ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.519
Committed: Sat Dec 28 07:37:07 2019 UTC (4 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.518: +23 -4 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
38 */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 # include EV_CONFIG_H
44 # else
45 # include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 # define EV_USE_FLOOR 1
51 # endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 # ifndef EV_USE_CLOCK_SYSCALL
56 # define EV_USE_CLOCK_SYSCALL 1
57 # ifndef EV_USE_REALTIME
58 # define EV_USE_REALTIME 0
59 # endif
60 # ifndef EV_USE_MONOTONIC
61 # define EV_USE_MONOTONIC 1
62 # endif
63 # endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 # define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 # ifndef EV_USE_MONOTONIC
70 # define EV_USE_MONOTONIC 1
71 # endif
72 # ifndef EV_USE_REALTIME
73 # define EV_USE_REALTIME 0
74 # endif
75 # else
76 # ifndef EV_USE_MONOTONIC
77 # define EV_USE_MONOTONIC 0
78 # endif
79 # ifndef EV_USE_REALTIME
80 # define EV_USE_REALTIME 0
81 # endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 # ifndef EV_USE_NANOSLEEP
86 # define EV_USE_NANOSLEEP EV_FEATURE_OS
87 # endif
88 # else
89 # undef EV_USE_NANOSLEEP
90 # define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 # ifndef EV_USE_SELECT
95 # define EV_USE_SELECT EV_FEATURE_BACKENDS
96 # endif
97 # else
98 # undef EV_USE_SELECT
99 # define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 # ifndef EV_USE_POLL
104 # define EV_USE_POLL EV_FEATURE_BACKENDS
105 # endif
106 # else
107 # undef EV_USE_POLL
108 # define EV_USE_POLL 0
109 # endif
110
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 # ifndef EV_USE_EPOLL
113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 # endif
115 # else
116 # undef EV_USE_EPOLL
117 # define EV_USE_EPOLL 0
118 # endif
119
120 # if HAVE_LINUX_AIO_ABI_H
121 # ifndef EV_USE_LINUXAIO
122 # define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123 # endif
124 # else
125 # undef EV_USE_LINUXAIO
126 # define EV_USE_LINUXAIO 0
127 # endif
128
129 # if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130 # ifndef EV_USE_IOURING
131 # define EV_USE_IOURING EV_FEATURE_BACKENDS
132 # endif
133 # else
134 # undef EV_USE_IOURING
135 # define EV_USE_IOURING 0
136 # endif
137
138 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139 # ifndef EV_USE_KQUEUE
140 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141 # endif
142 # else
143 # undef EV_USE_KQUEUE
144 # define EV_USE_KQUEUE 0
145 # endif
146
147 # if HAVE_PORT_H && HAVE_PORT_CREATE
148 # ifndef EV_USE_PORT
149 # define EV_USE_PORT EV_FEATURE_BACKENDS
150 # endif
151 # else
152 # undef EV_USE_PORT
153 # define EV_USE_PORT 0
154 # endif
155
156 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157 # ifndef EV_USE_INOTIFY
158 # define EV_USE_INOTIFY EV_FEATURE_OS
159 # endif
160 # else
161 # undef EV_USE_INOTIFY
162 # define EV_USE_INOTIFY 0
163 # endif
164
165 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166 # ifndef EV_USE_SIGNALFD
167 # define EV_USE_SIGNALFD EV_FEATURE_OS
168 # endif
169 # else
170 # undef EV_USE_SIGNALFD
171 # define EV_USE_SIGNALFD 0
172 # endif
173
174 # if HAVE_EVENTFD
175 # ifndef EV_USE_EVENTFD
176 # define EV_USE_EVENTFD EV_FEATURE_OS
177 # endif
178 # else
179 # undef EV_USE_EVENTFD
180 # define EV_USE_EVENTFD 0
181 # endif
182
183 # if HAVE_SYS_TIMERFD_H
184 # ifndef EV_USE_TIMERFD
185 # define EV_USE_TIMERFD EV_FEATURE_OS
186 # endif
187 # else
188 # undef EV_USE_TIMERFD
189 # define EV_USE_TIMERFD 0
190 # endif
191
192 #endif
193
194 /* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202 #define _DARWIN_UNLIMITED_SELECT 1
203
204 #include <stdlib.h>
205 #include <string.h>
206 #include <fcntl.h>
207 #include <stddef.h>
208
209 #include <stdio.h>
210
211 #include <assert.h>
212 #include <errno.h>
213 #include <sys/types.h>
214 #include <time.h>
215 #include <limits.h>
216
217 #include <signal.h>
218
219 #ifdef EV_H
220 # include EV_H
221 #else
222 # include "ev.h"
223 #endif
224
225 #if EV_NO_THREADS
226 # undef EV_NO_SMP
227 # define EV_NO_SMP 1
228 # undef ECB_NO_THREADS
229 # define ECB_NO_THREADS 1
230 #endif
231 #if EV_NO_SMP
232 # undef EV_NO_SMP
233 # define ECB_NO_SMP 1
234 #endif
235
236 #ifndef _WIN32
237 # include <sys/time.h>
238 # include <sys/wait.h>
239 # include <unistd.h>
240 #else
241 # include <io.h>
242 # define WIN32_LEAN_AND_MEAN
243 # include <winsock2.h>
244 # include <windows.h>
245 # ifndef EV_SELECT_IS_WINSOCKET
246 # define EV_SELECT_IS_WINSOCKET 1
247 # endif
248 # undef EV_AVOID_STDIO
249 #endif
250
251 /* this block tries to deduce configuration from header-defined symbols and defaults */
252
253 /* try to deduce the maximum number of signals on this platform */
254 #if defined EV_NSIG
255 /* use what's provided */
256 #elif defined NSIG
257 # define EV_NSIG (NSIG)
258 #elif defined _NSIG
259 # define EV_NSIG (_NSIG)
260 #elif defined SIGMAX
261 # define EV_NSIG (SIGMAX+1)
262 #elif defined SIG_MAX
263 # define EV_NSIG (SIG_MAX+1)
264 #elif defined _SIG_MAX
265 # define EV_NSIG (_SIG_MAX+1)
266 #elif defined MAXSIG
267 # define EV_NSIG (MAXSIG+1)
268 #elif defined MAX_SIG
269 # define EV_NSIG (MAX_SIG+1)
270 #elif defined SIGARRAYSIZE
271 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272 #elif defined _sys_nsig
273 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274 #else
275 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
276 #endif
277
278 #ifndef EV_USE_FLOOR
279 # define EV_USE_FLOOR 0
280 #endif
281
282 #ifndef EV_USE_CLOCK_SYSCALL
283 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285 # else
286 # define EV_USE_CLOCK_SYSCALL 0
287 # endif
288 #endif
289
290 #if !(_POSIX_TIMERS > 0)
291 # ifndef EV_USE_MONOTONIC
292 # define EV_USE_MONOTONIC 0
293 # endif
294 # ifndef EV_USE_REALTIME
295 # define EV_USE_REALTIME 0
296 # endif
297 #endif
298
299 #ifndef EV_USE_MONOTONIC
300 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301 # define EV_USE_MONOTONIC EV_FEATURE_OS
302 # else
303 # define EV_USE_MONOTONIC 0
304 # endif
305 #endif
306
307 #ifndef EV_USE_REALTIME
308 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309 #endif
310
311 #ifndef EV_USE_NANOSLEEP
312 # if _POSIX_C_SOURCE >= 199309L
313 # define EV_USE_NANOSLEEP EV_FEATURE_OS
314 # else
315 # define EV_USE_NANOSLEEP 0
316 # endif
317 #endif
318
319 #ifndef EV_USE_SELECT
320 # define EV_USE_SELECT EV_FEATURE_BACKENDS
321 #endif
322
323 #ifndef EV_USE_POLL
324 # ifdef _WIN32
325 # define EV_USE_POLL 0
326 # else
327 # define EV_USE_POLL EV_FEATURE_BACKENDS
328 # endif
329 #endif
330
331 #ifndef EV_USE_EPOLL
332 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333 # define EV_USE_EPOLL EV_FEATURE_BACKENDS
334 # else
335 # define EV_USE_EPOLL 0
336 # endif
337 #endif
338
339 #ifndef EV_USE_KQUEUE
340 # define EV_USE_KQUEUE 0
341 #endif
342
343 #ifndef EV_USE_PORT
344 # define EV_USE_PORT 0
345 #endif
346
347 #ifndef EV_USE_LINUXAIO
348 # if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349 # define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350 # else
351 # define EV_USE_LINUXAIO 0
352 # endif
353 #endif
354
355 #ifndef EV_USE_IOURING
356 # if __linux /* later checks might disable again */
357 # define EV_USE_IOURING 1
358 # else
359 # define EV_USE_IOURING 0
360 # endif
361 #endif
362
363 #ifndef EV_USE_INOTIFY
364 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365 # define EV_USE_INOTIFY EV_FEATURE_OS
366 # else
367 # define EV_USE_INOTIFY 0
368 # endif
369 #endif
370
371 #ifndef EV_PID_HASHSIZE
372 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373 #endif
374
375 #ifndef EV_INOTIFY_HASHSIZE
376 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377 #endif
378
379 #ifndef EV_USE_EVENTFD
380 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381 # define EV_USE_EVENTFD EV_FEATURE_OS
382 # else
383 # define EV_USE_EVENTFD 0
384 # endif
385 #endif
386
387 #ifndef EV_USE_SIGNALFD
388 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389 # define EV_USE_SIGNALFD EV_FEATURE_OS
390 # else
391 # define EV_USE_SIGNALFD 0
392 # endif
393 #endif
394
395 #ifndef EV_USE_TIMERFD
396 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397 # define EV_USE_TIMERFD EV_FEATURE_OS
398 # else
399 # define EV_USE_TIMERFD 0
400 # endif
401 #endif
402
403 #if 0 /* debugging */
404 # define EV_VERIFY 3
405 # define EV_USE_4HEAP 1
406 # define EV_HEAP_CACHE_AT 1
407 #endif
408
409 #ifndef EV_VERIFY
410 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411 #endif
412
413 #ifndef EV_USE_4HEAP
414 # define EV_USE_4HEAP EV_FEATURE_DATA
415 #endif
416
417 #ifndef EV_HEAP_CACHE_AT
418 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419 #endif
420
421 #ifdef __ANDROID__
422 /* supposedly, android doesn't typedef fd_mask */
423 # undef EV_USE_SELECT
424 # define EV_USE_SELECT 0
425 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426 # undef EV_USE_CLOCK_SYSCALL
427 # define EV_USE_CLOCK_SYSCALL 0
428 #endif
429
430 /* aix's poll.h seems to cause lots of trouble */
431 #ifdef _AIX
432 /* AIX has a completely broken poll.h header */
433 # undef EV_USE_POLL
434 # define EV_USE_POLL 0
435 #endif
436
437 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438 /* which makes programs even slower. might work on other unices, too. */
439 #if EV_USE_CLOCK_SYSCALL
440 # include <sys/syscall.h>
441 # ifdef SYS_clock_gettime
442 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443 # undef EV_USE_MONOTONIC
444 # define EV_USE_MONOTONIC 1
445 # define EV_NEED_SYSCALL 1
446 # else
447 # undef EV_USE_CLOCK_SYSCALL
448 # define EV_USE_CLOCK_SYSCALL 0
449 # endif
450 #endif
451
452 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
453
454 #ifndef CLOCK_MONOTONIC
455 # undef EV_USE_MONOTONIC
456 # define EV_USE_MONOTONIC 0
457 #endif
458
459 #ifndef CLOCK_REALTIME
460 # undef EV_USE_REALTIME
461 # define EV_USE_REALTIME 0
462 #endif
463
464 #if !EV_STAT_ENABLE
465 # undef EV_USE_INOTIFY
466 # define EV_USE_INOTIFY 0
467 #endif
468
469 #if __linux && EV_USE_IOURING
470 # include <linux/version.h>
471 # if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472 # undef EV_USE_IOURING
473 # define EV_USE_IOURING 0
474 # endif
475 #endif
476
477 #if !EV_USE_NANOSLEEP
478 /* hp-ux has it in sys/time.h, which we unconditionally include above */
479 # if !defined _WIN32 && !defined __hpux
480 # include <sys/select.h>
481 # endif
482 #endif
483
484 #if EV_USE_LINUXAIO
485 # include <sys/syscall.h>
486 # if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487 # define EV_NEED_SYSCALL 1
488 # else
489 # undef EV_USE_LINUXAIO
490 # define EV_USE_LINUXAIO 0
491 # endif
492 #endif
493
494 #if EV_USE_IOURING
495 # include <sys/syscall.h>
496 # if !SYS_io_uring_setup && __linux && !__alpha
497 # define SYS_io_uring_setup 425
498 # define SYS_io_uring_enter 426
499 # define SYS_io_uring_wregister 427
500 # endif
501 # if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502 # define EV_NEED_SYSCALL 1
503 # else
504 # undef EV_USE_IOURING
505 # define EV_USE_IOURING 0
506 # endif
507 #endif
508
509 #if EV_USE_INOTIFY
510 # include <sys/statfs.h>
511 # include <sys/inotify.h>
512 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513 # ifndef IN_DONT_FOLLOW
514 # undef EV_USE_INOTIFY
515 # define EV_USE_INOTIFY 0
516 # endif
517 #endif
518
519 #if EV_USE_EVENTFD
520 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521 # include <stdint.h>
522 # ifndef EFD_NONBLOCK
523 # define EFD_NONBLOCK O_NONBLOCK
524 # endif
525 # ifndef EFD_CLOEXEC
526 # ifdef O_CLOEXEC
527 # define EFD_CLOEXEC O_CLOEXEC
528 # else
529 # define EFD_CLOEXEC 02000000
530 # endif
531 # endif
532 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533 #endif
534
535 #if EV_USE_SIGNALFD
536 /* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537 # include <stdint.h>
538 # ifndef SFD_NONBLOCK
539 # define SFD_NONBLOCK O_NONBLOCK
540 # endif
541 # ifndef SFD_CLOEXEC
542 # ifdef O_CLOEXEC
543 # define SFD_CLOEXEC O_CLOEXEC
544 # else
545 # define SFD_CLOEXEC 02000000
546 # endif
547 # endif
548 EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550 struct signalfd_siginfo
551 {
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554 };
555 #endif
556
557 /* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558 #if EV_USE_TIMERFD
559 # include <sys/timerfd.h>
560 /* timerfd is only used for periodics */
561 # if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562 # undef EV_USE_TIMERFD
563 # define EV_USE_TIMERFD 0
564 # endif
565 #endif
566
567 /*****************************************************************************/
568
569 #if EV_VERIFY >= 3
570 # define EV_FREQUENT_CHECK ev_verify (EV_A)
571 #else
572 # define EV_FREQUENT_CHECK do { } while (0)
573 #endif
574
575 /*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584
585 /* find a portable timestamp that is "always" in the future but fits into time_t.
586 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
587 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
588 #define EV_TSTAMP_HUGE \
589 (sizeof (time_t) >= 8 ? 10000000000000. \
590 : 0 < (time_t)4294967295 ? 4294967295. \
591 : 2147483647.) \
592
593 #ifndef EV_TS_CONST
594 # define EV_TS_CONST(nv) nv
595 # define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
596 # define EV_TS_FROM_USEC(us) us * 1e-6
597 # define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
598 # define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
599 # define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
600 # define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
601 #endif
602
603 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
604 /* ECB.H BEGIN */
605 /*
606 * libecb - http://software.schmorp.de/pkg/libecb
607 *
608 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
609 * Copyright (©) 2011 Emanuele Giaquinta
610 * All rights reserved.
611 *
612 * Redistribution and use in source and binary forms, with or without modifica-
613 * tion, are permitted provided that the following conditions are met:
614 *
615 * 1. Redistributions of source code must retain the above copyright notice,
616 * this list of conditions and the following disclaimer.
617 *
618 * 2. Redistributions in binary form must reproduce the above copyright
619 * notice, this list of conditions and the following disclaimer in the
620 * documentation and/or other materials provided with the distribution.
621 *
622 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
623 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
624 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
625 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
626 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
627 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
628 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
629 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
630 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
631 * OF THE POSSIBILITY OF SUCH DAMAGE.
632 *
633 * Alternatively, the contents of this file may be used under the terms of
634 * the GNU General Public License ("GPL") version 2 or any later version,
635 * in which case the provisions of the GPL are applicable instead of
636 * the above. If you wish to allow the use of your version of this file
637 * only under the terms of the GPL and not to allow others to use your
638 * version of this file under the BSD license, indicate your decision
639 * by deleting the provisions above and replace them with the notice
640 * and other provisions required by the GPL. If you do not delete the
641 * provisions above, a recipient may use your version of this file under
642 * either the BSD or the GPL.
643 */
644
645 #ifndef ECB_H
646 #define ECB_H
647
648 /* 16 bits major, 16 bits minor */
649 #define ECB_VERSION 0x00010006
650
651 #ifdef _WIN32
652 typedef signed char int8_t;
653 typedef unsigned char uint8_t;
654 typedef signed short int16_t;
655 typedef unsigned short uint16_t;
656 typedef signed int int32_t;
657 typedef unsigned int uint32_t;
658 #if __GNUC__
659 typedef signed long long int64_t;
660 typedef unsigned long long uint64_t;
661 #else /* _MSC_VER || __BORLANDC__ */
662 typedef signed __int64 int64_t;
663 typedef unsigned __int64 uint64_t;
664 #endif
665 #ifdef _WIN64
666 #define ECB_PTRSIZE 8
667 typedef uint64_t uintptr_t;
668 typedef int64_t intptr_t;
669 #else
670 #define ECB_PTRSIZE 4
671 typedef uint32_t uintptr_t;
672 typedef int32_t intptr_t;
673 #endif
674 #else
675 #include <inttypes.h>
676 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
677 #define ECB_PTRSIZE 8
678 #else
679 #define ECB_PTRSIZE 4
680 #endif
681 #endif
682
683 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
684 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
685
686 /* work around x32 idiocy by defining proper macros */
687 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
688 #if _ILP32
689 #define ECB_AMD64_X32 1
690 #else
691 #define ECB_AMD64 1
692 #endif
693 #endif
694
695 /* many compilers define _GNUC_ to some versions but then only implement
696 * what their idiot authors think are the "more important" extensions,
697 * causing enormous grief in return for some better fake benchmark numbers.
698 * or so.
699 * we try to detect these and simply assume they are not gcc - if they have
700 * an issue with that they should have done it right in the first place.
701 */
702 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
703 #define ECB_GCC_VERSION(major,minor) 0
704 #else
705 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
706 #endif
707
708 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
709
710 #if __clang__ && defined __has_builtin
711 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
712 #else
713 #define ECB_CLANG_BUILTIN(x) 0
714 #endif
715
716 #if __clang__ && defined __has_extension
717 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
718 #else
719 #define ECB_CLANG_EXTENSION(x) 0
720 #endif
721
722 #define ECB_CPP (__cplusplus+0)
723 #define ECB_CPP11 (__cplusplus >= 201103L)
724 #define ECB_CPP14 (__cplusplus >= 201402L)
725 #define ECB_CPP17 (__cplusplus >= 201703L)
726
727 #if ECB_CPP
728 #define ECB_C 0
729 #define ECB_STDC_VERSION 0
730 #else
731 #define ECB_C 1
732 #define ECB_STDC_VERSION __STDC_VERSION__
733 #endif
734
735 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
736 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
737 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
738
739 #if ECB_CPP
740 #define ECB_EXTERN_C extern "C"
741 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
742 #define ECB_EXTERN_C_END }
743 #else
744 #define ECB_EXTERN_C extern
745 #define ECB_EXTERN_C_BEG
746 #define ECB_EXTERN_C_END
747 #endif
748
749 /*****************************************************************************/
750
751 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
752 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
753
754 #if ECB_NO_THREADS
755 #define ECB_NO_SMP 1
756 #endif
757
758 #if ECB_NO_SMP
759 #define ECB_MEMORY_FENCE do { } while (0)
760 #endif
761
762 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
763 #if __xlC__ && ECB_CPP
764 #include <builtins.h>
765 #endif
766
767 #if 1400 <= _MSC_VER
768 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
769 #endif
770
771 #ifndef ECB_MEMORY_FENCE
772 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
773 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
774 #if __i386 || __i386__
775 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
776 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
777 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
778 #elif ECB_GCC_AMD64
779 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
780 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
781 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
782 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
783 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
784 #elif defined __ARM_ARCH_2__ \
785 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
786 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
787 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
788 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
789 || defined __ARM_ARCH_5TEJ__
790 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
791 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
792 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
793 || defined __ARM_ARCH_6T2__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
795 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
796 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
797 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
798 #elif __aarch64__
799 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
800 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
801 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
802 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
803 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
804 #elif defined __s390__ || defined __s390x__
805 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
806 #elif defined __mips__
807 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
808 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
809 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
810 #elif defined __alpha__
811 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
812 #elif defined __hppa__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
814 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
815 #elif defined __ia64__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
817 #elif defined __m68k__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
819 #elif defined __m88k__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
821 #elif defined __sh__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
823 #endif
824 #endif
825 #endif
826
827 #ifndef ECB_MEMORY_FENCE
828 #if ECB_GCC_VERSION(4,7)
829 /* see comment below (stdatomic.h) about the C11 memory model. */
830 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
831 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
832 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
833 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
834
835 #elif ECB_CLANG_EXTENSION(c_atomic)
836 /* see comment below (stdatomic.h) about the C11 memory model. */
837 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
838 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
839 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
840 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
841
842 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
843 #define ECB_MEMORY_FENCE __sync_synchronize ()
844 #elif _MSC_VER >= 1500 /* VC++ 2008 */
845 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
846 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
847 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
848 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
849 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
850 #elif _MSC_VER >= 1400 /* VC++ 2005 */
851 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
852 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
853 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
854 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
855 #elif defined _WIN32
856 #include <WinNT.h>
857 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
858 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
859 #include <mbarrier.h>
860 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
861 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
862 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
863 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
864 #elif __xlC__
865 #define ECB_MEMORY_FENCE __sync ()
866 #endif
867 #endif
868
869 #ifndef ECB_MEMORY_FENCE
870 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
871 /* we assume that these memory fences work on all variables/all memory accesses, */
872 /* not just C11 atomics and atomic accesses */
873 #include <stdatomic.h>
874 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
875 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
876 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
877 #endif
878 #endif
879
880 #ifndef ECB_MEMORY_FENCE
881 #if !ECB_AVOID_PTHREADS
882 /*
883 * if you get undefined symbol references to pthread_mutex_lock,
884 * or failure to find pthread.h, then you should implement
885 * the ECB_MEMORY_FENCE operations for your cpu/compiler
886 * OR provide pthread.h and link against the posix thread library
887 * of your system.
888 */
889 #include <pthread.h>
890 #define ECB_NEEDS_PTHREADS 1
891 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
892
893 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
894 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
895 #endif
896 #endif
897
898 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
899 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
900 #endif
901
902 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
903 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
904 #endif
905
906 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
907 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
908 #endif
909
910 /*****************************************************************************/
911
912 #if ECB_CPP
913 #define ecb_inline static inline
914 #elif ECB_GCC_VERSION(2,5)
915 #define ecb_inline static __inline__
916 #elif ECB_C99
917 #define ecb_inline static inline
918 #else
919 #define ecb_inline static
920 #endif
921
922 #if ECB_GCC_VERSION(3,3)
923 #define ecb_restrict __restrict__
924 #elif ECB_C99
925 #define ecb_restrict restrict
926 #else
927 #define ecb_restrict
928 #endif
929
930 typedef int ecb_bool;
931
932 #define ECB_CONCAT_(a, b) a ## b
933 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
934 #define ECB_STRINGIFY_(a) # a
935 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
936 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
937
938 #define ecb_function_ ecb_inline
939
940 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
941 #define ecb_attribute(attrlist) __attribute__ (attrlist)
942 #else
943 #define ecb_attribute(attrlist)
944 #endif
945
946 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
947 #define ecb_is_constant(expr) __builtin_constant_p (expr)
948 #else
949 /* possible C11 impl for integral types
950 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
951 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
952
953 #define ecb_is_constant(expr) 0
954 #endif
955
956 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
957 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
958 #else
959 #define ecb_expect(expr,value) (expr)
960 #endif
961
962 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
963 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
964 #else
965 #define ecb_prefetch(addr,rw,locality)
966 #endif
967
968 /* no emulation for ecb_decltype */
969 #if ECB_CPP11
970 // older implementations might have problems with decltype(x)::type, work around it
971 template<class T> struct ecb_decltype_t { typedef T type; };
972 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
973 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
974 #define ecb_decltype(x) __typeof__ (x)
975 #endif
976
977 #if _MSC_VER >= 1300
978 #define ecb_deprecated __declspec (deprecated)
979 #else
980 #define ecb_deprecated ecb_attribute ((__deprecated__))
981 #endif
982
983 #if _MSC_VER >= 1500
984 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
985 #elif ECB_GCC_VERSION(4,5)
986 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
987 #else
988 #define ecb_deprecated_message(msg) ecb_deprecated
989 #endif
990
991 #if _MSC_VER >= 1400
992 #define ecb_noinline __declspec (noinline)
993 #else
994 #define ecb_noinline ecb_attribute ((__noinline__))
995 #endif
996
997 #define ecb_unused ecb_attribute ((__unused__))
998 #define ecb_const ecb_attribute ((__const__))
999 #define ecb_pure ecb_attribute ((__pure__))
1000
1001 #if ECB_C11 || __IBMC_NORETURN
1002 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1003 #define ecb_noreturn _Noreturn
1004 #elif ECB_CPP11
1005 #define ecb_noreturn [[noreturn]]
1006 #elif _MSC_VER >= 1200
1007 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1008 #define ecb_noreturn __declspec (noreturn)
1009 #else
1010 #define ecb_noreturn ecb_attribute ((__noreturn__))
1011 #endif
1012
1013 #if ECB_GCC_VERSION(4,3)
1014 #define ecb_artificial ecb_attribute ((__artificial__))
1015 #define ecb_hot ecb_attribute ((__hot__))
1016 #define ecb_cold ecb_attribute ((__cold__))
1017 #else
1018 #define ecb_artificial
1019 #define ecb_hot
1020 #define ecb_cold
1021 #endif
1022
1023 /* put around conditional expressions if you are very sure that the */
1024 /* expression is mostly true or mostly false. note that these return */
1025 /* booleans, not the expression. */
1026 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1027 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1028 /* for compatibility to the rest of the world */
1029 #define ecb_likely(expr) ecb_expect_true (expr)
1030 #define ecb_unlikely(expr) ecb_expect_false (expr)
1031
1032 /* count trailing zero bits and count # of one bits */
1033 #if ECB_GCC_VERSION(3,4) \
1034 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1035 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1036 && ECB_CLANG_BUILTIN(__builtin_popcount))
1037 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1038 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1039 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1040 #define ecb_ctz32(x) __builtin_ctz (x)
1041 #define ecb_ctz64(x) __builtin_ctzll (x)
1042 #define ecb_popcount32(x) __builtin_popcount (x)
1043 /* no popcountll */
1044 #else
1045 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1046 ecb_function_ ecb_const int
1047 ecb_ctz32 (uint32_t x)
1048 {
1049 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1050 unsigned long r;
1051 _BitScanForward (&r, x);
1052 return (int)r;
1053 #else
1054 int r = 0;
1055
1056 x &= ~x + 1; /* this isolates the lowest bit */
1057
1058 #if ECB_branchless_on_i386
1059 r += !!(x & 0xaaaaaaaa) << 0;
1060 r += !!(x & 0xcccccccc) << 1;
1061 r += !!(x & 0xf0f0f0f0) << 2;
1062 r += !!(x & 0xff00ff00) << 3;
1063 r += !!(x & 0xffff0000) << 4;
1064 #else
1065 if (x & 0xaaaaaaaa) r += 1;
1066 if (x & 0xcccccccc) r += 2;
1067 if (x & 0xf0f0f0f0) r += 4;
1068 if (x & 0xff00ff00) r += 8;
1069 if (x & 0xffff0000) r += 16;
1070 #endif
1071
1072 return r;
1073 #endif
1074 }
1075
1076 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1077 ecb_function_ ecb_const int
1078 ecb_ctz64 (uint64_t x)
1079 {
1080 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1081 unsigned long r;
1082 _BitScanForward64 (&r, x);
1083 return (int)r;
1084 #else
1085 int shift = x & 0xffffffff ? 0 : 32;
1086 return ecb_ctz32 (x >> shift) + shift;
1087 #endif
1088 }
1089
1090 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1091 ecb_function_ ecb_const int
1092 ecb_popcount32 (uint32_t x)
1093 {
1094 x -= (x >> 1) & 0x55555555;
1095 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1096 x = ((x >> 4) + x) & 0x0f0f0f0f;
1097 x *= 0x01010101;
1098
1099 return x >> 24;
1100 }
1101
1102 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1103 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1104 {
1105 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1106 unsigned long r;
1107 _BitScanReverse (&r, x);
1108 return (int)r;
1109 #else
1110 int r = 0;
1111
1112 if (x >> 16) { x >>= 16; r += 16; }
1113 if (x >> 8) { x >>= 8; r += 8; }
1114 if (x >> 4) { x >>= 4; r += 4; }
1115 if (x >> 2) { x >>= 2; r += 2; }
1116 if (x >> 1) { r += 1; }
1117
1118 return r;
1119 #endif
1120 }
1121
1122 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1123 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1124 {
1125 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1126 unsigned long r;
1127 _BitScanReverse64 (&r, x);
1128 return (int)r;
1129 #else
1130 int r = 0;
1131
1132 if (x >> 32) { x >>= 32; r += 32; }
1133
1134 return r + ecb_ld32 (x);
1135 #endif
1136 }
1137 #endif
1138
1139 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1140 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1141 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1142 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1143
1144 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1145 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1146 {
1147 return ( (x * 0x0802U & 0x22110U)
1148 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1149 }
1150
1151 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1152 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1153 {
1154 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1155 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1156 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1157 x = ( x >> 8 ) | ( x << 8);
1158
1159 return x;
1160 }
1161
1162 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1163 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1164 {
1165 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1166 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1167 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1168 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1169 x = ( x >> 16 ) | ( x << 16);
1170
1171 return x;
1172 }
1173
1174 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1175 /* so for this version we are lazy */
1176 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1177 ecb_function_ ecb_const int
1178 ecb_popcount64 (uint64_t x)
1179 {
1180 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1181 }
1182
1183 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1184 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1185 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1186 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1187 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1188 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1189 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1190 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1191
1192 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1193 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1194 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1195 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1196 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1197 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1198 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1199 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1200
1201 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1202 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1203 #define ecb_bswap16(x) __builtin_bswap16 (x)
1204 #else
1205 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1206 #endif
1207 #define ecb_bswap32(x) __builtin_bswap32 (x)
1208 #define ecb_bswap64(x) __builtin_bswap64 (x)
1209 #elif _MSC_VER
1210 #include <stdlib.h>
1211 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1212 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1213 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1214 #else
1215 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1216 ecb_function_ ecb_const uint16_t
1217 ecb_bswap16 (uint16_t x)
1218 {
1219 return ecb_rotl16 (x, 8);
1220 }
1221
1222 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1223 ecb_function_ ecb_const uint32_t
1224 ecb_bswap32 (uint32_t x)
1225 {
1226 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1227 }
1228
1229 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1230 ecb_function_ ecb_const uint64_t
1231 ecb_bswap64 (uint64_t x)
1232 {
1233 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1234 }
1235 #endif
1236
1237 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1238 #define ecb_unreachable() __builtin_unreachable ()
1239 #else
1240 /* this seems to work fine, but gcc always emits a warning for it :/ */
1241 ecb_inline ecb_noreturn void ecb_unreachable (void);
1242 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1243 #endif
1244
1245 /* try to tell the compiler that some condition is definitely true */
1246 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1247
1248 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1249 ecb_inline ecb_const uint32_t
1250 ecb_byteorder_helper (void)
1251 {
1252 /* the union code still generates code under pressure in gcc, */
1253 /* but less than using pointers, and always seems to */
1254 /* successfully return a constant. */
1255 /* the reason why we have this horrible preprocessor mess */
1256 /* is to avoid it in all cases, at least on common architectures */
1257 /* or when using a recent enough gcc version (>= 4.6) */
1258 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1259 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1260 #define ECB_LITTLE_ENDIAN 1
1261 return 0x44332211;
1262 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1263 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1264 #define ECB_BIG_ENDIAN 1
1265 return 0x11223344;
1266 #else
1267 union
1268 {
1269 uint8_t c[4];
1270 uint32_t u;
1271 } u = { 0x11, 0x22, 0x33, 0x44 };
1272 return u.u;
1273 #endif
1274 }
1275
1276 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1277 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1278 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1279 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1280
1281 #if ECB_GCC_VERSION(3,0) || ECB_C99
1282 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1283 #else
1284 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1285 #endif
1286
1287 #if ECB_CPP
1288 template<typename T>
1289 static inline T ecb_div_rd (T val, T div)
1290 {
1291 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1292 }
1293 template<typename T>
1294 static inline T ecb_div_ru (T val, T div)
1295 {
1296 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1297 }
1298 #else
1299 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1300 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1301 #endif
1302
1303 #if ecb_cplusplus_does_not_suck
1304 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1305 template<typename T, int N>
1306 static inline int ecb_array_length (const T (&arr)[N])
1307 {
1308 return N;
1309 }
1310 #else
1311 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1312 #endif
1313
1314 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1315 ecb_function_ ecb_const uint32_t
1316 ecb_binary16_to_binary32 (uint32_t x)
1317 {
1318 unsigned int s = (x & 0x8000) << (31 - 15);
1319 int e = (x >> 10) & 0x001f;
1320 unsigned int m = x & 0x03ff;
1321
1322 if (ecb_expect_false (e == 31))
1323 /* infinity or NaN */
1324 e = 255 - (127 - 15);
1325 else if (ecb_expect_false (!e))
1326 {
1327 if (ecb_expect_true (!m))
1328 /* zero, handled by code below by forcing e to 0 */
1329 e = 0 - (127 - 15);
1330 else
1331 {
1332 /* subnormal, renormalise */
1333 unsigned int s = 10 - ecb_ld32 (m);
1334
1335 m = (m << s) & 0x3ff; /* mask implicit bit */
1336 e -= s - 1;
1337 }
1338 }
1339
1340 /* e and m now are normalised, or zero, (or inf or nan) */
1341 e += 127 - 15;
1342
1343 return s | (e << 23) | (m << (23 - 10));
1344 }
1345
1346 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1347 ecb_function_ ecb_const uint16_t
1348 ecb_binary32_to_binary16 (uint32_t x)
1349 {
1350 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1351 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1352 unsigned int m = x & 0x007fffff;
1353
1354 x &= 0x7fffffff;
1355
1356 /* if it's within range of binary16 normals, use fast path */
1357 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1358 {
1359 /* mantissa round-to-even */
1360 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1361
1362 /* handle overflow */
1363 if (ecb_expect_false (m >= 0x00800000))
1364 {
1365 m >>= 1;
1366 e += 1;
1367 }
1368
1369 return s | (e << 10) | (m >> (23 - 10));
1370 }
1371
1372 /* handle large numbers and infinity */
1373 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1374 return s | 0x7c00;
1375
1376 /* handle zero, subnormals and small numbers */
1377 if (ecb_expect_true (x < 0x38800000))
1378 {
1379 /* zero */
1380 if (ecb_expect_true (!x))
1381 return s;
1382
1383 /* handle subnormals */
1384
1385 /* too small, will be zero */
1386 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1387 return s;
1388
1389 m |= 0x00800000; /* make implicit bit explicit */
1390
1391 /* very tricky - we need to round to the nearest e (+10) bit value */
1392 {
1393 unsigned int bits = 14 - e;
1394 unsigned int half = (1 << (bits - 1)) - 1;
1395 unsigned int even = (m >> bits) & 1;
1396
1397 /* if this overflows, we will end up with a normalised number */
1398 m = (m + half + even) >> bits;
1399 }
1400
1401 return s | m;
1402 }
1403
1404 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1405 m >>= 13;
1406
1407 return s | 0x7c00 | m | !m;
1408 }
1409
1410 /*******************************************************************************/
1411 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1412
1413 /* basically, everything uses "ieee pure-endian" floating point numbers */
1414 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1415 #if 0 \
1416 || __i386 || __i386__ \
1417 || ECB_GCC_AMD64 \
1418 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1419 || defined __s390__ || defined __s390x__ \
1420 || defined __mips__ \
1421 || defined __alpha__ \
1422 || defined __hppa__ \
1423 || defined __ia64__ \
1424 || defined __m68k__ \
1425 || defined __m88k__ \
1426 || defined __sh__ \
1427 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1428 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1429 || defined __aarch64__
1430 #define ECB_STDFP 1
1431 #include <string.h> /* for memcpy */
1432 #else
1433 #define ECB_STDFP 0
1434 #endif
1435
1436 #ifndef ECB_NO_LIBM
1437
1438 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1439
1440 /* only the oldest of old doesn't have this one. solaris. */
1441 #ifdef INFINITY
1442 #define ECB_INFINITY INFINITY
1443 #else
1444 #define ECB_INFINITY HUGE_VAL
1445 #endif
1446
1447 #ifdef NAN
1448 #define ECB_NAN NAN
1449 #else
1450 #define ECB_NAN ECB_INFINITY
1451 #endif
1452
1453 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1454 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1455 #define ecb_frexpf(x,e) frexpf ((x), (e))
1456 #else
1457 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1458 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1459 #endif
1460
1461 /* convert a float to ieee single/binary32 */
1462 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1463 ecb_function_ ecb_const uint32_t
1464 ecb_float_to_binary32 (float x)
1465 {
1466 uint32_t r;
1467
1468 #if ECB_STDFP
1469 memcpy (&r, &x, 4);
1470 #else
1471 /* slow emulation, works for anything but -0 */
1472 uint32_t m;
1473 int e;
1474
1475 if (x == 0e0f ) return 0x00000000U;
1476 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1477 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1478 if (x != x ) return 0x7fbfffffU;
1479
1480 m = ecb_frexpf (x, &e) * 0x1000000U;
1481
1482 r = m & 0x80000000U;
1483
1484 if (r)
1485 m = -m;
1486
1487 if (e <= -126)
1488 {
1489 m &= 0xffffffU;
1490 m >>= (-125 - e);
1491 e = -126;
1492 }
1493
1494 r |= (e + 126) << 23;
1495 r |= m & 0x7fffffU;
1496 #endif
1497
1498 return r;
1499 }
1500
1501 /* converts an ieee single/binary32 to a float */
1502 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1503 ecb_function_ ecb_const float
1504 ecb_binary32_to_float (uint32_t x)
1505 {
1506 float r;
1507
1508 #if ECB_STDFP
1509 memcpy (&r, &x, 4);
1510 #else
1511 /* emulation, only works for normals and subnormals and +0 */
1512 int neg = x >> 31;
1513 int e = (x >> 23) & 0xffU;
1514
1515 x &= 0x7fffffU;
1516
1517 if (e)
1518 x |= 0x800000U;
1519 else
1520 e = 1;
1521
1522 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1523 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1524
1525 r = neg ? -r : r;
1526 #endif
1527
1528 return r;
1529 }
1530
1531 /* convert a double to ieee double/binary64 */
1532 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1533 ecb_function_ ecb_const uint64_t
1534 ecb_double_to_binary64 (double x)
1535 {
1536 uint64_t r;
1537
1538 #if ECB_STDFP
1539 memcpy (&r, &x, 8);
1540 #else
1541 /* slow emulation, works for anything but -0 */
1542 uint64_t m;
1543 int e;
1544
1545 if (x == 0e0 ) return 0x0000000000000000U;
1546 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1547 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1548 if (x != x ) return 0X7ff7ffffffffffffU;
1549
1550 m = frexp (x, &e) * 0x20000000000000U;
1551
1552 r = m & 0x8000000000000000;;
1553
1554 if (r)
1555 m = -m;
1556
1557 if (e <= -1022)
1558 {
1559 m &= 0x1fffffffffffffU;
1560 m >>= (-1021 - e);
1561 e = -1022;
1562 }
1563
1564 r |= ((uint64_t)(e + 1022)) << 52;
1565 r |= m & 0xfffffffffffffU;
1566 #endif
1567
1568 return r;
1569 }
1570
1571 /* converts an ieee double/binary64 to a double */
1572 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1573 ecb_function_ ecb_const double
1574 ecb_binary64_to_double (uint64_t x)
1575 {
1576 double r;
1577
1578 #if ECB_STDFP
1579 memcpy (&r, &x, 8);
1580 #else
1581 /* emulation, only works for normals and subnormals and +0 */
1582 int neg = x >> 63;
1583 int e = (x >> 52) & 0x7ffU;
1584
1585 x &= 0xfffffffffffffU;
1586
1587 if (e)
1588 x |= 0x10000000000000U;
1589 else
1590 e = 1;
1591
1592 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1593 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1594
1595 r = neg ? -r : r;
1596 #endif
1597
1598 return r;
1599 }
1600
1601 /* convert a float to ieee half/binary16 */
1602 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1603 ecb_function_ ecb_const uint16_t
1604 ecb_float_to_binary16 (float x)
1605 {
1606 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1607 }
1608
1609 /* convert an ieee half/binary16 to float */
1610 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1611 ecb_function_ ecb_const float
1612 ecb_binary16_to_float (uint16_t x)
1613 {
1614 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1615 }
1616
1617 #endif
1618
1619 #endif
1620
1621 /* ECB.H END */
1622
1623 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1624 /* if your architecture doesn't need memory fences, e.g. because it is
1625 * single-cpu/core, or if you use libev in a project that doesn't use libev
1626 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1627 * libev, in which cases the memory fences become nops.
1628 * alternatively, you can remove this #error and link against libpthread,
1629 * which will then provide the memory fences.
1630 */
1631 # error "memory fences not defined for your architecture, please report"
1632 #endif
1633
1634 #ifndef ECB_MEMORY_FENCE
1635 # define ECB_MEMORY_FENCE do { } while (0)
1636 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1637 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1638 #endif
1639
1640 #define inline_size ecb_inline
1641
1642 #if EV_FEATURE_CODE
1643 # define inline_speed ecb_inline
1644 #else
1645 # define inline_speed ecb_noinline static
1646 #endif
1647
1648 /*****************************************************************************/
1649 /* raw syscall wrappers */
1650
1651 #if EV_NEED_SYSCALL
1652
1653 #include <sys/syscall.h>
1654
1655 /*
1656 * define some syscall wrappers for common architectures
1657 * this is mostly for nice looks during debugging, not performance.
1658 * our syscalls return < 0, not == -1, on error. which is good
1659 * enough for linux aio.
1660 * TODO: arm is also common nowadays, maybe even mips and x86
1661 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1662 */
1663 #if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1664 /* the costly errno access probably kills this for size optimisation */
1665
1666 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1667 ({ \
1668 long res; \
1669 register unsigned long r6 __asm__ ("r9" ); \
1670 register unsigned long r5 __asm__ ("r8" ); \
1671 register unsigned long r4 __asm__ ("r10"); \
1672 register unsigned long r3 __asm__ ("rdx"); \
1673 register unsigned long r2 __asm__ ("rsi"); \
1674 register unsigned long r1 __asm__ ("rdi"); \
1675 if (narg >= 6) r6 = (unsigned long)(arg6); \
1676 if (narg >= 5) r5 = (unsigned long)(arg5); \
1677 if (narg >= 4) r4 = (unsigned long)(arg4); \
1678 if (narg >= 3) r3 = (unsigned long)(arg3); \
1679 if (narg >= 2) r2 = (unsigned long)(arg2); \
1680 if (narg >= 1) r1 = (unsigned long)(arg1); \
1681 __asm__ __volatile__ ( \
1682 "syscall\n\t" \
1683 : "=a" (res) \
1684 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1685 : "cc", "r11", "cx", "memory"); \
1686 errno = -res; \
1687 res; \
1688 })
1689
1690 #endif
1691
1692 #ifdef ev_syscall
1693 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1694 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1695 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1696 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1697 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1698 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1699 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1700 #else
1701 #define ev_syscall0(nr) syscall (nr)
1702 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1703 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1704 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1705 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1706 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1707 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1708 #endif
1709
1710 #endif
1711
1712 /*****************************************************************************/
1713
1714 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1715
1716 #if EV_MINPRI == EV_MAXPRI
1717 # define ABSPRI(w) (((W)w), 0)
1718 #else
1719 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1720 #endif
1721
1722 #define EMPTY /* required for microsofts broken pseudo-c compiler */
1723
1724 typedef ev_watcher *W;
1725 typedef ev_watcher_list *WL;
1726 typedef ev_watcher_time *WT;
1727
1728 #define ev_active(w) ((W)(w))->active
1729 #define ev_at(w) ((WT)(w))->at
1730
1731 #if EV_USE_REALTIME
1732 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1733 /* giving it a reasonably high chance of working on typical architectures */
1734 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1735 #endif
1736
1737 #if EV_USE_MONOTONIC
1738 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1739 #endif
1740
1741 #ifndef EV_FD_TO_WIN32_HANDLE
1742 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1743 #endif
1744 #ifndef EV_WIN32_HANDLE_TO_FD
1745 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1746 #endif
1747 #ifndef EV_WIN32_CLOSE_FD
1748 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1749 #endif
1750
1751 #ifdef _WIN32
1752 # include "ev_win32.c"
1753 #endif
1754
1755 /*****************************************************************************/
1756
1757 #if EV_USE_LINUXAIO
1758 # include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1759 #endif
1760
1761 /* define a suitable floor function (only used by periodics atm) */
1762
1763 #if EV_USE_FLOOR
1764 # include <math.h>
1765 # define ev_floor(v) floor (v)
1766 #else
1767
1768 #include <float.h>
1769
1770 /* a floor() replacement function, should be independent of ev_tstamp type */
1771 ecb_noinline
1772 static ev_tstamp
1773 ev_floor (ev_tstamp v)
1774 {
1775 /* the choice of shift factor is not terribly important */
1776 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1777 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1778 #else
1779 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1780 #endif
1781
1782 /* special treatment for negative arguments */
1783 if (ecb_expect_false (v < 0.))
1784 {
1785 ev_tstamp f = -ev_floor (-v);
1786
1787 return f - (f == v ? 0 : 1);
1788 }
1789
1790 /* argument too large for an unsigned long? then reduce it */
1791 if (ecb_expect_false (v >= shift))
1792 {
1793 ev_tstamp f;
1794
1795 if (v == v - 1.)
1796 return v; /* very large numbers are assumed to be integer */
1797
1798 f = shift * ev_floor (v * (1. / shift));
1799 return f + ev_floor (v - f);
1800 }
1801
1802 /* fits into an unsigned long */
1803 return (unsigned long)v;
1804 }
1805
1806 #endif
1807
1808 /*****************************************************************************/
1809
1810 #ifdef __linux
1811 # include <sys/utsname.h>
1812 #endif
1813
1814 ecb_noinline ecb_cold
1815 static unsigned int
1816 ev_linux_version (void)
1817 {
1818 #ifdef __linux
1819 unsigned int v = 0;
1820 struct utsname buf;
1821 int i;
1822 char *p = buf.release;
1823
1824 if (uname (&buf))
1825 return 0;
1826
1827 for (i = 3+1; --i; )
1828 {
1829 unsigned int c = 0;
1830
1831 for (;;)
1832 {
1833 if (*p >= '0' && *p <= '9')
1834 c = c * 10 + *p++ - '0';
1835 else
1836 {
1837 p += *p == '.';
1838 break;
1839 }
1840 }
1841
1842 v = (v << 8) | c;
1843 }
1844
1845 return v;
1846 #else
1847 return 0;
1848 #endif
1849 }
1850
1851 /*****************************************************************************/
1852
1853 #if EV_AVOID_STDIO
1854 ecb_noinline ecb_cold
1855 static void
1856 ev_printerr (const char *msg)
1857 {
1858 write (STDERR_FILENO, msg, strlen (msg));
1859 }
1860 #endif
1861
1862 static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1863
1864 ecb_cold
1865 void
1866 ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1867 {
1868 syserr_cb = cb;
1869 }
1870
1871 ecb_noinline ecb_cold
1872 static void
1873 ev_syserr (const char *msg)
1874 {
1875 if (!msg)
1876 msg = "(libev) system error";
1877
1878 if (syserr_cb)
1879 syserr_cb (msg);
1880 else
1881 {
1882 #if EV_AVOID_STDIO
1883 ev_printerr (msg);
1884 ev_printerr (": ");
1885 ev_printerr (strerror (errno));
1886 ev_printerr ("\n");
1887 #else
1888 perror (msg);
1889 #endif
1890 abort ();
1891 }
1892 }
1893
1894 static void *
1895 ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1896 {
1897 /* some systems, notably openbsd and darwin, fail to properly
1898 * implement realloc (x, 0) (as required by both ansi c-89 and
1899 * the single unix specification, so work around them here.
1900 * recently, also (at least) fedora and debian started breaking it,
1901 * despite documenting it otherwise.
1902 */
1903
1904 if (size)
1905 return realloc (ptr, size);
1906
1907 free (ptr);
1908 return 0;
1909 }
1910
1911 static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1912
1913 ecb_cold
1914 void
1915 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1916 {
1917 alloc = cb;
1918 }
1919
1920 inline_speed void *
1921 ev_realloc (void *ptr, long size)
1922 {
1923 ptr = alloc (ptr, size);
1924
1925 if (!ptr && size)
1926 {
1927 #if EV_AVOID_STDIO
1928 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1929 #else
1930 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1931 #endif
1932 abort ();
1933 }
1934
1935 return ptr;
1936 }
1937
1938 #define ev_malloc(size) ev_realloc (0, (size))
1939 #define ev_free(ptr) ev_realloc ((ptr), 0)
1940
1941 /*****************************************************************************/
1942
1943 /* set in reify when reification needed */
1944 #define EV_ANFD_REIFY 1
1945
1946 /* file descriptor info structure */
1947 typedef struct
1948 {
1949 WL head;
1950 unsigned char events; /* the events watched for */
1951 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1952 unsigned char emask; /* some backends store the actual kernel mask in here */
1953 unsigned char eflags; /* flags field for use by backends */
1954 #if EV_USE_EPOLL
1955 unsigned int egen; /* generation counter to counter epoll bugs */
1956 #endif
1957 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1958 SOCKET handle;
1959 #endif
1960 #if EV_USE_IOCP
1961 OVERLAPPED or, ow;
1962 #endif
1963 } ANFD;
1964
1965 /* stores the pending event set for a given watcher */
1966 typedef struct
1967 {
1968 W w;
1969 int events; /* the pending event set for the given watcher */
1970 } ANPENDING;
1971
1972 #if EV_USE_INOTIFY
1973 /* hash table entry per inotify-id */
1974 typedef struct
1975 {
1976 WL head;
1977 } ANFS;
1978 #endif
1979
1980 /* Heap Entry */
1981 #if EV_HEAP_CACHE_AT
1982 /* a heap element */
1983 typedef struct {
1984 ev_tstamp at;
1985 WT w;
1986 } ANHE;
1987
1988 #define ANHE_w(he) (he).w /* access watcher, read-write */
1989 #define ANHE_at(he) (he).at /* access cached at, read-only */
1990 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1991 #else
1992 /* a heap element */
1993 typedef WT ANHE;
1994
1995 #define ANHE_w(he) (he)
1996 #define ANHE_at(he) (he)->at
1997 #define ANHE_at_cache(he)
1998 #endif
1999
2000 #if EV_MULTIPLICITY
2001
2002 struct ev_loop
2003 {
2004 ev_tstamp ev_rt_now;
2005 #define ev_rt_now ((loop)->ev_rt_now)
2006 #define VAR(name,decl) decl;
2007 #include "ev_vars.h"
2008 #undef VAR
2009 };
2010 #include "ev_wrap.h"
2011
2012 static struct ev_loop default_loop_struct;
2013 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2014
2015 #else
2016
2017 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2018 #define VAR(name,decl) static decl;
2019 #include "ev_vars.h"
2020 #undef VAR
2021
2022 static int ev_default_loop_ptr;
2023
2024 #endif
2025
2026 #if EV_FEATURE_API
2027 # define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2028 # define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2029 # define EV_INVOKE_PENDING invoke_cb (EV_A)
2030 #else
2031 # define EV_RELEASE_CB (void)0
2032 # define EV_ACQUIRE_CB (void)0
2033 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2034 #endif
2035
2036 #define EVBREAK_RECURSE 0x80
2037
2038 /*****************************************************************************/
2039
2040 #ifndef EV_HAVE_EV_TIME
2041 ev_tstamp
2042 ev_time (void) EV_NOEXCEPT
2043 {
2044 #if EV_USE_REALTIME
2045 if (ecb_expect_true (have_realtime))
2046 {
2047 struct timespec ts;
2048 clock_gettime (CLOCK_REALTIME, &ts);
2049 return EV_TS_GET (ts);
2050 }
2051 #endif
2052
2053 {
2054 struct timeval tv;
2055 gettimeofday (&tv, 0);
2056 return EV_TV_GET (tv);
2057 }
2058 }
2059 #endif
2060
2061 inline_size ev_tstamp
2062 get_clock (void)
2063 {
2064 #if EV_USE_MONOTONIC
2065 if (ecb_expect_true (have_monotonic))
2066 {
2067 struct timespec ts;
2068 clock_gettime (CLOCK_MONOTONIC, &ts);
2069 return EV_TS_GET (ts);
2070 }
2071 #endif
2072
2073 return ev_time ();
2074 }
2075
2076 #if EV_MULTIPLICITY
2077 ev_tstamp
2078 ev_now (EV_P) EV_NOEXCEPT
2079 {
2080 return ev_rt_now;
2081 }
2082 #endif
2083
2084 void
2085 ev_sleep (ev_tstamp delay) EV_NOEXCEPT
2086 {
2087 if (delay > EV_TS_CONST (0.))
2088 {
2089 #if EV_USE_NANOSLEEP
2090 struct timespec ts;
2091
2092 EV_TS_SET (ts, delay);
2093 nanosleep (&ts, 0);
2094 #elif defined _WIN32
2095 /* maybe this should round up, as ms is very low resolution */
2096 /* compared to select (µs) or nanosleep (ns) */
2097 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2098 #else
2099 struct timeval tv;
2100
2101 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2102 /* something not guaranteed by newer posix versions, but guaranteed */
2103 /* by older ones */
2104 EV_TV_SET (tv, delay);
2105 select (0, 0, 0, 0, &tv);
2106 #endif
2107 }
2108 }
2109
2110 /*****************************************************************************/
2111
2112 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
2113
2114 /* find a suitable new size for the given array, */
2115 /* hopefully by rounding to a nice-to-malloc size */
2116 inline_size int
2117 array_nextsize (int elem, int cur, int cnt)
2118 {
2119 int ncur = cur + 1;
2120
2121 do
2122 ncur <<= 1;
2123 while (cnt > ncur);
2124
2125 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2126 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2127 {
2128 ncur *= elem;
2129 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2130 ncur = ncur - sizeof (void *) * 4;
2131 ncur /= elem;
2132 }
2133
2134 return ncur;
2135 }
2136
2137 ecb_noinline ecb_cold
2138 static void *
2139 array_realloc (int elem, void *base, int *cur, int cnt)
2140 {
2141 *cur = array_nextsize (elem, *cur, cnt);
2142 return ev_realloc (base, elem * *cur);
2143 }
2144
2145 #define array_needsize_noinit(base,offset,count)
2146
2147 #define array_needsize_zerofill(base,offset,count) \
2148 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2149
2150 #define array_needsize(type,base,cur,cnt,init) \
2151 if (ecb_expect_false ((cnt) > (cur))) \
2152 { \
2153 ecb_unused int ocur_ = (cur); \
2154 (base) = (type *)array_realloc \
2155 (sizeof (type), (base), &(cur), (cnt)); \
2156 init ((base), ocur_, ((cur) - ocur_)); \
2157 }
2158
2159 #if 0
2160 #define array_slim(type,stem) \
2161 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2162 { \
2163 stem ## max = array_roundsize (stem ## cnt >> 1); \
2164 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2165 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2166 }
2167 #endif
2168
2169 #define array_free(stem, idx) \
2170 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2171
2172 /*****************************************************************************/
2173
2174 /* dummy callback for pending events */
2175 ecb_noinline
2176 static void
2177 pendingcb (EV_P_ ev_prepare *w, int revents)
2178 {
2179 }
2180
2181 ecb_noinline
2182 void
2183 ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2184 {
2185 W w_ = (W)w;
2186 int pri = ABSPRI (w_);
2187
2188 if (ecb_expect_false (w_->pending))
2189 pendings [pri][w_->pending - 1].events |= revents;
2190 else
2191 {
2192 w_->pending = ++pendingcnt [pri];
2193 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
2194 pendings [pri][w_->pending - 1].w = w_;
2195 pendings [pri][w_->pending - 1].events = revents;
2196 }
2197
2198 pendingpri = NUMPRI - 1;
2199 }
2200
2201 inline_speed void
2202 feed_reverse (EV_P_ W w)
2203 {
2204 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2205 rfeeds [rfeedcnt++] = w;
2206 }
2207
2208 inline_size void
2209 feed_reverse_done (EV_P_ int revents)
2210 {
2211 do
2212 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2213 while (rfeedcnt);
2214 }
2215
2216 inline_speed void
2217 queue_events (EV_P_ W *events, int eventcnt, int type)
2218 {
2219 int i;
2220
2221 for (i = 0; i < eventcnt; ++i)
2222 ev_feed_event (EV_A_ events [i], type);
2223 }
2224
2225 /*****************************************************************************/
2226
2227 inline_speed void
2228 fd_event_nocheck (EV_P_ int fd, int revents)
2229 {
2230 ANFD *anfd = anfds + fd;
2231 ev_io *w;
2232
2233 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2234 {
2235 int ev = w->events & revents;
2236
2237 if (ev)
2238 ev_feed_event (EV_A_ (W)w, ev);
2239 }
2240 }
2241
2242 /* do not submit kernel events for fds that have reify set */
2243 /* because that means they changed while we were polling for new events */
2244 inline_speed void
2245 fd_event (EV_P_ int fd, int revents)
2246 {
2247 ANFD *anfd = anfds + fd;
2248
2249 if (ecb_expect_true (!anfd->reify))
2250 fd_event_nocheck (EV_A_ fd, revents);
2251 }
2252
2253 void
2254 ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2255 {
2256 if (fd >= 0 && fd < anfdmax)
2257 fd_event_nocheck (EV_A_ fd, revents);
2258 }
2259
2260 /* make sure the external fd watch events are in-sync */
2261 /* with the kernel/libev internal state */
2262 inline_size void
2263 fd_reify (EV_P)
2264 {
2265 int i;
2266
2267 /* most backends do not modify the fdchanges list in backend_modfiy.
2268 * except io_uring, which has fixed-size buffers which might force us
2269 * to handle events in backend_modify, causing fdchangesd to be amended,
2270 * which could result in an endless loop.
2271 * to avoid this, we do not dynamically handle fds that were added
2272 * during fd_reify. that menas thast for those backends, fdchangecnt
2273 * might be non-zero during poll, which must cause them to not block.
2274 * to not put too much of a burden on other backends, this detail
2275 * needs to be handled in the backend.
2276 */
2277 int changecnt = fdchangecnt;
2278
2279 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2280 for (i = 0; i < changecnt; ++i)
2281 {
2282 int fd = fdchanges [i];
2283 ANFD *anfd = anfds + fd;
2284
2285 if (anfd->reify & EV__IOFDSET && anfd->head)
2286 {
2287 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2288
2289 if (handle != anfd->handle)
2290 {
2291 unsigned long arg;
2292
2293 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2294
2295 /* handle changed, but fd didn't - we need to do it in two steps */
2296 backend_modify (EV_A_ fd, anfd->events, 0);
2297 anfd->events = 0;
2298 anfd->handle = handle;
2299 }
2300 }
2301 }
2302 #endif
2303
2304 for (i = 0; i < changecnt; ++i)
2305 {
2306 int fd = fdchanges [i];
2307 ANFD *anfd = anfds + fd;
2308 ev_io *w;
2309
2310 unsigned char o_events = anfd->events;
2311 unsigned char o_reify = anfd->reify;
2312
2313 anfd->reify = 0;
2314
2315 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2316 {
2317 anfd->events = 0;
2318
2319 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2320 anfd->events |= (unsigned char)w->events;
2321
2322 if (o_events != anfd->events)
2323 o_reify = EV__IOFDSET; /* actually |= */
2324 }
2325
2326 if (o_reify & EV__IOFDSET)
2327 backend_modify (EV_A_ fd, o_events, anfd->events);
2328 }
2329
2330 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2331 * this is a rare case (see beginning comment in this function), so we copy them to the
2332 * front and hope the backend handles this case.
2333 */
2334 if (ecb_expect_false (fdchangecnt != changecnt))
2335 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2336
2337 fdchangecnt -= changecnt;
2338 }
2339
2340 /* something about the given fd changed */
2341 inline_size
2342 void
2343 fd_change (EV_P_ int fd, int flags)
2344 {
2345 unsigned char reify = anfds [fd].reify;
2346 anfds [fd].reify |= flags;
2347
2348 if (ecb_expect_true (!reify))
2349 {
2350 ++fdchangecnt;
2351 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2352 fdchanges [fdchangecnt - 1] = fd;
2353 }
2354 }
2355
2356 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2357 inline_speed ecb_cold void
2358 fd_kill (EV_P_ int fd)
2359 {
2360 ev_io *w;
2361
2362 while ((w = (ev_io *)anfds [fd].head))
2363 {
2364 ev_io_stop (EV_A_ w);
2365 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2366 }
2367 }
2368
2369 /* check whether the given fd is actually valid, for error recovery */
2370 inline_size ecb_cold int
2371 fd_valid (int fd)
2372 {
2373 #ifdef _WIN32
2374 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2375 #else
2376 return fcntl (fd, F_GETFD) != -1;
2377 #endif
2378 }
2379
2380 /* called on EBADF to verify fds */
2381 ecb_noinline ecb_cold
2382 static void
2383 fd_ebadf (EV_P)
2384 {
2385 int fd;
2386
2387 for (fd = 0; fd < anfdmax; ++fd)
2388 if (anfds [fd].events)
2389 if (!fd_valid (fd) && errno == EBADF)
2390 fd_kill (EV_A_ fd);
2391 }
2392
2393 /* called on ENOMEM in select/poll to kill some fds and retry */
2394 ecb_noinline ecb_cold
2395 static void
2396 fd_enomem (EV_P)
2397 {
2398 int fd;
2399
2400 for (fd = anfdmax; fd--; )
2401 if (anfds [fd].events)
2402 {
2403 fd_kill (EV_A_ fd);
2404 break;
2405 }
2406 }
2407
2408 /* usually called after fork if backend needs to re-arm all fds from scratch */
2409 ecb_noinline
2410 static void
2411 fd_rearm_all (EV_P)
2412 {
2413 int fd;
2414
2415 for (fd = 0; fd < anfdmax; ++fd)
2416 if (anfds [fd].events)
2417 {
2418 anfds [fd].events = 0;
2419 anfds [fd].emask = 0;
2420 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2421 }
2422 }
2423
2424 /* used to prepare libev internal fd's */
2425 /* this is not fork-safe */
2426 inline_speed void
2427 fd_intern (int fd)
2428 {
2429 #ifdef _WIN32
2430 unsigned long arg = 1;
2431 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2432 #else
2433 fcntl (fd, F_SETFD, FD_CLOEXEC);
2434 fcntl (fd, F_SETFL, O_NONBLOCK);
2435 #endif
2436 }
2437
2438 /*****************************************************************************/
2439
2440 /*
2441 * the heap functions want a real array index. array index 0 is guaranteed to not
2442 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2443 * the branching factor of the d-tree.
2444 */
2445
2446 /*
2447 * at the moment we allow libev the luxury of two heaps,
2448 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2449 * which is more cache-efficient.
2450 * the difference is about 5% with 50000+ watchers.
2451 */
2452 #if EV_USE_4HEAP
2453
2454 #define DHEAP 4
2455 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2456 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2457 #define UPHEAP_DONE(p,k) ((p) == (k))
2458
2459 /* away from the root */
2460 inline_speed void
2461 downheap (ANHE *heap, int N, int k)
2462 {
2463 ANHE he = heap [k];
2464 ANHE *E = heap + N + HEAP0;
2465
2466 for (;;)
2467 {
2468 ev_tstamp minat;
2469 ANHE *minpos;
2470 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2471
2472 /* find minimum child */
2473 if (ecb_expect_true (pos + DHEAP - 1 < E))
2474 {
2475 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2476 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2477 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2478 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2479 }
2480 else if (pos < E)
2481 {
2482 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2483 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2484 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2485 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2486 }
2487 else
2488 break;
2489
2490 if (ANHE_at (he) <= minat)
2491 break;
2492
2493 heap [k] = *minpos;
2494 ev_active (ANHE_w (*minpos)) = k;
2495
2496 k = minpos - heap;
2497 }
2498
2499 heap [k] = he;
2500 ev_active (ANHE_w (he)) = k;
2501 }
2502
2503 #else /* not 4HEAP */
2504
2505 #define HEAP0 1
2506 #define HPARENT(k) ((k) >> 1)
2507 #define UPHEAP_DONE(p,k) (!(p))
2508
2509 /* away from the root */
2510 inline_speed void
2511 downheap (ANHE *heap, int N, int k)
2512 {
2513 ANHE he = heap [k];
2514
2515 for (;;)
2516 {
2517 int c = k << 1;
2518
2519 if (c >= N + HEAP0)
2520 break;
2521
2522 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2523 ? 1 : 0;
2524
2525 if (ANHE_at (he) <= ANHE_at (heap [c]))
2526 break;
2527
2528 heap [k] = heap [c];
2529 ev_active (ANHE_w (heap [k])) = k;
2530
2531 k = c;
2532 }
2533
2534 heap [k] = he;
2535 ev_active (ANHE_w (he)) = k;
2536 }
2537 #endif
2538
2539 /* towards the root */
2540 inline_speed void
2541 upheap (ANHE *heap, int k)
2542 {
2543 ANHE he = heap [k];
2544
2545 for (;;)
2546 {
2547 int p = HPARENT (k);
2548
2549 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2550 break;
2551
2552 heap [k] = heap [p];
2553 ev_active (ANHE_w (heap [k])) = k;
2554 k = p;
2555 }
2556
2557 heap [k] = he;
2558 ev_active (ANHE_w (he)) = k;
2559 }
2560
2561 /* move an element suitably so it is in a correct place */
2562 inline_size void
2563 adjustheap (ANHE *heap, int N, int k)
2564 {
2565 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2566 upheap (heap, k);
2567 else
2568 downheap (heap, N, k);
2569 }
2570
2571 /* rebuild the heap: this function is used only once and executed rarely */
2572 inline_size void
2573 reheap (ANHE *heap, int N)
2574 {
2575 int i;
2576
2577 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2578 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2579 for (i = 0; i < N; ++i)
2580 upheap (heap, i + HEAP0);
2581 }
2582
2583 /*****************************************************************************/
2584
2585 /* associate signal watchers to a signal signal */
2586 typedef struct
2587 {
2588 EV_ATOMIC_T pending;
2589 #if EV_MULTIPLICITY
2590 EV_P;
2591 #endif
2592 WL head;
2593 } ANSIG;
2594
2595 static ANSIG signals [EV_NSIG - 1];
2596
2597 /*****************************************************************************/
2598
2599 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2600
2601 ecb_noinline ecb_cold
2602 static void
2603 evpipe_init (EV_P)
2604 {
2605 if (!ev_is_active (&pipe_w))
2606 {
2607 int fds [2];
2608
2609 # if EV_USE_EVENTFD
2610 fds [0] = -1;
2611 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2612 if (fds [1] < 0 && errno == EINVAL)
2613 fds [1] = eventfd (0, 0);
2614
2615 if (fds [1] < 0)
2616 # endif
2617 {
2618 while (pipe (fds))
2619 ev_syserr ("(libev) error creating signal/async pipe");
2620
2621 fd_intern (fds [0]);
2622 }
2623
2624 evpipe [0] = fds [0];
2625
2626 if (evpipe [1] < 0)
2627 evpipe [1] = fds [1]; /* first call, set write fd */
2628 else
2629 {
2630 /* on subsequent calls, do not change evpipe [1] */
2631 /* so that evpipe_write can always rely on its value. */
2632 /* this branch does not do anything sensible on windows, */
2633 /* so must not be executed on windows */
2634
2635 dup2 (fds [1], evpipe [1]);
2636 close (fds [1]);
2637 }
2638
2639 fd_intern (evpipe [1]);
2640
2641 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2642 ev_io_start (EV_A_ &pipe_w);
2643 ev_unref (EV_A); /* watcher should not keep loop alive */
2644 }
2645 }
2646
2647 inline_speed void
2648 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2649 {
2650 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2651
2652 if (ecb_expect_true (*flag))
2653 return;
2654
2655 *flag = 1;
2656 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2657
2658 pipe_write_skipped = 1;
2659
2660 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2661
2662 if (pipe_write_wanted)
2663 {
2664 int old_errno;
2665
2666 pipe_write_skipped = 0;
2667 ECB_MEMORY_FENCE_RELEASE;
2668
2669 old_errno = errno; /* save errno because write will clobber it */
2670
2671 #if EV_USE_EVENTFD
2672 if (evpipe [0] < 0)
2673 {
2674 uint64_t counter = 1;
2675 write (evpipe [1], &counter, sizeof (uint64_t));
2676 }
2677 else
2678 #endif
2679 {
2680 #ifdef _WIN32
2681 WSABUF buf;
2682 DWORD sent;
2683 buf.buf = (char *)&buf;
2684 buf.len = 1;
2685 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2686 #else
2687 write (evpipe [1], &(evpipe [1]), 1);
2688 #endif
2689 }
2690
2691 errno = old_errno;
2692 }
2693 }
2694
2695 /* called whenever the libev signal pipe */
2696 /* got some events (signal, async) */
2697 static void
2698 pipecb (EV_P_ ev_io *iow, int revents)
2699 {
2700 int i;
2701
2702 if (revents & EV_READ)
2703 {
2704 #if EV_USE_EVENTFD
2705 if (evpipe [0] < 0)
2706 {
2707 uint64_t counter;
2708 read (evpipe [1], &counter, sizeof (uint64_t));
2709 }
2710 else
2711 #endif
2712 {
2713 char dummy[4];
2714 #ifdef _WIN32
2715 WSABUF buf;
2716 DWORD recvd;
2717 DWORD flags = 0;
2718 buf.buf = dummy;
2719 buf.len = sizeof (dummy);
2720 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2721 #else
2722 read (evpipe [0], &dummy, sizeof (dummy));
2723 #endif
2724 }
2725 }
2726
2727 pipe_write_skipped = 0;
2728
2729 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2730
2731 #if EV_SIGNAL_ENABLE
2732 if (sig_pending)
2733 {
2734 sig_pending = 0;
2735
2736 ECB_MEMORY_FENCE;
2737
2738 for (i = EV_NSIG - 1; i--; )
2739 if (ecb_expect_false (signals [i].pending))
2740 ev_feed_signal_event (EV_A_ i + 1);
2741 }
2742 #endif
2743
2744 #if EV_ASYNC_ENABLE
2745 if (async_pending)
2746 {
2747 async_pending = 0;
2748
2749 ECB_MEMORY_FENCE;
2750
2751 for (i = asynccnt; i--; )
2752 if (asyncs [i]->sent)
2753 {
2754 asyncs [i]->sent = 0;
2755 ECB_MEMORY_FENCE_RELEASE;
2756 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2757 }
2758 }
2759 #endif
2760 }
2761
2762 /*****************************************************************************/
2763
2764 void
2765 ev_feed_signal (int signum) EV_NOEXCEPT
2766 {
2767 #if EV_MULTIPLICITY
2768 EV_P;
2769 ECB_MEMORY_FENCE_ACQUIRE;
2770 EV_A = signals [signum - 1].loop;
2771
2772 if (!EV_A)
2773 return;
2774 #endif
2775
2776 signals [signum - 1].pending = 1;
2777 evpipe_write (EV_A_ &sig_pending);
2778 }
2779
2780 static void
2781 ev_sighandler (int signum)
2782 {
2783 #ifdef _WIN32
2784 signal (signum, ev_sighandler);
2785 #endif
2786
2787 ev_feed_signal (signum);
2788 }
2789
2790 ecb_noinline
2791 void
2792 ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2793 {
2794 WL w;
2795
2796 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2797 return;
2798
2799 --signum;
2800
2801 #if EV_MULTIPLICITY
2802 /* it is permissible to try to feed a signal to the wrong loop */
2803 /* or, likely more useful, feeding a signal nobody is waiting for */
2804
2805 if (ecb_expect_false (signals [signum].loop != EV_A))
2806 return;
2807 #endif
2808
2809 signals [signum].pending = 0;
2810 ECB_MEMORY_FENCE_RELEASE;
2811
2812 for (w = signals [signum].head; w; w = w->next)
2813 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2814 }
2815
2816 #if EV_USE_SIGNALFD
2817 static void
2818 sigfdcb (EV_P_ ev_io *iow, int revents)
2819 {
2820 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2821
2822 for (;;)
2823 {
2824 ssize_t res = read (sigfd, si, sizeof (si));
2825
2826 /* not ISO-C, as res might be -1, but works with SuS */
2827 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2828 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2829
2830 if (res < (ssize_t)sizeof (si))
2831 break;
2832 }
2833 }
2834 #endif
2835
2836 #endif
2837
2838 /*****************************************************************************/
2839
2840 #if EV_CHILD_ENABLE
2841 static WL childs [EV_PID_HASHSIZE];
2842
2843 static ev_signal childev;
2844
2845 #ifndef WIFCONTINUED
2846 # define WIFCONTINUED(status) 0
2847 #endif
2848
2849 /* handle a single child status event */
2850 inline_speed void
2851 child_reap (EV_P_ int chain, int pid, int status)
2852 {
2853 ev_child *w;
2854 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2855
2856 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2857 {
2858 if ((w->pid == pid || !w->pid)
2859 && (!traced || (w->flags & 1)))
2860 {
2861 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2862 w->rpid = pid;
2863 w->rstatus = status;
2864 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2865 }
2866 }
2867 }
2868
2869 #ifndef WCONTINUED
2870 # define WCONTINUED 0
2871 #endif
2872
2873 /* called on sigchld etc., calls waitpid */
2874 static void
2875 childcb (EV_P_ ev_signal *sw, int revents)
2876 {
2877 int pid, status;
2878
2879 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2880 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2881 if (!WCONTINUED
2882 || errno != EINVAL
2883 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2884 return;
2885
2886 /* make sure we are called again until all children have been reaped */
2887 /* we need to do it this way so that the callback gets called before we continue */
2888 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2889
2890 child_reap (EV_A_ pid, pid, status);
2891 if ((EV_PID_HASHSIZE) > 1)
2892 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2893 }
2894
2895 #endif
2896
2897 /*****************************************************************************/
2898
2899 #if EV_USE_TIMERFD
2900
2901 static void periodics_reschedule (EV_P);
2902
2903 static void
2904 timerfdcb (EV_P_ ev_io *iow, int revents)
2905 {
2906 struct itimerspec its = { 0 };
2907
2908 /* since we can't easily come zup with a (portable) maximum value of time_t,
2909 * we wake up once per month, which hopefully is rare enough to not
2910 * be a problem. */
2911 its.it_value.tv_sec = ev_rt_now + 86400 * 30;
2912 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
2913
2914 ev_rt_now = ev_time ();
2915 /* periodics_reschedule only needs ev_rt_now */
2916 /* but maybe in the future we want the full treatment. */
2917 /*
2918 now_floor = EV_TS_CONST (0.);
2919 time_update (EV_A_ EV_TSTAMP_HUGE);
2920 */
2921 periodics_reschedule (EV_A);
2922 }
2923
2924 ecb_noinline ecb_cold
2925 static void
2926 evtimerfd_init (EV_P)
2927 {
2928 if (!ev_is_active (&timerfd_w))
2929 {
2930 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
2931
2932 if (timerfd >= 0)
2933 {
2934 fd_intern (timerfd); /* just to be sure */
2935
2936 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
2937 ev_set_priority (&timerfd_w, EV_MINPRI);
2938 ev_io_start (EV_A_ &timerfd_w);
2939 ev_unref (EV_A); /* watcher should not keep loop alive */
2940
2941 /* (re-) arm timer */
2942 timerfdcb (EV_A_ 0, 0);
2943 }
2944 }
2945 }
2946
2947 #endif
2948
2949 /*****************************************************************************/
2950
2951 #if EV_USE_IOCP
2952 # include "ev_iocp.c"
2953 #endif
2954 #if EV_USE_PORT
2955 # include "ev_port.c"
2956 #endif
2957 #if EV_USE_KQUEUE
2958 # include "ev_kqueue.c"
2959 #endif
2960 #if EV_USE_EPOLL
2961 # include "ev_epoll.c"
2962 #endif
2963 #if EV_USE_LINUXAIO
2964 # include "ev_linuxaio.c"
2965 #endif
2966 #if EV_USE_IOURING
2967 # include "ev_iouring.c"
2968 #endif
2969 #if EV_USE_POLL
2970 # include "ev_poll.c"
2971 #endif
2972 #if EV_USE_SELECT
2973 # include "ev_select.c"
2974 #endif
2975
2976 ecb_cold int
2977 ev_version_major (void) EV_NOEXCEPT
2978 {
2979 return EV_VERSION_MAJOR;
2980 }
2981
2982 ecb_cold int
2983 ev_version_minor (void) EV_NOEXCEPT
2984 {
2985 return EV_VERSION_MINOR;
2986 }
2987
2988 /* return true if we are running with elevated privileges and should ignore env variables */
2989 inline_size ecb_cold int
2990 enable_secure (void)
2991 {
2992 #ifdef _WIN32
2993 return 0;
2994 #else
2995 return getuid () != geteuid ()
2996 || getgid () != getegid ();
2997 #endif
2998 }
2999
3000 ecb_cold
3001 unsigned int
3002 ev_supported_backends (void) EV_NOEXCEPT
3003 {
3004 unsigned int flags = 0;
3005
3006 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3007 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3008 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3009 if (EV_USE_LINUXAIO) flags |= EVBACKEND_LINUXAIO;
3010 if (EV_USE_IOURING ) flags |= EVBACKEND_IOURING;
3011 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3012 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3013
3014 return flags;
3015 }
3016
3017 ecb_cold
3018 unsigned int
3019 ev_recommended_backends (void) EV_NOEXCEPT
3020 {
3021 unsigned int flags = ev_supported_backends ();
3022
3023 #ifndef __NetBSD__
3024 /* kqueue is borked on everything but netbsd apparently */
3025 /* it usually doesn't work correctly on anything but sockets and pipes */
3026 flags &= ~EVBACKEND_KQUEUE;
3027 #endif
3028 #ifdef __APPLE__
3029 /* only select works correctly on that "unix-certified" platform */
3030 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3031 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3032 #endif
3033 #ifdef __FreeBSD__
3034 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3035 #endif
3036
3037 /* TODO: linuxaio is very experimental */
3038 #if !EV_RECOMMEND_LINUXAIO
3039 flags &= ~EVBACKEND_LINUXAIO;
3040 #endif
3041 /* TODO: linuxaio is super experimental */
3042 #if !EV_RECOMMEND_IOURING
3043 flags &= ~EVBACKEND_IOURING;
3044 #endif
3045
3046 return flags;
3047 }
3048
3049 ecb_cold
3050 unsigned int
3051 ev_embeddable_backends (void) EV_NOEXCEPT
3052 {
3053 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
3054
3055 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3056 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3057 flags &= ~EVBACKEND_EPOLL;
3058
3059 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3060
3061 /* EVBACKEND_IOURING is practically embeddable, but the current implementation is not
3062 * because our backend_fd is the epoll fd we need as fallback.
3063 * if the kernel ever is fixed, this might change...
3064 */
3065
3066 return flags;
3067 }
3068
3069 unsigned int
3070 ev_backend (EV_P) EV_NOEXCEPT
3071 {
3072 return backend;
3073 }
3074
3075 #if EV_FEATURE_API
3076 unsigned int
3077 ev_iteration (EV_P) EV_NOEXCEPT
3078 {
3079 return loop_count;
3080 }
3081
3082 unsigned int
3083 ev_depth (EV_P) EV_NOEXCEPT
3084 {
3085 return loop_depth;
3086 }
3087
3088 void
3089 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3090 {
3091 io_blocktime = interval;
3092 }
3093
3094 void
3095 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3096 {
3097 timeout_blocktime = interval;
3098 }
3099
3100 void
3101 ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3102 {
3103 userdata = data;
3104 }
3105
3106 void *
3107 ev_userdata (EV_P) EV_NOEXCEPT
3108 {
3109 return userdata;
3110 }
3111
3112 void
3113 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3114 {
3115 invoke_cb = invoke_pending_cb;
3116 }
3117
3118 void
3119 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3120 {
3121 release_cb = release;
3122 acquire_cb = acquire;
3123 }
3124 #endif
3125
3126 /* initialise a loop structure, must be zero-initialised */
3127 ecb_noinline ecb_cold
3128 static void
3129 loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3130 {
3131 if (!backend)
3132 {
3133 origflags = flags;
3134
3135 #if EV_USE_REALTIME
3136 if (!have_realtime)
3137 {
3138 struct timespec ts;
3139
3140 if (!clock_gettime (CLOCK_REALTIME, &ts))
3141 have_realtime = 1;
3142 }
3143 #endif
3144
3145 #if EV_USE_MONOTONIC
3146 if (!have_monotonic)
3147 {
3148 struct timespec ts;
3149
3150 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3151 have_monotonic = 1;
3152 }
3153 #endif
3154
3155 /* pid check not overridable via env */
3156 #ifndef _WIN32
3157 if (flags & EVFLAG_FORKCHECK)
3158 curpid = getpid ();
3159 #endif
3160
3161 if (!(flags & EVFLAG_NOENV)
3162 && !enable_secure ()
3163 && getenv ("LIBEV_FLAGS"))
3164 flags = atoi (getenv ("LIBEV_FLAGS"));
3165
3166 ev_rt_now = ev_time ();
3167 mn_now = get_clock ();
3168 now_floor = mn_now;
3169 rtmn_diff = ev_rt_now - mn_now;
3170 #if EV_FEATURE_API
3171 invoke_cb = ev_invoke_pending;
3172 #endif
3173
3174 io_blocktime = 0.;
3175 timeout_blocktime = 0.;
3176 backend = 0;
3177 backend_fd = -1;
3178 sig_pending = 0;
3179 #if EV_ASYNC_ENABLE
3180 async_pending = 0;
3181 #endif
3182 pipe_write_skipped = 0;
3183 pipe_write_wanted = 0;
3184 evpipe [0] = -1;
3185 evpipe [1] = -1;
3186 #if EV_USE_INOTIFY
3187 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3188 #endif
3189 #if EV_USE_SIGNALFD
3190 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3191 #endif
3192 #if EV_USE_TIMERFD
3193 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3194 #endif
3195
3196 if (!(flags & EVBACKEND_MASK))
3197 flags |= ev_recommended_backends ();
3198
3199 #if EV_USE_IOCP
3200 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3201 #endif
3202 #if EV_USE_PORT
3203 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3204 #endif
3205 #if EV_USE_KQUEUE
3206 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3207 #endif
3208 #if EV_USE_IOURING
3209 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3210 #endif
3211 #if EV_USE_LINUXAIO
3212 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3213 #endif
3214 #if EV_USE_EPOLL
3215 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3216 #endif
3217 #if EV_USE_POLL
3218 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3219 #endif
3220 #if EV_USE_SELECT
3221 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3222 #endif
3223
3224 ev_prepare_init (&pending_w, pendingcb);
3225
3226 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3227 ev_init (&pipe_w, pipecb);
3228 ev_set_priority (&pipe_w, EV_MAXPRI);
3229 #endif
3230 }
3231 }
3232
3233 /* free up a loop structure */
3234 ecb_cold
3235 void
3236 ev_loop_destroy (EV_P)
3237 {
3238 int i;
3239
3240 #if EV_MULTIPLICITY
3241 /* mimic free (0) */
3242 if (!EV_A)
3243 return;
3244 #endif
3245
3246 #if EV_CLEANUP_ENABLE
3247 /* queue cleanup watchers (and execute them) */
3248 if (ecb_expect_false (cleanupcnt))
3249 {
3250 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3251 EV_INVOKE_PENDING;
3252 }
3253 #endif
3254
3255 #if EV_CHILD_ENABLE
3256 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3257 {
3258 ev_ref (EV_A); /* child watcher */
3259 ev_signal_stop (EV_A_ &childev);
3260 }
3261 #endif
3262
3263 if (ev_is_active (&pipe_w))
3264 {
3265 /*ev_ref (EV_A);*/
3266 /*ev_io_stop (EV_A_ &pipe_w);*/
3267
3268 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3269 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3270 }
3271
3272 #if EV_USE_SIGNALFD
3273 if (ev_is_active (&sigfd_w))
3274 close (sigfd);
3275 #endif
3276
3277 #if EV_USE_TIMERFD
3278 if (ev_is_active (&timerfd_w))
3279 close (timerfd);
3280 #endif
3281
3282 #if EV_USE_INOTIFY
3283 if (fs_fd >= 0)
3284 close (fs_fd);
3285 #endif
3286
3287 if (backend_fd >= 0)
3288 close (backend_fd);
3289
3290 #if EV_USE_IOCP
3291 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3292 #endif
3293 #if EV_USE_PORT
3294 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3295 #endif
3296 #if EV_USE_KQUEUE
3297 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3298 #endif
3299 #if EV_USE_IOURING
3300 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3301 #endif
3302 #if EV_USE_LINUXAIO
3303 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3304 #endif
3305 #if EV_USE_EPOLL
3306 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3307 #endif
3308 #if EV_USE_POLL
3309 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3310 #endif
3311 #if EV_USE_SELECT
3312 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3313 #endif
3314
3315 for (i = NUMPRI; i--; )
3316 {
3317 array_free (pending, [i]);
3318 #if EV_IDLE_ENABLE
3319 array_free (idle, [i]);
3320 #endif
3321 }
3322
3323 ev_free (anfds); anfds = 0; anfdmax = 0;
3324
3325 /* have to use the microsoft-never-gets-it-right macro */
3326 array_free (rfeed, EMPTY);
3327 array_free (fdchange, EMPTY);
3328 array_free (timer, EMPTY);
3329 #if EV_PERIODIC_ENABLE
3330 array_free (periodic, EMPTY);
3331 #endif
3332 #if EV_FORK_ENABLE
3333 array_free (fork, EMPTY);
3334 #endif
3335 #if EV_CLEANUP_ENABLE
3336 array_free (cleanup, EMPTY);
3337 #endif
3338 array_free (prepare, EMPTY);
3339 array_free (check, EMPTY);
3340 #if EV_ASYNC_ENABLE
3341 array_free (async, EMPTY);
3342 #endif
3343
3344 backend = 0;
3345
3346 #if EV_MULTIPLICITY
3347 if (ev_is_default_loop (EV_A))
3348 #endif
3349 ev_default_loop_ptr = 0;
3350 #if EV_MULTIPLICITY
3351 else
3352 ev_free (EV_A);
3353 #endif
3354 }
3355
3356 #if EV_USE_INOTIFY
3357 inline_size void infy_fork (EV_P);
3358 #endif
3359
3360 inline_size void
3361 loop_fork (EV_P)
3362 {
3363 #if EV_USE_PORT
3364 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3365 #endif
3366 #if EV_USE_KQUEUE
3367 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3368 #endif
3369 #if EV_USE_IOURING
3370 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3371 #endif
3372 #if EV_USE_LINUXAIO
3373 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3374 #endif
3375 #if EV_USE_EPOLL
3376 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3377 #endif
3378 #if EV_USE_INOTIFY
3379 infy_fork (EV_A);
3380 #endif
3381
3382 if (postfork != 2)
3383 {
3384 #if EV_USE_SIGNALFD
3385 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3386 #endif
3387
3388 #if EV_USE_TIMERFD
3389 if (ev_is_active (&timerfd_w))
3390 {
3391 ev_ref (EV_A);
3392 ev_io_stop (EV_A_ &timerfd_w);
3393
3394 close (timerfd);
3395 timerfd = -2;
3396
3397 evtimerfd_init (EV_A);
3398 /* reschedule periodics, in case we missed something */
3399 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3400 }
3401 #endif
3402
3403 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3404 if (ev_is_active (&pipe_w))
3405 {
3406 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3407
3408 ev_ref (EV_A);
3409 ev_io_stop (EV_A_ &pipe_w);
3410
3411 if (evpipe [0] >= 0)
3412 EV_WIN32_CLOSE_FD (evpipe [0]);
3413
3414 evpipe_init (EV_A);
3415 /* iterate over everything, in case we missed something before */
3416 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3417 }
3418 #endif
3419 }
3420
3421 postfork = 0;
3422 }
3423
3424 #if EV_MULTIPLICITY
3425
3426 ecb_cold
3427 struct ev_loop *
3428 ev_loop_new (unsigned int flags) EV_NOEXCEPT
3429 {
3430 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3431
3432 memset (EV_A, 0, sizeof (struct ev_loop));
3433 loop_init (EV_A_ flags);
3434
3435 if (ev_backend (EV_A))
3436 return EV_A;
3437
3438 ev_free (EV_A);
3439 return 0;
3440 }
3441
3442 #endif /* multiplicity */
3443
3444 #if EV_VERIFY
3445 ecb_noinline ecb_cold
3446 static void
3447 verify_watcher (EV_P_ W w)
3448 {
3449 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3450
3451 if (w->pending)
3452 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3453 }
3454
3455 ecb_noinline ecb_cold
3456 static void
3457 verify_heap (EV_P_ ANHE *heap, int N)
3458 {
3459 int i;
3460
3461 for (i = HEAP0; i < N + HEAP0; ++i)
3462 {
3463 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3464 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3465 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3466
3467 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3468 }
3469 }
3470
3471 ecb_noinline ecb_cold
3472 static void
3473 array_verify (EV_P_ W *ws, int cnt)
3474 {
3475 while (cnt--)
3476 {
3477 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3478 verify_watcher (EV_A_ ws [cnt]);
3479 }
3480 }
3481 #endif
3482
3483 #if EV_FEATURE_API
3484 void ecb_cold
3485 ev_verify (EV_P) EV_NOEXCEPT
3486 {
3487 #if EV_VERIFY
3488 int i;
3489 WL w, w2;
3490
3491 assert (activecnt >= -1);
3492
3493 assert (fdchangemax >= fdchangecnt);
3494 for (i = 0; i < fdchangecnt; ++i)
3495 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3496
3497 assert (anfdmax >= 0);
3498 for (i = 0; i < anfdmax; ++i)
3499 {
3500 int j = 0;
3501
3502 for (w = w2 = anfds [i].head; w; w = w->next)
3503 {
3504 verify_watcher (EV_A_ (W)w);
3505
3506 if (j++ & 1)
3507 {
3508 assert (("libev: io watcher list contains a loop", w != w2));
3509 w2 = w2->next;
3510 }
3511
3512 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3513 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3514 }
3515 }
3516
3517 assert (timermax >= timercnt);
3518 verify_heap (EV_A_ timers, timercnt);
3519
3520 #if EV_PERIODIC_ENABLE
3521 assert (periodicmax >= periodiccnt);
3522 verify_heap (EV_A_ periodics, periodiccnt);
3523 #endif
3524
3525 for (i = NUMPRI; i--; )
3526 {
3527 assert (pendingmax [i] >= pendingcnt [i]);
3528 #if EV_IDLE_ENABLE
3529 assert (idleall >= 0);
3530 assert (idlemax [i] >= idlecnt [i]);
3531 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3532 #endif
3533 }
3534
3535 #if EV_FORK_ENABLE
3536 assert (forkmax >= forkcnt);
3537 array_verify (EV_A_ (W *)forks, forkcnt);
3538 #endif
3539
3540 #if EV_CLEANUP_ENABLE
3541 assert (cleanupmax >= cleanupcnt);
3542 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3543 #endif
3544
3545 #if EV_ASYNC_ENABLE
3546 assert (asyncmax >= asynccnt);
3547 array_verify (EV_A_ (W *)asyncs, asynccnt);
3548 #endif
3549
3550 #if EV_PREPARE_ENABLE
3551 assert (preparemax >= preparecnt);
3552 array_verify (EV_A_ (W *)prepares, preparecnt);
3553 #endif
3554
3555 #if EV_CHECK_ENABLE
3556 assert (checkmax >= checkcnt);
3557 array_verify (EV_A_ (W *)checks, checkcnt);
3558 #endif
3559
3560 # if 0
3561 #if EV_CHILD_ENABLE
3562 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3563 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3564 #endif
3565 # endif
3566 #endif
3567 }
3568 #endif
3569
3570 #if EV_MULTIPLICITY
3571 ecb_cold
3572 struct ev_loop *
3573 #else
3574 int
3575 #endif
3576 ev_default_loop (unsigned int flags) EV_NOEXCEPT
3577 {
3578 if (!ev_default_loop_ptr)
3579 {
3580 #if EV_MULTIPLICITY
3581 EV_P = ev_default_loop_ptr = &default_loop_struct;
3582 #else
3583 ev_default_loop_ptr = 1;
3584 #endif
3585
3586 loop_init (EV_A_ flags);
3587
3588 if (ev_backend (EV_A))
3589 {
3590 #if EV_CHILD_ENABLE
3591 ev_signal_init (&childev, childcb, SIGCHLD);
3592 ev_set_priority (&childev, EV_MAXPRI);
3593 ev_signal_start (EV_A_ &childev);
3594 ev_unref (EV_A); /* child watcher should not keep loop alive */
3595 #endif
3596 }
3597 else
3598 ev_default_loop_ptr = 0;
3599 }
3600
3601 return ev_default_loop_ptr;
3602 }
3603
3604 void
3605 ev_loop_fork (EV_P) EV_NOEXCEPT
3606 {
3607 postfork = 1;
3608 }
3609
3610 /*****************************************************************************/
3611
3612 void
3613 ev_invoke (EV_P_ void *w, int revents)
3614 {
3615 EV_CB_INVOKE ((W)w, revents);
3616 }
3617
3618 unsigned int
3619 ev_pending_count (EV_P) EV_NOEXCEPT
3620 {
3621 int pri;
3622 unsigned int count = 0;
3623
3624 for (pri = NUMPRI; pri--; )
3625 count += pendingcnt [pri];
3626
3627 return count;
3628 }
3629
3630 ecb_noinline
3631 void
3632 ev_invoke_pending (EV_P)
3633 {
3634 pendingpri = NUMPRI;
3635
3636 do
3637 {
3638 --pendingpri;
3639
3640 /* pendingpri possibly gets modified in the inner loop */
3641 while (pendingcnt [pendingpri])
3642 {
3643 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3644
3645 p->w->pending = 0;
3646 EV_CB_INVOKE (p->w, p->events);
3647 EV_FREQUENT_CHECK;
3648 }
3649 }
3650 while (pendingpri);
3651 }
3652
3653 #if EV_IDLE_ENABLE
3654 /* make idle watchers pending. this handles the "call-idle */
3655 /* only when higher priorities are idle" logic */
3656 inline_size void
3657 idle_reify (EV_P)
3658 {
3659 if (ecb_expect_false (idleall))
3660 {
3661 int pri;
3662
3663 for (pri = NUMPRI; pri--; )
3664 {
3665 if (pendingcnt [pri])
3666 break;
3667
3668 if (idlecnt [pri])
3669 {
3670 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3671 break;
3672 }
3673 }
3674 }
3675 }
3676 #endif
3677
3678 /* make timers pending */
3679 inline_size void
3680 timers_reify (EV_P)
3681 {
3682 EV_FREQUENT_CHECK;
3683
3684 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3685 {
3686 do
3687 {
3688 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3689
3690 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3691
3692 /* first reschedule or stop timer */
3693 if (w->repeat)
3694 {
3695 ev_at (w) += w->repeat;
3696 if (ev_at (w) < mn_now)
3697 ev_at (w) = mn_now;
3698
3699 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3700
3701 ANHE_at_cache (timers [HEAP0]);
3702 downheap (timers, timercnt, HEAP0);
3703 }
3704 else
3705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3706
3707 EV_FREQUENT_CHECK;
3708 feed_reverse (EV_A_ (W)w);
3709 }
3710 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3711
3712 feed_reverse_done (EV_A_ EV_TIMER);
3713 }
3714 }
3715
3716 #if EV_PERIODIC_ENABLE
3717
3718 ecb_noinline
3719 static void
3720 periodic_recalc (EV_P_ ev_periodic *w)
3721 {
3722 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3723 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3724
3725 /* the above almost always errs on the low side */
3726 while (at <= ev_rt_now)
3727 {
3728 ev_tstamp nat = at + w->interval;
3729
3730 /* when resolution fails us, we use ev_rt_now */
3731 if (ecb_expect_false (nat == at))
3732 {
3733 at = ev_rt_now;
3734 break;
3735 }
3736
3737 at = nat;
3738 }
3739
3740 ev_at (w) = at;
3741 }
3742
3743 /* make periodics pending */
3744 inline_size void
3745 periodics_reify (EV_P)
3746 {
3747 EV_FREQUENT_CHECK;
3748
3749 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3750 {
3751 do
3752 {
3753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3754
3755 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3756
3757 /* first reschedule or stop timer */
3758 if (w->reschedule_cb)
3759 {
3760 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3761
3762 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3763
3764 ANHE_at_cache (periodics [HEAP0]);
3765 downheap (periodics, periodiccnt, HEAP0);
3766 }
3767 else if (w->interval)
3768 {
3769 periodic_recalc (EV_A_ w);
3770 ANHE_at_cache (periodics [HEAP0]);
3771 downheap (periodics, periodiccnt, HEAP0);
3772 }
3773 else
3774 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3775
3776 EV_FREQUENT_CHECK;
3777 feed_reverse (EV_A_ (W)w);
3778 }
3779 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3780
3781 feed_reverse_done (EV_A_ EV_PERIODIC);
3782 }
3783 }
3784
3785 /* simply recalculate all periodics */
3786 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3787 ecb_noinline ecb_cold
3788 static void
3789 periodics_reschedule (EV_P)
3790 {
3791 int i;
3792
3793 /* adjust periodics after time jump */
3794 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3795 {
3796 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3797
3798 if (w->reschedule_cb)
3799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3800 else if (w->interval)
3801 periodic_recalc (EV_A_ w);
3802
3803 ANHE_at_cache (periodics [i]);
3804 }
3805
3806 reheap (periodics, periodiccnt);
3807 }
3808 #endif
3809
3810 /* adjust all timers by a given offset */
3811 ecb_noinline ecb_cold
3812 static void
3813 timers_reschedule (EV_P_ ev_tstamp adjust)
3814 {
3815 int i;
3816
3817 for (i = 0; i < timercnt; ++i)
3818 {
3819 ANHE *he = timers + i + HEAP0;
3820 ANHE_w (*he)->at += adjust;
3821 ANHE_at_cache (*he);
3822 }
3823 }
3824
3825 /* fetch new monotonic and realtime times from the kernel */
3826 /* also detect if there was a timejump, and act accordingly */
3827 inline_speed void
3828 time_update (EV_P_ ev_tstamp max_block)
3829 {
3830 #if EV_USE_MONOTONIC
3831 if (ecb_expect_true (have_monotonic))
3832 {
3833 int i;
3834 ev_tstamp odiff = rtmn_diff;
3835
3836 mn_now = get_clock ();
3837
3838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3839 /* interpolate in the meantime */
3840 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3841 {
3842 ev_rt_now = rtmn_diff + mn_now;
3843 return;
3844 }
3845
3846 now_floor = mn_now;
3847 ev_rt_now = ev_time ();
3848
3849 /* loop a few times, before making important decisions.
3850 * on the choice of "4": one iteration isn't enough,
3851 * in case we get preempted during the calls to
3852 * ev_time and get_clock. a second call is almost guaranteed
3853 * to succeed in that case, though. and looping a few more times
3854 * doesn't hurt either as we only do this on time-jumps or
3855 * in the unlikely event of having been preempted here.
3856 */
3857 for (i = 4; --i; )
3858 {
3859 ev_tstamp diff;
3860 rtmn_diff = ev_rt_now - mn_now;
3861
3862 diff = odiff - rtmn_diff;
3863
3864 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3865 return; /* all is well */
3866
3867 ev_rt_now = ev_time ();
3868 mn_now = get_clock ();
3869 now_floor = mn_now;
3870 }
3871
3872 /* no timer adjustment, as the monotonic clock doesn't jump */
3873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3874 # if EV_PERIODIC_ENABLE
3875 periodics_reschedule (EV_A);
3876 # endif
3877 }
3878 else
3879 #endif
3880 {
3881 ev_rt_now = ev_time ();
3882
3883 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
3884 {
3885 /* adjust timers. this is easy, as the offset is the same for all of them */
3886 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3887 #if EV_PERIODIC_ENABLE
3888 periodics_reschedule (EV_A);
3889 #endif
3890 }
3891
3892 mn_now = ev_rt_now;
3893 }
3894 }
3895
3896 int
3897 ev_run (EV_P_ int flags)
3898 {
3899 #if EV_FEATURE_API
3900 ++loop_depth;
3901 #endif
3902
3903 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3904
3905 loop_done = EVBREAK_CANCEL;
3906
3907 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3908
3909 do
3910 {
3911 #if EV_VERIFY >= 2
3912 ev_verify (EV_A);
3913 #endif
3914
3915 #ifndef _WIN32
3916 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
3917 if (ecb_expect_false (getpid () != curpid))
3918 {
3919 curpid = getpid ();
3920 postfork = 1;
3921 }
3922 #endif
3923
3924 #if EV_FORK_ENABLE
3925 /* we might have forked, so queue fork handlers */
3926 if (ecb_expect_false (postfork))
3927 if (forkcnt)
3928 {
3929 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3930 EV_INVOKE_PENDING;
3931 }
3932 #endif
3933
3934 #if EV_PREPARE_ENABLE
3935 /* queue prepare watchers (and execute them) */
3936 if (ecb_expect_false (preparecnt))
3937 {
3938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3939 EV_INVOKE_PENDING;
3940 }
3941 #endif
3942
3943 if (ecb_expect_false (loop_done))
3944 break;
3945
3946 /* we might have forked, so reify kernel state if necessary */
3947 if (ecb_expect_false (postfork))
3948 loop_fork (EV_A);
3949
3950 /* update fd-related kernel structures */
3951 fd_reify (EV_A);
3952
3953 /* calculate blocking time */
3954 {
3955 ev_tstamp waittime = 0.;
3956 ev_tstamp sleeptime = 0.;
3957
3958 /* remember old timestamp for io_blocktime calculation */
3959 ev_tstamp prev_mn_now = mn_now;
3960
3961 /* update time to cancel out callback processing overhead */
3962 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
3963
3964 /* from now on, we want a pipe-wake-up */
3965 pipe_write_wanted = 1;
3966
3967 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3968
3969 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3970 {
3971 waittime = EV_TS_CONST (MAX_BLOCKTIME);
3972
3973 if (timercnt)
3974 {
3975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3976 if (waittime > to) waittime = to;
3977 }
3978
3979 #if EV_PERIODIC_ENABLE
3980 if (periodiccnt)
3981 {
3982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3983 if (waittime > to) waittime = to;
3984 }
3985 #endif
3986
3987 /* don't let timeouts decrease the waittime below timeout_blocktime */
3988 if (ecb_expect_false (waittime < timeout_blocktime))
3989 waittime = timeout_blocktime;
3990
3991 /* now there are two more special cases left, either we have
3992 * already-expired timers, so we should not sleep, or we have timers
3993 * that expire very soon, in which case we need to wait for a minimum
3994 * amount of time for some event loop backends.
3995 */
3996 if (ecb_expect_false (waittime < backend_mintime))
3997 waittime = waittime <= EV_TS_CONST (0.)
3998 ? EV_TS_CONST (0.)
3999 : backend_mintime;
4000
4001 /* extra check because io_blocktime is commonly 0 */
4002 if (ecb_expect_false (io_blocktime))
4003 {
4004 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4005
4006 if (sleeptime > waittime - backend_mintime)
4007 sleeptime = waittime - backend_mintime;
4008
4009 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4010 {
4011 ev_sleep (sleeptime);
4012 waittime -= sleeptime;
4013 }
4014 }
4015 }
4016
4017 #if EV_FEATURE_API
4018 ++loop_count;
4019 #endif
4020 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4021 backend_poll (EV_A_ waittime);
4022 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4023
4024 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4025
4026 ECB_MEMORY_FENCE_ACQUIRE;
4027 if (pipe_write_skipped)
4028 {
4029 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4030 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4031 }
4032
4033 /* update ev_rt_now, do magic */
4034 time_update (EV_A_ waittime + sleeptime);
4035 }
4036
4037 /* queue pending timers and reschedule them */
4038 timers_reify (EV_A); /* relative timers called last */
4039 #if EV_PERIODIC_ENABLE
4040 periodics_reify (EV_A); /* absolute timers called first */
4041 #endif
4042
4043 #if EV_IDLE_ENABLE
4044 /* queue idle watchers unless other events are pending */
4045 idle_reify (EV_A);
4046 #endif
4047
4048 #if EV_CHECK_ENABLE
4049 /* queue check watchers, to be executed first */
4050 if (ecb_expect_false (checkcnt))
4051 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4052 #endif
4053
4054 EV_INVOKE_PENDING;
4055 }
4056 while (ecb_expect_true (
4057 activecnt
4058 && !loop_done
4059 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4060 ));
4061
4062 if (loop_done == EVBREAK_ONE)
4063 loop_done = EVBREAK_CANCEL;
4064
4065 #if EV_FEATURE_API
4066 --loop_depth;
4067 #endif
4068
4069 return activecnt;
4070 }
4071
4072 void
4073 ev_break (EV_P_ int how) EV_NOEXCEPT
4074 {
4075 loop_done = how;
4076 }
4077
4078 void
4079 ev_ref (EV_P) EV_NOEXCEPT
4080 {
4081 ++activecnt;
4082 }
4083
4084 void
4085 ev_unref (EV_P) EV_NOEXCEPT
4086 {
4087 --activecnt;
4088 }
4089
4090 void
4091 ev_now_update (EV_P) EV_NOEXCEPT
4092 {
4093 time_update (EV_A_ EV_TSTAMP_HUGE);
4094 }
4095
4096 void
4097 ev_suspend (EV_P) EV_NOEXCEPT
4098 {
4099 ev_now_update (EV_A);
4100 }
4101
4102 void
4103 ev_resume (EV_P) EV_NOEXCEPT
4104 {
4105 ev_tstamp mn_prev = mn_now;
4106
4107 ev_now_update (EV_A);
4108 timers_reschedule (EV_A_ mn_now - mn_prev);
4109 #if EV_PERIODIC_ENABLE
4110 /* TODO: really do this? */
4111 periodics_reschedule (EV_A);
4112 #endif
4113 }
4114
4115 /*****************************************************************************/
4116 /* singly-linked list management, used when the expected list length is short */
4117
4118 inline_size void
4119 wlist_add (WL *head, WL elem)
4120 {
4121 elem->next = *head;
4122 *head = elem;
4123 }
4124
4125 inline_size void
4126 wlist_del (WL *head, WL elem)
4127 {
4128 while (*head)
4129 {
4130 if (ecb_expect_true (*head == elem))
4131 {
4132 *head = elem->next;
4133 break;
4134 }
4135
4136 head = &(*head)->next;
4137 }
4138 }
4139
4140 /* internal, faster, version of ev_clear_pending */
4141 inline_speed void
4142 clear_pending (EV_P_ W w)
4143 {
4144 if (w->pending)
4145 {
4146 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4147 w->pending = 0;
4148 }
4149 }
4150
4151 int
4152 ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4153 {
4154 W w_ = (W)w;
4155 int pending = w_->pending;
4156
4157 if (ecb_expect_true (pending))
4158 {
4159 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4160 p->w = (W)&pending_w;
4161 w_->pending = 0;
4162 return p->events;
4163 }
4164 else
4165 return 0;
4166 }
4167
4168 inline_size void
4169 pri_adjust (EV_P_ W w)
4170 {
4171 int pri = ev_priority (w);
4172 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4173 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4174 ev_set_priority (w, pri);
4175 }
4176
4177 inline_speed void
4178 ev_start (EV_P_ W w, int active)
4179 {
4180 pri_adjust (EV_A_ w);
4181 w->active = active;
4182 ev_ref (EV_A);
4183 }
4184
4185 inline_size void
4186 ev_stop (EV_P_ W w)
4187 {
4188 ev_unref (EV_A);
4189 w->active = 0;
4190 }
4191
4192 /*****************************************************************************/
4193
4194 ecb_noinline
4195 void
4196 ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4197 {
4198 int fd = w->fd;
4199
4200 if (ecb_expect_false (ev_is_active (w)))
4201 return;
4202
4203 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4204 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4205
4206 #if EV_VERIFY >= 2
4207 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4208 #endif
4209 EV_FREQUENT_CHECK;
4210
4211 ev_start (EV_A_ (W)w, 1);
4212 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4213 wlist_add (&anfds[fd].head, (WL)w);
4214
4215 /* common bug, apparently */
4216 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4217
4218 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4219 w->events &= ~EV__IOFDSET;
4220
4221 EV_FREQUENT_CHECK;
4222 }
4223
4224 ecb_noinline
4225 void
4226 ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4227 {
4228 clear_pending (EV_A_ (W)w);
4229 if (ecb_expect_false (!ev_is_active (w)))
4230 return;
4231
4232 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4233
4234 #if EV_VERIFY >= 2
4235 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4236 #endif
4237 EV_FREQUENT_CHECK;
4238
4239 wlist_del (&anfds[w->fd].head, (WL)w);
4240 ev_stop (EV_A_ (W)w);
4241
4242 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4243
4244 EV_FREQUENT_CHECK;
4245 }
4246
4247 ecb_noinline
4248 void
4249 ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4250 {
4251 if (ecb_expect_false (ev_is_active (w)))
4252 return;
4253
4254 ev_at (w) += mn_now;
4255
4256 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4257
4258 EV_FREQUENT_CHECK;
4259
4260 ++timercnt;
4261 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4262 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4263 ANHE_w (timers [ev_active (w)]) = (WT)w;
4264 ANHE_at_cache (timers [ev_active (w)]);
4265 upheap (timers, ev_active (w));
4266
4267 EV_FREQUENT_CHECK;
4268
4269 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4270 }
4271
4272 ecb_noinline
4273 void
4274 ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4275 {
4276 clear_pending (EV_A_ (W)w);
4277 if (ecb_expect_false (!ev_is_active (w)))
4278 return;
4279
4280 EV_FREQUENT_CHECK;
4281
4282 {
4283 int active = ev_active (w);
4284
4285 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4286
4287 --timercnt;
4288
4289 if (ecb_expect_true (active < timercnt + HEAP0))
4290 {
4291 timers [active] = timers [timercnt + HEAP0];
4292 adjustheap (timers, timercnt, active);
4293 }
4294 }
4295
4296 ev_at (w) -= mn_now;
4297
4298 ev_stop (EV_A_ (W)w);
4299
4300 EV_FREQUENT_CHECK;
4301 }
4302
4303 ecb_noinline
4304 void
4305 ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
4306 {
4307 EV_FREQUENT_CHECK;
4308
4309 clear_pending (EV_A_ (W)w);
4310
4311 if (ev_is_active (w))
4312 {
4313 if (w->repeat)
4314 {
4315 ev_at (w) = mn_now + w->repeat;
4316 ANHE_at_cache (timers [ev_active (w)]);
4317 adjustheap (timers, timercnt, ev_active (w));
4318 }
4319 else
4320 ev_timer_stop (EV_A_ w);
4321 }
4322 else if (w->repeat)
4323 {
4324 ev_at (w) = w->repeat;
4325 ev_timer_start (EV_A_ w);
4326 }
4327
4328 EV_FREQUENT_CHECK;
4329 }
4330
4331 ev_tstamp
4332 ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4333 {
4334 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4335 }
4336
4337 #if EV_PERIODIC_ENABLE
4338 ecb_noinline
4339 void
4340 ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4341 {
4342 if (ecb_expect_false (ev_is_active (w)))
4343 return;
4344
4345 #if EV_USE_TIMERFD
4346 if (timerfd == -2)
4347 evtimerfd_init (EV_A);
4348 #endif
4349
4350 if (w->reschedule_cb)
4351 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4352 else if (w->interval)
4353 {
4354 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4355 periodic_recalc (EV_A_ w);
4356 }
4357 else
4358 ev_at (w) = w->offset;
4359
4360 EV_FREQUENT_CHECK;
4361
4362 ++periodiccnt;
4363 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4364 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4365 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4366 ANHE_at_cache (periodics [ev_active (w)]);
4367 upheap (periodics, ev_active (w));
4368
4369 EV_FREQUENT_CHECK;
4370
4371 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4372 }
4373
4374 ecb_noinline
4375 void
4376 ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4377 {
4378 clear_pending (EV_A_ (W)w);
4379 if (ecb_expect_false (!ev_is_active (w)))
4380 return;
4381
4382 EV_FREQUENT_CHECK;
4383
4384 {
4385 int active = ev_active (w);
4386
4387 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4388
4389 --periodiccnt;
4390
4391 if (ecb_expect_true (active < periodiccnt + HEAP0))
4392 {
4393 periodics [active] = periodics [periodiccnt + HEAP0];
4394 adjustheap (periodics, periodiccnt, active);
4395 }
4396 }
4397
4398 ev_stop (EV_A_ (W)w);
4399
4400 EV_FREQUENT_CHECK;
4401 }
4402
4403 ecb_noinline
4404 void
4405 ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4406 {
4407 /* TODO: use adjustheap and recalculation */
4408 ev_periodic_stop (EV_A_ w);
4409 ev_periodic_start (EV_A_ w);
4410 }
4411 #endif
4412
4413 #ifndef SA_RESTART
4414 # define SA_RESTART 0
4415 #endif
4416
4417 #if EV_SIGNAL_ENABLE
4418
4419 ecb_noinline
4420 void
4421 ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4422 {
4423 if (ecb_expect_false (ev_is_active (w)))
4424 return;
4425
4426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4427
4428 #if EV_MULTIPLICITY
4429 assert (("libev: a signal must not be attached to two different loops",
4430 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4431
4432 signals [w->signum - 1].loop = EV_A;
4433 ECB_MEMORY_FENCE_RELEASE;
4434 #endif
4435
4436 EV_FREQUENT_CHECK;
4437
4438 #if EV_USE_SIGNALFD
4439 if (sigfd == -2)
4440 {
4441 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4442 if (sigfd < 0 && errno == EINVAL)
4443 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4444
4445 if (sigfd >= 0)
4446 {
4447 fd_intern (sigfd); /* doing it twice will not hurt */
4448
4449 sigemptyset (&sigfd_set);
4450
4451 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4452 ev_set_priority (&sigfd_w, EV_MAXPRI);
4453 ev_io_start (EV_A_ &sigfd_w);
4454 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4455 }
4456 }
4457
4458 if (sigfd >= 0)
4459 {
4460 /* TODO: check .head */
4461 sigaddset (&sigfd_set, w->signum);
4462 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4463
4464 signalfd (sigfd, &sigfd_set, 0);
4465 }
4466 #endif
4467
4468 ev_start (EV_A_ (W)w, 1);
4469 wlist_add (&signals [w->signum - 1].head, (WL)w);
4470
4471 if (!((WL)w)->next)
4472 # if EV_USE_SIGNALFD
4473 if (sigfd < 0) /*TODO*/
4474 # endif
4475 {
4476 # ifdef _WIN32
4477 evpipe_init (EV_A);
4478
4479 signal (w->signum, ev_sighandler);
4480 # else
4481 struct sigaction sa;
4482
4483 evpipe_init (EV_A);
4484
4485 sa.sa_handler = ev_sighandler;
4486 sigfillset (&sa.sa_mask);
4487 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4488 sigaction (w->signum, &sa, 0);
4489
4490 if (origflags & EVFLAG_NOSIGMASK)
4491 {
4492 sigemptyset (&sa.sa_mask);
4493 sigaddset (&sa.sa_mask, w->signum);
4494 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4495 }
4496 #endif
4497 }
4498
4499 EV_FREQUENT_CHECK;
4500 }
4501
4502 ecb_noinline
4503 void
4504 ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4505 {
4506 clear_pending (EV_A_ (W)w);
4507 if (ecb_expect_false (!ev_is_active (w)))
4508 return;
4509
4510 EV_FREQUENT_CHECK;
4511
4512 wlist_del (&signals [w->signum - 1].head, (WL)w);
4513 ev_stop (EV_A_ (W)w);
4514
4515 if (!signals [w->signum - 1].head)
4516 {
4517 #if EV_MULTIPLICITY
4518 signals [w->signum - 1].loop = 0; /* unattach from signal */
4519 #endif
4520 #if EV_USE_SIGNALFD
4521 if (sigfd >= 0)
4522 {
4523 sigset_t ss;
4524
4525 sigemptyset (&ss);
4526 sigaddset (&ss, w->signum);
4527 sigdelset (&sigfd_set, w->signum);
4528
4529 signalfd (sigfd, &sigfd_set, 0);
4530 sigprocmask (SIG_UNBLOCK, &ss, 0);
4531 }
4532 else
4533 #endif
4534 signal (w->signum, SIG_DFL);
4535 }
4536
4537 EV_FREQUENT_CHECK;
4538 }
4539
4540 #endif
4541
4542 #if EV_CHILD_ENABLE
4543
4544 void
4545 ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4546 {
4547 #if EV_MULTIPLICITY
4548 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4549 #endif
4550 if (ecb_expect_false (ev_is_active (w)))
4551 return;
4552
4553 EV_FREQUENT_CHECK;
4554
4555 ev_start (EV_A_ (W)w, 1);
4556 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4557
4558 EV_FREQUENT_CHECK;
4559 }
4560
4561 void
4562 ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4563 {
4564 clear_pending (EV_A_ (W)w);
4565 if (ecb_expect_false (!ev_is_active (w)))
4566 return;
4567
4568 EV_FREQUENT_CHECK;
4569
4570 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4571 ev_stop (EV_A_ (W)w);
4572
4573 EV_FREQUENT_CHECK;
4574 }
4575
4576 #endif
4577
4578 #if EV_STAT_ENABLE
4579
4580 # ifdef _WIN32
4581 # undef lstat
4582 # define lstat(a,b) _stati64 (a,b)
4583 # endif
4584
4585 #define DEF_STAT_INTERVAL 5.0074891
4586 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4587 #define MIN_STAT_INTERVAL 0.1074891
4588
4589 ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4590
4591 #if EV_USE_INOTIFY
4592
4593 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4594 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4595
4596 ecb_noinline
4597 static void
4598 infy_add (EV_P_ ev_stat *w)
4599 {
4600 w->wd = inotify_add_watch (fs_fd, w->path,
4601 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4602 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4603 | IN_DONT_FOLLOW | IN_MASK_ADD);
4604
4605 if (w->wd >= 0)
4606 {
4607 struct statfs sfs;
4608
4609 /* now local changes will be tracked by inotify, but remote changes won't */
4610 /* unless the filesystem is known to be local, we therefore still poll */
4611 /* also do poll on <2.6.25, but with normal frequency */
4612
4613 if (!fs_2625)
4614 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4615 else if (!statfs (w->path, &sfs)
4616 && (sfs.f_type == 0x1373 /* devfs */
4617 || sfs.f_type == 0x4006 /* fat */
4618 || sfs.f_type == 0x4d44 /* msdos */
4619 || sfs.f_type == 0xEF53 /* ext2/3 */
4620 || sfs.f_type == 0x72b6 /* jffs2 */
4621 || sfs.f_type == 0x858458f6 /* ramfs */
4622 || sfs.f_type == 0x5346544e /* ntfs */
4623 || sfs.f_type == 0x3153464a /* jfs */
4624 || sfs.f_type == 0x9123683e /* btrfs */
4625 || sfs.f_type == 0x52654973 /* reiser3 */
4626 || sfs.f_type == 0x01021994 /* tmpfs */
4627 || sfs.f_type == 0x58465342 /* xfs */))
4628 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4629 else
4630 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4631 }
4632 else
4633 {
4634 /* can't use inotify, continue to stat */
4635 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4636
4637 /* if path is not there, monitor some parent directory for speedup hints */
4638 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4639 /* but an efficiency issue only */
4640 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4641 {
4642 char path [4096];
4643 strcpy (path, w->path);
4644
4645 do
4646 {
4647 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4648 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4649
4650 char *pend = strrchr (path, '/');
4651
4652 if (!pend || pend == path)
4653 break;
4654
4655 *pend = 0;
4656 w->wd = inotify_add_watch (fs_fd, path, mask);
4657 }
4658 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4659 }
4660 }
4661
4662 if (w->wd >= 0)
4663 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4664
4665 /* now re-arm timer, if required */
4666 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4667 ev_timer_again (EV_A_ &w->timer);
4668 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4669 }
4670
4671 ecb_noinline
4672 static void
4673 infy_del (EV_P_ ev_stat *w)
4674 {
4675 int slot;
4676 int wd = w->wd;
4677
4678 if (wd < 0)
4679 return;
4680
4681 w->wd = -2;
4682 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4683 wlist_del (&fs_hash [slot].head, (WL)w);
4684
4685 /* remove this watcher, if others are watching it, they will rearm */
4686 inotify_rm_watch (fs_fd, wd);
4687 }
4688
4689 ecb_noinline
4690 static void
4691 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4692 {
4693 if (slot < 0)
4694 /* overflow, need to check for all hash slots */
4695 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4696 infy_wd (EV_A_ slot, wd, ev);
4697 else
4698 {
4699 WL w_;
4700
4701 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4702 {
4703 ev_stat *w = (ev_stat *)w_;
4704 w_ = w_->next; /* lets us remove this watcher and all before it */
4705
4706 if (w->wd == wd || wd == -1)
4707 {
4708 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4709 {
4710 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4711 w->wd = -1;
4712 infy_add (EV_A_ w); /* re-add, no matter what */
4713 }
4714
4715 stat_timer_cb (EV_A_ &w->timer, 0);
4716 }
4717 }
4718 }
4719 }
4720
4721 static void
4722 infy_cb (EV_P_ ev_io *w, int revents)
4723 {
4724 char buf [EV_INOTIFY_BUFSIZE];
4725 int ofs;
4726 int len = read (fs_fd, buf, sizeof (buf));
4727
4728 for (ofs = 0; ofs < len; )
4729 {
4730 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4731 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4732 ofs += sizeof (struct inotify_event) + ev->len;
4733 }
4734 }
4735
4736 inline_size ecb_cold
4737 void
4738 ev_check_2625 (EV_P)
4739 {
4740 /* kernels < 2.6.25 are borked
4741 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4742 */
4743 if (ev_linux_version () < 0x020619)
4744 return;
4745
4746 fs_2625 = 1;
4747 }
4748
4749 inline_size int
4750 infy_newfd (void)
4751 {
4752 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4753 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4754 if (fd >= 0)
4755 return fd;
4756 #endif
4757 return inotify_init ();
4758 }
4759
4760 inline_size void
4761 infy_init (EV_P)
4762 {
4763 if (fs_fd != -2)
4764 return;
4765
4766 fs_fd = -1;
4767
4768 ev_check_2625 (EV_A);
4769
4770 fs_fd = infy_newfd ();
4771
4772 if (fs_fd >= 0)
4773 {
4774 fd_intern (fs_fd);
4775 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4776 ev_set_priority (&fs_w, EV_MAXPRI);
4777 ev_io_start (EV_A_ &fs_w);
4778 ev_unref (EV_A);
4779 }
4780 }
4781
4782 inline_size void
4783 infy_fork (EV_P)
4784 {
4785 int slot;
4786
4787 if (fs_fd < 0)
4788 return;
4789
4790 ev_ref (EV_A);
4791 ev_io_stop (EV_A_ &fs_w);
4792 close (fs_fd);
4793 fs_fd = infy_newfd ();
4794
4795 if (fs_fd >= 0)
4796 {
4797 fd_intern (fs_fd);
4798 ev_io_set (&fs_w, fs_fd, EV_READ);
4799 ev_io_start (EV_A_ &fs_w);
4800 ev_unref (EV_A);
4801 }
4802
4803 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4804 {
4805 WL w_ = fs_hash [slot].head;
4806 fs_hash [slot].head = 0;
4807
4808 while (w_)
4809 {
4810 ev_stat *w = (ev_stat *)w_;
4811 w_ = w_->next; /* lets us add this watcher */
4812
4813 w->wd = -1;
4814
4815 if (fs_fd >= 0)
4816 infy_add (EV_A_ w); /* re-add, no matter what */
4817 else
4818 {
4819 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4820 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4821 ev_timer_again (EV_A_ &w->timer);
4822 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4823 }
4824 }
4825 }
4826 }
4827
4828 #endif
4829
4830 #ifdef _WIN32
4831 # define EV_LSTAT(p,b) _stati64 (p, b)
4832 #else
4833 # define EV_LSTAT(p,b) lstat (p, b)
4834 #endif
4835
4836 void
4837 ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4838 {
4839 if (lstat (w->path, &w->attr) < 0)
4840 w->attr.st_nlink = 0;
4841 else if (!w->attr.st_nlink)
4842 w->attr.st_nlink = 1;
4843 }
4844
4845 ecb_noinline
4846 static void
4847 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4848 {
4849 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4850
4851 ev_statdata prev = w->attr;
4852 ev_stat_stat (EV_A_ w);
4853
4854 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4855 if (
4856 prev.st_dev != w->attr.st_dev
4857 || prev.st_ino != w->attr.st_ino
4858 || prev.st_mode != w->attr.st_mode
4859 || prev.st_nlink != w->attr.st_nlink
4860 || prev.st_uid != w->attr.st_uid
4861 || prev.st_gid != w->attr.st_gid
4862 || prev.st_rdev != w->attr.st_rdev
4863 || prev.st_size != w->attr.st_size
4864 || prev.st_atime != w->attr.st_atime
4865 || prev.st_mtime != w->attr.st_mtime
4866 || prev.st_ctime != w->attr.st_ctime
4867 ) {
4868 /* we only update w->prev on actual differences */
4869 /* in case we test more often than invoke the callback, */
4870 /* to ensure that prev is always different to attr */
4871 w->prev = prev;
4872
4873 #if EV_USE_INOTIFY
4874 if (fs_fd >= 0)
4875 {
4876 infy_del (EV_A_ w);
4877 infy_add (EV_A_ w);
4878 ev_stat_stat (EV_A_ w); /* avoid race... */
4879 }
4880 #endif
4881
4882 ev_feed_event (EV_A_ w, EV_STAT);
4883 }
4884 }
4885
4886 void
4887 ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4888 {
4889 if (ecb_expect_false (ev_is_active (w)))
4890 return;
4891
4892 ev_stat_stat (EV_A_ w);
4893
4894 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4895 w->interval = MIN_STAT_INTERVAL;
4896
4897 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4898 ev_set_priority (&w->timer, ev_priority (w));
4899
4900 #if EV_USE_INOTIFY
4901 infy_init (EV_A);
4902
4903 if (fs_fd >= 0)
4904 infy_add (EV_A_ w);
4905 else
4906 #endif
4907 {
4908 ev_timer_again (EV_A_ &w->timer);
4909 ev_unref (EV_A);
4910 }
4911
4912 ev_start (EV_A_ (W)w, 1);
4913
4914 EV_FREQUENT_CHECK;
4915 }
4916
4917 void
4918 ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
4919 {
4920 clear_pending (EV_A_ (W)w);
4921 if (ecb_expect_false (!ev_is_active (w)))
4922 return;
4923
4924 EV_FREQUENT_CHECK;
4925
4926 #if EV_USE_INOTIFY
4927 infy_del (EV_A_ w);
4928 #endif
4929
4930 if (ev_is_active (&w->timer))
4931 {
4932 ev_ref (EV_A);
4933 ev_timer_stop (EV_A_ &w->timer);
4934 }
4935
4936 ev_stop (EV_A_ (W)w);
4937
4938 EV_FREQUENT_CHECK;
4939 }
4940 #endif
4941
4942 #if EV_IDLE_ENABLE
4943 void
4944 ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4945 {
4946 if (ecb_expect_false (ev_is_active (w)))
4947 return;
4948
4949 pri_adjust (EV_A_ (W)w);
4950
4951 EV_FREQUENT_CHECK;
4952
4953 {
4954 int active = ++idlecnt [ABSPRI (w)];
4955
4956 ++idleall;
4957 ev_start (EV_A_ (W)w, active);
4958
4959 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
4960 idles [ABSPRI (w)][active - 1] = w;
4961 }
4962
4963 EV_FREQUENT_CHECK;
4964 }
4965
4966 void
4967 ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4968 {
4969 clear_pending (EV_A_ (W)w);
4970 if (ecb_expect_false (!ev_is_active (w)))
4971 return;
4972
4973 EV_FREQUENT_CHECK;
4974
4975 {
4976 int active = ev_active (w);
4977
4978 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4979 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4980
4981 ev_stop (EV_A_ (W)w);
4982 --idleall;
4983 }
4984
4985 EV_FREQUENT_CHECK;
4986 }
4987 #endif
4988
4989 #if EV_PREPARE_ENABLE
4990 void
4991 ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4992 {
4993 if (ecb_expect_false (ev_is_active (w)))
4994 return;
4995
4996 EV_FREQUENT_CHECK;
4997
4998 ev_start (EV_A_ (W)w, ++preparecnt);
4999 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5000 prepares [preparecnt - 1] = w;
5001
5002 EV_FREQUENT_CHECK;
5003 }
5004
5005 void
5006 ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5007 {
5008 clear_pending (EV_A_ (W)w);
5009 if (ecb_expect_false (!ev_is_active (w)))
5010 return;
5011
5012 EV_FREQUENT_CHECK;
5013
5014 {
5015 int active = ev_active (w);
5016
5017 prepares [active - 1] = prepares [--preparecnt];
5018 ev_active (prepares [active - 1]) = active;
5019 }
5020
5021 ev_stop (EV_A_ (W)w);
5022
5023 EV_FREQUENT_CHECK;
5024 }
5025 #endif
5026
5027 #if EV_CHECK_ENABLE
5028 void
5029 ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5030 {
5031 if (ecb_expect_false (ev_is_active (w)))
5032 return;
5033
5034 EV_FREQUENT_CHECK;
5035
5036 ev_start (EV_A_ (W)w, ++checkcnt);
5037 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5038 checks [checkcnt - 1] = w;
5039
5040 EV_FREQUENT_CHECK;
5041 }
5042
5043 void
5044 ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5045 {
5046 clear_pending (EV_A_ (W)w);
5047 if (ecb_expect_false (!ev_is_active (w)))
5048 return;
5049
5050 EV_FREQUENT_CHECK;
5051
5052 {
5053 int active = ev_active (w);
5054
5055 checks [active - 1] = checks [--checkcnt];
5056 ev_active (checks [active - 1]) = active;
5057 }
5058
5059 ev_stop (EV_A_ (W)w);
5060
5061 EV_FREQUENT_CHECK;
5062 }
5063 #endif
5064
5065 #if EV_EMBED_ENABLE
5066 ecb_noinline
5067 void
5068 ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5069 {
5070 ev_run (w->other, EVRUN_NOWAIT);
5071 }
5072
5073 static void
5074 embed_io_cb (EV_P_ ev_io *io, int revents)
5075 {
5076 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5077
5078 if (ev_cb (w))
5079 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5080 else
5081 ev_run (w->other, EVRUN_NOWAIT);
5082 }
5083
5084 static void
5085 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5086 {
5087 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5088
5089 {
5090 EV_P = w->other;
5091
5092 while (fdchangecnt)
5093 {
5094 fd_reify (EV_A);
5095 ev_run (EV_A_ EVRUN_NOWAIT);
5096 }
5097 }
5098 }
5099
5100 #if EV_FORK_ENABLE
5101 static void
5102 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
5103 {
5104 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
5105
5106 ev_embed_stop (EV_A_ w);
5107
5108 {
5109 EV_P = w->other;
5110
5111 ev_loop_fork (EV_A);
5112 ev_run (EV_A_ EVRUN_NOWAIT);
5113 }
5114
5115 ev_embed_start (EV_A_ w);
5116 }
5117 #endif
5118
5119 #if 0
5120 static void
5121 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5122 {
5123 ev_idle_stop (EV_A_ idle);
5124 }
5125 #endif
5126
5127 void
5128 ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5129 {
5130 if (ecb_expect_false (ev_is_active (w)))
5131 return;
5132
5133 {
5134 EV_P = w->other;
5135 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5136 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5137 }
5138
5139 EV_FREQUENT_CHECK;
5140
5141 ev_set_priority (&w->io, ev_priority (w));
5142 ev_io_start (EV_A_ &w->io);
5143
5144 ev_prepare_init (&w->prepare, embed_prepare_cb);
5145 ev_set_priority (&w->prepare, EV_MINPRI);
5146 ev_prepare_start (EV_A_ &w->prepare);
5147
5148 #if EV_FORK_ENABLE
5149 ev_fork_init (&w->fork, embed_fork_cb);
5150 ev_fork_start (EV_A_ &w->fork);
5151 #endif
5152
5153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5154
5155 ev_start (EV_A_ (W)w, 1);
5156
5157 EV_FREQUENT_CHECK;
5158 }
5159
5160 void
5161 ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5162 {
5163 clear_pending (EV_A_ (W)w);
5164 if (ecb_expect_false (!ev_is_active (w)))
5165 return;
5166
5167 EV_FREQUENT_CHECK;
5168
5169 ev_io_stop (EV_A_ &w->io);
5170 ev_prepare_stop (EV_A_ &w->prepare);
5171 #if EV_FORK_ENABLE
5172 ev_fork_stop (EV_A_ &w->fork);
5173 #endif
5174
5175 ev_stop (EV_A_ (W)w);
5176
5177 EV_FREQUENT_CHECK;
5178 }
5179 #endif
5180
5181 #if EV_FORK_ENABLE
5182 void
5183 ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5184 {
5185 if (ecb_expect_false (ev_is_active (w)))
5186 return;
5187
5188 EV_FREQUENT_CHECK;
5189
5190 ev_start (EV_A_ (W)w, ++forkcnt);
5191 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5192 forks [forkcnt - 1] = w;
5193
5194 EV_FREQUENT_CHECK;
5195 }
5196
5197 void
5198 ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5199 {
5200 clear_pending (EV_A_ (W)w);
5201 if (ecb_expect_false (!ev_is_active (w)))
5202 return;
5203
5204 EV_FREQUENT_CHECK;
5205
5206 {
5207 int active = ev_active (w);
5208
5209 forks [active - 1] = forks [--forkcnt];
5210 ev_active (forks [active - 1]) = active;
5211 }
5212
5213 ev_stop (EV_A_ (W)w);
5214
5215 EV_FREQUENT_CHECK;
5216 }
5217 #endif
5218
5219 #if EV_CLEANUP_ENABLE
5220 void
5221 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5222 {
5223 if (ecb_expect_false (ev_is_active (w)))
5224 return;
5225
5226 EV_FREQUENT_CHECK;
5227
5228 ev_start (EV_A_ (W)w, ++cleanupcnt);
5229 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5230 cleanups [cleanupcnt - 1] = w;
5231
5232 /* cleanup watchers should never keep a refcount on the loop */
5233 ev_unref (EV_A);
5234 EV_FREQUENT_CHECK;
5235 }
5236
5237 void
5238 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5239 {
5240 clear_pending (EV_A_ (W)w);
5241 if (ecb_expect_false (!ev_is_active (w)))
5242 return;
5243
5244 EV_FREQUENT_CHECK;
5245 ev_ref (EV_A);
5246
5247 {
5248 int active = ev_active (w);
5249
5250 cleanups [active - 1] = cleanups [--cleanupcnt];
5251 ev_active (cleanups [active - 1]) = active;
5252 }
5253
5254 ev_stop (EV_A_ (W)w);
5255
5256 EV_FREQUENT_CHECK;
5257 }
5258 #endif
5259
5260 #if EV_ASYNC_ENABLE
5261 void
5262 ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5263 {
5264 if (ecb_expect_false (ev_is_active (w)))
5265 return;
5266
5267 w->sent = 0;
5268
5269 evpipe_init (EV_A);
5270
5271 EV_FREQUENT_CHECK;
5272
5273 ev_start (EV_A_ (W)w, ++asynccnt);
5274 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5275 asyncs [asynccnt - 1] = w;
5276
5277 EV_FREQUENT_CHECK;
5278 }
5279
5280 void
5281 ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5282 {
5283 clear_pending (EV_A_ (W)w);
5284 if (ecb_expect_false (!ev_is_active (w)))
5285 return;
5286
5287 EV_FREQUENT_CHECK;
5288
5289 {
5290 int active = ev_active (w);
5291
5292 asyncs [active - 1] = asyncs [--asynccnt];
5293 ev_active (asyncs [active - 1]) = active;
5294 }
5295
5296 ev_stop (EV_A_ (W)w);
5297
5298 EV_FREQUENT_CHECK;
5299 }
5300
5301 void
5302 ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5303 {
5304 w->sent = 1;
5305 evpipe_write (EV_A_ &async_pending);
5306 }
5307 #endif
5308
5309 /*****************************************************************************/
5310
5311 struct ev_once
5312 {
5313 ev_io io;
5314 ev_timer to;
5315 void (*cb)(int revents, void *arg);
5316 void *arg;
5317 };
5318
5319 static void
5320 once_cb (EV_P_ struct ev_once *once, int revents)
5321 {
5322 void (*cb)(int revents, void *arg) = once->cb;
5323 void *arg = once->arg;
5324
5325 ev_io_stop (EV_A_ &once->io);
5326 ev_timer_stop (EV_A_ &once->to);
5327 ev_free (once);
5328
5329 cb (revents, arg);
5330 }
5331
5332 static void
5333 once_cb_io (EV_P_ ev_io *w, int revents)
5334 {
5335 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5336
5337 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
5338 }
5339
5340 static void
5341 once_cb_to (EV_P_ ev_timer *w, int revents)
5342 {
5343 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5344
5345 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5346 }
5347
5348 void
5349 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
5350 {
5351 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
5352
5353 once->cb = cb;
5354 once->arg = arg;
5355
5356 ev_init (&once->io, once_cb_io);
5357 if (fd >= 0)
5358 {
5359 ev_io_set (&once->io, fd, events);
5360 ev_io_start (EV_A_ &once->io);
5361 }
5362
5363 ev_init (&once->to, once_cb_to);
5364 if (timeout >= 0.)
5365 {
5366 ev_timer_set (&once->to, timeout, 0.);
5367 ev_timer_start (EV_A_ &once->to);
5368 }
5369 }
5370
5371 /*****************************************************************************/
5372
5373 #if EV_WALK_ENABLE
5374 ecb_cold
5375 void
5376 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5377 {
5378 int i, j;
5379 ev_watcher_list *wl, *wn;
5380
5381 if (types & (EV_IO | EV_EMBED))
5382 for (i = 0; i < anfdmax; ++i)
5383 for (wl = anfds [i].head; wl; )
5384 {
5385 wn = wl->next;
5386
5387 #if EV_EMBED_ENABLE
5388 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5389 {
5390 if (types & EV_EMBED)
5391 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5392 }
5393 else
5394 #endif
5395 #if EV_USE_INOTIFY
5396 if (ev_cb ((ev_io *)wl) == infy_cb)
5397 ;
5398 else
5399 #endif
5400 if ((ev_io *)wl != &pipe_w)
5401 if (types & EV_IO)
5402 cb (EV_A_ EV_IO, wl);
5403
5404 wl = wn;
5405 }
5406
5407 if (types & (EV_TIMER | EV_STAT))
5408 for (i = timercnt + HEAP0; i-- > HEAP0; )
5409 #if EV_STAT_ENABLE
5410 /*TODO: timer is not always active*/
5411 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5412 {
5413 if (types & EV_STAT)
5414 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5415 }
5416 else
5417 #endif
5418 if (types & EV_TIMER)
5419 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5420
5421 #if EV_PERIODIC_ENABLE
5422 if (types & EV_PERIODIC)
5423 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5424 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5425 #endif
5426
5427 #if EV_IDLE_ENABLE
5428 if (types & EV_IDLE)
5429 for (j = NUMPRI; j--; )
5430 for (i = idlecnt [j]; i--; )
5431 cb (EV_A_ EV_IDLE, idles [j][i]);
5432 #endif
5433
5434 #if EV_FORK_ENABLE
5435 if (types & EV_FORK)
5436 for (i = forkcnt; i--; )
5437 if (ev_cb (forks [i]) != embed_fork_cb)
5438 cb (EV_A_ EV_FORK, forks [i]);
5439 #endif
5440
5441 #if EV_ASYNC_ENABLE
5442 if (types & EV_ASYNC)
5443 for (i = asynccnt; i--; )
5444 cb (EV_A_ EV_ASYNC, asyncs [i]);
5445 #endif
5446
5447 #if EV_PREPARE_ENABLE
5448 if (types & EV_PREPARE)
5449 for (i = preparecnt; i--; )
5450 # if EV_EMBED_ENABLE
5451 if (ev_cb (prepares [i]) != embed_prepare_cb)
5452 # endif
5453 cb (EV_A_ EV_PREPARE, prepares [i]);
5454 #endif
5455
5456 #if EV_CHECK_ENABLE
5457 if (types & EV_CHECK)
5458 for (i = checkcnt; i--; )
5459 cb (EV_A_ EV_CHECK, checks [i]);
5460 #endif
5461
5462 #if EV_SIGNAL_ENABLE
5463 if (types & EV_SIGNAL)
5464 for (i = 0; i < EV_NSIG - 1; ++i)
5465 for (wl = signals [i].head; wl; )
5466 {
5467 wn = wl->next;
5468 cb (EV_A_ EV_SIGNAL, wl);
5469 wl = wn;
5470 }
5471 #endif
5472
5473 #if EV_CHILD_ENABLE
5474 if (types & EV_CHILD)
5475 for (i = (EV_PID_HASHSIZE); i--; )
5476 for (wl = childs [i]; wl; )
5477 {
5478 wn = wl->next;
5479 cb (EV_A_ EV_CHILD, wl);
5480 wl = wn;
5481 }
5482 #endif
5483 /* EV_STAT 0x00001000 /* stat data changed */
5484 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5485 }
5486 #endif
5487
5488 #if EV_MULTIPLICITY
5489 #include "ev_wrap.h"
5490 #endif
5491