABUF buf;
2663 DWORD sent;
2664 buf.buf = (char *)&buf;
2665 buf.len = 1;
2666 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2667 #else
2668 write (evpipe [1], &(evpipe [1]), 1);
2669 #endif
2670 }
2671
2672 errno = old_errno;
2673 }
2674 }
2675
2676 /* called whenever the libev signal pipe */
2677 /* got some events (signal, async) */
2678 static void
2679 pipecb (EV_P_ ev_io *iow, int revents)
2680 {
2681 int i;
2682
2683 if (revents & EV_READ)
2684 {
2685 #if EV_USE_EVENTFD
2686 if (evpipe [0] < 0)
2687 {
2688 uint64_t counter;
2689 read (evpipe [1], &counter, sizeof (uint64_t));
2690 }
2691 else
2692 #endif
2693 {
2694 char dummy[4];
2695 #ifdef _WIN32
2696 WSABUF buf;
2697 DWORD recvd;
2698 DWORD flags = 0;
2699 buf.buf = dummy;
2700 buf.len = sizeof (dummy);
2701 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2702 #else
2703 read (evpipe [0], &dummy, sizeof (dummy));
2704 #endif
2705 }
2706 }
2707
2708 pipe_write_skipped = 0;
2709
2710 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2711
2712 #if EV_SIGNAL_ENABLE
2713 if (sig_pending)
2714 {
2715 sig_pending = 0;
2716
2717 ECB_MEMORY_FENCE;
2718
2719 for (i = EV_NSIG - 1; i--; )
2720 if (ecb_expect_false (signals [i].pending))
2721 ev_feed_signal_event (EV_A_ i + 1);
2722 }
2723 #endif
2724
2725 #if EV_ASYNC_ENABLE
2726 if (async_pending)
2727 {
2728 async_pending = 0;
2729
2730 ECB_MEMORY_FENCE;
2731
2732 for (i = asynccnt; i--; )
2733 if (asyncs [i]->sent)
2734 {
2735 asyncs [i]->sent = 0;
2736 ECB_MEMORY_FENCE_RELEASE;
2737 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2738 }
2739 }
2740 #endif
2741 }
2742
2743 /*****************************************************************************/
2744
2745 void
2746 ev_feed_signal (int signum) EV_NOEXCEPT
2747 {
2748 #if EV_MULTIPLICITY
2749 EV_P;
2750 ECB_MEMORY_FENCE_ACQUIRE;
2751 EV_A = signals [signum - 1].loop;
2752
2753 if (!EV_A)
2754 return;
2755 #endif
2756
2757 signals [signum - 1].pending = 1;
2758 evpipe_write (EV_A_ &sig_pending);
2759 }
2760
2761 static void
2762 ev_sighandler (int signum)
2763 {
2764 #ifdef _WIN32
2765 signal (signum, ev_sighandler);
2766 #endif
2767
2768 ev_feed_signal (signum);
2769 }
2770
2771 ecb_noinline
2772 void
2773 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2774 {
2775 WL w;
2776
2777 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2778 return;
2779
2780 --signum;
2781
2782 #if EV_MULTIPLICITY
2783 /* it is permissible to try to feed a signal to the wrong loop */
2784 /* or, likely more useful, feeding a signal nobody is waiting for */
2785
2786 if (ecb_expect_false (signals [signum].loop != EV_A))
2787 return;
2788 #endif
2789
2790 signals [signum].pending = 0;
2791 ECB_MEMORY_FENCE_RELEASE;
2792
2793 for (w = signals [signum].head; w; w = w->next)
2794 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2795 }
2796
2797 #if EV_USE_SIGNALFD
2798 static void
2799 sigfdcb (EV_P_ ev_io *iow, int revents)
2800 {
2801 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2802
2803 for (;;)
2804 {
2805 ssize_t res = read (sigfd, si, sizeof (si));
2806
2807 /* not ISO-C, as res might be -1, but works with SuS */
2808 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2809 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2810
2811 if (res < (ssize_t)sizeof (si))
2812 break;
2813 }
2814 }
2815 #endif
2816
2817 #endif
2818
2819 /*****************************************************************************/
2820
2821 #if EV_CHILD_ENABLE
2822 static WL childs [EV_PID_HASHSIZE];
2823
2824 static ev_signal childev;
2825
2826 #ifndef WIFCONTINUED
2827 # define WIFCONTINUED(status) 0
2828 #endif
2829
2830 /* handle a single child status event */
2831 inline_speed void
2832 child_reap (EV_P_ int chain, int pid, int status)
2833 {
2834 ev_child *w;
2835 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2836
2837 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2838 {
2839 if ((w->pid == pid || !w->pid)
2840 && (!traced || (w->flags & 1)))
2841 {
2842 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2843 w->rpid = pid;
2844 w->rstatus = status;
2845 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2846 }
2847 }
2848 }
2849
2850 #ifndef WCONTINUED
2851 # define WCONTINUED 0
2852 #endif
2853
2854 /* called on sigchld etc., calls waitpid */
2855 static void
2856 childcb (EV_P_ ev_signal *sw, int revents)
2857 {
2858 int pid, status;
2859
2860 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2861 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2862 if (!WCONTINUED
2863 || errno != EINVAL
2864 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2865 return;
2866
2867 /* make sure we are called again until all children have been reaped */
2868 /* we need to do it this way so that the callback gets called before we continue */
2869 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2870
2871 child_reap (EV_A_ pid, pid, status);
2872 if ((EV_PID_HASHSIZE) > 1)
2873 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2874 }
2875
2876 #endif
2877
2878 /*****************************************************************************/
2879
2880 #if EV_USE_TIMERFD
2881
2882 static void periodics_reschedule (EV_P);
2883
2884 static void
2885 timerfdcb (EV_P_ ev_io *iow, int revents)
2886 {
2887 struct itimerspec its = { 0 };
2888
2889 /* since we can't easily come zup with a (portable) maximum value of time_t,
2890 * we wake up once per month, which hopefully is rare enough to not
2891 * be a problem. */
2892 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2893 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2894
2895 ev_rt_now = ev_time ();
2896 /* periodics_reschedule only needs ev_rt_now */
2897 /* but maybe in the future we want the full treatment. */
2898 /*
2899 now_floor = EV_TS_CONST (0.);
2900 time_update (EV_A_ EV_TSTAMP_HUGE);
2901 */
2902 periodics_reschedule (EV_A);
2903 }
2904
2905 ecb_noinline ecb_cold
2906 static void
2907 evtimerfd_init (EV_P)
2908 {
2909 if (!ev_is_active (&timerfd_w))
2910 {
2911 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2912
2913 if (timerfd >= 0)
2914 {
2915 fd_intern (timerfd); /* just to be sure */
2916
2917 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2918 ev_set_priority (&timerfd_w, EV_MINPRI);
2919 ev_io_start (EV_A_ &timerfd_w);
2920 ev_unref (EV_A); /* watcher should not keep loop alive */
2921
2922 /* (re-) arm timer */
2923 timerfdcb (EV_A_ 0, 0);
2924 }
2925 }
2926 }
2927
2928 #endif
2929
2930 /*****************************************************************************/
2931
2932 #if EV_USE_IOCP
2933 # include "ev_iocp.c"
2934 #endif
2935 #if EV_USE_PORT
2936 # include "ev_port.c"
2937 #endif
2938 #if EV_USE_KQUEUE
2939 # include "ev_kqueue.c"
2940 #endif
2941 #if EV_USE_EPOLL
2942 # include "ev_epoll.c"
2943 #endif
2944 #if EV_USE_LINUXAIO
2945 # include "ev_linuxaio.c"
2946 #endif
2947 #if EV_USE_IOURING
2948 # include "ev_iouring.c"
2949 #endif
2950 #if EV_USE_POLL
2951 # include "ev_poll.c"
2952 #endif
2953 #if EV_USE_SELECT
2954 # include "ev_select.c"
2955 #endif
2956
2957 ecb_cold int
2958 ev_version_major (void) EV_NOEXCEPT
2959 {
2960 return EV_VERSION_MAJOR;
2961 }
2962
2963 ecb_cold int
2964 ev_version_minor (void) EV_NOEXCEPT
2965 {
2966 return EV_VERSION_MINOR;
2967 }
2968
2969 /* return true if we are running with elevated privileges and should ignore env variables */
2970 inline_size ecb_cold int
2971 enable_secure (void)
2972 {
2973 #ifdef _WIN32
2974 return 0;
2975 #else
2976 return getuid () != geteuid ()
2977 || getgid () != getegid ();
2978 #endif
2979 }
2980
2981 ecb_cold
2982 unsigned int
2983 ev_supported_backends (void) EV_NOEXCEPT
2984 {
2985 unsigned int flags = 0;
2986
2987 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2988 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
2989 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2990 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
2991 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
2992 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2993 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
2994
2995 return flags;
2996 }
2997
2998 ecb_cold
2999 unsigned int
3000 ev_recommended_backends (void) EV_NOEXCEPT
3001 {
3002 unsigned int flags = ev_supported_backends ();
3003
3004 #ifndef __NetBSD__
3005 /* kqueue is borked on everything but netbsd apparently */
3006 /* it usually doesn't work correctly on anything but sockets and pipes */
3007 flags &= ~EVBACKEND_KQUEUE;
3008 #endif
3009 #ifdef __APPLE__
3010 /* only select works correctly on that "unix-certified" platform */
3011 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3012 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3013 #endif
3014 #ifdef __FreeBSD__
3015 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3016 #endif
3017
3018 /* TODO: linuxaio is very experimental */
3019 #if !EV_RECOMMEND_LINUXAIO
3020 flags &= ~EVBACKEND_LINUXAIO;
3021 #endif
3022 /* TODO: linuxaio is super experimental */
3023 #if !EV_RECOMMEND_IOURING
3024 flags &= ~EVBACKEND_IOURING;
3025 #endif
3026
3027 return flags;
3028 }
3029
3030 ecb_cold
3031 unsigned int
3032 ev_embeddable_backends (void) EV_NOEXCEPT
3033 {
3034 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
3035
3036 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3037 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3038 flags &= ~EVBACKEND_EPOLL;
3039
3040 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3041
3042 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3043 * because our backend_fd is the epoll fd we need as fallback.
3044 * if the kernel ever is fixed, this might change...
3045 */
3046
3047 return flags;
3048 }
3049
3050 unsigned int
3051 ev_backend (EV_P) EV_NOEXCEPT
3052 {
3053 return backend;
3054 }
3055
3056 #if EV_FEATURE_API
3057 unsigned int
3058 ev_iteration (EV_P) EV_NOEXCEPT
3059 {
3060 return loop_count;
3061 }
3062
3063 unsigned int
3064 ev_depth (EV_P) EV_NOEXCEPT
3065 {
3066 return loop_depth;
3067 }
3068
3069 void
3070 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3071 {
3072 io_blocktime = interval;
3073 }
3074
3075 void
3076 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3077 {
3078 timeout_blocktime = interval;
3079 }
3080
3081 void
3082 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3083 {
3084 userdata = data;
3085 }
3086
3087 void *
3088 ev_userdata (EV_P) EV_NOEXCEPT
3089 {
3090 return userdata;
3091 }
3092
3093 void
3094 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3095 {
3096 invoke_cb = invoke_pending_cb;
3097 }
3098
3099 void
3100 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3101 {
3102 release_cb = release;
3103 acquire_cb = acquire;
3104 }
3105 #endif
3106
3107 /* initialise a loop structure, must be zero-initialised */
3108 ecb_noinline ecb_cold
3109 static void
3110 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3111 {
3112 if (!backend)
3113 {
3114 origflags = flags;
3115
3116 #if EV_USE_REALTIME
3117 if (!have_realtime)
3118 {
3119 struct timespec ts;
3120
3121 if (!clock_gettime (CLOCK_REALTIME, &ts))
3122 have_realtime = 1;
3123 }
3124 #endif
3125
3126 #if EV_USE_MONOTONIC
3127 if (!have_monotonic)
3128 {
3129 struct timespec ts;
3130
3131 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3132 have_monotonic = 1;
3133 }
3134 #endif
3135
3136 /* pid check not overridable via env */
3137 #ifndef _WIN32
3138 if (flags & EVFLAG_FORKCHECK)
3139 curpid = getpid ();
3140 #endif
3141
3142 if (!(flags & EVFLAG_NOENV)
3143 && !enable_secure ()
3144 && getenv ("LIBEV_FLAGS"))
3145 flags = atoi (getenv ("LIBEV_FLAGS"));
3146
3147 ev_rt_now = ev_time ();
3148 mn_now = get_clock ();
3149 now_floor = mn_now;
3150 rtmn_diff = ev_rt_now - mn_now;
3151 #if EV_FEATURE_API
3152 invoke_cb = ev_invoke_pending;
3153 #endif
3154
3155 io_blocktime = 0.;
3156 timeout_blocktime = 0.;
3157 backend = 0;
3158 backend_fd = -1;
3159 sig_pending = 0;
3160 #if EV_ASYNC_ENABLE
3161 async_pending = 0;
3162 #endif
3163 pipe_write_skipped = 0;
3164 pipe_write_wanted = 0;
3165 evpipe [0] = -1;
3166 evpipe [1] = -1;
3167 #if EV_USE_INOTIFY
3168 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3169 #endif
3170 #if EV_USE_SIGNALFD
3171 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3172 #endif
3173 #if EV_USE_TIMERFD
3174 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3175 #endif
3176
3177 if (!(flags & EVBACKEND_MASK))
3178 flags |= ev_recommended_backends ();
3179
3180 #if EV_USE_IOCP
3181 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3182 #endif
3183 #if EV_USE_PORT
3184 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3185 #endif
3186 #if EV_USE_KQUEUE
3187 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3188 #endif
3189 #if EV_USE_IOURING
3190 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3191 #endif
3192 #if EV_USE_LINUXAIO
3193 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3194 #endif
3195 #if EV_USE_EPOLL
3196 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3197 #endif
3198 #if EV_USE_POLL
3199 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3200 #endif
3201 #if EV_USE_SELECT
3202 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3203 #endif
3204
3205 ev_prepare_init (&pending_w, pendingcb);
3206
3207 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3208 ev_init (&pipe_w, pipecb);
3209 ev_set_priority (&pipe_w, EV_MAXPRI);
3210 #endif
3211 }
3212 }
3213
3214 /* free up a loop structure */
3215 ecb_cold
3216 void
3217 ev_loop_destroy (EV_P)
3218 {
3219 int i;
3220
3221 #if EV_MULTIPLICITY
3222 /* mimic free (0) */
3223 if (!EV_A)
3224 return;
3225 #endif
3226
3227 #if EV_CLEANUP_ENABLE
3228 /* queue cleanup watchers (and execute them) */
3229 if (ecb_expect_false (cleanupcnt))
3230 {
3231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3232 EV_INVOKE_PENDING;
3233 }
3234 #endif
3235
3236 #if EV_CHILD_ENABLE
3237 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3238 {
3239 ev_ref (EV_A); /* child watcher */
3240 ev_signal_stop (EV_A_ &childev);
3241 }
3242 #endif
3243
3244 if (ev_is_active (&pipe_w))
3245 {
3246 /*ev_ref (EV_A);*/
3247 /*ev_io_stop (EV_A_ &pipe_w);*/
3248
3249 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3250 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3251 }
3252
3253 #if EV_USE_SIGNALFD
3254 if (ev_is_active (&sigfd_w))
3255 close (sigfd);
3256 #endif
3257
3258 #if EV_USE_TIMERFD
3259 if (ev_is_active (&timerfd_w))
3260 close (timerfd);
3261 #endif
3262
3263 #if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 close (fs_fd);
3266 #endif
3267
3268 if (backend_fd >= 0)
3269 close (backend_fd);
3270
3271 #if EV_USE_IOCP
3272 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3273 #endif
3274 #if EV_USE_PORT
3275 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3276 #endif
3277 #if EV_USE_KQUEUE
3278 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3279 #endif
3280 #if EV_USE_IOURING
3281 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3282 #endif
3283 #if EV_USE_LINUXAIO
3284 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3285 #endif
3286 #if EV_USE_EPOLL
3287 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3288 #endif
3289 #if EV_USE_POLL
3290 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3291 #endif
3292 #if EV_USE_SELECT
3293 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3294 #endif
3295
3296 for (i = NUMPRI; i--; )
3297 {
3298 array_free (pending, [i]);
3299 #if EV_IDLE_ENABLE
3300 array_free (idle, [i]);
3301 #endif
3302 }
3303
3304 ev_free (anfds); anfds = 0; anfdmax = 0;
3305
3306 /* have to use the microsoft-never-gets-it-right macro */
3307 array_free (rfeed, EMPTY);
3308 array_free (fdchange, EMPTY);
3309 array_free (timer, EMPTY);
3310 #if EV_PERIODIC_ENABLE
3311 array_free (periodic, EMPTY);
3312 #endif
3313 #if EV_FORK_ENABLE
3314 array_free (fork, EMPTY);
3315 #endif
3316 #if EV_CLEANUP_ENABLE
3317 array_free (cleanup, EMPTY);
3318 #endif
3319 array_free (prepare, EMPTY);
3320 array_free (check, EMPTY);
3321 #if EV_ASYNC_ENABLE
3322 array_free (async, EMPTY);
3323 #endif
3324
3325 backend = 0;
3326
3327 #if EV_MULTIPLICITY
3328 if (ev_is_default_loop (EV_A))
3329 #endif
3330 ev_default_loop_ptr = 0;
3331 #if EV_MULTIPLICITY
3332 else
3333 ev_free (EV_A);
3334 #endif
3335 }
3336
3337 #if EV_USE_INOTIFY
3338 inline_size void infy_fork (EV_P);
3339 #endif
3340
3341 inline_size void
3342 loop_fork (EV_P)
3343 {
3344 #if EV_USE_PORT
3345 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3346 #endif
3347 #if EV_USE_KQUEUE
3348 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3349 #endif
3350 #if EV_USE_IOURING
3351 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3352 #endif
3353 #if EV_USE_LINUXAIO
3354 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3355 #endif
3356 #if EV_USE_EPOLL
3357 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3358 #endif
3359 #if EV_USE_INOTIFY
3360 infy_fork (EV_A);
3361 #endif
3362
3363 if (postfork != 2)
3364 {
3365 #if EV_USE_SIGNALFD
3366 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3367 #endif
3368
3369 #if EV_USE_TIMERFD
3370 if (ev_is_active (&timerfd_w))
3371 {
3372 ev_ref (EV_A);
3373 ev_io_stop (EV_A_ &timerfd_w);
3374
3375 close (timerfd);
3376 timerfd = -2;
3377
3378 evtimerfd_init (EV_A);
3379 /* reschedule periodics, in case we missed something */
3380 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3381 }
3382 #endif
3383
3384 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3385 if (ev_is_active (&pipe_w))
3386 {
3387 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3388
3389 ev_ref (EV_A);
3390 ev_io_stop (EV_A_ &pipe_w);
3391
3392 if (evpipe [0] >= 0)
3393 EV_WIN32_CLOSE_FD (evpipe [0]);
3394
3395 evpipe_init (EV_A);
3396 /* iterate over everything, in case we missed something before */
3397 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3398 }
3399 #endif
3400 }
3401
3402 postfork = 0;
3403 }
3404
3405 #if EV_MULTIPLICITY
3406
3407 ecb_cold
3408 struct ev_loop *
3409 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3410 {
3411 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3412
3413 memset (EV_A, 0, sizeof (struct ev_loop));
3414 loop_init (EV_A_ flags);
3415
3416 if (ev_backend (EV_A))
3417 return EV_A;
3418
3419 ev_free (EV_A);
3420 return 0;
3421 }
3422
3423 #endif /* multiplicity */
3424
3425 #if EV_VERIFY
3426 ecb_noinline ecb_cold
3427 static void
3428 verify_watcher (EV_P_ W w)
3429 {
3430 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3431
3432 if (w->pending)
3433 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3434 }
3435
3436 ecb_noinline ecb_cold
3437 static void
3438 verify_heap (EV_P_ ANHE *heap, int N)
3439 {
3440 int i;
3441
3442 for (i = HEAP0; i < N + HEAP0; ++i)
3443 {
3444 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3445 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3446 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3447
3448 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3449 }
3450 }
3451
3452 ecb_noinline ecb_cold
3453 static void
3454 array_verify (EV_P_ W *ws, int cnt)
3455 {
3456 while (cnt--)
3457 {
3458 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3459 verify_watcher (EV_A_ ws [cnt]);
3460 }
3461 }
3462 #endif
3463
3464 #if EV_FEATURE_API
3465 void ecb_cold
3466 ev_verify (EV_P) EV_NOEXCEPT
3467 {
3468 #if EV_VERIFY
3469 int i;
3470 WL w, w2;
3471
3472 assert (activecnt >= -1);
3473
3474 assert (fdchangemax >= fdchangecnt);
3475 for (i = 0; i < fdchangecnt; ++i)
3476 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3477
3478 assert (anfdmax >= 0);
3479 for (i = 0; i < anfdmax; ++i)
3480 {
3481 int j = 0;
3482
3483 for (w = w2 = anfds [i].head; w; w = w->next)
3484 {
3485 verify_watcher (EV_A_ (W)w);
3486
3487 if (j++ & 1)
3488 {
3489 assert (("libev: io watcher list contains a loop", w != w2));
3490 w2 = w2->next;
3491 }
3492
3493 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3494 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3495 }
3496 }
3497
3498 assert (timermax >= timercnt);
3499 verify_heap (EV_A_ timers, timercnt);
3500
3501 #if EV_PERIODIC_ENABLE
3502 assert (periodicmax >= periodiccnt);
3503 verify_heap (EV_A_ periodics, periodiccnt);
3504 #endif
3505
3506 for (i = NUMPRI; i--; )
3507 {
3508 assert (pendingmax [i] >= pendingcnt [i]);
3509 #if EV_IDLE_ENABLE
3510 assert (idleall >= 0);
3511 assert (idlemax [i] >= idlecnt [i]);
3512 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3513 #endif
3514 }
3515
3516 #if EV_FORK_ENABLE
3517 assert (forkmax >= forkcnt);
3518 array_verify (EV_A_ (W *)forks, forkcnt);
3519 #endif
3520
3521 #if EV_CLEANUP_ENABLE
3522 assert (cleanupmax >= cleanupcnt);
3523 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3524 #endif
3525
3526 #if EV_ASYNC_ENABLE
3527 assert (asyncmax >= asynccnt);
3528 array_verify (EV_A_ (W *)asyncs, asynccnt);
3529 #endif
3530
3531 #if EV_PREPARE_ENABLE
3532 assert (preparemax >= preparecnt);
3533 array_verify (EV_A_ (W *)prepares, preparecnt);
3534 #endif
3535
3536 #if EV_CHECK_ENABLE
3537 assert (checkmax >= checkcnt);
3538 array_verify (EV_A_ (W *)checks, checkcnt);
3539 #endif
3540
3541 # if 0
3542 #if EV_CHILD_ENABLE
3543 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3544 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3545 #endif
3546 # endif
3547 #endif
3548 }
3549 #endif
3550
3551 #if EV_MULTIPLICITY
3552 ecb_cold
3553 struct ev_loop *
3554 #else
3555 int
3556 #endif
3557 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3558 {
3559 if (!ev_default_loop_ptr)
3560 {
3561 #if EV_MULTIPLICITY
3562 EV_P = ev_default_loop_ptr = &default_loop_struct;
3563 #else
3564 ev_default_loop_ptr = 1;
3565 #endif
3566
3567 loop_init (EV_A_ flags);
3568
3569 if (ev_backend (EV_A))
3570 {
3571 #if EV_CHILD_ENABLE
3572 ev_signal_init (&childev, childcb, SIGCHLD);
3573 ev_set_priority (&childev, EV_MAXPRI);
3574 ev_signal_start (EV_A_ &childev);
3575 ev_unref (EV_A); /* child watcher should not keep loop alive */
3576 #endif
3577 }
3578 else
3579 ev_default_loop_ptr = 0;
3580 }
3581
3582 return ev_default_loop_ptr;
3583 }
3584
3585 void
3586 ev_loop_fork (EV_P) EV_NOEXCEPT
3587 {
3588 postfork = 1;
3589 }
3590
3591 /*****************************************************************************/
3592
3593 void
3594 ev_invoke (EV_P_ void *w, int revents)
3595 {
3596 EV_CB_INVOKE ((W)w, revents);
3597 }
3598
3599 unsigned int
3600 ev_pending_count (EV_P) EV_NOEXCEPT
3601 {
3602 int pri;
3603 unsigned int count = 0;
3604
3605 for (pri = NUMPRI; pri--; )
3606 count += pendingcnt [pri];
3607
3608 return count;
3609 }
3610
3611 ecb_noinline
3612 void
3613 ev_invoke_pending (EV_P)
3614 {
3615 pendingpri = NUMPRI;
3616
3617 do
3618 {
3619 --pendingpri;
3620
3621 /* pendingpri possibly gets modified in the inner loop */
3622 while (pendingcnt [pendingpri])
3623 {
3624 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3625
3626 p->w->pending = 0;
3627 EV_CB_INVOKE (p->w, p->events);
3628 EV_FREQUENT_CHECK;
3629 }
3630 }
3631 while (pendingpri);
3632 }
3633
3634 #if EV_IDLE_ENABLE
3635 /* make idle watchers pending. this handles the "call-idle */
3636 /* only when higher priorities are idle" logic */
3637 inline_size void
3638 idle_reify (EV_P)
3639 {
3640 if (ecb_expect_false (idleall))
3641 {
3642 int pri;
3643
3644 for (pri = NUMPRI; pri--; )
3645 {
3646 if (pendingcnt [pri])
3647 break;
3648
3649 if (idlecnt [pri])
3650 {
3651 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3652 break;
3653 }
3654 }
3655 }
3656 }
3657 #endif
3658
3659 /* make timers pending */
3660 inline_size void
3661 timers_reify (EV_P)
3662 {
3663 EV_FREQUENT_CHECK;
3664
3665 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3666 {
3667 do
3668 {
3669 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3670
3671 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3672
3673 /* first reschedule or stop timer */
3674 if (w->repeat)
3675 {
3676 ev_at (w) += w->repeat;
3677 if (ev_at (w) < mn_now)
3678 ev_at (w) = mn_now;
3679
3680 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3681
3682 ANHE_at_cache (timers [HEAP0]);
3683 downheap (timers, timercnt, HEAP0);
3684 }
3685 else
3686 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3687
3688 EV_FREQUENT_CHECK;
3689 feed_reverse (EV_A_ (W)w);
3690 }
3691 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3692
3693 feed_reverse_done (EV_A_ EV_TIMER);
3694 }
3695 }
3696
3697 #if EV_PERIODIC_ENABLE
3698
3699 ecb_noinline
3700 static void
3701 periodic_recalc (EV_P_ ev_periodic *w)
3702 {
3703 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3704 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3705
3706 /* the above almost always errs on the low side */
3707 while (at <= ev_rt_now)
3708 {
3709 ev_tstamp nat = at + w->interval;
3710
3711 /* when resolution fails us, we use ev_rt_now */
3712 if (ecb_expect_false (nat == at))
3713 {
3714 at = ev_rt_now;
3715 break;
3716 }
3717
3718 at = nat;
3719 }
3720
3721 ev_at (w) = at;
3722 }
3723
3724 /* make periodics pending */
3725 inline_size void
3726 periodics_reify (EV_P)
3727 {
3728 EV_FREQUENT_CHECK;
3729
3730 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3731 {
3732 do
3733 {
3734 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3735
3736 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3737
3738 /* first reschedule or stop timer */
3739 if (w->reschedule_cb)
3740 {
3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3742
3743 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3744
3745 ANHE_at_cache (periodics [HEAP0]);
3746 downheap (periodics, periodiccnt, HEAP0);
3747 }
3748 else if (w->interval)
3749 {
3750 periodic_recalc (EV_A_ w);
3751 ANHE_at_cache (periodics [HEAP0]);
3752 downheap (periodics, periodiccnt, HEAP0);
3753 }
3754 else
3755 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3756
3757 EV_FREQUENT_CHECK;
3758 feed_reverse (EV_A_ (W)w);
3759 }
3760 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3761
3762 feed_reverse_done (EV_A_ EV_PERIODIC);
3763 }
3764 }
3765
3766 /* simply recalculate all periodics */
3767 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3768 ecb_noinline ecb_cold
3769 static void
3770 periodics_reschedule (EV_P)
3771 {
3772 int i;
3773
3774 /* adjust periodics after time jump */
3775 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3776 {
3777 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3778
3779 if (w->reschedule_cb)
3780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3781 else if (w->interval)
3782 periodic_recalc (EV_A_ w);
3783
3784 ANHE_at_cache (periodics [i]);
3785 }
3786
3787 reheap (periodics, periodiccnt);
3788 }
3789 #endif
3790
3791 /* adjust all timers by a given offset */
3792 ecb_noinline ecb_cold
3793 static void
3794 timers_reschedule (EV_P_ ev_tstamp adjust)
3795 {
3796 int i;
3797
3798 for (i = 0; i < timercnt; ++i)
3799 {
3800 ANHE *he = timers + i + HEAP0;
3801 ANHE_w (*he)->at += adjust;
3802 ANHE_at_cache (*he);
3803 }
3804 }
3805
3806 /* fetch new monotonic and realtime times from the kernel */
3807 /* also detect if there was a timejump, and act accordingly */
3808 inline_speed void
3809 time_update (EV_P_ ev_tstamp max_block)
3810 {
3811 #if EV_USE_MONOTONIC
3812 if (ecb_expect_true (have_monotonic))
3813 {
3814 int i;
3815 ev_tstamp odiff = rtmn_diff;
3816
3817 mn_now = get_clock ();
3818
3819 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3820 /* interpolate in the meantime */
3821 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3822 {
3823 ev_rt_now = rtmn_diff + mn_now;
3824 return;
3825 }
3826
3827 now_floor = mn_now;
3828 ev_rt_now = ev_time ();
3829
3830 /* loop a few times, before making important decisions.
3831 * on the choice of "4": one iteration isn't enough,
3832 * in case we get preempted during the calls to
3833 * ev_time and get_clock. a second call is almost guaranteed
3834 * to succeed in that case, though. and looping a few more times
3835 * doesn't hurt either as we only do this on time-jumps or
3836 * in the unlikely event of having been preempted here.
3837 */
3838 for (i = 4; --i; )
3839 {
3840 ev_tstamp diff;
3841 rtmn_diff = ev_rt_now - mn_now;
3842
3843 diff = odiff - rtmn_diff;
3844
3845 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3846 return; /* all is well */
3847
3848 ev_rt_now = ev_time ();
3849 mn_now = get_clock ();
3850 now_floor = mn_now;
3851 }
3852
3853 /* no timer adjustment, as the monotonic clock doesn't jump */
3854 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3855 # if EV_PERIODIC_ENABLE
3856 periodics_reschedule (EV_A);
3857 # endif
3858 }
3859 else
3860 #endif
3861 {
3862 ev_rt_now = ev_time ();
3863
3864 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3865 {
3866 /* adjust timers. this is easy, as the offset is the same for all of them */
3867 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3868 #if EV_PERIODIC_ENABLE
3869 periodics_reschedule (EV_A);
3870 #endif
3871 }
3872
3873 mn_now = ev_rt_now;
3874 }
3875 }
3876
3877 int
3878 ev_run (EV_P_ int flags)
3879 {
3880 #if EV_FEATURE_API
3881 ++loop_depth;
3882 #endif
3883
3884 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3885
3886 loop_done = EVBREAK_CANCEL;
3887
3888 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3889
3890 do
3891 {
3892 #if EV_VERIFY >= 2
3893 ev_verify (EV_A);
3894 #endif
3895
3896 #ifndef _WIN32
3897 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3898 if (ecb_expect_false (getpid () != curpid))
3899 {
3900 curpid = getpid ();
3901 postfork = 1;
3902 }
3903 #endif
3904
3905 #if EV_FORK_ENABLE
3906 /* we might have forked, so queue fork handlers */
3907 if (ecb_expect_false (postfork))
3908 if (forkcnt)
3909 {
3910 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3911 EV_INVOKE_PENDING;
3912 }
3913 #endif
3914
3915 #if EV_PREPARE_ENABLE
3916 /* queue prepare watchers (and execute them) */
3917 if (ecb_expect_false (preparecnt))
3918 {
3919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3920 EV_INVOKE_PENDING;
3921 }
3922 #endif
3923
3924 if (ecb_expect_false (loop_done))
3925 break;
3926
3927 /* we might have forked, so reify kernel state if necessary */
3928 if (ecb_expect_false (postfork))
3929 loop_fork (EV_A);
3930
3931 /* update fd-related kernel structures */
3932 fd_reify (EV_A);
3933
3934 /* calculate blocking time */
3935 {
3936 ev_tstamp waittime = 0.;
3937 ev_tstamp sleeptime = 0.;
3938
3939 /* remember old timestamp for io_blocktime calculation */
3940 ev_tstamp prev_mn_now = mn_now;
3941
3942 /* update time to cancel out callback processing overhead */
3943 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3944
3945 /* from now on, we want a pipe-wake-up */
3946 pipe_write_wanted = 1;
3947
3948 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3949
3950 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3951 {
3952 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3953
3954 if (timercnt)
3955 {
3956 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3957 if (waittime > to) waittime = to;
3958 }
3959
3960 #if EV_PERIODIC_ENABLE
3961 if (periodiccnt)
3962 {
3963 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3964 if (waittime > to) waittime = to;
3965 }
3966 #endif
3967
3968 /* don't let timeouts decrease the waittime below timeout_blocktime */
3969 if (ecb_expect_false (waittime < timeout_blocktime))
3970 waittime = timeout_blocktime;
3971
3972 /* now there are two more special cases left, either we have
3973 * already-expired timers, so we should not sleep, or we have timers
3974 * that expire very soon, in which case we need to wait for a minimum
3975 * amount of time for some event loop backends.
3976 */
3977 if (ecb_expect_false (waittime < backend_mintime))
3978 waittime = waittime <= EV_TS_CONST (0.)
3979 ? EV_TS_CONST (0.)
3980 : backend_mintime;
3981
3982 /* extra check because io_blocktime is commonly 0 */
3983 if (ecb_expect_false (io_blocktime))
3984 {
3985 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3986
3987 if (sleeptime > waittime - backend_mintime)
3988 sleeptime = waittime - backend_mintime;
3989
3990 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
3991 {
3992 ev_sleep (sleeptime);
3993 waittime -= sleeptime;
3994 }
3995 }
3996 }
3997
3998 #if EV_FEATURE_API
3999 ++loop_count;
4000 #endif
4001 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4002 backend_poll (EV_A_ waittime);
4003 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4004
4005 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4006
4007 ECB_MEMORY_FENCE_ACQUIRE;
4008 if (pipe_write_skipped)
4009 {
4010 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4011 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4012 }
4013
4014 /* update ev_rt_now, do magic */
4015 time_update (EV_A_ waittime + sleeptime);
4016 }
4017
4018 /* queue pending timers and reschedule them */
4019 timers_reify (EV_A); /* relative timers called last */
4020 #if EV_PERIODIC_ENABLE
4021 periodics_reify (EV_A); /* absolute timers called first */
4022 #endif
4023
4024 #if EV_IDLE_ENABLE
4025 /* queue idle watchers unless other events are pending */
4026 idle_reify (EV_A);
4027 #endif
4028
4029 #if EV_CHECK_ENABLE
4030 /* queue check watchers, to be executed first */
4031 if (ecb_expect_false (checkcnt))
4032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4033 #endif
4034
4035 EV_INVOKE_PENDING;
4036 }
4037 while (ecb_expect_true (
4038 activecnt
4039 && !loop_done
4040 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4041 ));
4042
4043 if (loop_done == EVBREAK_ONE)
4044 loop_done = EVBREAK_CANCEL;
4045
4046 #if EV_FEATURE_API
4047 --loop_depth;
4048 #endif
4049
4050 return activecnt;
4051 }
4052
4053 void
4054 ev_break (EV_P_ int how) EV_NOEXCEPT
4055 {
4056 loop_done = how;
4057 }
4058
4059 void
4060 ev_ref (EV_P) EV_NOEXCEPT
4061 {
4062 ++activecnt;
4063 }
4064
4065 void
4066 ev_unref (EV_P) EV_NOEXCEPT
4067 {
4068 --activecnt;
4069 }
4070
4071 void
4072 ev_now_update (EV_P) EV_NOEXCEPT
4073 {
4074 time_update (EV_A_ EV_TSTAMP_HUGE);
4075 }
4076
4077 void
4078 ev_suspend (EV_P) EV_NOEXCEPT
4079 {
4080 ev_now_update (EV_A);
4081 }
4082
4083 void
4084 ev_resume (EV_P) EV_NOEXCEPT
4085 {
4086 ev_tstamp mn_prev = mn_now;
4087
4088 ev_now_update (EV_A);
4089 timers_reschedule (EV_A_ mn_now - mn_prev);
4090 #if EV_PERIODIC_ENABLE
4091 /* TODO: really do this? */
4092 periodics_reschedule (EV_A);
4093 #endif
4094 }
4095
4096 /*****************************************************************************/
4097 /* singly-linked list management, used when the expected list length is short */
4098
4099 inline_size void
4100 wlist_add (WL *head, WL elem)
4101 {
4102 elem->next = *head;
4103 *head = elem;
4104 }
4105
4106 inline_size void
4107 wlist_del (WL *head, WL elem)
4108 {
4109 while (*head)
4110 {
4111 if (ecb_expect_true (*head == elem))
4112 {
4113 *head = elem->next;
4114 break;
4115 }
4116
4117 head = &(*head)->next;
4118 }
4119 }
4120
4121 /* internal, faster, version of ev_clear_pending */
4122 inline_speed void
4123 clear_pending (EV_P_ W w)
4124 {
4125 if (w->pending)
4126 {
4127 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4128 w->pending = 0;
4129 }
4130 }
4131
4132 int
4133 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4134 {
4135 W w_ = (W)w;
4136 int pending = w_->pending;
4137
4138 if (ecb_expect_true (pending))
4139 {
4140 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4141 p->w = (W)&pending_w;
4142 w_->pending = 0;
4143 return p->events;
4144 }
4145 else
4146 return 0;
4147 }
4148
4149 inline_size void
4150 pri_adjust (EV_P_ W w)
4151 {
4152 int pri = ev_priority (w);
4153 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4154 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4155 ev_set_priority (w, pri);
4156 }
4157
4158 inline_speed void
4159 ev_start (EV_P_ W w, int active)
4160 {
4161 pri_adjust (EV_A_ w);
4162 w->active = active;
4163 ev_ref (EV_A);
4164 }
4165
4166 inline_size void
4167 ev_stop (EV_P_ W w)
4168 {
4169 ev_unref (EV_A);
4170 w->active = 0;
4171 }
4172
4173 /*****************************************************************************/
4174
4175 ecb_noinline
4176 void
4177 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4178 {
4179 int fd = w->fd;
4180
4181 if (ecb_expect_false (ev_is_active (w)))
4182 return;
4183
4184 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4185 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4186
4187 #if EV_VERIFY >= 2
4188 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4189 #endif
4190 EV_FREQUENT_CHECK;
4191
4192 ev_start (EV_A_ (W)w, 1);
4193 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4194 wlist_add (&anfds[fd].head, (WL)w);
4195
4196 /* common bug, apparently */
4197 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4198
4199 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4200 w->events &= ~EV__IOFDSET;
4201
4202 EV_FREQUENT_CHECK;
4203 }
4204
4205 ecb_noinline
4206 void
4207 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4208 {
4209 clear_pending (EV_A_ (W)w);
4210 if (ecb_expect_false (!ev_is_active (w)))
4211 return;
4212
4213 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4214
4215 #if EV_VERIFY >= 2
4216 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4217 #endif
4218 EV_FREQUENT_CHECK;
4219
4220 wlist_del (&anfds[w->fd].head, (WL)w);
4221 ev_stop (EV_A_ (W)w);
4222
4223 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4224
4225 EV_FREQUENT_CHECK;
4226 }
4227
4228 ecb_noinline
4229 void
4230 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4231 {
4232 if (ecb_expect_false (ev_is_active (w)))
4233 return;
4234
4235 ev_at (w) += mn_now;
4236
4237 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4238
4239 EV_FREQUENT_CHECK;
4240
4241 ++timercnt;
4242 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4243 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4244 ANHE_w (timers [ev_active (w)]) = (WT)w;
4245 ANHE_at_cache (timers [ev_active (w)]);
4246 upheap (timers, ev_active (w));
4247
4248 EV_FREQUENT_CHECK;
4249
4250 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4251 }
4252
4253 ecb_noinline
4254 void
4255 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4256 {
4257 clear_pending (EV_A_ (W)w);
4258 if (ecb_expect_false (!ev_is_active (w)))
4259 return;
4260
4261 EV_FREQUENT_CHECK;
4262
4263 {
4264 int active = ev_active (w);
4265
4266 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4267
4268 --timercnt;
4269
4270 if (ecb_expect_true (active < timercnt + HEAP0))
4271 {
4272 timers [active] = timers [timercnt + HEAP0];
4273 adjustheap (timers, timercnt, active);
4274 }
4275 }
4276
4277 ev_at (w) -= mn_now;
4278
4279 ev_stop (EV_A_ (W)w);
4280
4281 EV_FREQUENT_CHECK;
4282 }
4283
4284 ecb_noinline
4285 void
4286 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4287 {
4288 EV_FREQUENT_CHECK;
4289
4290 clear_pending (EV_A_ (W)w);
4291
4292 if (ev_is_active (w))
4293 {
4294 if (w->repeat)
4295 {
4296 ev_at (w) = mn_now + w->repeat;
4297 ANHE_at_cache (timers [ev_active (w)]);
4298 adjustheap (timers, timercnt, ev_active (w));
4299 }
4300 else
4301 ev_timer_stop (EV_A_ w);
4302 }
4303 else if (w->repeat)
4304 {
4305 ev_at (w) = w->repeat;
4306 ev_timer_start (EV_A_ w);
4307 }
4308
4309 EV_FREQUENT_CHECK;
4310 }
4311
4312 ev_tstamp
4313 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4314 {
4315 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4316 }
4317
4318 #if EV_PERIODIC_ENABLE
4319 ecb_noinline
4320 void
4321 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4322 {
4323 if (ecb_expect_false (ev_is_active (w)))
4324 return;
4325
4326 #if EV_USE_TIMERFD
4327 if (timerfd == -2)
4328 evtimerfd_init (EV_A);
4329 #endif
4330
4331 if (w->reschedule_cb)
4332 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4333 else if (w->interval)
4334 {
4335 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4336 periodic_recalc (EV_A_ w);
4337 }
4338 else
4339 ev_at (w) = w->offset;
4340
4341 EV_FREQUENT_CHECK;
4342
4343 ++periodiccnt;
4344 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4345 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4346 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4347 ANHE_at_cache (periodics [ev_active (w)]);
4348 upheap (periodics, ev_active (w));
4349
4350 EV_FREQUENT_CHECK;
4351
4352 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4353 }
4354
4355 ecb_noinline
4356 void
4357 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4358 {
4359 clear_pending (EV_A_ (W)w);
4360 if (ecb_expect_false (!ev_is_active (w)))
4361 return;
4362
4363 EV_FREQUENT_CHECK;
4364
4365 {
4366 int active = ev_active (w);
4367
4368 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4369
4370 --periodiccnt;
4371
4372 if (ecb_expect_true (active < periodiccnt + HEAP0))
4373 {
4374 periodics [active] = periodics [periodiccnt + HEAP0];
4375 adjustheap (periodics, periodiccnt, active);
4376 }
4377 }
4378
4379 ev_stop (EV_A_ (W)w);
4380
4381 EV_FREQUENT_CHECK;
4382 }
4383
4384 ecb_noinline
4385 void
4386 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4387 {
4388 /* TODO: use adjustheap and recalculation */
4389 ev_periodic_stop (EV_A_ w);
4390 ev_periodic_start (EV_A_ w);
4391 }
4392 #endif
4393
4394 #ifndef SA_RESTART
4395 # define SA_RESTART 0
4396 #endif
4397
4398 #if EV_SIGNAL_ENABLE
4399
4400 ecb_noinline
4401 void
4402 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4403 {
4404 if (ecb_expect_false (ev_is_active (w)))
4405 return;
4406
4407 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4408
4409 #if EV_MULTIPLICITY
4410 assert (("libev: a signal must not be attached to two different loops",
4411 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4412
4413 signals [w->signum - 1].loop = EV_A;
4414 ECB_MEMORY_FENCE_RELEASE;
4415 #endif
4416
4417 EV_FREQUENT_CHECK;
4418
4419 #if EV_USE_SIGNALFD
4420 if (sigfd == -2)
4421 {
4422 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4423 if (sigfd < 0 && errno == EINVAL)
4424 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4425
4426 if (sigfd >= 0)
4427 {
4428 fd_intern (sigfd); /* doing it twice will not hurt */
4429
4430 sigemptyset (&sigfd_set);
4431
4432 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4433 ev_set_priority (&sigfd_w, EV_MAXPRI);
4434 ev_io_start (EV_A_ &sigfd_w);
4435 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4436 }
4437 }
4438
4439 if (sigfd >= 0)
4440 {
4441 /* TODO: check .head */
4442 sigaddset (&sigfd_set, w->signum);
4443 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4444
4445 signalfd (sigfd, &sigfd_set, 0);
4446 }
4447 #endif
4448
4449 ev_start (EV_A_ (W)w, 1);
4450 wlist_add (&signals [w->signum - 1].head, (WL)w);
4451
4452 if (!((WL)w)->next)
4453 # if EV_USE_SIGNALFD
4454 if (sigfd < 0) /*TODO*/
4455 # endif
4456 {
4457 # ifdef _WIN32
4458 evpipe_init (EV_A);
4459
4460 signal (w->signum, ev_sighandler);
4461 # else
4462 struct sigaction sa;
4463
4464 evpipe_init (EV_A);
4465
4466 sa.sa_handler = ev_sighandler;
4467 sigfillset (&sa.sa_mask);
4468 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4469 sigaction (w->signum, &sa, 0);
4470
4471 if (origflags & EVFLAG_NOSIGMASK)
4472 {
4473 sigemptyset (&sa.sa_mask);
4474 sigaddset (&sa.sa_mask, w->signum);
4475 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4476 }
4477 #endif
4478 }
4479
4480 EV_FREQUENT_CHECK;
4481 }
4482
4483 ecb_noinline
4484 void
4485 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4486 {
4487 clear_pending (EV_A_ (W)w);
4488 if (ecb_expect_false (!ev_is_active (w)))
4489 return;
4490
4491 EV_FREQUENT_CHECK;
4492
4493 wlist_del (&signals [w->signum - 1].head, (WL)w);
4494 ev_stop (EV_A_ (W)w);
4495
4496 if (!signals [w->signum - 1].head)
4497 {
4498 #if EV_MULTIPLICITY
4499 signals [w->signum - 1].loop = 0; /* unattach from signal */
4500 #endif
4501 #if EV_USE_SIGNALFD
4502 if (sigfd >= 0)
4503 {
4504 sigset_t ss;
4505
4506 sigemptyset (&ss);
4507 sigaddset (&ss, w->signum);
4508 sigdelset (&sigfd_set, w->signum);
4509
4510 signalfd (sigfd, &sigfd_set, 0);
4511 sigprocmask (SIG_UNBLOCK, &ss, 0);
4512 }
4513 else
4514 #endif
4515 signal (w->signum, SIG_DFL);
4516 }
4517
4518 EV_FREQUENT_CHECK;
4519 }
4520
4521 #endif
4522
4523 #if EV_CHILD_ENABLE
4524
4525 void
4526 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4527 {
4528 #if EV_MULTIPLICITY
4529 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4530 #endif
4531 if (ecb_expect_false (ev_is_active (w)))
4532 return;
4533
4534 EV_FREQUENT_CHECK;
4535
4536 ev_start (EV_A_ (W)w, 1);
4537 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4538
4539 EV_FREQUENT_CHECK;
4540 }
4541
4542 void
4543 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4544 {
4545 clear_pending (EV_A_ (W)w);
4546 if (ecb_expect_false (!ev_is_active (w)))
4547 return;
4548
4549 EV_FREQUENT_CHECK;
4550
4551 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4552 ev_stop (EV_A_ (W)w);
4553
4554 EV_FREQUENT_CHECK;
4555 }
4556
4557 #endif
4558
4559 #if EV_STAT_ENABLE
4560
4561 # ifdef _WIN32
4562 # undef lstat
4563 # define lstat(a,b) _stati64 (a,b)
4564 # endif
4565
4566 #define DEF_STAT_INTERVAL 5.0074891
4567 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4568 #define MIN_STAT_INTERVAL 0.1074891
4569
4570 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4571
4572 #if EV_USE_INOTIFY
4573
4574 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4575 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4576
4577 ecb_noinline
4578 static void
4579 infy_add (EV_P_ ev_stat *w)
4580 {
4581 w->wd = inotify_add_watch (fs_fd, w->path,
4582 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4583 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4584 | IN_DONT_FOLLOW | IN_MASK_ADD);
4585
4586 if (w->wd >= 0)
4587 {
4588 struct statfs sfs;
4589
4590 /* now local changes will be tracked by inotify, but remote changes won't */
4591 /* unless the filesystem is known to be local, we therefore still poll */
4592 /* also do poll on <2.6.25, but with normal frequency */
4593
4594 if (!fs_2625)
4595 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4596 else if (!statfs (w->path, &sfs)
4597 && (sfs.f_type == 0x1373 /* devfs */
4598 || sfs.f_type == 0x4006 /* fat */
4599 || sfs.f_type == 0x4d44 /* msdos */
4600 || sfs.f_type == 0xEF53 /* ext2/3 */
4601 || sfs.f_type == 0x72b6 /* jffs2 */
4602 || sfs.f_type == 0x858458f6 /* ramfs */
4603 || sfs.f_type == 0x5346544e /* ntfs */
4604 || sfs.f_type == 0x3153464a /* jfs */
4605 || sfs.f_type == 0x9123683e /* btrfs */
4606 || sfs.f_type == 0x52654973 /* reiser3 */
4607 || sfs.f_type == 0x01021994 /* tmpfs */
4608 || sfs.f_type == 0x58465342 /* xfs */))
4609 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4610 else
4611 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4612 }
4613 else
4614 {
4615 /* can't use inotify, continue to stat */
4616 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4617
4618 /* if path is not there, monitor some parent directory for speedup hints */
4619 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4620 /* but an efficiency issue only */
4621 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4622 {
4623 char path [4096];
4624 strcpy (path, w->path);
4625
4626 do
4627 {
4628 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4629 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4630
4631 char *pend = strrchr (path, '/');
4632
4633 if (!pend || pend == path)
4634 break;
4635
4636 *pend = 0;
4637 w->wd = inotify_add_watch (fs_fd, path, mask);
4638 }
4639 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4640 }
4641 }
4642
4643 if (w->wd >= 0)
4644 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4645
4646 /* now re-arm timer, if required */
4647 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4648 ev_timer_again (EV_A_ &w->timer);
4649 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4650 }
4651
4652 ecb_noinline
4653 static void
4654 infy_del (EV_P_ ev_stat *w)
4655 {
4656 int slot;
4657 int wd = w->wd;
4658
4659 if (wd < 0)
4660 return;
4661
4662 w->wd = -2;
4663 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4664 wlist_del (&fs_hash [slot].head, (WL)w);
4665
4666 /* remove this watcher, if others are watching it, they will rearm */
4667 inotify_rm_watch (fs_fd, wd);
4668 }
4669
4670 ecb_noinline
4671 static void
4672 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4673 {
4674 if (slot < 0)
4675 /* overflow, need to check for all hash slots */
4676 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4677 infy_wd (EV_A_ slot, wd, ev);
4678 else
4679 {
4680 WL w_;
4681
4682 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4683 {
4684 ev_stat *w = (ev_stat *)w_;
4685 w_ = w_->next; /* lets us remove this watcher and all before it */
4686
4687 if (w->wd == wd || wd == -1)
4688 {
4689 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4690 {
4691 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4692 w->wd = -1;
4693 infy_add (EV_A_ w); /* re-add, no matter what */
4694 }
4695
4696 stat_timer_cb (EV_A_ &w->timer, 0);
4697 }
4698 }
4699 }
4700 }
4701
4702 static void
4703 infy_cb (EV_P_ ev_io *w, int revents)
4704 {
4705 char buf [EV_INOTIFY_BUFSIZE];
4706 int ofs;
4707 int len = read (fs_fd, buf, sizeof (buf));
4708
4709 for (ofs = 0; ofs < len; )
4710 {
4711 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4712 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4713 ofs += sizeof (struct inotify_event) + ev->len;
4714 }
4715 }
4716
4717 inline_size ecb_cold
4718 void
4719 ev_check_2625 (EV_P)
4720 {
4721 /* kernels < 2.6.25 are borked
4722 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4723 */
4724 if (ev_linux_version () < 0x020619)
4725 return;
4726
4727 fs_2625 = 1;
4728 }
4729
4730 inline_size int
4731 infy_newfd (void)
4732 {
4733 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4734 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4735 if (fd >= 0)
4736 return fd;
4737 #endif
4738 return inotify_init ();
4739 }
4740
4741 inline_size void
4742 infy_init (EV_P)
4743 {
4744 if (fs_fd != -2)
4745 return;
4746
4747 fs_fd = -1;
4748
4749 ev_check_2625 (EV_A);
4750
4751 fs_fd = infy_newfd ();
4752
4753 if (fs_fd >= 0)
4754 {
4755 fd_intern (fs_fd);
4756 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4757 ev_set_priority (&fs_w, EV_MAXPRI);
4758 ev_io_start (EV_A_ &fs_w);
4759 ev_unref (EV_A);
4760 }
4761 }
4762
4763 inline_size void
4764 infy_fork (EV_P)
4765 {
4766 int slot;
4767
4768 if (fs_fd < 0)
4769 return;
4770
4771 ev_ref (EV_A);
4772 ev_io_stop (EV_A_ &fs_w);
4773 close (fs_fd);
4774 fs_fd = infy_newfd ();
4775
4776 if (fs_fd >= 0)
4777 {
4778 fd_intern (fs_fd);
4779 ev_io_set (&fs_w, fs_fd, EV_READ);
4780 ev_io_start (EV_A_ &fs_w);
4781 ev_unref (EV_A);
4782 }
4783
4784 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4785 {
4786 WL w_ = fs_hash [slot].head;
4787 fs_hash [slot].head = 0;
4788
4789 while (w_)
4790 {
4791 ev_stat *w = (ev_stat *)w_;
4792 w_ = w_->next; /* lets us add this watcher */
4793
4794 w->wd = -1;
4795
4796 if (fs_fd >= 0)
4797 infy_add (EV_A_ w); /* re-add, no matter what */
4798 else
4799 {
4800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4801 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4802 ev_timer_again (EV_A_ &w->timer);
4803 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4804 }
4805 }
4806 }
4807 }
4808
4809 #endif
4810
4811 #ifdef _WIN32
4812 # define EV_LSTAT(p,b) _stati64 (p, b)
4813 #else
4814 # define EV_LSTAT(p,b) lstat (p, b)
4815 #endif
4816
4817 void
4818 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4819 {
4820 if (lstat (w->path, &w->attr) < 0)
4821 w->attr.st_nlink = 0;
4822 else if (!w->attr.st_nlink)
4823 w->attr.st_nlink = 1;
4824 }
4825
4826 ecb_noinline
4827 static void
4828 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4829 {
4830 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4831
4832 ev_statdata prev = w->attr;
4833 ev_stat_stat (EV_A_ w);
4834
4835 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4836 if (
4837 prev.st_dev != w->attr.st_dev
4838 || prev.st_ino != w->attr.st_ino
4839 || prev.st_mode != w->attr.st_mode
4840 || prev.st_nlink != w->attr.st_nlink
4841 || prev.st_uid != w->attr.st_uid
4842 || prev.st_gid != w->attr.st_gid
4843 || prev.st_rdev != w->attr.st_rdev
4844 || prev.st_size != w->attr.st_size
4845 || prev.st_atime != w->attr.st_atime
4846 || prev.st_mtime != w->attr.st_mtime
4847 || prev.st_ctime != w->attr.st_ctime
4848 ) {
4849 /* we only update w->prev on actual differences */
4850 /* in case we test more often than invoke the callback, */
4851 /* to ensure that prev is always different to attr */
4852 w->prev = prev;
4853
4854 #if EV_USE_INOTIFY
4855 if (fs_fd >= 0)
4856 {
4857 infy_del (EV_A_ w);
4858 infy_add (EV_A_ w);
4859 ev_stat_stat (EV_A_ w); /* avoid race... */
4860 }
4861 #endif
4862
4863 ev_feed_event (EV_A_ w, EV_STAT);
4864 }
4865 }
4866
4867 void
4868 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4869 {
4870 if (ecb_expect_false (ev_is_active (w)))
4871 return;
4872
4873 ev_stat_stat (EV_A_ w);
4874
4875 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4876 w->interval = MIN_STAT_INTERVAL;
4877
4878 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4879 ev_set_priority (&w->timer, ev_priority (w));
4880
4881 #if EV_USE_INOTIFY
4882 infy_init (EV_A);
4883
4884 if (fs_fd >= 0)
4885 infy_add (EV_A_ w);
4886 else
4887 #endif
4888 {
4889 ev_timer_again (EV_A_ &w->timer);
4890 ev_unref (EV_A);
4891 }
4892
4893 ev_start (EV_A_ (W)w, 1);
4894
4895 EV_FREQUENT_CHECK;
4896 }
4897
4898 void
4899 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4900 {
4901 clear_pending (EV_A_ (W)w);
4902 if (ecb_expect_false (!ev_is_active (w)))
4903 return;
4904
4905 EV_FREQUENT_CHECK;
4906
4907 #if EV_USE_INOTIFY
4908 infy_del (EV_A_ w);
4909 #endif
4910
4911 if (ev_is_active (&w->timer))
4912 {
4913 ev_ref (EV_A);
4914 ev_timer_stop (EV_A_ &w->timer);
4915 }
4916
4917 ev_stop (EV_A_ (W)w);
4918
4919 EV_FREQUENT_CHECK;
4920 }
4921 #endif
4922
4923 #if EV_IDLE_ENABLE
4924 void
4925 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4926 {
4927 if (ecb_expect_false (ev_is_active (w)))
4928 return;
4929
4930 pri_adjust (EV_A_ (W)w);
4931
4932 EV_FREQUENT_CHECK;
4933
4934 {
4935 int active = ++idlecnt [ABSPRI (w)];
4936
4937 ++idleall;
4938 ev_start (EV_A_ (W)w, active);
4939
4940 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4941 idles [ABSPRI (w)][active - 1] = w;
4942 }
4943
4944 EV_FREQUENT_CHECK;
4945 }
4946
4947 void
4948 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4949 {
4950 clear_pending (EV_A_ (W)w);
4951 if (ecb_expect_false (!ev_is_active (w)))
4952 return;
4953
4954 EV_FREQUENT_CHECK;
4955
4956 {
4957 int active = ev_active (w);
4958
4959 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4960 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4961
4962 ev_stop (EV_A_ (W)w);
4963 --idleall;
4964 }
4965
4966 EV_FREQUENT_CHECK;
4967 }
4968 #endif
4969
4970 #if EV_PREPARE_ENABLE
4971 void
4972 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4973 {
4974 if (ecb_expect_false (ev_is_active (w)))
4975 return;
4976
4977 EV_FREQUENT_CHECK;
4978
4979 ev_start (EV_A_ (W)w, ++preparecnt);
4980 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
4981 prepares [preparecnt - 1] = w;
4982
4983 EV_FREQUENT_CHECK;
4984 }
4985
4986 void
4987 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4988 {
4989 clear_pending (EV_A_ (W)w);
4990 if (ecb_expect_false (!ev_is_active (w)))
4991 return;
4992
4993 EV_FREQUENT_CHECK;
4994
4995 {
4996 int active = ev_active (w);
4997
4998 prepares [active - 1] = prepares [--preparecnt];
4999 ev_active (prepares [active - 1]) = active;
5000 }
5001
5002 ev_stop (EV_A_ (W)w);
5003
5004 EV_FREQUENT_CHECK;
5005 }
5006 #endif
5007
5008 #if EV_CHECK_ENABLE
5009 void
5010 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5011 {
5012 if (ecb_expect_false (ev_is_active (w)))
5013 return;
5014
5015 EV_FREQUENT_CHECK;
5016
5017 ev_start (EV_A_ (W)w, ++checkcnt);
5018 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5019 checks [checkcnt - 1] = w;
5020
5021 EV_FREQUENT_CHECK;
5022 }
5023
5024 void
5025 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5026 {
5027 clear_pending (EV_A_ (W)w);
5028 if (ecb_expect_false (!ev_is_active (w)))
5029 return;
5030
5031 EV_FREQUENT_CHECK;
5032
5033 {
5034 int active = ev_active (w);
5035
5036 checks [active - 1] = checks [--checkcnt];
5037 ev_active (checks [active - 1]) = active;
5038 }
5039
5040 ev_stop (EV_A_ (W)w);
5041
5042 EV_FREQUENT_CHECK;
5043 }
5044 #endif
5045
5046 #if EV_EMBED_ENABLE
5047 ecb_noinline
5048 void
5049 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5050 {
5051 ev_run (w->other, EVRUN_NOWAIT);
5052 }
5053
5054 static void
5055 embed_io_cb (EV_P_ ev_io *io, int revents)
5056 {
5057 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5058
5059 if (ev_cb (w))
5060 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5061 else
5062 ev_run (w->other, EVRUN_NOWAIT);
5063 }
5064
5065 static void
5066 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5067 {
5068 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5069
5070 {
5071 EV_P = w->other;
5072
5073 while (fdchangecnt)
5074 {
5075 fd_reify (EV_A);
5076 ev_run (EV_A_ EVRUN_NOWAIT);
5077 }
5078 }
5079 }
5080
5081 #if EV_FORK_ENABLE
5082 static void
5083 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5084 {
5085 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5086
5087 ev_embed_stop (EV_A_ w);
5088
5089 {
5090 EV_P = w->other;
5091
5092 ev_loop_fork (EV_A);
5093 ev_run (EV_A_ EVRUN_NOWAIT);
5094 }
5095
5096 ev_embed_start (EV_A_ w);
5097 }
5098 #endif
5099
5100 #if 0
5101 static void
5102 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5103 {
5104 ev_idle_stop (EV_A_ idle);
5105 }
5106 #endif
5107
5108 void
5109 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5110 {
5111 if (ecb_expect_false (ev_is_active (w)))
5112 return;
5113
5114 {
5115 EV_P = w->other;
5116 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5117 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5118 }
5119
5120 EV_FREQUENT_CHECK;
5121
5122 ev_set_priority (&w->io, ev_priority (w));
5123 ev_io_start (EV_A_ &w->io);
5124
5125 ev_prepare_init (&w->prepare, embed_prepare_cb);
5126 ev_set_priority (&w->prepare, EV_MINPRI);
5127 ev_prepare_start (EV_A_ &w->prepare);
5128
5129 #if EV_FORK_ENABLE
5130 ev_fork_init (&w->fork, embed_fork_cb);
5131 ev_fork_start (EV_A_ &w->fork);
5132 #endif
5133
5134 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5135
5136 ev_start (EV_A_ (W)w, 1);
5137
5138 EV_FREQUENT_CHECK;
5139 }
5140
5141 void
5142 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5143 {
5144 clear_pending (EV_A_ (W)w);
5145 if (ecb_expect_false (!ev_is_active (w)))
5146 return;
5147
5148 EV_FREQUENT_CHECK;
5149
5150 ev_io_stop (EV_A_ &w->io);
5151 ev_prepare_stop (EV_A_ &w->prepare);
5152 #if EV_FORK_ENABLE
5153 ev_fork_stop (EV_A_ &w->fork);
5154 #endif
5155
5156 ev_stop (EV_A_ (W)w);
5157
5158 EV_FREQUENT_CHECK;
5159 }
5160 #endif
5161
5162 #if EV_FORK_ENABLE
5163 void
5164 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5165 {
5166 if (ecb_expect_false (ev_is_active (w)))
5167 return;
5168
5169 EV_FREQUENT_CHECK;
5170
5171 ev_start (EV_A_ (W)w, ++forkcnt);
5172 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5173 forks [forkcnt - 1] = w;
5174
5175 EV_FREQUENT_CHECK;
5176 }
5177
5178 void
5179 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5180 {
5181 clear_pending (EV_A_ (W)w);
5182 if (ecb_expect_false (!ev_is_active (w)))
5183 return;
5184
5185 EV_FREQUENT_CHECK;
5186
5187 {
5188 int active = ev_active (w);
5189
5190 forks [active - 1] = forks [--forkcnt];
5191 ev_active (forks [active - 1]) = active;
5192 }
5193
5194 ev_stop (EV_A_ (W)w);
5195
5196 EV_FREQUENT_CHECK;
5197 }
5198 #endif
5199
5200 #if EV_CLEANUP_ENABLE
5201 void
5202 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5203 {
5204 if (ecb_expect_false (ev_is_active (w)))
5205 return;
5206
5207 EV_FREQUENT_CHECK;
5208
5209 ev_start (EV_A_ (W)w, ++cleanupcnt);
5210 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5211 cleanups [cleanupcnt - 1] = w;
5212
5213 /* cleanup watchers should never keep a refcount on the loop */
5214 ev_unref (EV_A);
5215 EV_FREQUENT_CHECK;
5216 }
5217
5218 void
5219 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5220 {
5221 clear_pending (EV_A_ (W)w);
5222 if (ecb_expect_false (!ev_is_active (w)))
5223 return;
5224
5225 EV_FREQUENT_CHECK;
5226 ev_ref (EV_A);
5227
5228 {
5229 int active = ev_active (w);
5230
5231 cleanups [active - 1] = cleanups [--cleanupcnt];
5232 ev_active (cleanups [active - 1]) = active;
5233 }
5234
5235 ev_stop (EV_A_ (W)w);
5236
5237 EV_FREQUENT_CHECK;
5238 }
5239 #endif
5240
5241 #if EV_ASYNC_ENABLE
5242 void
5243 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5244 {
5245 if (ecb_expect_false (ev_is_active (w)))
5246 return;
5247
5248 w->sent = 0;
5249
5250 evpipe_init (EV_A);
5251
5252 EV_FREQUENT_CHECK;
5253
5254 ev_start (EV_A_ (W)w, ++asynccnt);
5255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5256 asyncs [asynccnt - 1] = w;
5257
5258 EV_FREQUENT_CHECK;
5259 }
5260
5261 void
5262 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5263 {
5264 clear_pending (EV_A_ (W)w);
5265 if (ecb_expect_false (!ev_is_active (w)))
5266 return;
5267
5268 EV_FREQUENT_CHECK;
5269
5270 {
5271 int active = ev_active (w);
5272
5273 asyncs [active - 1] = asyncs [--asynccnt];
5274 ev_active (asyncs [active - 1]) = active;
5275 }
5276
5277 ev_stop (EV_A_ (W)w);
5278
5279 EV_FREQUENT_CHECK;
5280 }
5281
5282 void
5283 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5284 {
5285 w->sent = 1;
5286 evpipe_write (EV_A_ &async_pending);
5287 }
5288 #endif
5289
5290 /*****************************************************************************/
5291
5292 struct ev_once
5293 {
5294 ev_io io;
5295 ev_timer to;
5296 void (*cb)(int revents, void *arg);
5297 void *arg;
5298 };
5299
5300 static void
5301 once_cb (EV_P_ struct ev_once *once, int revents)
5302 {
5303 void (*cb)(int revents, void *arg) = once->cb;
5304 void *arg = once->arg;
5305
5306 ev_io_stop (EV_A_ &once->io);
5307 ev_timer_stop (EV_A_ &once->to);
5308 ev_free (once);
5309
5310 cb (revents, arg);